Stereochemistry

stereochemistry: study of the spatial characteristics of a molecule stereocenter: atom bonded to four different groups (has R or S configuration) internal mirror plane: plane that divides molecule in such a way that two halves are identical

chiral (optically active): possessing a non-identical mirror image (an enantiomer) achiral: superimposable on its mirror image

enantiomers: non-identical mirror images (same physical properties) diastereomers: stereoisomers that are not enantiomers (different physical properties) meso compound: achiral molecule that has stereocenters

Assigning R/S Stereochemistry (Cahn-Ingold-Prelog)

- · Every stereocenter can be assigned as R or S.
- · A stereocenter is an atom attached to four different groups.
- 1. Assign each group a priority (1 = highest).
 - a) Highest atomic number has priority.
 - b) Heavier isotopes have priority (D > H).
 - c) In a tie, move along the chain to the first point of difference.
 - d) With multiple bonds, break each pi-bond and duplicate the atoms at each end.
- 2. Put the lowest priority group (4) in back and view along the bond from carbon to group 4.
- 3. Draw an arrow from 1 to 2 to 3.
 - a) Clockwise = R (Your car turns right!)
 - b) Counterclockwise = S (sinister means left in Latin)

Tricks:

- 1. Taking the mirror image of a stereocenter switches R and S. This means that, if a molecule is chiral, switching the R/S configuration of every stereocenter will give you the enantiomer.
- 2. Exchanging any two groups on a stereocenter switches R and S.

Fischer Projections

· Useful for comparing stereoisomers with more than one stereocenter.

The Rules:

- 1. At every intersection, the vertical lines are pointed back (away from you) and the horizontal lines are pointed up (toward you).
- 2. Draw the carbon backbone of a molecule as the vertical line with the most highly oxidized carbon on top.
 - a) You can think of oxidation as how many bonds carbon has to oxygen. So the ranking goes as follows: $CO_2H > (CHO \text{ or } CRO) > CH_2OH > CH_3$
- 3. It is legal to rotate Fischer projections by 180° in the plane of the paper.
- 4. It is not legal to rotate Fischer projections by 90° or out of the plane of the paper.

Tricks:

- 1. Exchanging the horizontal substituents on a stereocenter switches R and S.
- 2. To take the mirror image, just exchange the horizontal substituents at each intersection. If the molecule is chiral, this will give you the enantiomer.
- 3. If you can draw a mirror plane through the Fischer projection, then the molecule is achiral.