Practice Series Problems Solutions – Math 112 – Fall 2001

- 1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+2}}$ Compare to $\frac{1}{n^2}$ to show convergence.
- 2. $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^3}$ Since \tan^{-1} is always less than $\frac{\pi}{2}$, compare to $\frac{\pi}{2n^3}$ to show convergence.
- 3. $\sum_{n=1}^{\infty} \left(\frac{n^2-1}{n^3+3}\right)^{\frac{1}{3}}$ Compare to $\frac{1}{n^{\frac{1}{3}}}$ to show divergence.
- 4. $\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$ Use ratio test to show convergence.
- 5. $\sum_{n=1}^{\infty} \frac{10n+1}{n(n+1)(n+2)}$ Use limit comparison to $\frac{10}{n^2}$ to show convergence.
- 6. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{5^n}$ This is a geometric series that converges to $\frac{4}{3}$.
- 7. $\sum_{n=1}^{\infty} \frac{n^2+1}{n}$ Use term test for divergence (to show divergence).
- 8. $\sum_{n=1}^{\infty} (-1)^n \ln(\frac{1}{n})$ Use term test for divergence (to show divergence).
- 9. $\sum_{n=1}^{\infty} \ln(\frac{1}{n})$ Use term test for divergence (to show divergence).
- 10. $\sum_{n=1}^{\infty} \frac{n}{e^n}$ Use ratio test to show convergence.
- 11. $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n+1}}\right)$ Use algebra to combine the fractions to get $\frac{2}{n-1}$. This is a multiple of a harmonic series, so it diverges.
- 12. $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ This is a p-series that converges, p = 3/2 > 1.
- 13. $\sum_{n=1}^{\infty} (n+3)! n! 3^n$ Use term test for divergence (to show divergence).
- 14. $\sum_{n=1}^{\infty} \cos(n\pi)$ Use term test for divergence (to show divergence).
- 15. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+10}}$ Use alternating series to show convergence.
- 16. $\sum_{n=1}^{\infty} \frac{1}{4^n}$ This is a geometric series that converges to $\frac{1}{3}$.
- 17. $\sum_{n=1}^{\infty} (-1)^n \frac{\sin^2 n}{n^2}$ Show converges absolutely by comparison to $\frac{1}{n^2}$.
- 18. $\sum_{n=1}^{\infty} \frac{2}{n^2+n}$ Compare to $\frac{2}{n^2}$ to show convergence.
- 19. $\sum_{n=1}^{\infty} \frac{1}{(n+3)^2}$ Compare to $\frac{1}{n^2}$ to show convergence.
- 20. $\sum_{n=1}^{\infty} (-1)^n \frac{n^{43n}}{n!}$ Show converges absolutely by the ratio test.
- 21. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{5^n}$ Compare to $\frac{1}{5^n}$ to show convergence.
- 22. $\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^3} dx$ Rewrite as an improper integral and then evaluate to show convergence to $\frac{1}{2}$. Note: This is not the integral test!