
Ver 3537 E1.1 Analysis of Circuits (2014)

E1.1 Circuit Analysis

Problem Sheet 1 (Lectures 1 & 2)

Key: [A]= easy ... [E]=hard

1. [A] One of the following circuits is a series circuit and the other is a parallel circuit. Explain which
is which.

(a) (b)

2. [B] Find the power absorbed by by each of the subcircuits A and B given that the voltage and
current are 10 V and 2 A as shown.

3. [B] For each of the four circuits below, find the power absorbed by the voltage source (PV ), the
power absorbed by the current source (PI) and the total power absorbed (PV + PI).

(a) (b) (c) (d)

4. [B] Determine the voltage VX in the following circuit.

5. [B] Determine the current IX in the following circuit.

6. [B] What single resistor is equivalent to the three resistor sub-circuit shown below?
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7. [B] What single resistor is equivalent to the three resistor sub-circuit shown below?

8. [C] What single resistor is equivalent to the five resistor sub-circuit shown below?

9. [A] If a resistor has a conductance of 8µS, what is its resistance?

10. [B] Determine the voltage across each of the resistors in the following circuit and the power dissipated
in each of them. Calculate the power supplied by the voltage source.

11. [B] Determine the current through each of the resistors in the following circuit and the power dissip-
ated in each of them. Calculate the power supplied by the current source.

12. [B] Determine R1 so that Y = 1
4X.

13. [B] Choose R1 and R2 so that Y = 0.1X and R1 +R2 = 10 MΩ.

14. [D] You have a supply of resistors that have the values {10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82} ×
10n Ω for all integer values of n. Thus, for example, a resistor of 390 Ω is available and the next higher
value is 470 Ω. Show how, by combining two resistors in each case, it is possible to make networks
whose equivalent resistance is (a) 3 kΩ, (b) 4 kΩ and (c) as close as possible to 3.5 kΩ. Determine is
the worst case percentage error that might arise if, instead of combining resistors, you just pick the
closest one available.
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E1.1 Circuit Analysis

Problem Sheet 1 - Solutions

1. Circuit (a) is a parallel circuit: there are only two nodes and all four components are connected
between them.

Circuit (b) is a series circuit: each node is connected to exactly two components and the same current
must flow through each.

2. For subcircuit B the voltage and current correspond to the passive sign convention (i.e. the current
arrow in the opposite direction to the voltage arrow) and so the power absorbed by B is given by
V × I = 20 W.

For device A we need to reverse the direction of the current to conform to the passive sign convention.
Therefore the power absorbed by A is V ×−I = −20 W.

As must always be true, the total power absorbed by all components is zero.

3. The power absorbed is positive if the voltage and current arrows go in opposite directions and negative
if they go in the same direction. So we get: (a) PV = +4, PI = −4, (b) PV = +4, PI = −4, (c)
PV = −4, PI = +4, (a) PV = −4, PI = +4. In all cases, the total power absorbed is PV + PI = 0.

4. We can find a path (shown highlighted below) from the bottom to the top of the VX arrow that
passes only through voltage sources and so we just add these up to get the total potential difference:
VX = (−3) + (+2) + (+9) = +8 V.

5. If we add up the currents flowing out of the region shown highlighted below, we obtain IX−5−1+2 =
0. Hence IX = 4 A.

6. The three series resistors are equivalent to a single resistor with a value of 1 + 5 + 2 = 8 kΩ.

7. The three series resistors are equivalent to a single resistor with a value of 1
1/1+1/5+1/2 = 1

1.7 =

0.588 kΩ.

8. We can first combine the parallel 2 k and 3 k resistors to give 2×3
2+3 = 1.2 k. This is then in series with

the 4 k resistor which makes 5.2 k in all. Now we just have three resistors in parallel to give a total
of 1

1/1+1/5+1/5.2 = 1
1.39 = 0.718kΩ.

9. The resistance is 1
8×10−6 = 125 kΩ
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10. [Method 1]: The resistors are in series and so form a potential divider. The total series resistance is
7 k, so the voltages across the three resistors are 14× 1

7 = 2 V, 14× 2
7 = 4 V and 14× 4

7 = 8 V. The

power dissipated in a resistor is V 2

R , so for the three resistors, this gives 22

1 = 4 mW, 42

2 = 8 mW and
82

4 = 16 mW.

[Method 2]: The total resistance is is 7 k so the current flowing in the circuit is 14
7 = 2 mA. The voltage

across a resistor is IR which, in for these resistors, gives 2× 1 = 2 V, 2× 2 = 4 V and 2× 4 = 8 V.
The power dissipated is V I which gives 2 × 2 = 4 mW, 4 × 2 = 8 mW and 8 × 2 = 16 mW. The
current through the voltage source is 2 mA, so the power it is supplying is V I = 14 × 2 = 28 mW.
This is, inevitably, equal to the sum of the power disspipated by the three resistors: 4+8+16 = 28.

11. [Method 1]: The resistors are in parallel and so form a current divider: the 21 mA will divide in
proportion to the conductances: 1 mS, 0.5 mS and 0.25 mS. The total conductance is 1.75 mS, so the
three resistor currents are 21 × 1

1.75 = 12 mA, 21 × 0.5
1.75 = 6 mA and 21 × 0.25

1.75 = 3 mA. The power
dissipated in a resistor is I2R which gives 122 × 1 = 144 mW, 62 × 2 = 72 mW and 32 × 4 = 36 mW.

[Method 2]: The equivalent resistance of the three resistors is 1
1/1+1/2+1/4 = 4

7 kΩ. Therefore the

voltage across all components in the parallel circuit is 21× 4
7 = 12 V. The current through a resistor

is V
R which gives 12

1 = 12 mA,122 = 6 mA and12
4 = 3 mA. The power dissipated in a resistor is V I

which gives 12 × 12 = 144 mW, 12 × 6 = 72 mW and 12 × 3 = 36 mW. The power supplied by the
current source is 12× 21 = 252 mW which as expected equals 144 + 72 + 36.

12. The resistors form a potential divider, so Y
X = 4

R1+4 . So we want 4
R1+4 = 1

4 ⇒ R1 + 4 = 16 ⇒
R1 = 12 k.

13. The resistors form a potential divider, so Y
X = R2

R1+R2
. So we want R2

R1+R2
= 1

10 and R1 + R2 =
10 MΩ. Substituting one into the other and cross-multiplying gives 10R2 = 10 MΩ ⇒ R2 = 1 MΩ.
Substituting this into the simpler of the two initial equations gives R1 = 10− 1 = 9 MΩ.

14. (a) 3 k = 1.5 k + 1.5 k = 3.3 k||33 k, (b) 4 k = 3.9 k + 100, (c) 3.488 k = 3.9 k||33 k.

To make an exhaustive search for creating a resistance of R, you need to consider two possibilities:
(i) for two resistors in series, the largest of the two resistors must be in the range [ 12R,R] or (ii) for
two resistors in parallel, the smallest resistor must be in the range [R, 2R]. In both cases there are
at most four possibilities, so you need to consider up to eight possibilities in all. So, for example, for
R = 3.5 k, we would consider the following possibilities: (i) 1.5 k + 1.8 k = 3.3 k, 1.8 k + 1.8 k = 3.6 k,
2.2 k + 1.2 k = 3.4 k, 2.7 k + 0.82 k = 3.52 k and (ii) 3.9 k||33 k = 3.488 k, 4.7 k||15 k = 3.579 k,
5.6 k||10 k = 3.59 k, 6.8 k||6.8 k = 3.4 k. The choice with least error is the one given above.

Since we are interested in % errors, we need to consider the ratio between resistor values. The largest
ratio between successive resistors is the series is 15

12 = 1.25 (this includes the wraparound ratio of
100
82 = 1.22). The worst-case percentage error will arise if our target resistance is the mean of these

two values, 13.5. The percentage error in choosing either one is then 1.5
13.5 = 11.1%.
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E1.1 Circuit Analysis

Problem Sheet 2 (Lectures 3 & 4)

Key: [A]= easy ... [E]=hard

1. [B] Calculate VX and IX in the following circuit using (a) nodal analysis and (b) simplifying the
circuit by combining parallel resistors.

2. [B] Calculate VX and IX in the following circuit using (a) nodal analysis and (b) simplifying the
circuit by combining parallel resistors.

3. [C] Calculate VX in the following circuit using (a) nodal analysis and (b) superposition.

4. [C] Calculate VX in the following circuit.

5. [C] Calculate VX in the following circuit.

6. [C] Calculate VX in the following circuit.
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7. [C] Calculate VX in the following circuit. The value of the dependent current source is 99 time the
current flowing through the 1 V voltage source.

8. [C] In the following circuit calculate VX in terms of V and I using (a) nodal analysis and (b)
superposition.

9. [C] Calculate VX and IX in the following circuit using (a) nodal analysis and (b) superposition.

10. [C] Determine an expression for IX in terms of V in the following circuit. Determine the value of V
that will make IX = 0.

11. [C] Calculate VX in the following circuit using (a) nodal analysis and (b) superposition.

12. [C] Calculate VX in the following circuit which includes a dependent voltage source.
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13. [C] Find the equivalent resistance of the network shown below.

14. [D] Prove that if VAB = 0 , then R = 4 kΩ in the following circuit. The circuit is used to detect
small changes in R from its nominal value of 4 kΩ. Find an expression for VAB as a function of R.
If changes in VAB of 10 mV can be detected, what is the smallest detectable change in R .

15. [D] Calculate VX in the following circuit. You can either use nodal analysis directly or else simplify
the circuit a little to reduce the number of nodes.

16. [D] Calculate VX in the following circuit which includes a floating dependent voltage source.
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E1.1 Circuit Analysis

Problem Sheet 2 - Solutions

Note: In many of the solutions below I have written the voltage at node X as the variable X instead of
VX in order to save writing so many subscripts.

1. [Nodal analysis] KCL at node VX gives VX−14
1 + VX

2 + VX

4 = 0 which simplifies to 7VX − 56 = 0 from
which VX = 8.

[Parallel resistors] We can merge the 2 Ω and 4 Ω resistors to make one of 2×4
2+4 = 4

3 Ω as shown below.

Now we have a potential divider, so VX = 14× 1.33
2.33 = 8 V.

In both cases, we can now calculate IX = VX

4 = 2 A. Note that when we merge the two resistors, IX
is no longer a distinct current on the diagram.

Original Simplified

2. [Nodal Analysis] KCL at node Vx gives 5 + VX

1 + VX

4 = 0 which simplifies to 20 + 5VX = 0 from
which VX = −4.

[Parallel Resistors] We can combine the 1 Ω and 4 Ω resistors to make one of 1×4
1+4 = 4

5 Ω as shown
below. Now we have VX = −5× 0.8 = −4 V.

Original Simplified

In both cases, we can now calculate IX = VX

4 = −1 A.

In this question, you have to be a bit careful about the sign used to represent currents. Whenever you
use Ohm’s law, you must be sure that you use the passive sign convention (with the current arrow
in the opposite direction to the voltage arrow); this is why the current through the 0.8 Ω resistor is
−5 A rather than +5 A.
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3. [Nodal Analysis] KCL at node Vx gives VX−6
4 + VX

1 + 4 = 0 which simplifies to 5VX + 10 = 0 from
which VX = −2.

[Superposition] (i) If we set the current source to zero, then the 4 Ω resistor connected to it plays
no part in the circuit and we have a potential divider giving VX = 6× 1

5 = 1.2. (ii) We now set the
voltage source to zero and then simplify the resultant circuit as shown below. Being careful with
signs, we now get VX = −4 × 0.8 = −3.2. Adding these two values together gives a final answer of
VX = −2.

Original I = 0 V = 0 V = 0 simplified

4. We first label the nodes; we only need two variables because of the floating voltage source. KCL

at X gives X−20
30 + X−(Y−13)

20 + X−Y
10 = 0 which gives 11X − 9Y = 1. KCL at the supernode

{Y, Y − 13}gives Y−20
15 + Y−X

10 + (Y−13)−X
20 + (Y−13)

10 = 0 which gives −9X + 19Y = 197. Solving
these two simultaneous equations gives X = 14 and Y = 17.

5. We first label the nodes; there are only two whose voltage is unknown. Working in mA and kΩ, KCL
at X gives X−240

3 + X−Y
6 +10 = 0 which gives 3X−Y = 420. KCL at Y gives Y−X

6 + Y
24 + Y−60

12 = 0
which gives −4X + 7Y = 120. Solving these simultaneous equations gives X = 180 and Y = 120.

6. We first label the nodes; since the two nodes having unknown voltages are joined by a fixed voltage
source, we only need one variable. We write down KCL for the supernode {X,X − 50} (shaded in

the diagram) which gives (X−50)−300
90 + (X−50)

10 + X−300
10 + X

90 = 0 which simplifies to 20X = 3500 or
X = 175 V.
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7. There is only one node with an unknown voltage, namely X. However, there is a dependent current
source, so we need to express its value in terms of the node voltages: 99I = 99× X−1

125 where we are

expressing currents in mA. So now we can apply KCL to node X to obtain X−10
1 + X−1

125 +99×X−1
125 = 0

which simplifies to 225X = 1350 from which X = 6.

8. [Nodal Analysis] Using KCL at node X gives X−V
20 + X

1 − I = 0 which we can rearrange to give
X = 1

21V + 20
21I.

[Superposition] If we set I = 0 then we have a voltage divider in which X = 1
21V (see middle

diagram). If we set V = 0 then (see right diagram) we can combine the two parallel resistors as
20×1
20+1 = 20

21 Ω and it follows that X = 20
21I. By superposition, we can add these two expression

together to give X = 1
21V + 20

21I.

Original I = 0 V = 0

9. [Nodal Analysis] We can easily see that the 4 A current flowing through the leftmost resistor means
the top left node has a voltage of −8 (although actually we do not need to calculate this because of the
isolating effect of the current source). Using KCL at the supernode {X−4, X} gives−4+X−4

2 +X
2 = 0

which we can rearrange to give 2X = 12 or X = 6. It follows that IX = 6
2 = 3 A.

[Superposition] If we set I = 0 then we have a voltage divider (since the resistors are in series) in
which X = 4× 2

2×2 = 2 and IX = 1 A (see middle diagram). If we set V = 0 then (see right diagram)

we can combine the two parallel resistors as 2×2
2+2 = 1 Ω and it follows that X = 4 and, by current

division, that IX = 2 A. By superposition, we can add these two expression together to give X = 6 V
and IX = 3 A.

Original I = 0 V = 0
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10. [Nodal Analysis] We first label the unknown node as X. Now, KCL at this node gives−6+X
3 +X−V

6 =

0 which rearranges to give 3X = V + 36 from which X = 1
3V + 12. Now IX = X

3 so IX = 1
9V + 4.

[Superposition] If we set I = 0 (see middle diagram) then IX = V
9 . If we set V = 0 then (see

right diagram) we have a current divider in which the 6 A current divides in proportion to the

conductances. So IX = 6× 1/3
1/3+1/6 = 6× 2

3 = 4. Adding these results together gives IX = 1
9V + 4.

If V = −36 then IX = 0.

Original I = 0 V = 0

11. [Nodal Analysis] KCL at node X gives X−10
2 + X

2 + X−(−3)
3 = 0 which rearranges to give 8X = 24

from which X = 3.

[Superposition] If we set the left source to zero (see middle diagram) then, the two parallel 2 Ω
resistors are equivalent to 1 Ω and so we have a potential divider and X = −3 × 1

4 = −0.75. If we
set the other source to zero (see right diagram) we can combine the 2 Ω and 3 Ω parallel resistors to
obtain 2×3

2+3 = 1.2 Ω. We again have a potential divider giving X = 10× 1.2
2+1.2 = 3.75. Adding these

together gives X = −0.75 + 3.75 = 3 V.

Original U1 = 0 U2 = 0

12. KCL at node Y gives Y−4
1 + Y−X

5 = 0 which rearranges to −X+6Y = 20. We also have the equation
of the dependent voltage source: X = −6Y . We can conveninetly eliminate 6Y between these two
to give −2X = 20 and so X = −10.

13. We first pick a ground reference at one end of the network and label all the other nodes. The
equivalent resistance is now V

I . We assume that we know V and then calculate I. KCL at node

A gives A−V
5 + A−B

5 + A
5 = 0 from which 3A − B = V or B = 3A − V . KCL at node B gives

B−V
25 + B−A

5 + B
5 = 0 from which 11B − 5A = V . Substituting B = 3A− V into this equation gives

33A− 5A = 12V or A = 12
28V which in turn gives B = 3A− V = 8

28V . The current I is the sum of

the currents throught the rightmost two 5 Ωresistors: I = A
5 + B

5 = 1
7V . So the equivalent resistance

is V
I = 7 Ω.
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14. If VAB = 0 then no current flows through the 2 k resistor, so the two vertical resistor chains form
potential dividers. In the leftmost chain, VA = 100× 4

4+4 = 50 V. Since VAB = 0, VB = VA = 50 =

100× R
4+R which implies that R = 4 k.

KCL at nodes A gives A−100
4 + A

4 + A−B
2 = 0 which gives 4A− 2B = 100 or B = 2A− 50. KCL at

node B now gives B−100
4 + B

R + B−A
2 = 0 into which we can substitute the expression for B to get

2A−150
4 + 2A−50

R + A−50
2 = 0 from which A = 100+125R

4+2R . Substituting this into B = 2A − 50 gives

B = 150R
4+2R and hence A−B = 100−25R

4+2R . If we can detect a value of A−B = 10 mV = 0.01 then the

corresponding value of R is the solution to 100−25R
4+2R = 0.01 which gives 25.02R = 99.96 from which

R = 3995.2 Ω which is a change of 4.8 Ω or 0.12%.

15. We label the nodes as shown below (using X instead of VX for ease of writing). Note that when
we have labelled the upper node of the floating voltage source as Y we can label the lower node as
Y +13 and do not need another variable. KCL at node X gives X−19

2 + X−Z
3 + X−Y

4 = 0 which gives

13X−3Y −4Z = 114. KCL at node Z gives Z
2 + Z−X

3 + Z−Y−15
2 = 0 which gives −2X−3Y +8Z = 45.

Finally, KCL at the supernode {Y, Y + 15} gives Y−X
4 + Y+15−Z

2 = 0 from which X−3Y + 2Z = 30.
Solving these three simultaneous equations gives X = 11, Y = −1 and Z = 8.

Original Simplified

An alternative approach is to notice that the three rightmost components are in series and so you
can reorder them without affecting the rest of the circuit to give the simplified circuit shown above.
Now, we only have two unknowns and hence only two simultaneous equations to solve. KCL at node
X gives X−19

2 + X−W−15
3 + X−W

6 = 0 which gives 6X−3W = 87. KCL at the supernode {W,W +15}
gives W−X

6 + W+15−X
3 + W+15

2 = 0 from which 3X − 6W = 75. These equations are easily solved to
give X = 11 and W = −7.

16. Since the floating voltage source is a dependent voltage source, we need to label its two ends with
separate variables (see below). We now write down a KCL equation for the supernode shown shaded:
Y−48

4 + Y
4 + X−48

9 + X
6 = 0 which simplifies to 10X + 18Y = 624.

We also need to express the voltage source value in terms of nodal voltages: Y −X = 8I = 8×X
6 = 4

3X
which rearranges to give Y = 7

3X. Substituting this in the previous equation gives 10X +18× 7
3X =

624 which simplifies to 52X = 624 from which X = 12.
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E1.1 Circuit Analysis

Problem Sheet 3 (Lectures 5, 6, 7 & 8)

Key: [A]= easy ... [E]=hard

1. [B] Calculate the Thévenin and Norton equivalent networks at the terminals A and B for each of
the following.

(a) (b)

2. [B] Use nodal analysis to calculate an expression for A in Fig. 2 in terms of I and then rearrange
this to give I in terms of A. Show how these expressions are related to the Thévenin and Norton
equivalent networks at the terminals A and B.

Fig. 2 Fig. 3 Fig. 4

3. [B] Determine X in Fig. 3 when (a) U = +5 V and (b) U = −5 V. Assume that the diode has a
forward voltage drop of 0.7 V.

4. [B] In Fig. 4, calculate I and the power dissipation in the resistor and in the diode. Assume that
the diode has a forward voltage drop of 0.7 V.

5. [B] Find the gains X
U and Y

U in the following circuits:

(a) (b)

6. [C] Calculate the Thévenin and Norton equivalent networks at the terminals A and B in Fig. 6 in
two ways (a) by combining resistors to simplify the circuit and (b) by using nodal analysis to express
A in terms of I.

Fig. 6
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7. [C] Find the current I in Fig. 7 in two ways: (a) by nodal analysis and (b) by combining the leftmost
three components into their Thévenin equivalent.

Fig. 7 Fig. 8

8. [C] For what value of R in Fig. 8 will the power dissipation in R be maximized. Find the power
dissipation in R in this case.

9. [C] Find the Thévenin equivalent of the circuit between nodes A and B in two ways: (a) by performing
a sequence of Norton↔Thévenin transformations and (b) using superposition to find the open-circuit
voltage and combining resistors to find the Thévenin resistance.

10. [C] State whether the feedback in the following circuits is positive or negative:

(a) (b) (c) (d)

11. [C] Find the gain X
U in the following circuit:
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12. [C] Find expressions for X, Y and Z in terms of U1, U2 and U3.

(a) (b) (c)

13. [C] Choose values of R1 and R2 in Fig. 13 so that X = 2U2 − 3U1.

Fig. 13 Fig. 14

14. [C] Find an expression for Y in Fig. 14 in terms of U1 and U2.

15. [C] In the circuit diagram, the potentiometer resistance between the slider and ground is a× 40 kΩ
where 0 ≤ a ≤ 1. Find the gain of the circuit, X

U as a function of a. What is the range of gains that
the circuit can generate as a is varied.

16. [C] By replacing the rightmost three components in Fig. 16 by their Thévenin equivalent, find X
when (a) U = 0 V and (b) U = 5 V. Assume that the diode has a forward voltage drop of 0.7 V.
Determine the value of U at which the diode switches between operating regions.

Fig. 16 Fig. 18

17. [C] In the block diagram of Fig. 17, F,G,H represent the gains of the blocks. Find the overall gain
Y
X .

Fig. 17
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18. [D] The circuit of Fig. 18 includes a dependent current source whose value is proportional to the
current J . Find the Thévenin equivalent of the circuit by two methods: (a) use nodal analysis
including the current I and express the voltage VAB as a function of I and (b) assume I = 0 and
find (i) the open circuit voltage, VAB as a function of U and (ii) the short-circuit current (with A
joined to B) as a function of U . Hence find the Thévenin equivalent of the circuit.

19. [D] Choose resistor values in Fig. 19 so that (a) X = 1
2U3 + 1

3U2 + 1
6U1 and (b) the Thévenin

resistance between X and ground is 50 Ω. Why would the question be impossible if it had asked for
X = 1

2U3 + 1
3U2 + 1

3U1?

Fig. 19 Fig. 20

20. [D] Choose resistor values in Fig. 20 so that (a) the Thévenin between X and ground is 50 Ω and
(b) it is possible to set X to 1, 2, 3 or 4 V by setting the switches appropriately.

21. [D] State whether the feedback in the following circuits is positive or negative:

(a) (b)
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22. [D] Find an expression for Z in Fig. 22 in terms of U1 and U2.

Fig. 22 Fig. 23

23. [D] The circuit of Fig. 23 is called a Howland current source. Show that the circuit has negative
feedback. Use nodal analysis to determine the current I and show that it does not depend on R.

24. [D] A non-linear device has a characteristic Y =
√
X for inputs in the range 0 ≤ X ≤ 1. To improve

its linearity, the device is placed in a feedback loop using an op-amp with a gain of A as shown in
Fig. 24. Determine an expression for Y in terms of U and A. Simplify the expression by using the

Taylor series approximation:
√
v + w ≈

√
v
(

1 + w
2v −

w2

8v2

)
valid for v � w. Estimate how large A

must be to ensure that Y |U=0.5 = 0.5× Y |U=1 to within 1% of Y |U=1.

Fig. 24

25. [D] The diodes in Fig. 25 have a characteristic I = k exp V
VT

where VT = 25 mV.

(a) For the circuit of in Fig. 25(a), find an expression for U in terms of X assuming that X > 0.

(b) For the circuit of in Fig. 25(b), find and expression for Y in terms of X assuming that X > 0.

Fig. 25(a) Fig. 25(b)

26. [C] We normally assume that the current at the inputs to an opamp are negligible. However this is not
always true and this question investigates the effect of non-zero input bias currents. If IB = 100 nA,
find expressions for X

U and Y
U in the circuits below. Explain the advantage of circuit (b) and derive

a general principal that should be followed when using opamps having non-negligible input bias
currents, IB .

(a) (b)
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E1.1 Circuit Analysis

Problem Sheet 3 - Solutions

1. (a) Thévenin voltage equals the open circuit voltage is 4 V (from potential divider). To obtain the
Thévenin/Norton we set the voltage source to 0 (making it a short circuit) and find the resistance of
the network to be 1||4 = 0.8 Ω. From this the Norton current is 4

0.8 = 5 A. This may also be found
directly from the short-circuit current of the original circuit.

(b) The open-circuit voltage is −8 V (since the 2 A current flows anticlockwise). To obtain the
Thévenin/Norton resistance, we set the current source to zero (zero current implies an open circuit),
so the resultant network has a resistance of 4 Ω. The Norton current is −84 = −2 A; this may also be
found by observing that the short-circuit current (flowing into node A) is +2 A.

2. KCL at node A gives A−5
1 + A

4 − I = 0 from which 5A− 20− 4I = 0 which we can rearrange to give
A = 4 + 0.8I = VTh +RThI. We can also rearrange to give I = −5 + 1

0.8A = −INor + 1
RNor

A.

3. (a) When U = 5, the diode is on and so X = U − 0.7 = 4.3. To check our assumption about the
diode operating region, we need to calculate the current through the diode; this equals 4.3 mA which
is indeed positive.

(b) When U = −5, the diode is off, so the current through the resistor is zero and X = 0. As a
check, the voltage across the diode is U −X = −5 which confirms our assumption that it is off.

4. As in part (a) of the previous question, I = 4.3 mA. The power dissipation in the diode is therefore
VDI = 0.7× 4.3 = 3.01 mW. The power dissipation in the resistor is I2R = 18.5 mW.

5. Circuit (a) is an inverting amplifier with gain X
U = − 10

1 = −10. Circuit (b) is a non-inverting

amplifier with gain Y
U = 1 + 10

1 = +11. Another way to see this is to notice that, since the opamp

inputs draw no current, the potential divider means that the -ve opamp input is at Y
11 and, since the

negative feedback ensures the opamp terminals are at the same voltage, U = Y
11 .

6. [Method 1 - circuit manipulation] To calculate the Thévenin equivalent, we want to determine the
open-circuit voltage and the Thévenin resistance. To determine the open-circuit voltage, we assume
that I = 0 and calculate VAB . Since I = 0, we can combine the 1 Ω and 6 Ω resistors to give 7 Ω
and then combine this with the 6 Ω resistor in parallel to give 42

13 Ω. We now have a potential divider

so the voltage at point X is 63 × 42/13
3+42/13 = 98

3 . This is then divided by the 1 Ω and 6 Ω resistors

to give an open-circuit voltage of 98
3 ×

6
7 = 28 V. The Thévenin/Norton resistance can be found by

short-circuiting the voltage source to give 3 Ω in parallel with 6 Ω which equals 2 Ω. This is then in
series with 1 Ω(to give 3 Ω ) and finally in parallel with 6 Ω to give 2 Ω.

[Method 2 - Nodal Analysis]. We can do KCL at node X (see diagram below) to get X−63
3 + X

6 +
X−A

1 = 0 which simplifies to 9X − 6A = 126 or 3X − 2A = 42. We now do KCL at A but include

an additional input current I as shown in the diagram. This gives A−X
1 + A

6 − I = 0 from which
7A − 6X = 6I. Substituting for 6X = 4A + 84 gives 3A = 84 + 6I or A = 28 + 2I. This gives
the Thévenin voltage as 28 and the Thévenin/Norton resistance as 2 Ω.Hence the Norton current is
14 A.

7. (a) KCL @ X gives X−14
1 + X

4 + X
2 = 0 from which 7X = 56⇒ X = 8⇒ I = X

2 = 4 mA.

(b)Finding the Thévenin equivalent of the left three components: we consider the two resistors as
a potential divider to give VTh = 14 × 4

5 = 11.2 V. Setting the source to zero (short circuit) gives

RTh = 1||4 = 800 Ω. Hence I = VTh

RTh+2000 = 11.2
2.8 = 4 mA.
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8. From question 7, the left three components have a Thévenin equivalent: VTh = 11.2 V and RTh =
800 Ω. It follows that the maximum power will be dissipated in R when R = RTh = 800 Ω (see notes
page 5-8). Since the voltage across R will then be 1

2VTh the power dissipation will be 1
4RTh

V 2
Th =

39.2 mW.

9. (a) As shown in the sequence below, we first combine the current source with the 40 Ωresistor, then
combine the four series components into a single Thévenin equivalent and finally find the Thévenin
equivalent of the simple network (using parallel resistors for RTh and a potential divider for VTh).

(b) Setting the voltage source to zero gives us the first diagram. Combining 40||(60 + 100) = 32 so
X = −0.1× 32 = −3.2 V. it follows (potential divider) that A = −3.2× 100

160 = −2 V.

Now setting the current source to zero gives the second diagram and we have a potential divider
giving VAB = 6× 100

100+60+40 = 3 V.

Superposition now gives us VAB = VTh = −2 + 3 = 1 V.

To find RTh we set both sources to zero and find the resultant resistance of 100||(60+40) = 100||100 =
50 Ω.

10. (a) Negative, (b) Positive, (c) Negative, (d) Positive. In simple circuits like these, you can just see
which terminal the output feeds back to.

11. The best way to think of this circuit is as a potential divider with gain Y
U = 1

3 followed by a

non-inverting opamp circuit with gain X
Y = 1 + 60

10 = 7. The combined gain is then X
U =1

3 × 7 = 7
3 .
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12. (a) You can either recognise this a a standard inverting summing amplifier with gain
X = −

(
40
20U1 + 40

10U2

)
= −2U1−4U2 or else apply KCL at the +ve input terminal with the assump-

tion that negative feedback will ensure that this terminal is at the same voltage as the –ve terminal
i.e. 0 V. This gives: 0−U1

20 + 0−U2

10 + 0−X
40 = 0 from which X = −2U1 − 4U2.

(b) The network connected to the +ve terminal is a weighted averaging circuit (page 3-7 of the notes)
so V+ = 1

3U1 + 2
3U2. The opamp circuit itself is a non-inverting amplifier with a gain of 1 + 50

10 = 6.
So, Y = 6×

(
1
3U1 + 2

3U2

)
= 2U1 + 4U2.

(c) [Superposition method] Following the method of part (b) above, if U3 = 0, we have Z = 5 ×(
1
5U1 + 4

5U2

)
= U1 + 4U2. If, on the other hand, U1 = U2 = 0, then V+ = 0 and so we have an

inverting amplifier with a gain of − 40
10 = −4. Hence Z = −4U3.

Combining these gives Z = U1 + 4U2 − 4U3.

[Nodal analysis method] The top two resistors are a weighted average circuit so V+ = 1
5U1 + 4

5U2.

Now, assuming that V− = V+, we do KCL at V− to give
1
5U1+

4
5U2−U3

10 +
1
5U1+

4
5U2−Z
40 = 0 from which

U1 + 4U2 − 4U3 − Z = 0 giving Z = U1 + 4U2 − 4U3.

13. We can use superposition. If U2 = 0,then V+ = 0 and we have an inverting amplifier with a gain
X
U1

= − 60
R1

. The question tells us that this must equal −3 so we must have R1 = 20. Now, if U1 = 0,

the circuit consists of a potential divider with a gain of 60
R2+60 followed by a non-inverting amplifier

with a gain of 1 + 60
R1

= 4. The combined gain must equal 2 (from the question) so the potential

divider must have a gain of 1
2 which means R2 = 60 kΩ.

14. The first opamp is non-inverting with a gain X
U2

= 1 + 10
50 = 1.2. We can use superposition to find

Y : If U2 = 0,then X = 0 and we have a non-inverting amplifier with a gain of Y
U1

= 1 + 50
10 = 6.

If, on the other hand, U1 = 0, then we have an inverting amplifier and Y
X = − 50

10 = −5. It

follows that Y
U2

= Y
X ×

X
U2

= −5 × 1.2 = −6. Combining both portions of the superposition,
Y = 6U1−6U2 = 6(U1−U2). This is therefore a differential amplifier (whose output is ∝ (U1 − U2))
that draws almost no current from either if its inputs. A better circuit is given in question 22.

15. The potentiometer is a potential divider and so V+ = aU . Assuming that V− = V+, we can do KCL
at V− to get aU−U

40 + aU−X
40 = 0 from which X = (2a− 1)U. For a = 0, the gain is −1 and when

a = 1, the gain is +1. So the circuit can generate any gain between these two extremes.

16. The Thévenin voltage is −3 V (potential divider) and the Thévenin resistance is 1||3 = 0.75 Ω as
shown in the diagram below. Note that if you drawn the Thévenin voltage source the other way
around (with “+” at the bottom) then the Thévenin voltage will be +3 V; this is an equally valid
solution.

(a) If U = 0 V, the diode is forward biassed and KCL @ X gives X−(−3)
0.75 + X−(0−0.7)

3 = 0 from which

X = −2.54. The current through the diode is X−(−3)
0.75 = 613 mA which is > 0 confirming our guess

about the diode operating region.

(b) If U = 5 V, the diode is off and so X = −3 (since no current flows through the 750 Ω resistor).
The diode forward voltage is (−U)−X = −2. This is < 0.7 confirming our operating region guess.

The diode switches regions when both operating region equations are true: ID = 0 and VD = 0.7.
The current equation implies X = −3 while the voltage equation (and the zero current through the
3 k resistor) implies X = −U − 0.7. Combining these gives U = 2.3. Extreme care with signs is
needed in this question.
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17. There is only one feedback loop in this circuit: from W back to the input adder. We can write
W = FG (X −W ) from which W = FG

1+FGX. Then Y = F (X −W ) +HW . From the first equation

(X −W ) = W
FG so we can substitute this in to get Y = W

G +HW =
(
1
G +H

)
FG

1+FGX = F+FGH
1+FG X.

18. (a) [Nodal analysis including I ] We have J = U−A
100 , so the current source value (expressed in terms

of node voltages) is 49J = 0.49 (U −A). The KCL equation @ A is A−U
100 − 0.49(U −A)− I = 0 from

which 50 (A− U) = 100I which gives A = 2I +U = RThI + VTh. So the Thévenin voltage is U and
the Thévenin resistance is 2 kΩ.

(b) In this method, we assume I = 0 and calculate the open-circuit voltage and short-circuit current.
For the open-circuit voltage, we do KCL at A and obtain A−U

100 − 0.49(U − A) = 0 from which
50 (A− U) = 0 so A = VTh = U . For the short-circuit current, we join A and B and the current is
then VTh

RTh
= U

100 + 0.49U = 0.5U . Hence RTh = 2 kΩ.

19. From the notes (page 3-7) X = U1G1+U2G2+U3G3

G1+G2+G3
. The equations are made much easier to solve

because we know that the Thévenin resistance must be 50 Ω. The Thévenin resistance is just
the parallel combination R1||R2||R3 = 1

G1+G2+G3
= 1

20mS. Hence X = 1
2U3 + 1

3U2 + 1
6U1 =

50 (U1G1 + U2G2 + U3G3) where the first expression is given in the question and the second comes
from substituting for G1 + G2 + G3. Identifying the coefficients in this equation gives G1 = 1

300 ,
G2 = 1

150 and G3 = 1
100 from which R1 = 300, R2 = 150 and R3 = 100. In a weighted average

circuit, the coefficients must sum to 1; thus 1
2 + 1

3 + 1
6 = 1 but 1

2 + 1
3 + 1

3 6= 1 so the latter set of
coefficients is inadmissible.

20. From the notes (page 3-7) X = U2G2+U3G3+5G4

G1+G2+G3+G4
. where U2 and U3 can equal 0 or 5. As in the previous

question, we are told that G1 +G2 +G3 +G4 = 20 mS. Hence X = 50 (U2G2 + U3G3 + 5G4). The
only way that we can obtain the required voltages is if switching U2 causes X to change by 1 V and
switching U3 causes X to change by 2 V (or vice versa). Thus we need X = 1

5U2 + 2
5U3 + 1; it is easy

to see that this satisfies the required output voltages. Now equating coefficients, we get 50G2 = 1
5 ,

50G3 = 2
5 and 250G4 = 1 from which R2 = 1

G2
= 250, R3 = 1

G3
= 125 and R4 = 1

G4
= 250. Finally,

G1 = 0.02−G2 −G3 −G4 = 0.004 so R1 = 1
G1

= 250.

21. We need to determine how the differential input to the opamp (V+ − V−)depends on X. We are not
interested in how it depends on U so it is convenient to set U = 0. So, with this assumption, we get
potential divider equations:

(a) V+ = 20
10+20X = 2

3X and V− = 10
20+10X = 1

3X. Hence V+− V− = 1
3X which, since the coefficient

is positive means positive feedback.

(b) V+ = 10
10+20X = 1

3X and V− = 20
20+10X = 2

3X. Hence V+ − V− = − 1
3X which, since the

coefficient is negative means negative feedback.

22. We can split the circuit up into two independent parts because the opamp outputs are voltage sources
whose voltage is not affected by how many other things are connected to them. Note that all three
opamps have negative feedback and so we can assume that V+ = V−.

For the first part, we have A = U1 and B = U2. KCL @ A therefore gives U1−X
50 + U1−U2

10 = 0 which

gives X = 6U1 − 5U2. Similarly, KCL @ B gives U2−Y
50 + U2−U1

10 = 0 which gives Y = 6U2 − 5U1.
The second part of the circuit is a differential amplifier (see page 6-9 of the notes) for which Z =
60
20 (Y −X). Substituting in the expressions for X and Y gives Z = 3 ((6U2 − 5U1)− (6U1 − 5U2)) =
3 (11U2 − 11U1) = 33 (U2 − U1).
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23. We can verify that the opamp has negative feedback since (if we set the 10 V source to zero), we

have V− = 1
2Y but V+ = αY where α = 2||R

2+2||R < 1
2 . So, we can assume that V+ = V− = X. KCL @

V− gives X−(−10)
10 + X−Y

10 = 0 which gives X − Y = −X − 10. KCL @ V+ gives X
2 + X−Y

2 + I = 0.

Substituting X −Y = −X − 10 gives X
2 + −X−10

2 + I = 0 which simplifies to I = 5. Notice that this
does not depend on R, so we have constructed a current source.

24. From the block diagram, we can deduce Y =
√
X =

√
AU −AY from which Y 2 + AY − AU = 0.

Solving this quadratic equation gives Y (U) = 0.5
(
−A+

√
A2 + 4AU

)
. Notice that only one of the

two roots will result in Y being positive. Provided that A � 4U , we can use the Taylor series

approximation to give Y (U) ≈ 0.5
(
−A+A

(
1 + 2U

A −
2U2

A2

))
= U − U2

A . From this, Y (1) = 1 − 1
A

and Y (0.5) = 0.5 − 0.25
A = 0.5Y (1) + 0.25

A . We would like the error, 0.25
A to be 1% of Y (1), i.e.

0.25
A ≤ 0.01

(
1− 1

A

)
. Solving this gives A ≥ 26.

25. (a) The − terminal of the opamp is a virtual earth so the current through the resistor is X
R . All the

current flows through the diode whose voltage is −U. Therefore we have X
R = k exp −UVT

from which

U = −VT ln X
kR .

(b) The second opamp is a non-inverting amplifier with a gain of 3 so W = 3U = −3VT ln X
kR . For

the third opamp, the current thorough the diode is Y
2R = k exp −WVT

= k exp
(
3 ln X

kR

)
= k

(
X
kR

)3
.

From this we find that Y = 2
k2R2X

3. This we have made a circuit that cubes its input voltage (times
a scale factor).

26. (a) Despite the current IB , it is still the case that V+ = 0 and so, because of the negative feedback,
P = 0 also. KCL @ P gives 0−U

10 +IB+ 0−Y
40 = 0 from which −4U+40IB−Y = 0 or Y = −4U+40IB .

Substituting IB = 0.0001 mA gives Y = −4U + 0.004 so there is an output error of 4 mV.

(b) This time, the current IB flows through the 8 kΩ resistor so V+ = −8IB . As before, we assume
that Q = V+ also. Then KCL @ Q gives Q−U

10 +IB + Q−Y
40 = 0 from which −4U+40IB−Y +5Q = 0.

Substituting Q = −8IB gives −4U + 40IB − Y − 40IB = 0 which simplifies to Y = −4U . Thus in
this circuit, the bias currents do not cause any error.

The moral is that when designing opamp circuits, you should try to make the Thévenin resistance
seen by the two input terminals the same. If you achieve this, and if the bias currents are the same
at both inputs (usually approximately true) there will be no resultant errors.
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E1.1 Circuit Analysis

Problem Sheet 4 (lectures 9 & 10)

Key: [A]= easy ... [E]=hard

Note: A “dimensioned sketch” should show the values on the x and y axes corresonding to significant
places on the corresponding graph.

1. [B] For each of the following waveforms, determine the corresponding phasor in both the form a+ jb
and r∠θ.

(a) 8 cosωt.

(b) 3 cosωt+ 4 sinωt.

(c) 2 cos
(
ωt+ π

4

)
.

(d) 8 sinωt.

(e) −2 cosωt.

(f) −4 sin
(
ωt− π

2

)
.

(g) 8 cos
(
ωt+ π

4

)
+ 5 sin

(
ωt− π

4

)
.

2. [B] For each of the following phasors, determine the corresponding waveform in both the form
a cosωt + b sinωt and a cos (ωt+ θ). (a) 1, (b) −2, (c) 3j, (d) −4j, (e) j − 1, (f) 3 − 4j, (g) 2ej

π
2 ,

(h) 4e−j
π
6 .

3. [B] For each of the following cases say which of the two waveforms or phasors leads the other:

(a) sinωt and cosωt.

(b) sin (ωt+ π) and cosωt.

(c) sin (ωt− π) and cosωt.

(d) (1 + j) and (2 + j).

(e) (1 + j) and (1− j).
(f) (−1 + j) and (−1− j).
(g) 1 and 1∠350◦.

4. [B] Draw a dimensioned sketch of the waveform of i in the circuit of Fig. 4(a) when v has the
waveform shown in Fig. 4(b).

Fig. 4(a) Fig. 4(b)

5. [B] For each of the circuits shown in Fig. 5(a)-(d) determine the average value of y(t) when x(t) =
4 + 2 cosωt for some non-zero frequency ω.

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d)

6. [B] Find the value of a single inductor equivalent to the circuit shown in Fig. 6.
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Fig. 6 Fig. 7

7. [B] Find the value of a single capacitor equivalent to the circuit shown in Fig. 7 given that each of
the capacitors has a value of 1µF.

8. [B] Find the average value of v in the circuit of Fig. 8 if u(t) = 2 + 3 cosωt.

Fig. 8 Fig. 9

9. [B] Find the average value of v in the circuit of Fig. 9 if u(t) = 8− 2 cosωt.

10. [B] Find the complex impedance of the circuit shown in Fig. 10 for (a) ω = 0, (b) ω = 1000, (c)
ω = 2000 and (d) ω =∞.

Fig. 10 Fig. 11(a) Fig. 11(b) Fig. 11(c)

11. [B] The components in Fig. 11 are labelled with their impedances. Calculate both the complex
impedance and the complex admittance for each of the three networks.

12. [B] The components in Fig. 12 are labelled with their impedances. Determine the values of a parallel
inductor and resistor that will have the same overall impedance at (a) 1 kHz and (b) 10 kHz. Hint:
first calculate the admittance of the original network.

Fig. 12 Fig. 13(a) Fig. 13(b)

13. [C] Draw a dimensioned sketch of the waveform of v(t) in the circuit of Fig. 13(a) when i has the
waveform shown in Fig. 13(b).
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14. [C] The three current i1, i2, i3 in Fig. 14 are equal to 5 cos
(
ωt+ 3π

4

)
, 2 cos

(
ωt+ π

4

)
and
√

8 cosωt
but not necessarily in that order. Determine which current is which and find both the phasor I and
time-waveform i(t).

Fig. 14 Fig. 17(a) Fig. 17(b)

15. [D] Draw a dimensioned sketch of the waveform of i in the circuit of Fig. 15 when v has the waveform
shown in Fig. 4(b) given that at time t = 0, (a) i(0) = 0 and (b) i(0) = 2 A.

16. [D] Draw a dimensioned sketch of the waveform of v in the circuit of Fig. 16(a) when i has the
waveform shown in Fig. 16(b) given that at time t = 0, (a) v(0) = 0 and (b) v(0) = −5 V.

Fig. 15 Fig. 16(a) Fig. 16(b) Fig. 18

17. [D] In the circuit of Fig. 17(a), the voltage v has the periodic waveform shown in Fig. 17(b) with a
period of 4µs and an amplitude of 20 V.

(a) State the duty cycle of v.

(b) Determine the average value of x.

(c) Determine the average value of iR.

(d) Determine the average value of iL.

(e) Assuming that x is constant (at its average value), draw a dimensioned sketch of the waveform
of iL(t) and determine its maximum and minimum values.

(f) Assuming that x is constant (at its average value), determine the average, positive peak and
negative peak of the powers absorbed by each of R, L and C.

18. [D] In the circuit of Fig. 18, the output logic levels from the inverter are 0 V and 5 V and the inverter
has a maximum output current of ±2 mA. The inverter senses a low voltage when its input is < 1.5 V.
If x changes from logic 0 to logic 1, determine the delay until z changes. Ignore the inverter input
currents and any delays inside the inverters themselves.
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E1.1 Circuit Analysis

Problem Sheet 4 - Solutions

1. (a) 8, (b) 3 − j4 = 5∠ − 0.93 (−53◦), (c) 1.4 + j1.4 = 2∠0.79 (45◦), (d) −j8 = 8∠ − 1.57 (90◦),
(e) −2 = 2∠3.14 (180◦), (f) 4, (g) 2.12 + j2.12 = 3∠0.79 (45◦).

2. (a) cosωt, (b) −2 cosωt = 2 cos (ωt+ π), (c) −3 sinωt = 3 cos
(
ωt+ π

2

)
, (d) 4 sinωt = 4 cos

(
ωt− π

2

)
,

(e) − cosωt − sinωt = 1.4 cos
(
ωt+ 3π

4

)
, (f) 3 cosωt + 4 sinωt = 5 cos (ωt− 0.93), (g) −2 sinωt =

2 cos
(
ωt+ π

2

)
, (h) 3.46 cosωt+ 2 sinωt = 4 cos

(
ωt− π

6

)
.

3. (a) cosωt by π
2 , (b) sin (ωt+ π) by π

2 , (c) sin (ωt− π) by π
2 : note that sin (ωt+ π) and sin (ωt− π) are

actually the same waveform, (d) (1 + j) by 0.322 rad, (e) (1 + j) by π
2 , (f) (−1− j) by π

2 , (g) 1 by 10◦.
Because angles are only defined to within a multiple of 360◦, you always need to be careful when
comparing them. To find out which is leading, you need to take the difference in phase angles and
then add or subtract multiples of 360◦ to put the answer into the range ±180◦. Note that a sine
wave is defined for all values of t (not just for t > 0) and so there is no such thing as the “first peak”
of a sine wave.

4. i = C dv
dt . dv

dt is 3000 V/s for the first 4 ms and −6000 V/s for the next 2 ms. So i = +15 or −30 mA.
(see Fig. 4)

0 2 4 6
-40

-20

0

20

t (ms)

C

Fig. 4

5. The average value of x(t) is X = 4 (note that we use capital letters for quantities that do not
vary with time). For averages (or equivalently for DC or ω = 0) capacitors act as open circuit and
inductors as short circuits; this gives the simplified circuits shown below. So this gives (a) Y = 3,
(b) Y = X = 4, (c) Y = X = 4, (d) Y = 1

2X = 2.

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d)

6. 4 + 4 = 8. 8||8 = 4. 4 + 4 = 8. 24||8 = 6 mH.

7. C9 and C10 are short-circuted and play no part in the circuit. We can merge series and parallel
capacitors as follows: C4,5 = 0.5, C7,8 = 2, C2,3 = 2. Now merge C4,5with C6 to give C4,5,6 =
1.5 and merge this with C7,8 = 2 to give C4,5,6,7,8 = 6

7 . Now merge this with C2,3 = 2 to give
C2,3,4,5,6,7,8 = 20

7 . Finally merge this with C1 = 1 to give C = 20
27 µF.

8. To determine average values, we can treat C as open circuit and L as short circuit. The original
circuit simplifies to that shown in Fig. 8. So we have a simple potential divider and v̄ = 1

2 ū = 1 V
where the overbar denotes “average value”.

Fig. 8 Fig. 9
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9. To determine average values, we can treat C as open circuit and L as short circuit. The original
circuit simplifies to that shown in Fig. 9 and so v̄ = ū = 8 V where the overbar denotes “average
value”.

10. Z = RS + RP ||jωL. (a) Z = RS = 10, (b) Z = 10 + 10000||100j = 11 + 100j = 100.6∠83.7◦,
(c) Z = 10 + 10000||200j = 14 + 200j = 200.4∠86◦, (d) Z = 10010.

11. We denote the impedance by Z and the admittance by Y = 1
Z . (a) Z = 1.44 + 1.92j and Y =

0.25 − 0.33j, (b) Z = 4 − 3j and Y = 0.16 + 0.12j, (c) Z = 4 and Y = 0.25. Notice that the
imaginary part of the impedance (the reactance) is positive for inductive circuits and negative for
capacitive circuits, but that the imaginary part of the admittance (the susceptance) has the opposite
sign. In part (c), the impedances of the inductor and the capacitor have cancelled out leaving
an overall impedance that is purely real; because the impedances are frequency dependent, this
cancellation will only happen at one particular frequency which is called the network’s “resonant
frequency”. I strongly advise you to learn how to do these complex arithmetic manipulations using
the built-in capabilities of the Casio fx-991.

12. (a) ω = 6283 so the impedance is Z = 100 + 314j. Taking the reciprocal gives Y = 1
Z = 0.92 −

2.89jmS. Since parallel admittances add, the parallel component values must be RP = 1000
0.92 = 1087Ω

and LP = 1000
2.89ω = 55.1 mH. For case (b), we now have ω = 62832 and, following the same argument,

we get RP = 98.8 kΩ and LP = 50.05 mH. As the frequency goes up, the series resistor becomes a
less significant part of the total impedance and its effect becomes less. This means that LP becomes
approximately equal to the original inductance and RP becomes larger.

13. v = L didt . di
dt is 3 A/s for the first 4 ms and −6 A/s for the next 2 ms. So v = +6 or −12 mV. (see

Fig. 13)

14. If we define the voltage phase to be φ will be ∠i1 = φ + 0, φ − π
2 < ∠i2 < φ + 0, ∠i3 = φ + π

2 as
the CIVIL mnemonic reminds us. Thus i3 will have the most positive phase shift. It follows that
i1 = 2 cos

(
ωt+ π

4

)
, i2 =

√
8 cosωt and i3 = 5 cos

(
ωt+ 3π

4

)
and that φ = π

4 . As phasors these
are I1 = 1.4 + j1.4 = 2∠45◦, I2 = 2.8, I3 = −3.5 + j3.5 = 5∠135◦. Adding these together gives
I = 0.71 + j4.95 = 5∠1.43 (82◦). So i(t) = 0.71 cosωt− 4.95 sinωt = 5 cos (ωt+ 1.43) A.

15. i(t) = i(0) + 1
L

´ t
τ=0

v(τ)dτ where v(τ) = 3000τ for 0 ≤ τ ≤ 4 ms and v(τ) = 36 − 6000τ for
4 ms ≤ τ ≤ 6 ms (obtain this formula by finding the straight line equalling 12 at τ = 4 ms and 0 at
τ = 6 ms). So, for the first segment, i = 1

L × 1500t2 which reaches 12 A at t = 0.004. For the second
segment, i = 1

L ×
(
36t− 3000t2

)
+ c. To find c, we force i = 12 at t = 0.004. This gives c = −36 A.

When t = 0.006 we then get i = 18 A. For part (b), we just add 2 A to the curve. (see Fig. 15)

16. v = 1
C

´
idt where i = 3t or i = 36×10−3−6t. So, for the first segment, v = 1

C ×1.5t2 which reaches
4.8 V at t = 0.004. For the second segment, v = 1

C ×
(
36× 10−3t− 3t2

)
+ a. To find a, we force

v = 4.8 at t = 0.004. This gives a = −14.4 V. When t = 0.006 we then get v(t) = 7.2 V. For part
(b), we just subtract 5 V from the curve. (see Fig. 16)
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Fig. 15 Fig. 16 Fig. 13

17. (a) The duty cycle is 0.25 = 25%, (b) x̄ = v̄ = 1
4 × 20 = 5 V, (c) īR = x̄

R = 5 mA, (d) Since

īC = 0, īL = īR = 5 mA, (e) The voltage across the inductor is v − x = LdiLdt . So when v = 20,
diL
dt = 15

L = 7.5 kA/s. So the total change in iL over the 1µs interval is 7.5 mA. It follows that
iLvaries from its average value of 5 mAby ±3.75 mAand has minimum and maximum values of 1.25
and 8.75 mA (see Fig. 17(a)). (f) Average powers are PR = 25 mW, PL = PC = 0. Max powers
are PR = 25 mW, PL = vLiL = 15 × 8.75 = 131.25 mW, PC = vCiC = 5 × 3.75 = 18.75 mW.
Min powers are PR = 25 mW, PL = vLiL = −5 × 8.75 = −43.75 mW (see Fig. 17(b)), PC =
vCiC = 5 × −3.75 = −18.75 mW (see Fig. 17(c)). Note that during the time that it is positive
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(0.5 < t < 2.5 ms), the average value of iC is ıC = 1.375 mA and so the total rise in vC will be
∆vC = ıC∆t

C = 1.375×2
10 = 275 mV (i.e. ±138mVaround its mean) which is small compared to its

mean value of 5 V; this justifies the assumption that it is constant.
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10
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0 2 4 6 8

0

50

100

t (µs)
0 2 4 6 8

-20

0

20

t (µs)

Fig. 17(a) Fig. 17(b) Fig. 17(c)

18. When x changes from low to high, y will change from high to low. The maximum current is 2 mA
so dy

dt = − i
C = −50 MV/s. So the time to fall from 5 V to 1.5 V is 3.5

50 × 10−6 = 70 ns.
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E1.1 Circuit Analysis

Problem Sheet 5 (Lectures 11, 12 & 13)

Key: [A]= easy ... [E]=hard

Note: A “sketch” should show the values on the x and y axes corresonding to significant places on
the corresponding graph.

1. [C] For each of the circuits in Fig. 1(i)-(vi),

(a) Find the transfer function Y
X (jω).

(b) Find expressions for the low and high frequency asymptotes of H (jω).

(c) Sketch the straight line approximation to the magnitude response, |H (jω)|, indicating the
frequency (in rad/s) and the gain of the approximation (in dB) at each of the corner frequencies.

Fig. 1(i) Fig. 1(ii) Fig. 1(iii)

Fig. 1(iv) Fig. 1(v) Fig. 1(vi)

2. [C] Sketch a straight line approximation for the phase response, ∠H (jω), of the circuit in Fig. 1(v),
indicating the frequency (in rad/s) and phase (in rad) at each of the corner frequencies.

3. [B] A “C-weighting filter” in audio engineering has the form H (jω) = k(jω)2

(jω+a)2(jω+b)2
where a = 129

and b = 76655 rad/s. Calculate k exactly so that |H (jω)| = 1 at ω = 2000π rad/s.

4. [C] Design circuits with each of the magnitude responses given in Fig. 4(i)-(iii) using, in each case,
a single capacitor and appropriate resistors.

Fig. 4(i) Fig. 4(ii) Fig. 4

5. [B] Express each of the following transfer functions in a standard form in which the numerator and de-

nominator are factorized into linear and quadratic factors of the form (jω+p) and
(

(jω)
2

+ qjω + r2
)

where p, q and r are real with an additional numerator factor of the form A(jω)k if required. Quad-
ratic terms should be factorized if possible.

(a) −2ω2−2jω3

1−2ω2+ω4

(b)
−2(1+ω2)

(1−ω2)+2jω

(c) 10(jω)2+2jω+10

(jω)2+2jω+1

(d) 1
jω+6(jω)−1+5
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6. [B] Without doing any algebra, determine the low and high frequency asymptotes of the following
transfer functions:

(a) −2ω2−2jω3

1+ω4

(b) 2(jω)3+3
4(jω)4+1

(c)
jω(2(jω)6+3)(5(jω)3+4jω+3)

2((jω)5+1)((jω)5+5)

(d) 12
jω+6(jω)−1

7. [D] A circuit has a transfer function whose low and high frequency asymptotes are A (jω)
α

and

B (jω)
β

respectively. What constraints can you place on α and β if you know that the magnitude of
the transfer function is less than G at all frequencies where G is a fixed real-valued constant.

8. [C] For each of the following transfer functions, sketch the straight line approximation to the mag-

nitude response and determine the gain of this approximation at ω = 1000 rad/s: (a) 5(1+jω/500)
(1+jω/100)(1+jω/2000) ,

(b) 2(1+jω/5000)
(1+jω/100) , (c) 3jω(1+jω/500)

(1+jω/100)(1+jω/2000)(1+jω/5000) .

9. [C] The frequency response of the circuit in Fig. 9 is given by
( jω

p )
2

( jω
P )

2
+2ζ( jω

p )+1
where the corner

frquency, p = 1
ζRC rad/s. Using capacitors of value C = 10 nF, design a filter with ζ =

√
0.5 and a

corner frequency of p
2π = 1 kHz. Determine the value of the transfer function at ω

2π = 100 Hz, 1 kHz
and 10 kHz.
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-40
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-20

-10

0
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G
ai

n 
(d

B
)

A B C

Fig. 9 Fig. 11(a) Fig. 11(b)

10. [D] A high-pass “Butterworth” filter of order 2N consists of N cascaded copies of Fig. 9 all having
the same corner frequency, but with the kth stage having ζk = cos

((
2k−1
4N

)
π
)

where k = 1, . . . , N .
(“cascaded” means you connect the output of one stage to the input of the next). Design a 4th order
high-pass Butterworth filter with a corner frequency of 1 kHz. Write an expression for its transfer
function and sketch its magnitude response using just the high and low asymptotes. Butterworth
filters are widely used because they have a very smooth magnitude response without any peaks; the

transfer function satisfies |H(jω)|2 =
(ω

p )
4N

(ω
p )

4N
+1

.

11. [C] The circuit of Fig. 11(a) is a high-pass filter whose magnitude response is marked“A”in Fig. 11(b)
. Using the filter transformations described in lectures, design filters with the magnitude responses
marked “B” and “C” on the graph. Relative to “A”, these are respectively shifted up in frequency by
a factor of 5 and reflected in the axis ω = 10, 000.

12. [C] (a) Find the resonant frequency, ωr, at which the impedance of the network in Fig. 12(i) is real.
(b) Determine the Q of the circuit at ωr. (c) Find RP and LP in the circuit of Fig. 12(ii) so that
the two networks have the same impedance at ωr.

Fig. 12(i) Fig. 12(ii) Fig. 13
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13. [C] In the circuit of Fig. 13, ω = 10 000 and the phasor V = 10. Find (a) the peak power supplied
by V and (b) the peak power absorbed by C.

14. [C] Determine the transfer function for each of the circuits Fig. 14(i)-(iv).

Fig. 14(i) Fig. 14(ii)

Fig. 14(iii) Fig. 14(iv)

15. [D] For the circuit in Fig. 15,

(a) Find the transfer function Z
W (jω) and explain why this is equal to Y

W (jω)

(b) Hence, by applying KCL at node W and using part (a) to substitute for W , show that the
transfer function Y

X (jω) = 1
R1R2C1C2(jω)

2+(R1+R2)C1jω+1
.

(c) From the transfer function expression we can express the corner frequency and damping factor

as p2 = 1
R1R2C1C2

and ζ = p(R1+R2)C1

2 . By eliminating p between these equations, show that(
1 + R2

R1

)(
1 +

√
1− C1

ζ2C2

)
= 2. Explain why this means that we must choose C1 ≤ ζ2C2.

(d) Assuming that you only have available capacitors of values 10 nF, 22 nF and 47 nF, design a
filter with p = 1000× 2π and ζ = 0.5. Choose C1 and C2 first. then R2

R1
and lastly R1.

16. [D] For the circuit of Fig. 16,

(a) Find the transfer function Y
X (jω).

(b) Find the frequency, ω0, at which
∣∣ Y
X (jω)

∣∣ is maximum and its value at this maximum.

(c) Find the 3dB bandwidth of the circuit and the value of Q = 1
2ζ .

[Note: If you find yourself doing loads of algebra, you are using the wrong method.]

Fig. 15 Fig. 16
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E1.1 Circuit Analysis

Problem Sheet 5 - Solutions

1. Each of the circuits may be viewed as a potential divider, so we can write down the transfer function
without doing any nodal analysis. In two cases, one element of the potential divider consists of a par-
allel R||C combination. This parallel combination has the impedance 1

1/R+jωC = R
1+jωRC . Graphs of

the magnitude responses are shown in Fig. 1(i)-(vi) together with their straight-line approximations.

(i) Y
X = R

R+1/jωC
= jωRC

1+jωRC =
jω/500

1+jω/500 where RC = 2 ms. LF asymptote is 0.002jω; HF asymptote

is 1. Denominator corner frequency is 1
RC = 500 rad/s. At the corner, the gain is 1 = 0 dB.

(ii) Y
X =

1/jωC

R+1/jωC
= 1

1+jωRC = 1
1+jω/500 where RC = 2 ms. LF asymptote is 1; HF asymptote is

500 (jω)
−1

. Denominator corner frequency is 1
RC = 500 rad/s. At the corner, the gain is 1 = 0 dB.

(iii) Y
X = jωL

R+jωL = jωL/R
1+jωL/R where L

R = 100µs. LF asymptote is 10−4jω; HF asymptote is 1.

Denominator corner frequency is R
L = 104 rad/s. At the corner, the gain is 1 = 0 dB.

(iv) For convenience, we define R = 1 k. Then Y
X = R+jωL

5R+jωL = 0.2
1+jω L

R

1+jω L
5R

where L
R = 1µs. LF

asymptote is 0.2; HF asymptote is 1. Numerator corner frequency is R
L = 10 krad/s with a gain at

the corner of 0.2 = −14 dB. Denominator corner frequency is 5R
L = 50 krad/s with a gain at the

corner of 1 = 0 dB. As can be seen in Fig. 1(iv), the magnitude response turns up at 10 krad/s and

then flattens out again at 50 krad/s . In between these two frequencies the slope log|H|
logω = +1 or,

equivalently, +6 dB/octave or +20 dB/decade ; all these are the same as saying that |H| ∝ ω; thus
from ω = 10 krad/s to 50 krad/s, the frequency increases by a factor of 5 and the gain also increases
by a factor of 5.

(v) For convenience, we define R = 1 k. Then Y
X = R

2R+ 8R
1+8jωRC

= 1+8jωRC
10+16jωRC = 0.1 1+8jωRC

1+1.6jωRC

where RC = 100µs. LF asymptote is 0.1; HF asymptote is 0.5. Numerator corner frequency is
1

8RC = 1250 rad/s with a gain at the corner of 0.1 = −20 dB. Denominator corner frequency is
1

1.6RC = 6.25 krad/s with a gain at the corner of 0.5 = −6 dB. As in the previous part, both the
frequency and the gain change by a factor of 5 between the corner frequencies.

(vi) For convenience, we defineR = 10 k. Then Y
X =

R
1+jωRC

2R+ 1
jωC + R

1+jωRC

= jωRC
2jωRC(1+jωRC)+(1+jωRC)+jωRC =

jωRC
1+4jωRC+2(jωRC)2

where RC = 1 ms. LF asymptote is 0.001jω; HF asymptote is 500 (jω)
−1

. We

can factorize the denominator to give 1 + 4jωRC + 2 (jωRC)
2

=
(
1 + jω

a

) (
1 + jω

b

)
where a and

b are −1 times the roots of the quadratic equation 2R2C2x2 + 4RCx + 1 or 1±
√
0.5

RC . This gives
denominator corner frequencies a = 293 and b = 1707 rad/s. The gain in between these two fre-
quencies can be obtained by substituting ω = a into the LF asymptote expression to give a value of
aRC = 1−

√
0.5 = 0.293 = −10.7 dB.
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2. For convenience, we define R = 1 k. Then Y
X = R

2R+ 8R
1+8jωRC

= 1+8jωRC
10+16jωRC = 0.1 1+8jωRC

1+1.6jωRC where

RC = 100µs. LF asymptote is 0.1; HF asymptote is 0.5; both of these are real and so have
zero phase shift. The magnitude plot has a numerator corner frequency of 1

8RC = 1250 rad/s
and denominator corner frequency of 1

1.6RC = 6.25 krad/s . Each of these generates a pair of
corner frequencies on the phase plot at 0.1× and 10× the frequency. Thus we have corners at
ω = 125 (+), 625 (−), 12.5 k (−), 62.5 k (+) rad/s where the sign in parentheses indicates the gradi-
ent change ±π4 rad/decade. Between 125 and 625 rad/s the gradient is π

4 rad/decade so the phase
will change by π

4 × log10
625
125 = π

4 × 0.7 = +0.55 rad. This is therefore the phase shift for the flat part
of the phase response. (see Fig. 2).
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3. At ω = 2000π = 6283.2 we know |H(jω)| = 1. Hence k = |jω+a|2|jω+b|2

|jω|2 =
(ω2+a2)(ω2+b2)

ω2 =

3.9495×107×5.9155×109
3.9478×107 = 5.918× 109.

4. (i) This is the same low-pass filter as Fig. 1(ii) but with a corner frequency of 50 rad/s. So we want
RC = 1

50 = 20 ms. One possible choice is shown in Fig. 4(i).

(ii) This is the same high-pass filter as Fig. 1(i) but with a corner frequency of 1000 rad/s and a high
frequency gain of 0.5 = −6 dB. So we want RC = 1

1000 = 1 ms. One possible choice is shown in Fig.
4(ii); the two resistors give the correct high frequency gain.

(iii) We want a circuit whose gain decreases from 1
2 at low frequencies to 1

8 at high frequencies. We
can do this by using a capacitor to short out part of the vertical limb of the potential divider at
high frequencies as shown in Fig. 4(iii). This design has a gain of 1

8 when the capacitor is a short
circuit; with the capacitor open circuit (low frequencies), we add in an additional 6R which gives a

gain of 1
2 . The impedance of 6R||C is

R+ 6R
1+6jωRC

8R+ 6R
1+6jωRC

= 7+6jωRC
14+48jωRC which, as a check, we see has the

correct LF and HF asymptotes. The numerator corner frequency is at ω = 7
6RC which needs to be

at 1000 rad/s. From this, RC = 1.17 ms so one possible set of value is C = 100 nF and R = 12 kΩ.

Fig. 4(i) Fig. 4(ii) Fig. 4

5. (a) −2ω
2−2jω3

1−2ω2+ω4 = 2(jω)2(jω+1)

((jω)2+1)((jω)2+1)
.

(b)
−2(1+ω2)

(1−ω2)+2jω = 2(jω+1)(jω−1)
(jω+1)(jω+1) = 2(jω−1)

(jω+1)

(c) 10(jω)2+2jω+10

(jω)2+2jω+1
=

10((jω)2+0.2jω+1)
(jω+1)(jω+1)

(d) 1
jω+6(jω)−1+5

= jω
(jω)2+5jω+6

= jω
(jω+2)(jω+3)
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6. To find the low frequency asymptote, you take the lowest power of jω in each of the numerator and
denominator factors and multiply them together. Likewise, for the high frequency asymptote, you
take the highest power of jω in each of the factors. There is no need (or indeed advantage) to do
any factorization or to multiply out existing factors.

(a) HLF = −2ω2

1 = 2(jω)2, HHF = −2jω3

ω4 = 2(jω)−1

(b) HLF = 3
1 = 3, HHF = 2(jω)3

4(jω)4 = 0.5(jω)−1

(c) HLF = jω×3×3
2×1×5 = 0.9jω, HHF = jω×2(jω)6×5(jω)3

2×(jω)5×(jω)5 = 5

(d) HLF = 12
6(jω)−1 = 2jω, HHF = 12

jω = 12(jω)−1

7. We must have α ≥ 0 because, if α were negative, (jω)
α

would increase without limit as ω → 0
and the transfer function would exceed G at some point. Similarly, we must have β ≤ 0 because
otherwise (jω)βwould increase without limit as ω → ∞. A consequence of this is that the order of
the numerator can never exceed that of the denominator in a transfer function whose magnitude is
bounded.

8. Graphs of the transfer functions are shown in Fig. 8(a)-(c).

(a) We have a LF asymptote of 5 = 14 dB. We have corner frequencies at ω = 100 (−), 500 (+), 2000 (−)
where the sign in parentheses indicates the polarity of gradient change. To estimate the gain at
ω = 1000, we assume that a factor

∣∣1 + jω
a

∣∣ is equal to 1 if ω < a or else ω
a if ω > a. This gives

|H(1000j)| '
∣∣∣ 5(ω/500)
(ω/100)(1)

∣∣∣ = 1 = 0 dB.

(b) We have a LF asymptote of 2 = 6 dB. We have corner frequencies at ω = 100 (−), 5000 (+).

Using the same technique as in part (a), |H(1000j)| '
∣∣∣ 2(1)
(ω/100)

∣∣∣ =
∣∣ 200
1000

∣∣ = 0.2 = −14 dB.

(c) We have corner frequencies at ω = 100 (−), 500 (+), 2000 (−), 5000 (−). We have a LF asymptote
of 3jω = 6 dB which at the first corner (ω = 100) is 300j = 50 dB. Using the same technique as in

part (a), |H(1000j)| '
∣∣∣ 3×ω(ω/500)
(ω/100)(1)(1)

∣∣∣ =
∣∣ 3000

5

∣∣ = 600 = 55.6 dB. To obtain this expression from the

transfer function, any term whose corner frequency is > ω has been replaced by (1).
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9. The corner frequency is p = 1
ζRC = 2π × 1000. Rearranging this gives R = 1

2000πζC = 22508 Ω.

The upper resistor therefore has a value ζ2R = 0.5R = 11254 Ω. The complete circuit is shown in
Fig. 9. At ω = 100 Hz, 1 kHz and 10 kHz the transfer function is −0.0099 + 0.0014j = 0.01∠172◦,
0.707j = 0.707∠90◦ and 0.9899 + 0.1414j = 1∠8◦ respectively.
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Fig. 9 Fig. 10(a) Fig. 10(b)
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10. For a 4th order filter, we need N = 2 and from the formula given in the question, we use ζ1 =
cos
(
π
8

)
= 0.924 and ζ2 = cos

(
3π
8

)
= 0.383. If we stick to C = 10 nF as in Q9, we obtain R1 =

1
2000πζ1C

= 17.2 kΩ and R2 = 1
2000πζ2C

= 41.6 kΩ with ζ21R1 = 14.7 kΩ and ζ22R2 = 6.1 kΩ. This gives

the circuit shown in Fig. 10(a). The transfer function isH(jω) =
( jω

p )
4(

( jω
P )

2
+2ζ1( jω

p )+1
)(

( jω
P )

2
+2ζ2( jω

p )+1
)

; this is plotted in Fig. 10(b).

11. To shift the frequency response up by a factor of 5, we need to divide the value of each C or L
component by 5. This gives the circuit of Fig. 11(a). We could also, if we wanted, multiply all the
capacitor values by k and divide all the resistor values by k for any scale factor k without changing
the transfer function. For this particular circuit, it would be a bad idea to use a value of k > 1
because, at 3 kΩ the feedback resistor is already a little on the low side for many op-amps (which
have a limited current output capability).

To reflect the magnitude response in the line ωm = 10000, we need to convert resistors into capacitors
and vice-versa. From the notes, the formulae are: R′ = k

ωmC
, C ′ = 1

ωmkR
. For the circuit of

Fig. 11(b), I have chosen k = 3.33 in order to get reasonable component values but other choices are
also possible. A full analysis of this low-pass filter circuit is the subject of question 15.

Fig. 11(a) Fig. 11(b)

12. (a) The parallel combination of C||(R+ L) has an impedance Z =
1

jωC (R+jωL)
1

jωC +R+jωL
= R+jωL

1+jωRC+(jω)2LC
.

We want to find the value of ω that makes this real. The easiest way to do this is to insist that the
ratio of imaginary to real part is the same for the numerator and denominator (this implies that they
have the same argument). Thus ωrL

R = ωrRC
1−ω2

rLC
from which cross multiplying (after dividing both

numerators by ωr) gives L−ω2
rL

2C = R2C from which ωr =
√

L−R2C
L2C = 9 950 rad/s. Note that this

is close, but not exactly equal to, ω0 = 10 000 where the capacitor and inductor impedances have
the same magnitude. The value of Z at resonance can now be found as the ratio between the real
(or equivalently the imaginary) parts of the numerator and denominator of the previous expression.
Thus Z = R+jωL

1+jωRC+(jω)2LC
= R

1−ω2LC = jωL
jωRC = 1000.

(b) By definition Q equals ωr times the average stored energy divided by the average power loss. If

the input voltage phasor is V , then the peak energy stored in the capacitor is 1
2C |V |

2
and its average

stored energy is half this, namely 1
4C |V |

2
. The current through the resistor is IR = V

R+jωrL
. The

peak energy stored in the inductor is 1
2L |IR|

2
= 1

2L
|V |2

R2+ω2
rL

2 = 1
2L

|V |2

R2+L−R2C

L2C
L2

= 1
2L

C|V |2
R2C+L−R2C =

1
2C |V |

2
which is the same as the peak capacitor energy; likewise, the average energy stored in the

inductor is 1
4C |V |

2
. The average power loss in the resistor is 1

2R |IR|
2

= RC
2L |V |

2
. Calculating Q

from its definition gives Q = ωr
1
4C|V |

2+ 1
4C|V |

2

RC
2L |V |

2 = ωrL
R = 9.95. Since the capacitor and inductor store

the same amount of energy on average, the Q can be determined more simply as Q = ωr
1
2L|IR|

2

1
2R|IR|

2 =
ωrL
R = 9.95 .

(c) Note that the capacitor is unchanged in the two networks, so we can ignore it when matching
their impedances. When choosing components to make two networks have the same impedance,
your have a choice: you can either match their impedances or their admittances. You get the same
answer in either case, but the algebra can sometimes be much simpler in one case than the other.
In this question, it is easiest to use admittances because the components whose values are unknown
are in parallel and so their admittances add: the total admittance of RP and LP in parallel is
1
RP
− j

ωrLP
and RP and LP remain unentangled in this expression. The admittance of RS + LS is
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1
RS+jωrLS

= RS−jωrLS

R2
S+ω2

rL
2
S

= 1
RP
− j

ωrLP
. Equating the real and imaginary parts of this equation gives,

RP =
R2

S+ω2
rL

2
S

RS
= 1 kΩ and LP =

R2
S+ω2

rL
2
S

ω2
rLS

= LS + R2

ω2
rLS

= 10.1 mH.

13. (a) At ω = 10 000, ZL = 100j and ZC = −100j. Therefore the currents in L and C are equal and
opposite. So the peak power supplied by V is the peak power absorbed by the resistor which equals
|V |2
R = 100 mW.

(b) The energy stored in the capacitor at time t is WC = 1
2Cv(t)2. So the power absorbed by the

capacitor is dWC

dt = Cv dvdt . Since you are told that the phasor V = 10, you know that the waveform

v(t) = 10 cos(ωt) and, differentiating gives dv
dt = −10ω sin(ωt). Multiplying everything out gives

Cv dvdt = −100ωC cos (ωt) sin (ωt) = −50ωC sin (2ωt). This has a peak value of 50ωC = 500 mW. As
is common in resonant circuits, this is 5 times greater than the answer to part (a).
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14. (i) This is an inverting amplifier: Y
X = −ZF

R = − 1
R ×

2R
1+2jωRC = − 2

1+2jωRC .

(ii) This is a non-inverting amplifier: Y
X = 1 + ZF

R = 1 + 2
1+2jωRC = 3+2jωRC

1+2jωRC .

(iii) This is the same as the previous circuit, but with an additional CR circuit at the input. Y
X =

4jωRC
1+4jωRC ×

3+2jωRC
1+2jωRC . This has corner frequencies at ωRC = 1

4 (−), 1
2 (−), 3

2 (+).

(iv) The circuit has negative feedback so we can assume V+ = V− = 0. KCL @ V− gives: 0−X
R +

0−Y
R + 0−Z

R = 0 from which −Z = X + Y . Now KCL @ Z gives: (Z − 0)jωC + Z−Y
R + Z

R = 0 from
which Y − Z (2 + jωRC) = 0. Substituting −Z = X + Y gives Y + (X + Y ) (2 + jωRC) = 0 from
which Y

X = − 2+jωRC
3+jωRC .
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15. In this circuit, the output, Y , is fed back to both V+ and V− so it is not immediately obvious that
the overall feedback is negative. However, we see that V− = Y whereas |V+| will be attenuated by
the network and will be < Y , so all is well. We can therefore assume that Z = V+ = V− = Y .

(a) Z
W is just a potential divider, so Z

W = Y
W =

1
jωC1

R2+
1

jωC1

= 1
1+jωR2C1

. Y = Z as noted above. From

this we get W = Y (1 + jωR2C1).

(b) KCL @ W gives: W−X
R1

+ W−Z
R2

+ (W − Y ) jωC2 = 0 from which (substituting Z = Y ),

W (R1 +R2 + jωR1R2C2)− Y (R1 + jωR1R2C2)−XR2 = 0.

Substituting the expression for W above gives

Y (1 + jωR2C1) (R1 +R2 + jωR1R2C2)− Y (R1 + jωR1R2C2) = XR2

from which Y
(
R2 + jωR2 (R1 +R2)C1 + (jω)

2
R1R

2
2C1C2

)
= XR2.

Hence Y
X (jω) = 1

R1R2C1C2(jω)
2+(R1+R2)C1jω+1

.

(c) Squaring the expression for ζ gives ζ2 =
p2(R1+R2)

2C2
1

4 =
(R1+R2)

2C2
1

4R1R2C1C2
which gives 4R1R2

(R1+R2)
2 = C1

ζ2C2
.

Using quite a common algebraic trick, we can write the numerator as the difference of two squares:

4R1R2

(R1+R2)
2 = (R1+R2)

2−(R1−R2)
2

(R1+R2)
2 = 1−

(
R1−R2

R1+R2

)2
= 1−

(
2R1

R1+R2
− 1
)2

= 1−
(

2

1+
R2
R1

− 1

)2

.

Rearranging C1

ζ2C2
= 1−

(
2

1+
R2
R1

− 1

)2

gives 2

1+
R2
R1

= 1 +
√

1− C1

ζ2C2
from which(

1 + R2

R1

)(
1 +

√
1− C1

ζ2C2

)
= 2.

The usefulness of this relationship is that it allows you to determine the resistor ratio, R2

R1
, if you

know the capacitor ratio C2

C1
. For the square root to be a real number, we must have 1 − C1

ζ2C2
≥ 0

which implies C1 ≤ ζ2C2.
(d) We must have C2

C1
≥ 1

ζ2 = 4. Given our restricted choice of capacitor value, we must therefore

choose C2 = 47 nF and C1 = 10 nF. So, substituting C1

ζ2C2
= 0.851 into the expression from the
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previous part, we find
(

1 + R2

R1

)
× 1.386 = 2 from which R2

R1
= 0.443. From the expression for

p2, we can write 0.443R2
1 = R1R2 = 1

p2C1C2
= 53.9 × 106. Hence R1 =

√
53.9×106

0.443 = 11 kΩ and

R2 = 0.443R1 = 4.9 kΩ.
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16. (a) This circuit is a potential divider, so (setting R = 20) we can write down the transfer function:

Y
X = 4R

5R+jωL+ 1
jωC

= 4jωRC
1+5jωRC+(jω)2LC

=
2ζ( jω

a )
1+2ζ( jω

a )+( jω
a )

2 where a =
√

1
LC = 5000 and ζ = 2.5aRC =

0.1.

(b) To find the maximum of
∣∣ Y
X

∣∣ it is easiest to find instead the maximum of
∣∣ Y
X

∣∣2 = Y×Y ∗

X×X∗ where
the * denotes the complex conjugate. Note that (i) a number multiplied by its complex conjugate
is just the sum of the squares of its real and imaginary parts and that (ii) the magnitude of a
complex fraction is the magnitude of the numerator divided by the magnitude of the denominator;
very rarely is it necessary to multiply the top and bottom of a fraction by the complex conjugate of
the denominator.

The difficult way to find the maximum is to differentiate the expression
∣∣ Y
X

∣∣2 =
∣∣∣ 4jωRC
1+5jωRC+(jω)2LC

∣∣∣2 =

(4ωRC)2

(1−ω2LC)2+(5ωRC)2
and set the derivative to zero. Much easier is to take the first expression above:∣∣ Y

X

∣∣2 =
∣∣∣ 4R
5R+jωL+ 1

jωC

∣∣∣2 = 16R2

25R2+(ωL− 1
ωC )

2 . This is clearly maximized by making
(
ωL− 1

ωC

)
= 0

which means ω0 =
√

1
LC . At this frequency Y

X = 0.8 = −1.9 dB.

(c) The 3dB bandwidth is when
∣∣ Y
X

∣∣2 has fallen by a factor of 2. This will happen when
(
ωL− 1

ωC

)2
=

25R2 or ωL− 1
ωC = ±5R. So we need to solve the quadratic equation LCω2 ± 5RCω − 1 = 0. The

solution is ω = ±5RC±
√
25R2C2+4LC
2LC of which the positive solutions are ω = ±5RC+

√
25R2C2+4LC
2LC .

This gives ω3dB = {4525, 5525}. The bandwidth is the difference between these which is 10RC
LC =

1000 rad/s. Notice that ω0 is the geometric mean of the two 3dB frequencies but is not the arithmetic
mean which is 5025 rad/s. The Q (quality factor) of the resonance is Q = 1

2ζ = 5. This also equals
the ratio of ω0to the bandwidth and the height of the peak above the intersection of the asymptotes.

The circles in Fig. 16 indicate ω0 and the two 3dB frequencies.
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E1.1 Circuit Analysis

Problem Sheet 6 (Lectures 14, 15 & 16)

Key: [A]= easy ... [E]=hard

Note: A tilde-superscript on a phasor denotes division by
√

2, i.e. Ṽ = 1√
2
V . This means that

∣∣∣Ṽ ∣∣∣
equals the RMS value of a phasor V .

1. [A] Say which of the following waveforms include negative exponentials and which include positive
exponentials: (a) 2− 4e−3t, (b) 2 + 4e3t, (c) 2 + 4e−3t, (d) −2− 4e3t, (e) 2 + 4e−t/−3.

2. [B] Suppose v(t) = 5 + 2e−100t.

(a) Determine the time constant, τ , of the negative exponential.

(b) Determine the time at which v(t) = 5.5 V.

(c) Give an expression for the time taken for v(t) to fall from A to B where 5 < B < A < 7.

3. [B] If V = −200j in Fig. 3, find the phasor value of I and the complex power absorbed by each of
the components including the voltage source.

4. [B] If v(t) =

{
0 t < 0

5 t ≥ 0
in Fig. 4 (below),

(a) find an expression for x(t) for t ≥ 0.

(b) Sketch a graph of x(t) for −RC ≤ t ≤ 3RC.

(c) Determine the time at which x(t) = 4.5.

5. [C] For each of the circuits shown in Fig. 5(i)-(vi) determine (a) the time constant (b) the DC gain
Y
X

∣∣
ω=0

and (c) the high frequency gain Y
X

∣∣
ω=∞. In each case, determine these in two ways: directly

from the circuit and via the transfer function.

Fig. 3 Fig. 5(i) Fig. 5(ii) Fig. 5(iii)

Fig. 4 Fig. 5(iv) Fig. 5(v) Fig. 5(vi)

6. [C] For each of the periodic waveforms shown in Fig. 6(i)-(iii) determine (a) the mean value and (b)
the rms value.
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Fig. 6(i) Fig. 6(ii) Fig. 6(iii)
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7. [C] If v(t) =

{
0 t < 0

5 t ≥ 0
in Fig. 7, determine an expression for x(t) for t ≥ 0 and sketch its graph.

Fig. 7 Fig. 8 Fig. 9 Fig. 10

8. [C] If v(t) =

{
2 t < 0

6 t ≥ 0
in Fig. 8, determine an expression for x(t) for t ≥ 0 and sketch its graph.

9. [C] If v(t) =

{
4 t < 0

1 t ≥ 0
in Fig. 9, find an expression for x(t) for t ≥ 0 and sketch a graph of x(t) for

the time interval −RC ≤ t ≤ 3RC.

10. [C] Fig. 10 shows a simplified circuit diagram for an oscilloscope probe which includes an adjustable
capacitor of value kC.

(a) Determine the transfer function, Y
X (jω) and determine its value at ω = 0 and ω =∞.

(b) Determine the time constant of the circuit.

(c) Determine an expression for y(t) if x(t) =

{
0 t < 0

10 t ≥ 0
.

(d) The variable capacitance, kC, is adjusted to the value that makes the amplitude of the transient
equal to zero. Determine the value of k that achieves this.

(e) Simplify the expression for Y
X (jω) when k has the value calculated in the previous part.

11. [C] In the diagram of Fig. 11 power is being transmitted from a source to a load via two transformers
having turns ratios of 1 : n and n : 1 respectively.

(a) If ṼL = 240 V and the average power dissipated in RL is 10 kW, calculate the value of RL.

(b) If RS = 0.5 Ω, calculate the power dissipated in RS when (i) n = 1 and (ii) n = 5.

Fig. 11 Fig. 12

12. [C] The circuit in Fig. 12 represents a microphone connected to an amplifier via a transformer and
a long cable.

(a) Determine the Thévenin output impedance of the microphone+transformer combination when
n = 4.

(b) The cable is subject to 50 Hz interference capacitively coupled from the mains, ṼN = 230 V, via

a capacitor of value 100 pF. If the RMS microphone signal amplitude is ṼS = 1 V, calculate the
ratio of the signal and the noise at the amplifier in dB if (i) n = 1 and (ii) n = 4.
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13. [C] In the circuit of Fig. 13, the transformer may be assumed to be ideal.

(a) Calculate the average power dissipated in each of R1 and R2 if Ṽs = 1, n1 = 2, n2 = 3, R1 = 10
and R2 = 20.

(b) Calculate, in terms of n1, n2, R1 and R2, the effective resistance seen by the voltage source.

Fig. 13 Fig. 14

14. [C] In the circuit of Fig. 14, ṼS = 230 at 50 Hz, L = 8 mH and R = 1.6 Ω.

(a) If C = 0 (i.e. the capacitor is omitted), calculate the apparent power, average power and
reactive power absorbed by the load (shaded region) and also its power factor.

(b) Determine the value of C needed to increase the power factor to 0.9. Using this value, recalculate
the quantities from part (a).

15. [D] Calculate the waveform y(t) in Fig. 15(i) when,

(a) v(t) =

{
0 t ≤ 0

5 sin 2000πt t > 0
as shown in Fig. 15(ii).

(b) v(t) =


0 t ≤ 0

5 sin 2000πt 0 < t ≤ 1 ms

0 t > 1 ms

as shown in Fig. 15(iii)

-1 0 1 2
-5

0
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-1 0 1 2
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0

5
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Fig. 15(i) Fig. 15(ii) Fig. 15(iii)

16. [D] If the switch in Fig. 16 is


open t < 0

closed 0 ≤ t < 2 ms

open t ≥ 2 ms

, determine expressions for i(t) for each of these

periods and sketch graphs of i(t) and v(t) for −1 ms ≤ t ≤ 4 ms.

-1 0 1 2 3

0

1

2

3

t (ms)

Fig. 16 Fig. 17(i) Fig. 17(ii)

17. [E] In Fig. 17(i), v(t) =


0 t < 0

3 0 ≤ t < 1 ms

2 t ≥ 1 ms

as shown in Fig. 17(ii). If the diode has a forward voltage

drop of 0.7 V, find expressions for x(t) for t ≥ 0.
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E1.1 Circuit Analysis

Problem Sheet 6 - Solutions

1. (a) Negative, (b) Positive, (c) Negative, (d) Positive, (e) Positive.

2. (a) The time constant is 1
100 = 10 ms. (b) We need to solve 5.5 = 5 + 2e−100t ⇒ e−100t = 0.25 ⇒

−100t = ln 0.25 = −1.386 ⇒ t = 13.86 ms. Alternatively, we can use the standard formula, derived

in lectures, t = τ ln
(

7−5
5.5−5

)
= 10× ln 4 = 13.86 ms. (iii) The general formula, derived in lectures, is

TA→B = τ ln
(
A−5
B−5

)
.

3. The current is I = −200j
4+5j−2j = −200j

4+3j = −24 − 32j = 40∠ − 127◦. So
∣∣∣Ĩ∣∣∣2 = 402

2 = 800. The

complex power absorbed by each of the passive components is
∣∣∣Ĩ∣∣∣2 Z; this gives

∣∣∣Ĩ∣∣∣2R = 3.2 kW,∣∣∣Ĩ∣∣∣2 ZL = 4000j = 4 kVAR and
∣∣∣Ĩ∣∣∣2 ZC = −1600j = −1.6 kVAR. The current through the source

(following the passive sign convention) is −I = 24 + 32j and the complex power absorbed by it is

Ṽ
(
−Ĩ
)∗

= −141j (17− 22.6j) = (−3.2− 2.4j) kVA. As expected, the total complex power sums to
zero.

4. (a) The DC gain of the circuit is 1, so the steady state output is xSS(t) =

{
0 t < 0

5 t ≥ 0
. Because x

is the voltage across a capacitor, it must be continuous, so x(0+) = x(0−) = 0. So the complete

expression is x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 5− 5e

−t
τ where τ = RC. (b) x(t) is plotted

in Fig. 4.

(c) Using the standard formula, t = τ ln
(

0−5
4.5−5

)
= τ ln (10) = 2.3RC.

-1 0 1 2 3
0

2

4

t/RC

Fig. 4

5. (i) From the circuit, the time constant is RC = 2 ms. The DC gain may be obtained by treating C as
an open circuit and is 0; the HF gain may be obtained by treating C as a short-circuit and is therefore
1. The transfer function (using potential divider formula) is Y

X (jω) = jωRC
1+jωRC which happily gives

the same values: Y
X (0) = 0, Y

X (∞) = 1, τ = 1
denominator corner frequency = RC. The importance of

Y
X (∞) is that it gives the gain for a step input discontinuity, i.e. Y

X (∞) = output discontinuity
input discontinuity .

(ii) From the circuit: τ = RC = 2 ms, DC gain (C open-circuit) = 1, HF gain (C short-circuit) = 0.
The transfer function (using potential divider formula) is Y

X (jω) = 1
1+jωRC which gives the same

values.

(iii) From the circuit: τ = L
R = 0.1 ms, DC gain (L short-circuit) = 0, HF gain (L open-circuit) = 1.

The transfer function (using potential divider formula) is Y
X (jω) = jωL

R+jωL which gives the same

values. Note that if the denominator is (p+ jωq), the time constant is q
p and the corner frequency

is p
q .

(iv) To obtain the time constant, we need to determine the Thévenin resistance seen by the inductor.
To do this, we set the input voltage, X, to zero (thereby shorting node X to ground) and find
the resistance between the inductor terminals (with the inductor removed). The two resistors are
in series, so we get RTh = 1 + 4 = 5 k. From this, τ = L

R = 200 ns, DC gain (L short-circuit)
= 0.2 (potential divider), HF gain (L open-circuit) = 1. The transfer function (using potential
divider formula) is Y

X (jω) = R+jωL
5R+jωL where R = 1 k. This gives the same values and is, perhaps, a

marginally easier way to determine them.
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(v) To determine the Thévenin resistance seen by the capacitor, we set X = 0 and measure the
resistance at the capacitor terminals. Since X is connected to ground, the two 1 k resistors are in
series and so we have 8 k in parallel with 2 k which gives 1.6 k. From this, τ = RC = 0.16 ms, DC gain
(C open-circuit) = 0.1 (potential divider), HF gain (C short-circuit) = 0.5. The transfer function
(using potential divider formula) is Y

X (jω) = R
2R+ 8R

1+8jωRC

= 1+8jωRC
10+16jωRC where R = 1 k and we used

the formula for Z8R||C = 8R
1+jω8RC .

(vi) To determine the Thévenin resistance at the capacitor terminals is not trivial because of the
dependent voltage source that is the opamp. If we set X = 0 and replace the capacitor with a voltage
source V as in Fig. 5(i), we can use nodal analysis to determine I and then calculate RTh = V

I . Since

the op-amp is a unit-gain buffer, Y = V . KCL at node W gives: W
10 + W−V

10 + W−V
10 = 0 ⇒ W =

2
3V ⇒ I = V−W

10 ==
1
3V

10 = V
30 ⇒ RTh = 30 k. So, finally, we get τ = RThC = 3 ms. For the DC

gain, we make C an open-circuit as in Fig. 5(ii). Negative feedback means V+ = Y and, since there
is no current through the resistor connected to V+, we must also have W = Y . KCL at node W
then gives W = Y = X, so the DC gain is 1. For the HF gain, the capacitor acts a a short circuit
so V+ = 0 which in turn means that Y = 0 so the gain is 0.

Rather easier is the transfer function approach. We know V+ = Y and V+ is determined from W

by an RC potential divider giving: Y
W = V+

W = 1
1+jωRC . KCL at W gives W−X

R + W−Y
R + W−Y

R =

0 ⇒ 3W − 2Y = X. We now substitute for W using the previous equation Y
W = 1

1+jωRC to get

3Y (1 + jωRC) − 2Y = X⇒ Y
X = 1

1+3jωRC . From this we can easily get: τ = 3RC, Y
X (0) = 1 and

Y
X (∞) = 0.

-1 0 1 2 3
0

2

4

t*R/L

Fig. 5(i) Fig. 5(ii) Fig. 7

6. (i) v(t) equals 6 for 1
3 of the time and−2 for 2

3 of the time. So its average value is v = 1
3×6+2

3×(−2) =
2
3 . Similarly, the average value of v2 is v2 = 1

3 × 36+2
3 × 4 = 142

3 . So Vrms =
√

14.67 = 3.83. This is
higher than the average value v.

(ii) During the first period (0 ≤ t ≤ 2), the formula for v can be derived as v = 2t. To find
the average value, we integrate over one period, and divide by the length of the period. So v =
1
2

∫ 2

t=0
2tdt = 1

2

[
t2
]2
0

= 2. This is also pretty obvious from looking at the waveform. In the same

way, v2 = 1
2

∫ 2

t=0
(2t)

2
dt = 1

2

[
4
3 t

3
]2
0

= 5 1
3 giving Vrms =

√
5.33 = 2.31.

(iii) This is the same as the previous waveform but shifted up by +2. You can perform integrations
similar to the previous part or, easier, just modify the previous answers. v (which previously equalled
2) will be increased by 2 to become v = 4. Adding a constant onto a random variable does not affect

its variance, so v2 − (v)
2

will be unchanged at 5 1
3 − 22 = 1 1

3 . It follows that v2 = (v)
2

+ 11
3 = 17 1

3 .

Taking the square root gives Vrms =
√

17.33 = 4.16.

7. Method 1 (inductor current continuity): For t < 0, x = 0 and the current through the inductor
is i = v−x

R = 0. It follows that at time t = 0+, the current through the resistor (which equals
the current through the inductor) will still be zero and x(0+) = v(0+) = 5. From this value is
will decay to a steady state value xSS = 0 since the inductor is a short circuit for DC. Thus,
x(t) = xSS(t) + (x(0+)− xSS(0+)) e

−t
τ = 0 + 5e

−t
τ where τ = L

R . This is plotted in Fig. 7.

Method 2 (transfer function): The transfer function of the circuit is (from potential divider equation)
X
V = jωL

R+jωL . From this we get the DC gain, GDC = 0, the HF gain, GHF = 1, and the time constant

is L
R . The DC gain allows us to calculate the steady state xSS(t) = GDCv(t) ≡ 0. The output

discontinuity at t = 0 is given by ∆x = GHF∆v = 1×5 = 5. So x(0+) = xSS(0−)+∆x = 0+5 = 5.

Finally we put everything together to get: x(t) = xSS(t)+(x(0+)− xSS(0+)) e
−t
τ = 0+(5− 0) e

−t
τ .
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8. Method 1 (capacitor voltage continuity): The time constant of the circuit is obtained by setting
v = 0 and finding the Thévenin resistance across the capacitor terminals. Since v is connected to
ground, the two resistors are in parallel and RTh=1

2R giving τ = 1
2RC. The DC gain of the circuit

is 0.5, so xSS(t) = 0.5v(t) =

{
1 t < 0

3 t ≥ 0
. For t < 0, the capacitor voltage is v − x = 2− 1 = 1. This

must remain continuous and so v(0+) − x(0+) = 1 ⇒ x(0+) = v(0+) − 1 = 5. Putting everything

together, we get x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 3 + (5− 3) e

−t
τ = 3 + 2e

−t
τ . This is

plotted in Fig. 8.

Method 2 (transfer function): The transfer function of the circuit is (from potential divider equation)
X
V = R

R+ R
1+jωRC

= 1+jωRC
2+jωRC . From this we get the DC gain, GDC = 0.5, the HF gain, GHF = 1, and

the time constant is 0.5RC. The DC gain allows us to calculate the steady state as above. The output
discontinuity at t = 0 is given by ∆x = GHF∆v = 1×4 = 4. So x(0+) = xSS(0−)+∆x = 1+4 = 5.

Finally we put everything together to get: x(t) = xSS(t)+(x(0+)− xSS(0+)) e
−t
τ = 3+(5− 3) e

−t
τ =

3 + 2e
−t
τ .
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Fig. 8 Fig. 9

9. For opamp circuits, it is easiest to use the transfer function to determine the relevant circuit para-

meters. This is a non-inverting amplifier with a gain of X
V = 1 +

R
1+jωRC

R = 2+jωRC
1+jωRC . Thus we

have a DC gain, GDC = 2, a high frequency gain GHF = 1 and a time constant τ = RC.
At t = 0, the input discontinuity is ∆V = v(0+) − v(0−) = −3 and so the ouput discontinu-
ity is ∆X = x(0+) − x(0−) = GHF∆V = 1 × −3 = −3. The steady state output is given by

xSS(t) = GDCv(t) =

{
8 t < 0

2 t ≥ 0
. So this gives x(0+) = −3 + x(0−) = −3 + 8 = 5.

Putting everything together, we get x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 2 + (5− 2) e

−t
τ =

2 + 3e
−t
RC .

10. (a) The impedance of R||C is R
1+jωRC . We can regard the circuit as a potential divider and so the

gain is Y
X = H(jω) =

R
1+jωRC

9R
1+j9kωRC+ R

1+jωRC

which simplifies to H(jω) = 1+j9kωRC
10+j9(k+1)ωRC . The DC gain is

H(0) = 0.1 and the high frequency gain is H(∞) = k
k+1 .

(b) The time constant is the reciprocal of the denominator corner frequency and is τ = 0.9(k+1)RC.

(c) The steady state output for an input of x = 10 is ySS(t) = H(0) × 10 = 1. The input step is
∆x = 10 and so the output step is ∆y = H(∞)∆x = 10k

k+1 . Since y(t) = 0 for t < 0, it follows that

y(0+) = 10k
k+1 . So the output for t > 0 is y(t) = 1 +

(
10k
k+1 − 1

)
e−

t
τ = 1 + 9k−1

k+1 e
− t
τ .

(d) The value of k that makes the transient amplitude zero is k = 1
9 . Note that the transient

amplitude will be positive or negative according to whether k is greater or less than this value.

(e) If k = 1
9 then H(jω) = 0.1 and is independent of ω.

11. (a) Average power is Ṽ 2

RL
, so RL = Ṽ 2

10 k = 5.76 Ω. (b) Current through RL is ĨL = Ṽ
R = 41.7 A. The

current through RS is ĨL
n so the power dissipation is

Ĩ2LRS
n2 . This gives (i) 868 W and (ii) 34.8 W.

12. (a) Impedances are transformed by the square of the turns ratio because the voltage decreases by n
and the current increases by n so that the ratio of voltage over current decreases by n2. So when
n = 4, the impedance at the output of the secondary is 2400

16 = 150 Ω.
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(b) At 50 Hz, the capacitor impedance is ZC = 1
j2π50×100 p = −j31.8 MΩ . With the transformed

source impedance from part (a), we get the equivalent circuit shown in Fig. 12. Using superposition,

ṼA = ṼN× Rn−2

Rn−2+ZC
+ ṼSn

−1 × ZC
Rn−2+ZC

= n−1ZC ṼS+Rn
−2ṼN

Rn−2+ZC
. The ratio of the signal and noise

voltages is equal to the ratio of the two terms in the numerator, so the ratio of the signal and noise

voltage magnitudes is
n−1|ZC ||ṼS|
Rn−2|ṼN | = 31.8M×1

2400×230 × n = 57.66 × n. Converting this to decibels gives

20 log10 57.66 + 20 log10 n = 35.2 + 20 log10 n. This gives (i) 35.2 dB for n = 1 and (ii) 47.3 dB for
n = 4. So, slightly surprisingly, using a transfomer to reduce the voltage coming from the microphone
actually makes the signal-to-noise ratio better.

Fig. 12 Fig. 13

13. (a) Ṽ1 = n1ṼS = 2 so the average power dissipated in R1 is
Ṽ 2
1

R1
= 400 mW. Similarly, Ṽ2 = n2ṼS = 3,

so the average power dissipated in R2 is
Ṽ 2
2

R2
= 450 mW.

(b) From the ideal transformer equations, 1× IS +n1× (−I1)+n2× (−I2) = 0 (the minus signs arise
because in Fig. 13 I1 and I2 are defined as coming out of the transformer). Rearranging this and

using Ohm’s law gives IS = n1I1+n2I2 = n1V1

R1
+ n2V2

R2
=

n2
1VS
R1

+
n2
2VS
R2

. So Reff = VS
IS

= 1
1

n
−2
1 R1

+ 1

n
−2
2 R2

.

This is the same as the parallel combination of n−21 R1 and n−22 R2 , i.e. the parallel combination of
the individual winding resistances transferred from the secondaries to the primary.

14. (a) The inductor impedance is jωL = j × 100π × 0.008 = 2.51 Ω. So the current is I = VS
R+jωL =

41.5−65.1j. So S = V I∗ = P+jQ = 9.54+14.98j kVA. So the apparent power is |S| = 17.8 kVAand
the average and reactive powers are P and Q given earlier. The power factor is cosφ = P

|S| = 0.54.

(b) Adding the capacitor will not consume any average power and so will not affect P at all. We
need to reduce Q to P tan (arccos 0.9) = 4.62 kVAR since tanφ = Q

P and we want cosφ = 0.9. It

follows that QC = 4.62− 14.98 = −10.36 kVAR = −|VS |2
|ZC | = −2302ωC. This gives C = 623µF. Now

S = P + jQ = 9.54 + 4.62j kVA. So the apparent power is |S| = 10.6 kVA and the average and
reactive powers are P and Q given earlier. The power factor is cosφ = P

|S| = 0.9.

15. Notice first that since there are no input discontinuities, there will be no output discontinuities
either. The circuit transfer function is X

V = jωRC
1+jωRC . The gain at ω = 2000π is G = 0.503 +

0.5j = 0.709∠44.8◦. The phasor corresponding to v(t) = 5 sinωt is V = −5j and so the steady
state output will be X = GV = 2.5 − 2.51j = 3.54∠ − 45.2◦ which corresponds to a waveform
xSS(t) = 2.5 cosωt+ 2.51 sinωt. The time constant is RC = 0.16 ms.

(a) At time t = 0+ we have xSS(0+) = 2.5 V. Since there is no output discontinuity, x(0+) =

x(0−) = 0. Putting this together gives x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 2.5 cosωt +

2.51 sinωt+ (0− 2.5) e
−t
RC . This is plotted in Fig. 15(i).

(b) Substituting t = 1 into the previous expression gives x(1−) = x(1+) = 2.495 (very close to the
steady state value since it has had 6 1

4 time constants to converge). For t > 1, the steady state is

xSS(t) ≡ 0. Therefore we get x(t) = 2.495e
−(t−1)
τ . This is plotted in Fig. 15(ii).
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16. For the steady state when t < 0, we can treat the inductor as a short circuit and so i = 10
R = 100 mA.

When the switch is closed, there is a constant 10 V across the inductor and so di
dt = V

L = 100 V/s.
Therefore the current through the inductor will increase linearly at this rate for 2 ms (from an initial
value of 100 mA) and will reach a value of 300 mA. Since there is no resistor in series with the
inductor, the current increases linearly rather than exponentially; you can, if you wish, regard this
as a limiting case of a negative exponential that has an infinite time constant.

When the switch is opened at t = 2 ms, the current will decay from its peak value of 300 mA back
down to its steady state value of 100 mA with a time constant of L

R = 1 ms. Thus for t > 2 ms, we

have i(t) = 100 + (300− 100) e
−(t−2)

1 (in units of mA and ms). All this is plotted in Fig. 16(i).

When the switch is open, v(t) = Ri(t). However, when the switch is closed, v(t) ≡ 0. We therefore
get the voltage waveform plotted in Fig. 16(v).
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17. In this question, we have two different circuits according to whether the diode is off or on. These are
shown in Fig. 17(off),(on). When the diode is off, we have a DC steady state xSS(t) = 0 and a time
constant τOff = RC = 1.6 ms. On the other hand, when the diode is on, we can get the DC steady
state by doing KCL for the shaded supernode: x+0.7−v

2 + x
8 = 0 ⇒ xSS = 4

5 (v − 0.7). We obtain
the time constant by setting all voltage sources to zero and finding the Thévenin resistance and the
capacitor terminals: this is RTh = 2 k||8 k = 1.6 k; this gives a time constant τOn = 0.32 ms.

For t < 0, v = x = 0 and so, since v− x < 0.7, the diode will be off. When v changes to 3, the diode
will turn on and will charge the capacitor up to a steady state voltage of 4

5 (3− 0.7) = 1.84. When
v now changes to 2 V, the diode will turn off and x will fall towards the “off” steady state of 0 V.
However, it will never reach this value, because when x reaches v − 0.7 = 1.3 V the diode will turn
on again resulting in a new steady state of 4

5 (2− 0.7) = 1.04 V. So this means we actually have four
distinct time segments: t < 0, 0 ≤ t < 1, 1 ≤ t < Tx, t ≥ Tx wher Tx is the, as yet unknown, time
at which the diode turns on for the last time.

Segment 1 (Diode Off, t < 0, x = v = 0).

Segment 2 (Diode On, 0 ≤ t < 1, v = 3, xSS = 4
5 (3− 0.7) = 1.84, τOn = 0.32 ms): x(t) =

xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 1.84 + (0− 1.84) e

−t
τ = 1.84 − 1.84e

−t
τOn . At t = 1 this gives

x(1) = 1.76.

Segment 3 (Diode Off, 1 ≤ t < Tx, v = 2, xSS = 0, τOff = 1.6 ms): Capacitor voltage continuity

means that x(1+) = 1.76. So x(t) = xSS(t) + (x(1+)− xSS(1+)) e
−t
τ = 0 + (1.76− 0) e

−t
τ =

1.76e
−(t−1)
τOff . We need to know when the voltage x reaches 1.3 V (t = Tx) because that is when the

diode will turn on again. Solving 1.76e
−(Tx−1)
τOff = 1.3⇒ Tx = 1.48 ms.

Segment 4 (Diode On, t ≥ 1.48 ms, v = 2, xSS = 4
5 (2− 0.7) = 1.04, τOn = 0.32 ms): x(t) =

xSS(t) + (x(Tx+)− xSS(Tx+)) e
−t
τ = 1.04 + (1.3− 1.04) e

−t
τ = 1.04 + 0.26e

−(t−Tx)
τOn .

All four segments are plotted in Fig. 17(iii).
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E1.1 Circuit Analysis

Problem Sheet 7 (Lectures 17 & 18)

Key: [A]= easy ... [E]=hard

Note: In this problem sheet u and Z0 are the propagation velocity and characteristic impedance
of a transmission line and the forward and backward waves at the point x are fx(t) = f(t − x

u ) and
gx(t) = g(t+ x

u ) with, in the case of sinusoidal waves, the corresponding phasors being Fx and Gx.

[A] Find the propagation velocity, u, and characteristic impedance, Z0, of a transmission line
whose capacitance and inductance are 50 pf/m and 500 nH/m respectively. Express the propaga-
tion velocity also as a fraction of the speed of light. [B] The line in Fig. has Z0 = 100 Ω. For
each of the cases below, calculate the reflection coefficients at both ends of the line and describe
the waves that would arise from a short positive pulse at VS .RS = 10 and RL = 100.RS = 10
and RL = 1000.RS = 100 and RL = 1000.

(a)(b)(c)

Fig. Fig.

[C] The line in Fig. is driven by a 10 V DC voltage source. Determine the voltage and current in
the line and hence the forward and backward waves f(t− x

u ) and g(t+ x
u ). Determine also the power

carried by the two waves and verify that their differnce equals the total power delivered to the load.

Fig. Fig.

[C] A transmission line has a propagation velocity of 15 cm/ns and a characteristic impedance of
100 Ω. The forward and backward waves are shown in Fig. and have amplitudes of 9 V and 3 V
respectively. Draw dimensioned sketches of the voltage and current waveforms at (a) x = 0 and
(b) x = 300 cm. In each case, give the value of the peak voltage and peak current.

[C] The transmission line shown in Fig. has a propagation velocity of 15 cm/ns and a characteristic
impedance of 50 Ω. The length of the line is L = 300 cm.

(a) Determine the reflection coefficients at both ends of the line when the switch is held closed.

(b) Calculate the steady state DC forward and backward waves when the switch has been closed
for a long time.

(c) If the switch is closed at time t = 0, determine the forward and backward waves at x = 0. Hence
determine the voltage waveforms at x = 0 and x = L.

[C] A length of transmission line with Z0 = 100 and u = 20 cm/ns is terminated in a short circuit at
x = L. Find the shortest lengths of line, L, for which the impedance at 20 MHz at x = 0 will equal
(a) 50 pF and (b) 1µH.
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[C] In Fig. , L = 5 m, u = 20 cm/ns, Z0 = 100 , RL = 50 and the frequency of operation is 50 MHz.

(a) If the forward wave phasor at x = 0 is F0 = 6j, determine the forward wave phasors, Fx, at
x = 1, 2, 3, 4 and 5 metres.

(b) Calculate the reflection coefficient at x = L.

(c) Determine the backward wave phasors, Gx, at x = 0, 1, 2, 3, 4 and 5.

(d) Determine the line voltage phasors, Vx, at x = 0, 1, 2, 3, 4 and 5.

(e) Determine the Voltage Standing Wave Ratio: V SWR = max(|Vx|)
min(|Vx|) .

(f) Determine the line impedance, V0

I0
, at x = 0.

Fig. Fig.

[C] Repeat question for RL = 100.

[C] In Fig. , L = 1 m, u = 15 cm/ns, Z0 = 100 , RS = 10 , RL = 150 and the frequency of operation
is 20 MHz.

(a) Calculate the reflection coefficient, ρL at x = L. Hence calculate the phasor ratio G0

F0
at x = 0.

(b) Calculate the line impedance V0

I0
at x = 0.

(c) By treating the circuit at the source end as a potential divider, calculate V0 if VS = 10.

(d) Calculate F0 and hence calculate FL, GL and the load voltage, VL.

(e) Calculate the complex power supplied by the source.
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E1.1 Circuit Analysis

Problem Sheet 7 - Solutions

The propagation velocity (from page 17-4 of the notes) is u =
√

1
L0C0

= 2× 108 m/s which is 2
3 of

the speed of light. The characteristic impedance is Z0 =
√

L0

C0
= 100 Ω. These are typical

characteristics for the twisted pair cable used in computer networks. The reflection coefficients is
given by ρ = R−Z0

R+Z0
where R is the Thévenin impedance at the relevant end of the line. This gives

(a) ρS = −0.818, ρL = 0 so a pulse at VS will travel down the line as a forward wave and stop when
it reaches the load (no reflections), (b) ρS = −0.818, ρL = 0.818 so a positive pulse at VS will travel

down the line as a forward wave, be reflected at x = L and travel back towards the source as a
backward wave. When it reaches x = 0 it will be reflected and inverted and will result in a negative
pulse traveling as a forward wave. This whole process will be repeated for ever and you will get an
infinite sequence of pulses each one smaller than than the previous one, (c) ρS = 0, ρL = 0.818 so a

positive pulse at VS will travel down the line as a forward wave, be reflected at x = L and then
travel back towards x = 0 where it will stop. Since the voltage source is DC, f() and g() will be

constants and the waves will be independent of x and t. From Ohm’s law, we know that the
voltage and current in the line are 10 V and 0.2 A so we must have f + g = 10 and

f − g = 0.2× 100 = 20. Solving these two equations gives f = 15 and g = −5. As we would expect,
the ratio g

f = −0.333 is equal to the reflection coefficient at the load. The power carried by the two

waves is f2

Z0
= 2.25 W and g2

Z0
= 0.25 W and the difference between these does indeed equal the

power absorbed by the load: 102

50 = 2 W. At x = 0, v0(t) = f(t) + g(t) and i0(t) = Z−10 (f(t)− g(t))
which gives the waveforms shown in Fig. (a). The peak voltage and current are 9 V and 90 mA

respectively. At x = 300 cm, f
(
t− x

u

)
is delayed by 20 ns while g

(
t+ x

u

)
is advanced by the same

amount. The new voltage and current waveforms are as shown in Fig. (b). The forward and
backward waves now overlap and the peak voltage and current are 12 V and 60 mA respectively.
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(a) ρL = 100−50
100+50 = 0.33, ρ0 = 0−50

0+50 = −1.
(b) In the steady state we must have V = 10 V and I = 0.1 A which means that f + g = 10 and
f − g = 0.1Z0 = 5. We can solve these two equations to give f = 7.5 and g = 2.5.
(c) From the notes (page 17-11) the forward wave is the sum of an infinite number of copies of the
input signal; each extra copy is delayed by an additional round-trip propagation delay (600

15 = 40 ns)
and multiplied by an additional factor ρLρ0 = −0.33. This is shown in Fig. ; the input signal jumps
to 10 V when the switch is closed and stays there forever. Onto this is added a copy of the input
signal delayed by 40 ns and multiplied by −0.33 which means that f(t) jumps to 6.67 at t = 40 ns.
With pulse waveforms, it is sometimes easier to keep track of the changes in the signals rather than
their absolute values. In this case, the input signal only changes once: by +10 V at t = 0. It follows
that f(t) will have a change of +10 at t = 0 followed by a change of 10ρLρ0 = −3.33 at t = 40

followed by a change of 10 (ρLρ0)
2

= 1.11 at t = 80 followed by a change of 10 (ρLρ0)
3

= −0.37 at
t = 120 and so on.
So, f(0) = 10, f(40) = 6.67, f(80) = 7.78, f(120) = 7.41, f(160) = 7.53, f(200) = 7.49, f(240) =
7.5), · · ·. As we can see, f(t)→ 7.5 as predicted in part (a).
g(t) = ρLf(t − 2L

u ) is just the same as f(t) but delayed by the round-trip propagation delay and
multiplied by ρl = 0.33.
The voltage waveform at x = 0 is equal to f(t) + g(t) and has a constant value of 10 V for t ≥ 0 as
is obvious from the circuit.
The voltage waveform at x = L is vL(t) = fL(t) + gL(t) = f(t− 20) + g(t+ 20), that is, the sum of
f(t) delayed by 20 ns and g(t) advanced by 20 ns. This reaches a peak value of 10 (1 + ρL) = 13.3 V.
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Note that the propagation velocity in SI units is 20 × 107 m/s. At 20 MHz the wavenumber is

k = ω
u = 2π×2×107

20×107 = 0.628 rad/m or, equivalently, the wavelength is λ = u
f = 2π

k = 10 m. The
impedance of the line at x = 0, which we will call Z, is, by definition, equal to the phasor Z =
V0

I0
= F0+G0

Z−1
0 (F0−G0)

. Because the line is short circuited at x = L, the reflection coefficient at x = L

is ρL = −1. G0 and F0 are related by G0 = F0ρLe
−2jkL; the ρL factor comes from the reflection

at x = L and the e−2jkL factor is the phase shift arising from the time delay for the wave to travel
from x = 0 to x = L and back again. Substituting for G0 in the previous expression for Z gives

Z = Z0
F0 + F0ρLe

−2jkL

F0 − F0ρLe−2jkL
= Z0

1− e−2jkL

1 + e−2jkL
= Z0

e−jkL
(
ejkL − e−jkL

)
e−jkL (ejkL + e−jkL)

= jZ0 tan kL

which leads to L = nλ
2 + 1

k tan−1 ZT

jZ0
where the nλ

2 term arises because tan() repeats every π. We

want to choose L so that (a) ZT = 1
jωC = −159j or (b) ZT = jωL = 126j and in each case choose

n to make L as small as possible while still remaining positive. This gives (a) L = 3.39 m and (b)
L = 1.43 m.

(a) The wavelength is λ = u
f = 20×107

50×106 = 4 m which means that we get a phase shift of −π2 for every

metre we move along the line. Equivalently k = ω
u = 2π

λ = 1.571 rad/m. Thus at x = 0, 1, 2, 3, 4, 5,
Fx = F0e

−jkx = 6j, 6, −6j, −6, 6j, 6. Notice that the phase repeats every 4 m since this is one
wavelength.
(b) The reflection coefficient at x = L is ρL = RL−Z0

RL+Z0
= −0.333.

(c) It follows that GL = ρLFL = −0.333× 6 = −2. As with Fx in part (a), Gx will get a phase shift
of −π2 for every metre we move backwards along the line towards x = 0, i.e. Gx = GLe

−jk(L−x).

If you substitute for GL you can write this as Gx = ρLFLe
−jk(L−x) = ρLF0e

−jkLe−jk(L−x) =
ρLF0e

−jk(2L−x). Thus at x = 0, 1, 2, 3, 4, 5, Gx = 2j, −2, −2j, 2, 2j, −2.
(d) Vx = Fx + Gx, so at x = 0, 1, 2, 3, 4, 5, Vx = 8j, 4, −8j, −4, 8j, 4. We can see that when Fx
and Gx are in phase (at x = 0, 2, 4) their magnitudes add to give |Vx| = 6 + 2 = 8 whereas when
they are out of phase (at x = 1, 3, 5) the subtract to give |Vx| = 6− 2 = 4.

(e) From part (d), the VSWR is 8
4 = 2. Because |Gx| = |ρL| |Fx|, the VSWR is 1+|ρL|

1−|ρL| which, if you

express ρL in terms of RL equals max
(
RL

Z0
, Z0

RL

)
= max (0.5, 2) = 2.

(f) The line impedance at x = 0 is V0

I0
= Z0

F0+G0

F0−G0
= Z0

8j
4j = Z0 × 2 = 200.

(a) The forward wave is unaffected so Fx = F0e
−jkx = 6j, 6, −6j, −6, 6j, 6 as before.

(b) The line termination is matched and the reflection coefficient is now 0.
(c) It follows that Gx = 0∀x.
(d) Vx = Fx +Gx = Fx + 0 = Fx, so Vx = 6j, 6, −6j, −6, 6j, 6.
(e) |Vx| is always equal to 6 and so the VSWR equals 1, its minimum possible value. Measuring the
VSWR gives a way of telling when a line is matched without having to measure either Z0 or RL.
(f) The line impedance at x = 0 is V0

I0
= Z0

F0+G0

F0−G0
= Z0

F0+0
F0−0 = Z0 = 100.

(a) We have λ = 7.5 m and k = 2π
λ = 0.838. The reflection coefficient is ρL = RL−Z0

RL+Z0
= 0.2. Hence

G0

F0
= ρLe

−2jkL = −0.0209− 0.1989j.

(b) ZT = V0

I0
= Z0

F0+G0

F0−G0
= Z0

1+
G0
F0

1−G0
F0

= 100× (0.8874− 0.3677j) = 88.74− 36.77j = 96.06∠− 22.5◦.

(c) Hence V0 = VS
ZT

RS+ZT
= 10× (0.911− 0.033j) = 9.11− 0.33j.

(d) Since V0 = F0 + G0 = F0

(
1 + G0

F0

)
, we can write F0 = V0

1+
G0
F0

= 9.00 + 1.49j. From this we get

FL = F0e
−jkL = 7.13− 5.69j. We can now calculate GL = ρLFL = 1.43− 1.14j and then work out

VL = FL + GL = 8.56 − 6.83j. Notice that once you know F and G at one point on the line, you
can easily calculate their values at any other point whereas V varies in a rather more complicated
manner; because of this, we convert from V to F , then move F to a different place and convert back
to V again.
(e) The complex power supplied by the source is∣∣∣ṼS∣∣∣2

(RS + ZT )
∗ =

1
2 |VS |

2

(RS + ZT )
∗ =

50

98.7 + 36.8j
= 0.445− 0.166j VA
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. You might expect this to be purely real because the circuit appears to contain only resistors;
however, there are implicit capacitors and inductors in the transmission line.
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