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CHAPTER

8

PIPELINING

CHAPTER OBJECTIVES

In this chapter you will learn about:
e Pipelining as a means for executing machine instructions
concurrently

*  Various hazards that cause performance degradation in pipelined
processors and means for mitigating their effect

e Hardware and software implications of pipelining
* Influence of pipelining on instruction set design
e Superscalar processors
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CHAPTER 8 ¢ PIPELINING

The basic building blocks of a computer are introduced in preceding chapters. In this
chapter, we discuss in detail the concept of pipelining, which is used in modern com-
puters to achieve high performance. We begin by explaining the basics of pipelining
and how it can lead to improved performance. Then we examine machine instruction
features that facilitate pipelined execution, and we show that the choice of instructions
and instruction sequencing can have a significant effect on performance. Pipelined
organization requires sophisticated compilation techniques, and optimizing compilers
have been developed for this purpose. Among other things, such compilers rearrange
the sequence of operations to maximize the benefits of pipelined execution.

8.1 BASIC CONCEPTS

The speed of execution of programs is influenced by many factors. One way to improve
performance is to use faster circuit technology to build the processor and the main
memory. Another possibility is to arrange the hardware so that more than one operation
can be performed at the same time. In this way, the number of operations performed per
second is increased even though the elapsed time needed to perform any one operation
is not changed.

We have encountered concurrent activities several times before. Chapter 1 in-
troduced the concept of multiprogramming and explained how it is possible for I/O
transfers and computational activities to proceed simultaneously. DMA devices make
this possible because they can perform I/O transfers independently once these transfers
are initiated by the processor.

Pipelining is a particularly effective way of organizing concurrent activity in a
computer system. The basic idea is very simple. It is frequently encountered in manu-
facturing plants, where pipelining is commonly known as an assembly-line operation.
Readers are undoubtedly familiar with the assembly line used in car manufacturing.
The first station in an assembly line may prepare the chassis of a car, the next station
adds the body, the next one installs the engine, and so on. While one group of workers
is installing the engine on one car, another group is fitting a car body on the chassis
of another car, and yet another group is preparing a new chassis for a third car. It may
take days to complete work on a given car, but it is possible to have a new car rolling
off the end of the assembly line every few minutes.

Consider how the idea of pipelining can be used in a computer. The processor
executes a program by fetching and executing instructions, one after the other. Let F;
and E; refer to the fetch and execute steps for instruction I;. Execution of a program
consists of a sequence of fetch and execute steps, as shown in Figure 8.1a.

Now consider a computer that has two separate hardware units, one for fetching
instructions and another for executing them, as shown in Figure 8.1b. The instruction
fetched by the fetch unit is deposited in an intermediate storage buffer, B1. This buffer
is needed to enable the execution unit to execute the instruction while the fetch unit is
fetching the next instruction. The results of execution are deposited in the destination
location specified by the instruction. For the purposes of this discussion, we assume
that both the source and the destination of the data operated on by the instructions are
inside the block labeled “Execution unit.”
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—» Time
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(c) Pipelined execution

Figure 8.1 Basic idea of instruction pipelining.

The computer is controlled by a clock whose period is such that the fetch and
execute steps of any instruction can each be completed in one clock cycle. Operation of
the computer proceeds as in Figure 8.1c. In the first clock cycle, the fetch unit fetches
an instruction I; (step F;) and stores it in buffer B1 at the end of the clock cycle. In
the second clock cycle, the instruction fetch unit proceeds with the fetch operation for
instruction I, (step F,). Meanwhile, the execution unit performs the operation specified
by instruction I;, which is available to it in buffer B1 (step E;). By the end of the
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second clock cycle, the execution of instruction I; is completed and instruction I, is
available. Instruction I is stored in B1, replacing I;, which is no longer needed. Step E;
is performed by the execution unit during the third clock cycle, while instruction I is
being fetched by the fetch unit. In this manner, both the fetch and execute units are
kept busy all the time. If the pattern in Figure 8.1c¢ can be sustained for a long time, the
completion rate of instruction execution will be twice that achievable by the sequential
operation depicted in Figure 8.1a.

In summary, the fetch and execute units in Figure 8.1b constitute a two-stage
pipeline in which each stage performs one step in processing an instruction. An inter-
stage storage buffer, B1, is needed to hold the information being passed from one stage
to the next. New information is loaded into this buffer at the end of each clock cycle.

The processing of an instruction need not be divided into only two steps. For
example, a pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).
E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

The sequence of events for this case is shown in Figure 8.2a. Four instructions are in
progress at any given time. This means that four distinct hardware units are needed, as
shown in Figure 8.2b. These units must be capable of performing their tasks simultane-
ously and without interfering with one another. Information is passed from one unit to
the next through a storage buffer. As an instruction progresses through the pipeline, all
the information needed by the stages downstream must be passed along. For example,
during clock cycle 4, the information in the buffers is as follows:

e Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being decoded
by the instruction-decoding unit.

e Buffer B2 holds both the source operands for instruction I, and the specification of
the operation to be performed. This is the information produced by the decoding
hardware in cycle 3. The buffer also holds the information needed for the write step
of instruction I, (step W5). Even though it is not needed by stage E, this information
must be passed on to stage W in the following clock cycle to enable that stage to
perform the required Write operation.

e Buffer B3 holds the results produced by the execution unit and the destination
information for instruction I.

8.1.1 ROLE OF CACHE MEMORY

Each stage in a pipeline is expected to complete its operation in one clock cycle. Hence,
the clock period should be sufficiently long to complete the task being performed in
any stage. If different units require different amounts of time, the clock period must
allow the longest task to be completed. A unit that completes its task early is idle for
the remainder of the clock period. Hence, pipelining is most effective in improving
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(a) Instruction execution divided into four steps

Interstage buffers

D : Decode
F : Fetch instruction E: Execute W : Write
instruction and fetch operation results
operands
B1 B2 B3

(b) Hardware organization

Figure 8.2 A 4-stage pipeline.

performance if the tasks being performed in different stages require about the same
amount of time.

This consideration is particularly important for the instruction fetch step, which is
assigned one clock period in Figure 8.2a. The clock cycle has to be equal to or greater
than the time needed to complete a fetch operation. However, the access time of the
main memory may be as much as ten times greater than the time needed to perform
basic pipeline stage operations inside the processor, such as adding two numbers. Thus,
if each instruction fetch required access to the main memory, pipelining would be of
little value.

The use of cache memories solves the memory access problem. In particular, when
a cache is included on the same chip as the processor, access time to the cache is usually
the same as the time needed to perform other basic operations inside the processor. This
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makes it possible to divide instruction fetching and processing into steps that are more
or less equal in duration. Each of these steps is performed by a different pipeline stage,
and the clock period is chosen to correspond to the longest one.

8.1.2 PIPELINE PERFORMANCE

The pipelined processor in Figure 8.2 completes the processing of one instruction in
each clock cycle, which means that the rate of instruction processing is four times that of
sequential operation. The potential increase in performance resulting from pipelining
is proportional to the number of pipeline stages. However, this increase would be
achieved only if pipelined operation as depicted in Figure 8.2a could be sustained
without interruption throughout program execution. Unfortunately, this is not the case.

For a variety of reasons, one of the pipeline stages may not be able to complete its
processing task for a given instruction in the time allotted. For example, stage E in the
four-stage pipeline of Figure 8.2b is responsible for arithmetic and logic operations,
and one clock cycle is assigned for this task. Although this may be sufficient for
most operations, some operations, such as divide, may require more time to complete.
Figure 8.3 shows an example in which the operation specified in instruction I, requires
three cycles to complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the
Write stage must be told to do nothing, because it has no data to work with. Meanwhile,
the information in buffer B2 must remain intact until the Execute stage has completed
its operation. This means that stage 2 and, in turn, stage 1 are blocked from accepting
new instructions because the information in B1 cannot be overwritten. Thus, steps D4
and Fs must be postponed as shown.

—» Time

Clock cycle 1 2 3 4 5 6 7 8 9
Instruction
L Fy Dy E; Wi
L F D, E, W,
I Fy D, E, W
I F, D, E, W,
Is Fs Ds Es

Figure 8.3 Effect of an execution operation taking more than one clock cycle.
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Pipelined operation in Figure 8.3 is said to have been stalled for two clock cycles.
Normal pipelined operation resumes in cycle 7. Any condition that causes the pipeline
to stall is called a hazard. We have just seen an example of a data hazard. A data hazard
is any condition in which either the source or the destination operands of an instruction
are not available at the time expected in the pipeline. As a result some operation has to
be delayed, and the pipeline stalls.

The pipeline may also be stalled because of a delay in the availability of an instruc-
tion. For example, this may be a result of a miss in the cache, requiring the instruction
to be fetched from the main memory. Such hazards are often called control hazards or
instruction hazards. The effect of a cache miss on pipelined operation is illustrated in
Figure 8.4. Instruction I is fetched from the cache in cycle 1, and its execution proceeds
normally. However, the fetch operation for instruction I, which is started in cycle 2,
results in a cache miss. The instruction fetch unit must now suspend any further fetch re-
quests and wait for I, to arrive. We assume that instruction I, is received and loaded into
buffer B1 at the end of cycle 5. The pipeline resumes its normal operation at that point.

—» Time

Clock cycle 1 2 3 4 5 6 7 8 9
Instruction

I Fy Dy E; Wy

15) F, D, E, W,

I3 F3 D; E; W;

(a) Instruction execution steps in successive clock cycles

— = Time

Clock cycle 1 2 3 4 5 6 7 8 9
Stage
F: Fetch F; F, F, F, F, F;
D: Decode D, idle idle idle D, D;
E: Execute E; idle idle idle E, E;
W: Write W, idle idle idle W, W3

(b) Function performed by each processor stage in successive clock cycles

Figure 8.4 Pipeline stall caused by a cache miss in F2.
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An alternative representation of the operation of a pipeline in the case of a cache
miss is shown in Figure 8.4b. This figure gives the function performed by each pipeline
stage in each clock cycle. Note that the Decode unit is idle in cycles 3 through 5,
the Execute unit is idle in cycles 4 through 6, and the Write unit is idle in cycles 5
through 7. Such idle periods are called stalls. They are also often referred to as bubbles
in the pipeline. Once created as a result of a delay in one of the pipeline stages, a bubble
moves downstream until it reaches the last unit.

A third type of hazard that may be encountered in pipelined operation is known
as a structural hazard. This is the situation when two instructions require the use of a
given hardware resource at the same time. The most common case in which this hazard
may arise is in access to memory. One instruction may need to access memory as part
of the Execute or Write stage while another instruction is being fetched. If instructions
and data reside in the same cache unit, only one instruction can proceed and the other
instruction is delayed. Many processors use separate instruction and data caches to
avoid this delay.

An example of a structural hazard is shown in Figure 8.5. This figure shows how
the load instruction

Load X(R1),R2

can be accommodated in our example 4-stage pipeline. The memory address, X+[R1],
is computed in step E; in cycle 4, then memory access takes place in cycle 5. The operand
read from memory is written into register R2 in cycle 6. This means that the execution
step of this instruction takes two clock cycles (cycles 4 and 5). It causes the pipeline to
stall for one cycle, because both instructions I, and I; require access to the register file
in cycle 6. Even though the instructions and their data are all available, the pipeline is

—» Time

Clock cycle 1 2 3 4 5 6 7
Instruction
L Fy Dy E; W
12 (Load) F2 D2 E2 M2 W2
I3 F3 Ds E; W3
I F, D, E,
Is Fs Ds

Figure 8.5 Effect of a Load instruction on pipeline timing.
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stalled because one hardware resource, the register file, cannot handle two operations
at once. If the register file had two input ports, that is, if it allowed two simultaneous
write operations, the pipeline would not be stalled. In general, structural hazards are
avoided by providing sufficient hardware resources on the processor chip.

Itis important to understand that pipelining does not result in individual instructions
being executed faster; rather, it is the throughput that increases, where throughput is
measured by the rate at which instruction execution is completed. Any time one of
the stages in the pipeline cannot complete its operation in one clock cycle, the pipeline
stalls, and some degradation in performance occurs. Thus, the performance level of one
instruction completion in each clock cycle is actually the upper limit for the throughput
achievable in a pipelined processor organized as in Figure 8.2b.

An important goal in designing processors is to identify all hazards that may cause
the pipeline to stall and to find ways to minimize their impact. In the following sections
we discuss various hazards, starting with data hazards, followed by control hazards. In
each case we present some of the techniques used to mitigate their negative effect on
performance. We return to the issue of performance assessment in Section 8.8.

8.2 DATA HAZARDS

A data hazard is a situation in which the pipeline is stalled because the data to be
operated on are delayed for some reason, as illustrated in Figure 8.3. We will now
examine the issue of availability of data in some detail.

Consider a program that contains two instructions, I; followed by I,. When this
program is executed in a pipeline, the execution of I, can begin before the execution
of I, is completed. This means that the results generated by I; may not be available
for use by I,. We must ensure that the results obtained when instructions are executed
in a pipelined processor are identical to those obtained when the same instructions are
executed sequentially. The potential for obtaining incorrect results when operations are
performed concurrently can be demonstrated by a simple example. Assume that A =5,
and consider the following two operations:

A<34+A
B« 4xA

When these operations are performed in the order given, the result is B = 32. But if
they are performed concurrently, the value of A used in computing B would be the
original value, 5, leading to an incorrect result. If these two operations are performed
by instructions in a program, then the instructions must be executed one after the
other, because the data used in the second instruction depend on the result of the first
instruction. On the other hand, the two operations

A<« 5x%xC
B «<20+C

can be performed concurrently, because these operations are independent.
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—» Time
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Il (Mul) Fl Dl El W 1

I, (Add) F, D, Dja E, W,

I3 F; Dy | E3 | W;

I Fy4 Dy Ey4 Wy

Figure 8.6 Pipeline stalled by data dependency between D, and W;.

This example illustrates a basic constraint that must be enforced to guarantee
correct results. When two operations depend on each other, they must be performed
sequentially in the correct order. This rather obvious condition has far-reaching con-
sequences. Understanding its implications is the key to understanding the variety of
design alternatives and trade-offs encountered in pipelined computers.

Consider the pipeline in Figure 8.2. The data dependency just described arises
when the destination of one instruction is used as a source in the next instruction. For
example, the two instructions

Mul R2,R3,R4
Add R5,R4,R6

give rise to a data dependency. The result of the multiply instruction is placed into
register R4, which in turn is one of the two source operands of the Add instruction.
Assuming that the multiply operation takes one clock cycle to complete, execution
would proceed as shown in Figure 8.6. As the Decode unit decodes the Add instruction
in cycle 3, it realizes that R4 is used as a source operand. Hence, the D step of that
instruction cannot be completed until the W step of the multiply instruction has been
completed. Completion of step D, must be delayed to clock cycle 5, and is shown as
step D, in the figure. Instruction I is fetched in cycle 3, but its decoding must be
delayed because step D3 cannot precede D,. Hence, pipelined execution is stalled for
two cycles.

8.2.1 OPERAND FORWARDING

The data hazard just described arises because one instruction, instruction I, in Figure 8.6,
is waiting for data to be written in the register file. However, these data are available at
the output of the ALU once the Execute stage completes step E;. Hence, the delay can
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be reduced, or possibly eliminated, if we arrange for the result of instruction I; to be
forwarded directly for use in step E,.

Figure 8.7a shows a part of the processor datapath involving the ALU and the
register file. This arrangement is similar to the three-bus structure in Figure 7.8, except
that registers SRC1, SRC2, and RSLT have been added. These registers constitute the

Source 1
Source 2
i
\
[ srct | | src2 |
_i | r
Register A\ / \ /
file \_i rl
Y
ALU
| RSLT |
Destination |
(a) Datapath
SRC1,SRC2 RSLT

> E: Execute > W: Write
(ALU) (Register file)

t— Forwarding path

(b) Position of the source and result registers in the processor pipeline

Figure 8.7 Operand forwarding in a pipelined processor.
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interstage buffers needed for pipelined operation, as illustrated in Figure 8.7b. With
reference to Figure 8.2b, registers SRC1 and SRC2 are part of buffer B2 and RSLT is
part of B3. The data forwarding mechanism is provided by the blue connection lines. The
two multiplexers connected at the inputs to the ALU allow the data on the destination
bus to be selected instead of the contents of either the SRC1 or SRC2 register.

When the instructions in Figure 8.6 are executed in the datapath of Figure 8.7, the
operations performed in each clock cycle are as follows. After decoding instruction
I, and detecting the data dependency, a decision is made to use data forwarding. The
operand not involved in the dependency, register R2, is read and loaded in register
SRCT1 in clock cycle 3. In the next clock cycle, the product produced by instruction I,
is available in register RSLT, and because of the forwarding connection, it can be used
in step E,. Hence, execution of I, proceeds without interruption.

8.2.2 HANDLING DATA HAZARDS IN SOFTWARE

In Figure 8.6, we assumed the data dependency is discovered by the hardware while the
instruction is being decoded. The control hardware delays reading register R4 until cy-
cle 5, thus introducing a 2-cycle stall unless operand forwarding is used. An alternative
approach is to leave the task of detecting data dependencies and dealing with them to the
software. In this case, the compiler can introduce the two-cycle delay needed between
instructions I; and I, by inserting NOP (No-operation) instructions, as follows:

I,: Mul R2,R3,R4
NOP
NOP

I, Add R5,R4,R6

If the responsibility for detecting such dependencies is left entirely to the software, the
compiler must insert the NOP instructions to obtain a correct result. This possibility
illustrates the close link between the compiler and the hardware. A particular feature
can be either implemented in hardware or left to the compiler. Leaving tasks such as
inserting NOP instructions to the compiler leads to simpler hardware. Being aware of
the need for a delay, the compiler can attempt to reorder instructions to perform useful
tasks in the NOP slots, and thus achieve better performance. On the other hand, the
insertion of NOP instructions leads to larger code size. Also, it is often the case that a
given processor architecture has several hardware implementations, offering different
features. NOP instructions inserted to satisfy the requirements of one implementation
may not be needed and, hence, would lead to reduced performance on a different
implementation.

8.2.3 SIDE EFFECTS

The data dependencies encountered in the preceding examples are explicit and easily
detected because the register involved is named as the destination in instruction I; and
as a source in I,. Sometimes an instruction changes the contents of a register other
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than the one named as the destination. An instruction that uses an autoincrement or
autodecrement addressing mode is an example. In addition to storing new data in its
destination location, the instruction changes the contents of a source register used to
access one of its operands. All the precautions needed to handle data dependencies
involving the destination location must also be applied to the registers affected by an
autoincrement or autodecrement operation. When a location other than one explicitly
named in an instruction as a destination operand is affected, the instruction is said
to have a side effect. For example, stack instructions, such as push and pop, produce
similar side effects because they implicitly use the autoincrement and autodecrement
addressing modes.

Another possible side effect involves the condition code flags, which are used by
instructions such as conditional branches and add-with-carry. Suppose that registers R1
and R2 hold a double-precision integer number that we wish to add to another double-
precision number in registers R3 and R4. This may be accomplished as follows:

Add RI,R3
AddWithCarry R2,R4

An implicit dependency exists between these two instructions through the carry flag.
This flag is set by the first instruction and used in the second instruction, which performs
the operation

R4 <« [R2] + [R4] + carry

Instructions that have side effects give rise to multiple data dependencies, which
lead to a substantial increase in the complexity of the hardware or software needed to
resolve them. For this reason, instructions designed for execution on pipelined hardware
should have few side effects. Ideally, only the contents of the destination location, either
aregister or amemory location, should be affected by any given instruction. Side effects,
such as setting the condition code flags or updating the contents of an address pointer,
should be kept to a minimum. However, Chapter 2 showed that the autoincrement and
autodecrement addressing modes are potentially useful. Condition code flags are also
needed for recording such information as the generation of a carry or the occurrence
of overflow in an arithmetic operation. In Section 8.4 we show how such functions can
be provided by other means that are consistent with a pipelined organization and with
the requirements of optimizing compilers.

8.3 INSTRUCTION HAZARDS

The purpose of the instruction fetch unit is to supply the execution units with a steady
stream of instructions. Whenever this stream is interrupted, the pipeline stalls, as
Figure 8.4 illustrates for the case of a cache miss. A branch instruction may also
cause the pipeline to stall. We will now examine the effect of branch instructions and
the techniques that can be used for mitigating their impact. We start with unconditional
branches.
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8.3.1 UNCONDITIONAL BRANCHES

Figure 8.8 shows a sequence of instructions being executed in a two-stage pipeline.
Instructions I to I3 are stored at successive memory addresses, and I, is a branch
instruction. Let the branch target be instruction I;. In clock cycle 3, the fetch operation
for instruction I3 is in progress at the same time that the branch instruction is being
decoded and the target address computed. In clock cycle 4, the processor must discard
I3, which has been incorrectly fetched, and fetch instruction Ij. In the meantime, the
hardware unit responsible for the Execute (E) step must be told to do nothing during
that clock period. Thus, the pipeline is stalled for one clock cycle.

The time lost as a result of a branch instruction is often referred to as the branch
penalty. In Figure 8.8, the branch penalty is one clock cycle. For a longer pipeline,
the branch penalty may be higher. For example, Figure 8.9a shows the effect of a
branch instruction on a four-stage pipeline. We have assumed that the branch ad-
dress is computed in step E,. Instructions I3 and I must be discarded, and the tar-
get instruction, Iy, is fetched in clock cycle 5. Thus, the branch penalty is two clock
cycles.

Reducing the branch penalty requires the branch address to be computed earlier in
the pipeline. Typically, the instruction fetch unit has dedicated hardware to identify a
branch instruction and compute the branch target address as quickly as possible after
an instruction is fetched. With this additional hardware, both of these tasks can be
performed in step D», leading to the sequence of events shown in Figure 8.9b. In this
case, the branch penalty is only one clock cycle.

—» Time

Clock cycle 1 2 3 4 5 6
Instruction
I Fy E;
I, (Branch) F, E, 17 Execution unit idle
--—-
1
13 F3 X 1
- e o o
Ik Fk Ek
T Frer | Bk

Figure 8.8 An idle cycle caused by a branch instruction.
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—» Time

Clock cycle 1 2 3 4 5 6 7 8
I Fp | D | Bt | Wy
I, (Branch) F, D, E,
---
[‘ F, D3 X 1
- d
=- -y
14 F4 X 1
- d
I Fo | D | Ex | Wk
Ik+1 Fk+l Dk+1 Ek+l

(a) Branch address computed in Execute stage

—» Time

Clock cycle 1 2 3 4 5 6 7
I Fi | Dy | Et | Wy

I, (Branch) Fo | D2

-

I F 3 X 1

3 o,

I, Fr | Do | Ec | Wi
Levr Fre1 | Dia1 | Erra

(b) Branch address computed in Decode stage

Figure 8.9 Branch timing.

Instruction Queue and Prefetching

Either a cache miss or a branch instruction stalls the pipeline for one or more
clock cycles. To reduce the effect of these interruptions, many processors employ
sophisticated fetch units that can fetch instructions before they are needed and put them
in a queue. Typically, the instruction queue can store several instructions. A separate
unit, which we call the dispatch unit, takes instructions from the front of the queue and
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Instruction fetch unit

Instruction queue

F : Fetch
instruction

|

D : Dispatch/
Decode |}—=
unit

E : Execute W : Write
instruction results

Figure 8.10 Use of an instruction queue in the hardware
organization of Figure 8.2b.

sends them to the execution unit. This leads to the organization shown in Figure 8.10.
The dispatch unit also performs the decoding function.

To be effective, the fetch unit must have sufficient decoding and processing capa-
bility to recognize and execute branch instructions. It attempts to keep the instruction
queue filled at all times to reduce the impact of occasional delays when fetching in-
structions. When the pipeline stalls because of a data hazard, for example, the dispatch
unit is not able to issue instructions from the instruction queue. However, the fetch unit
continues to fetch instructions and add them to the queue. Conversely, if there is a delay
in fetching instructions because of a branch or a cache miss, the dispatch unit continues
to issue instructions from the instruction queue.

Figure 8.11 illustrates how the queue length changes and how it affects the rela-
tionship between different pipeline stages. We have assumed that initially the queue
contains one instruction. Every fetch operation adds one instruction to the queue and
every dispatch operation reduces the queue length by one. Hence, the queue length
remains the same for the first four clock cycles. (There is both an F and a D step in
each of these cycles.) Suppose that instruction I; introduces a 2-cycle stall. Since space
is available in the queue, the fetch unit continues to fetch instructions and the queue
length rises to 3 in clock cycle 6.

Instruction I5 is a branch instruction. Its target instruction, I, is fetched in cycle 7,
and instruction I is discarded. The branch instruction would normally cause a stall
in cycle 7 as a result of discarding instruction Ig. Instead, instruction I4 is dispatched
from the queue to the decoding stage. After discarding ls, the queue length drops to 1
in cycle 8. The queue length will be at this value until another stall is encountered.

Now observe the sequence of instruction completions in Figure 8.11. Instructions I,
I, 15,14, and I; complete execution in successive clock cycles. Hence, the branch instruc-
tion does not increase the overall execution time. This is because the instruction fetch
unit has executed the branch instruction (by computing the branch address) concurrently
with the execution of other instructions. This technique is referred to as branch folding.
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—» Time
Clock cycle 1 2 3 4 5 6 7 8 9 10

Queue length 1 1 1 1 2 3 2 1 1 1
I Fp | Dy | Et | Et | Bt | Wy
I, F, | D, E, | W,
I F3 Dy | E3 | W3
L F, D, | E, | W,
I5 (Branch) Fs | Ds
===
I() F() _>_<_‘I
I, Flo | e | w
Liv1 Fiit | Dit1 | Exn

Figure 8.11 Branch timing in the presence of an instruction queue. Branch target
address is computed in the D stage.

Note that branch folding occurs only if at the time a branch instruction is encoun-
tered, at least one instruction is available in the queue other than the branch instruction.
If only the branch instruction is in the queue, execution would proceed as in Figure 8.9b.
Therefore, it is desirable to arrange for the queue to be full most of the time, to ensure
an adequate supply of instructions for processing. This can be achieved by increasing
the rate at which the fetch unit reads instructions from the cache. In many processors,
the width of the connection between the fetch unit and the instruction cache allows
reading more than one instruction in each clock cycle. If the fetch unit replenishes
the instruction queue quickly after a branch has occurred, the probability that branch
folding will occur increases.

Having an instruction queue is also beneficial in dealing with cache misses. When
a cache miss occurs, the dispatch unit continues to send instructions for execution as
long as the instruction queue is not empty. Meanwhile, the desired cache block is read
from the main memory or from a secondary cache. When fetch operations are resumed,
the instruction queue is refilled. If the queue does not become empty, a cache miss will
have no effect on the rate of instruction execution.

In summary, the instruction queue mitigates the impact of branch instructions on
performance through the process of branch folding. It has a similar effect on stalls
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caused by cache misses. The effectiveness of this technique is enhanced when the
instruction fetch unit is able to read more than one instruction at a time from the
instruction cache.

8.3.2 CONDITIONAL BRANCHES AND BRANCH PREDICTION

A conditional branch instruction introduces the added hazard caused by the dependency
of the branch condition on the result of a preceding instruction. The decision to branch
cannot be made until the execution of that instruction has been completed.

Branch instructions occur frequently. In fact, they represent about 20 percent of
the dynamic instruction count of most programs. (The dynamic count is the number
of instruction executions, taking into account the fact that some program instructions
are executed many times because of loops.) Because of the branch penalty, this large
percentage would reduce the gain in performance expected from pipelining. Fortunately,
branch instructions can be handled in several ways to reduce their negative impact on
the rate of execution of instructions.

Delayed Branch

In Figure 8.8, the processor fetches instruction I3 before it determines whether the
current instruction, I, is a branch instruction. When execution of I, is completed and
a branch is to be made, the processor must discard I3 and fetch the instruction at the
branch target. The location following a branch instruction is called a branch delay slot.
There may be more than one branch delay slot, depending on the time it takes to execute
a branch instruction. For example, there are two branch delay slots in Figure 8.9a and
one delay slot in Figure 8.9b. The instructions in the delay slots are always fetched
and at least partially executed before the branch decision is made and the branch target
address is computed.

A technique called delayed branching can minimize the penalty incurred as a result
of conditional branch instructions. The idea is simple. The instructions in the delay slots
are always fetched. Therefore, we would like to arrange for them to be fully executed
whether or not the branch is taken. The objective is to be able to place useful instructions
in these slots. If no useful instructions can be placed in the delay slots, these slots must
be filled with NOP instructions. This situation is exactly the same as in the case of data
dependency discussed in Section 8.2.

Consider the instruction sequence given in Figure 8.12a. Register R2 is used as
a counter to determine the number of times the contents of register R1 are shifted
left. For a processor with one delay slot, the instructions can be reordered as shown
in Figure 8.12b. The shift instruction is fetched while the branch instruction is being
executed. After evaluating the branch condition, the processor fetches the instruction
at LOOP or at NEXT, depending on whether the branch condition is true or false,
respectively. In either case, it completes execution of the shift instruction. The sequence
of events during the last two passes in the loop is illustrated in Figure 8.13. Pipelined
operation is not interrupted at any time, and there are no idle cycles. Logically, the
program is executed as if the branch instruction were placed after the shift instruction.
That is, branching takes place one instruction later than where the branch instruction
appears in the instruction sequence in the memory, hence the name “delayed branch.”
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LOOP Shift_left R1

Decrement R2

Branch=0 LOOP
NEXT Add R1,R3

(a) Original program loop

LOOP Decrement R2

Branch=0 LOOP

Shift_left R1
NEXT Add R1,R3

(b) Reordered instructions

Figure 8.12 Reordering of instructions for
a delayed branch.

—» Time

Clock cycle 1 2 3 4 5 6 7 8

Instruction

Decrement F E

Branch F E

Shift (delay slot) F E

Decrement (Branch taken) F E

Branch F E

Shift (delay slot) F E

Add (Branch not taken) F E

Figure 8.13 Execution timing showing the delay slot being filled during the last two
passes through the loop in Figure 8.12b.
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The effectiveness of the delayed branch approach depends on how often it is pos-
sible to reorder instructions as in Figure 8.12. Experimental data collected from many
programs indicate that sophisticated compilation techniques can use one branch delay
slot in as many as 85 percent of the cases. For a processor with two branch delay slots,
the compiler attempts to find two instructions preceding the branch instruction that it
can move into the delay slots without introducing a logical error. The chances of finding
two such instructions are considerably less than the chances of finding one. Thus, if
increasing the number of pipeline stages involves an increase in the number of branch
delay slots, the potential gain in performance may not be fully realized.

Branch Prediction

Another technique for reducing the branch penalty associated with conditional
branches is to attempt to predict whether or not a particular branch will be taken. The
simplest form of branch prediction is to assume that the branch will not take place and to
continue to fetch instructions in sequential address order. Until the branch condition is
evaluated, instruction execution along the predicted path must be done on a speculative
basis. Speculative execution means that instructions are executed before the processor
is certain that they are in the correct execution sequence. Hence, care must be taken that
no processor registers or memory locations are updated until it is confirmed that these
instructions should indeed be executed. If the branch decision indicates otherwise, the
instructions and all their associated data in the execution units must be purged, and the
correct instructions fetched and executed.

Anincorrectly predicted branchis illustrated in Figure 8.14 for a four-stage pipeline.
The figure shows a Compare instruction followed by a Branch>0 instruction. Branch

—» Time

Clock cycle 1 2 3 4 5 6
Instruction
I; (Compare) Fy D, E; W,
12 (Branch>0) F2 Dz/Pz E2
- -y
1
I3 F3 D3 1
- e o d
- -y
1
Iy Fy 1
- e o d
I Fy Dy

Figure 8.14 Timing when a branch decision has been incorrectly
predicted as not taken.
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prediction takes place in cycle 3, while instruction I is being fetched. The fetch unit
predicts that the branch will not be taken, and it continues to fetch instruction I4 as I3
enters the Decode stage. The results of the compare operation are available at the end
of cycle 3. Assuming that they are forwarded immediately to the instruction fetch unit,
the branch condition is evaluated in cycle 4. At this point, the instruction fetch unit real-
izes that the prediction was incorrect, and the two instructions in the execution pipe are
purged. A new instruction, I, is fetched from the branch target address in clock cycle 5.

If branch outcomes were random, then half the branches would be taken. Then
the simple approach of assuming that branches will not be taken would save the time
lost to conditional branches 50 percent of the time. However, better performance can
be achieved if we arrange for some branch instructions to be predicted as taken and
others as not taken, depending on the expected program behavior. For example, a branch
instruction at the end of a loop causes a branch to the start of the loop for every pass
through the loop except the last one. Hence, it is advantageous to assume that this
branch will be taken and to have the instruction fetch unit start to fetch instructions at
the branch target address. On the other hand, for a branch instruction at the beginning
of a program loop, it is advantageous to assume that the branch will not be taken.

A decision on which way to predict the result of the branch may be made in
hardware by observing whether the target address of the branch is lower than or higher
than the address of the branch instruction. A more flexible approach is to have the
compiler decide whether a given branch instruction should be predicted taken or not
taken. The branch instructions of some processors, such as SPARC, include a branch
prediction bit, which is set to 0 or 1 by the compiler to indicate the desired behavior.
The instruction fetch unit checks this bit to predict whether the branch will be taken or
not taken.

With either of these schemes, the branch prediction decision is always the same
every time a given instruction is executed. Any approach that has this characteristic
is called static branch prediction. Another approach in which the prediction decision
may change depending on execution history is called dynamic branch prediction.

Dynamic Branch Prediction

The objective of branch prediction algorithms is to reduce the probability of making
a wrong decision, to avoid fetching instructions that eventually have to be discarded.
In dynamic branch prediction schemes, the processor hardware assesses the likelihood
of a given branch being taken by keeping track of branch decisions every time that
instruction is executed.

In its simplest form, the execution history used in predicting the outcome of a
given branch instruction is the result of the most recent execution of that instruction.
The processor assumes that the next time the instruction is executed, the result is likely
to be the same. Hence, the algorithm may be described by the two-state machine in
Figure 8.15a. The two states are:

LT: Branch is likely to be taken
LNT: Branch is likely not to be taken

Suppose that the algorithm is started in state LNT. When the branch instruction is
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Branch taken (BT)

Branch not taken (BNT)

(a) A 2-state algorithm

BT

BNT

BNT BT
BT

BNT

(b) A 4-state algorithm

Figure 8.15 State-machine representation of
branch-prediction algorithms.

executed and if the branch is taken, the machine moves to state LT. Otherwise, it
remains in state LNT. The next time the same instruction is encountered, the branch
is predicted as taken if the corresponding state machine is in state LT. Otherwise it is
predicted as not taken.

This simple scheme, which requires one bit of history information for each branch
instruction, works well inside program loops. Once a loop is entered, the branch instruc-
tion that controls looping will always yield the same result until the last pass through the
loop is reached. In the last pass, the branch prediction will turn out to be incorrect, and
the branch history state machine will be changed to the opposite state. Unfortunately,
this means that the next time this same loop is entered, and assuming that there will be
more than one pass through the loop, the machine will lead to the wrong prediction.
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Better performance can be achieved by keeping more information about execution
history. An algorithm that uses 4 states, thus requiring two bits of history information
for each branch instruction, is shown in Figure 8.15b. The four states are:

ST: Strongly likely to be taken
LT: Likely to be taken

LNT: Likely not to be taken

SNT: Strongly likely not to be taken

Again assume that the state of the algorithm is initially set to LNT. After the branch
instruction has been executed, and if the branch is actually taken, the state is changed
to ST; otherwise, it is changed to SNT. As program execution progresses and the same
instruction is encountered again, the state of the branch prediction algorithm continues
to change as shown. When a branch instruction is encountered, the instruction fetch unit
predicts that the branch will be taken if the state is either LT or ST, and it begins to fetch
instructions at the branch target address. Otherwise, it continues to fetch instructions
in sequential address order.

It is instructive to examine the behavior of the branch prediction algorithm in
some detail. When in state SNT, the instruction fetch unit predicts that the branch
will not be taken. If the branch is actually taken, that is if the prediction is incorrect,
the state changes to LNT. This means that the next time the same branch instruction
is encountered, the instruction fetch unit will still predict that the branch will not be
taken. Only if the prediction is incorrect twice in a row will the state change to ST.
After that, the branch will be predicted as taken.

Let us reconsider what happens when executing a program loop. Assume that the
branch instruction is at the end of the loop and that the processor sets the initial state of
the algorithm to LNT. During the first pass, the prediction will be wrong (not taken),
and hence the state will be changed to ST. In all subsequent passes the prediction will
be correct, except for the last pass. At that time, the state will change to LT. When the
loop is entered a second time, the prediction will be correct (branch taken).

We now add one final modification to correct the mispredicted branch at the time
the loop is first entered. The cause of the misprediction in this case is the initial state
of the branch prediction algorithm. In the absence of additional information about the
nature of the branch instruction, we assumed that the processor sets the initial state to
LNT. The information needed to set the initial state correctly can be provided by any
of the static prediction schemes discussed earlier. Either by comparing addresses or by
checking a prediction bit in the instruction, the processor sets the initial state of the
algorithm to LNT or LT. In the case of a branch at the end of a loop, the compiler would
indicate that the branch should be predicted as taken, causing the initial state to be set
to LT. With this modification, branch prediction will be correct all the time, except for
the final pass through the loop. Misprediction in this latter case is unavoidable.

The state information used in dynamic branch prediction algorithms may be kept
by the processor in a variety of ways. It may be recorded in a look-up table, which is
accessed using the low-order part of the branch instruction address. In this case, it is
possible for two branch instructions to share the same table entry. This may lead to a
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branch being mispredicted, but it does not cause an error in execution. Misprediction
only introduces a small delay in execution time. An alternative approach is to store the
history bits as a tag associated with branch instructions in the instruction cache. We
will see in Section 8.7 how this information is handled in the SPARC processor.

8.4 INFLUENCE ON INSTRUCTION SETS

We have seen that some instructions are much better suited to pipelined execution than
others. For example, instruction side effects can lead to undesirable data dependencies.
In this section, we examine the relationship between pipelined execution and machine
instruction features. We discuss two key aspects of machine instructions — addressing
modes and condition code flags.

8.4.1 ADDRESSING MODES

Addressing modes should provide the means for accessing a variety of data structures
simply and efficiently. Useful addressing modes include index, indirect, autoincrement,
and autodecrement. Many processors provide various combinations of these modes to
increase the flexibility of their instruction sets. Complex addressing modes, such as
those involving double indexing, are often encountered.

In choosing the addressing modes to be implemented in a pipelined processor, we
must consider the effect of each addressing mode on instruction flow in the pipeline.
Two important considerations in this regard are the side effects of modes such as
autoincrement and autodecrement and the extent to which complex addressing modes
cause the pipeline to stall. Another important factor is whether a given mode is likely
to be used by compilers.

To compare various approaches, we assume a simple model for accessing operands
in the memory. The load instruction Load X(R1),R2 takes five cycles to complete
execution, as indicated in Figure 8.5. However, the instruction

Load (R1),R2

can be organized to fit a four-stage pipeline because no address computation is required.
Access to memory can take place in stage E. A more complex addressing mode may
require several accesses to the memory to reach the named operand. For example, the
instruction

Load (X(R1)),R2

may be executed as shown in Figure 8.16a, assuming that the index offset, X, is given
in the instruction word. After computing the address in cycle 3, the processor needs
to access memory twice — first to read location X+[R1] in clock cycle 4 and then to
read location [X+[R1]] in cycle 5. If R2 is a source operand in the next instruction,
that instruction would be stalled for three cycles, which can be reduced to two cycles
with operand forwarding, as shown.
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— » Time

Clock cycle 1 2 3 4 5 6 7
Load F D X+[R1] | [X+[RI]] {[[X+[R1]1] w

Forwarg\
Next instruction F > | E W

(a) Complex addressing mode

Add F D X+[R1] w
\
Load F D [X+[R1]] w
\
Load F D [[X+[RI1]] w
\
Next instruction F D E W

(b) Simple addressing mode

Figure 8.16 Equivalent operations using complex and simple addressing modes.

To implement the same Load operation using only simple addressing modes
requires several instructions. For example, on a computer that allows three operand
addresses, we can use

Add #X,R1,R2

Load (R2),R2

Load (R2),R2
The Add instruction performs the operation R2 <— X+ [R1]. The two Load instructions
fetch the address and then the operand from the memory. This sequence of instructions

takes exactly the same number of clock cycles as the original, single Load instruction,
as shown in Figure 8.16b.
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This example indicates that, in a pipelined processor, complex addressing modes
that involve several accesses to the memory do not necessarily lead to faster execution.
The main advantage of such modes is that they reduce the number of instructions
needed to perform a given task and thereby reduce the program space needed in the
main memory. Their main disadvantage is that their long execution times cause the
pipeline to stall, thus reducing its effectiveness. They require more complex hardware
to decode and execute them. Also, they are not convenient for compilers to work
with.

The instruction sets of modern processors are designed to take maximum advantage
of pipelined hardware. Because complex addressing modes are not suitable for pipelined
execution, they should be avoided. The addressing modes used in modern processors
often have the following features:

e Access to an operand does not require more than one access to the memory.
*  Only load and store instructions access memory operands.

e The addressing modes used do not have side effects.

Three basic addressing modes that have these features are register, register indirect, and
index. The first two require no address computation. In the index mode, the address
can be computed in one cycle, whether the index value is given in the instruction or
in a register. Memory is accessed in the following cycle. None of these modes has any
side effects, with one possible exception. Some architectures, such as ARM, allow the
address computed in the index mode to be written back into the index register. This
is a side effect that would not be allowed under the guidelines above. Note also that
relative addressing can be used; this is a special case of indexed addressing in which
the program counter is used as the index register.

The three features just listed were first emphasized as part of the concept of RISC
processors. The SPARC processor architecture, which adheres to these guidelines, is
presented in Section 8.7.

8.4.2 CONDITION CODES

In many processors, such as those described in Chapter 3, the condition code flags
are stored in the processor status register. They are either set or cleared by many
instructions, so that they can be tested by subsequent conditional branch instructions to
change the flow of program execution. An optimizing compiler for a pipelined processor
attempts to reorder instructions to avoid stalling the pipeline when branches or data
dependencies between successive instructions occur. In doing so, the compiler must
ensure that reordering does not cause a change in the outcome of a computation. The
dependency introduced by the condition-code flags reduces the flexibility available for
the compiler to reorder instructions.

Consider the sequence of instructions in Figure 8.17a, and assume that the ex-
ecution of the Compare and Branch=0 instructions proceeds as in Figure 8.14. The
branch decision takes place in step E; rather than D, because it must await the result of
the Compare instruction. The execution time of the Branch instruction can be reduced
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Add R1,R2
Compare R3,R4

Branch=0

(a) A program fragment

Compare R3,R4
Add R1,R2
Branch=0

(b) Instructions reordered

Figure 8.17 Instruction reordering.

by interchanging the Add and Compare instructions, as shown in Figure 8.17b. This
will delay the branch instruction by one cycle relative to the Compare instruction. As
a result, at the time the Branch instruction is being decoded the result of the Com-
pare instruction will be available and a correct branch decision will be made. There
would be no need for branch prediction. However, interchanging the Add and Com-
pare instructions can be done only if the Add instruction does not affect the condition
codes.

These observations lead to two important conclusions about the way condition
codes should be handled. First, to provide flexibility in reordering instructions, the
condition-code flags should be affected by as few instructions as possible. Second,
the compiler should be able to specify in which instructions of a program the condi-
tion codes are affected and in which they are not. An instruction set designed with
pipelining in mind usually provides the desired flexibility. Figure 8.17b shows the
instructions reordered assuming that the condition code flags are affected only when
this is explicitly stated as part of the instruction OP code. The SPARC and ARM
architectures provide this flexibility.

8.5 DATAPATH AND CONTROL CONSIDERATIONS

Organization of the internal datapath of a processor was introduced in Chapter 7. Con-
sider the three-bus structure presented in Figure 7.8. To make it suitable for pipelined
execution, it can be modified as shown in Figure 8.18 to support a 4-stage pipeline.
The resources involved in stages F and E are shown in blue and those used in stages D
and W in black. Operations in the data cache may happen during stage E or at a later
stage, depending on the addressing mode and the implementation details. This section
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Figure 8.18 Datapath modified for pipelined execution with interstage buffers at the input
and output of the ALU.

is shown in blue. Several important changes to Figure 7.8 should be noted:

1. There are separate instruction and data caches that use separate address and data
connections to the processor. This requires two versions of the MAR register, IMAR
for accessing the instruction cache and DMAR for accessing the data cache.

2. The PC is connected directly to the IMAR, so that the contents of the PC can be
transferred to IMAR at the same time that an independent ALU operation is taking place.
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3. The data address in DMAR can be obtained directly from the register file or
from the ALU to support the register indirect and indexed addressing modes.

4. Separate MDR registers are provided for read and write operations. Data can be
transferred directly between these registers and the register file during load and store
operations without the need to pass through the ALU.

5. Bufferregisters have been introduced at the inputs and output of the ALU. These
are registers SRC1, SRC2, and RSLT in Figure 8.7. Forwarding connections are not
included in Figure 8.18. They may be added if desired.

6. The instruction register has been replaced with an instruction queue, which is
loaded from the instruction cache.

7. The output of the instruction decoder is connected to the control signal pipeline.
The need for buffering control signals and passing them from one stage to the next along
with the instruction is discussed in Section 8.1. This pipeline holds the control signals
in buffers B2 and B3 in Figure 8.2a.

The following operations can be performed independently in the processor of
Figure 8.18:

¢ Reading an instruction from the instruction cache

e Incrementing the PC

e Decoding an instruction

e Reading from or writing into the data cache

¢ Reading the contents of up to two registers from the register file

e Writing into one register in the register file

e Performing an ALU operation

Because these operations do not use any shared resources, they can be performed
simultaneously in any combination. The structure provides the flexibility required to
implement the four-stage pipeline in Figure 8.2. For example, let I}, I, I3, and I, be a
sequence of four instructions. As shown in Figure 8.2a, the following actions all happen
during clock cycle 4:

e Write the result of instruction I; into the register file

* Read the operands of instruction I, from the register file

¢ Decode instruction I3

¢ Fetch instruction I; and increment the PC.

8.6 SUPERSCALAR OPERATION

Pipelining makes it possible to execute instructions concurrently. Several instructions
are present in the pipeline at the same time, but they are in different stages of their
execution. While one instruction is performing an ALU operation, another instruction
is being decoded and yet another is being fetched from the memory. Instructions enter
the pipeline in strict program order. In the absence of hazards, one instruction enters the
pipeline and one instruction completes execution in each clock cycle. This means that
the maximum throughput of a pipelined processor is one instruction per clock cycle.
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A more aggressive approach is to equip the processor with multiple processing units
to handle several instructions in parallel in each processing stage. With this arrangement,
several instructions start execution in the same clock cycle, and the processor is said to
use multiple-issue. Such processors are capable of achieving an instruction execution
throughput of more than one instruction per cycle. They are known as superscalar
processors. Many modern high-performance processors use this approach.

We introduced the idea of an instruction queue in Section 8.3. We pointed out
that to keep the instruction queue filled, a processor should be able to fetch more than
one instruction at a time from the cache. For superscalar operation, this arrangement
is essential. Multiple-issue operation requires a wider path to the cache and multiple
execution units. Separate execution units are provided for integer and floating-point
instructions.

Figure 8.19 shows an example of a processor with two execution units, one for
integer and one for floating-point operations. The Instruction fetch unit is capable of
reading two instructions at a time and storing them in the instruction queue. In each
clock cycle, the Dispatch unit retrieves and decodes up to two instructions from the
front of the queue. If there is one integer, one floating-point instruction, and no hazards,
both instructions are dispatched in the same clock cycle.

In a superscalar processor, the detrimental effect on performance of various haz-
ards becomes even more pronounced. The compiler can avoid many hazards through
judicious selection and ordering of instructions. For example, for the processor in
Figure 8.19, the compiler should strive to interleave floating-point and integer instruc-
tions. This would enable the dispatch unit to keep both the integer and floating-point

F : Instruction
fetch unit

cee Instruction queue
Floating-
vy v - point -
unit
Dispatch — - .
unit W : Write
results
o Integer o
unit

Figure 8.19 A processor with two execution units.
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—» Time

Clock cycle 1 2 3 4 5 6 7
I} (Fadd) F; D, Eia Eip Eic Wi

L, (Add) F, D, E, W,

I5 (Fsub) F, D; E; E; E; W3
I4 (Sub) F, D, E, W,

Figure 8.20 An example of instruction execution flow in the processor of
Figure 8.19, assuming no hazards are encountered.

units busy most of the time. In general, high performance is achieved if the compiler
is able to arrange program instructions to take maximum advantage of the available
hardware units.

Pipeline timing is shown in Figure 8.20. The blue shading indicates operations in
the floating-point unit. The floating-point unit takes three clock cycles to complete the
floating-point operation specified in I;. The integer unit completes execution of I, in one
clock cycle. We have also assumed that the floating-point unit is organized internally
as a three-stage pipeline. Thus, it can still accept a new instruction in each clock cycle.
Hence, instructions I3 and I, enter the dispatch unit in cycle 3, and both are dispatched
in cycle 4. The integer unit can receive a new instruction because instruction I, has
proceeded to the Write stage. Instruction I; is still in the execution phase, but it has
moved to the second stage of the internal pipeline in the floating-point unit. Therefore,
instruction I3 can enter the first stage. Assuming that no hazards are encountered, the
instructions complete execution as shown.

8.6.1 OUT-OF-ORDER EXECUTION

In Figure 8.20, instructions are dispatched in the same order as they appear in the
program. However, their execution is completed out of order. Does this lead to any
problems? We have already discussed the issues arising from dependencies among
instructions. For example, if instruction I, depends on the result of I;, the execution
of I, will be delayed. As long as such dependencies are handled correctly, there is no
reason to delay the execution of an instruction. However, a new complication arises
when we consider the possibility of an instruction causing an exception. Exceptions
may be caused by a bus error during an operand fetch or by an illegal operation, such
as an attempt to divide by zero. The results of I, are written back into the register file in
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cycle 4. If instruction I; causes an exception, program execution is in an inconsistent
state. The program counter points to the instruction in which the exception occurred.
However, one or more of the succeeding instructions have been executed to completion.
If such a situation is permitted, the processor is said to have imprecise exceptions.

To guarantee a consistent state when exceptions occur, the results of the execution of
instructions must be written into the destination locations strictly in program order. This
means we must delay step W5 in Figure 8.20 until cycle 6. In turn, the integer execution
unit must retain the result of instruction I, and hence it cannot accept instruction I4
until cycle 6, as shown in Figure 8.21a. If an exception occurs during an instruction,

—» Time

Clock cycle 1 2 3 4 5 6 7
I, (Fadd) F, D, Ein | Ei Eic Wi

I, (Add) F, D, g | W,

15 (Fsub) F3 Ds E;za Esp Esc W3
14 (Sub) F, I E4 Wy

(a) Delayed write

Clock cycle 1 2 3 4 5 6 7

I; (Fadd) F, D, Eia | Eg | Eic W,

I, (Add) F, D, E, TW, o W,

I3 (Fsub) F; D, Espn | Esp | Ec | W3
I, (Sub) F, D, E, | TW, o Wy

(b) Using temporary registers

Figure 8.21 Instruction completion in program order.
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all subsequent instructions that may have been partially executed are discarded. This
is called a precise exception.

It is easier to provide precise exceptions in the case of external interrupts. When
an external interrupt is received, the Dispatch unit stops reading new instructions from
the instruction queue, and the instructions remaining in the queue are discarded. All
instructions whose execution is pending continue to completion. At this point, the
processor and all its registers are in a consistent state, and interrupt processing can
begin.

8.6.2 EXECUTION COMPLETION

It is desirable to use out-of-order execution, so that an execution unit is freed to execute
other instructions as soon as possible. At the same time, instructions must be completed
in program order to allow precise exceptions. These seemingly conflicting requirements
are readily resolved if execution is allowed to proceed as shown in Figure 8.20, but
the results are written into temporary registers. The contents of these registers are
later transferred to the permanent registers in correct program order. This approach is
illustrated in Figure 8.21b. Step TW is a write into a temporary register. Step W is
the final step in which the contents of the temporary register are transferred into the
appropriate permanent register. This step is often called the commitment step because
the effect of the instruction cannot be reversed after that point. If an instruction causes
an exception, the results of any subsequent instruction that has been executed would
still be in temporary registers and can be safely discarded.

A temporary register assumes the role of the permanent register whose data it is
holding and is given the same name. For example, if the destination register of I, is RS,
the temporary register used in step TW, is treated as RS during clock cycles 6 and 7.
Its contents would be forwarded to any subsequent instruction that refers to RS during
that period. Because of this feature, this technique is called register renaming. Note
that the temporary register is used only for instructions that follow I, in program order.
If an instruction that precedes I, needs to read R5 in cycle 6 or 7, it would access the
actual register RS, which still contains data that have not been modified by instruc-
tion I,.

When out-of-order execution is allowed, a special control unit is needed to guaran-
tee in-order commitment. This is called the commitment unit. It uses a queue called the
reorder buffer to determine which instruction(s) should be committed next. Instructions
are entered in the queue strictly in program order as they are dispatched for execution.
When an instruction reaches the head of that queue and the execution of that instruc-
tion has been completed, the corresponding results are transferred from the temporary
registers to the permanent registers and the instruction is removed from the queue.
All resources that were assigned to the instruction, including the temporary registers,
are released. The instruction is said to have been retired at this point. Because an in-
struction is retired only when it is at the head of the queue, all instructions that were
dispatched before it must also have been retired. Hence, instructions may complete
execution out of order, but they are retired in program order.
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8.6.3 DISPATCH OPERATION

We now return to the dispatch operation. When dispatching decisions are made, the
dispatch unit must ensure that all the resources needed for the execution of an instruction
are available. For example, since the results of an instruction may have to be written
in a temporary register, the required register must be free, and it is reserved for use
by that instruction as a part of the dispatch operation. A location in the reorder buffer
must also be available for the instruction. When all the resources needed are assigned,
including an appropriate execution unit, the instruction is dispatched.

Should instructions be dispatched out of order? For example, if instruction I, in
Figure 8.20b is delayed because of a cache miss for a source operand, the integer unit will
be busy in cycle 4, and I; cannot be dispatched. Should I5 be dispatched instead? In prin-
ciple this is possible, provided that a place is reserved in the reorder buffer for instruction
14 to ensure that all instructions are retired in the correct order. Dispatching instructions
out of order requires considerable care. If I5 is dispatched while 1, is still waiting for
some resource, we must ensure that there is no possibility of a deadlock occurring.

A deadlock is a situation that can arise when two units, A and B, use a shared
resource. Suppose that unit B cannot complete its task until unit A completes its task.
At the same time, unit B has been assigned a resource that unit A needs. If this happens,
neither unit can complete its task. Unit A is waiting for the resource it needs, which is
being held by unit B. At the same time, unit B is waiting for unit A to finish before it
can release that resource.

If instructions are dispatched out of order, a deadlock can arise as follows. Suppose
that the processor has only one temporary register, and that when I5 is dispatched, that
register is reserved for it. Instruction I4 cannot be dispatched because it is waiting for
the temporary register, which, in turn, will not become free until instruction Is is retired.
Since instruction Is cannot be retired before 14, we have a deadlock.

To prevent deadlocks, the dispatcher must take many factors into account. Hence,
issuing instructions out of order is likely to increase the complexity of the Dispatch unit
significantly. It may also mean that more time is required to make dispatching decisions.
For these reasons, most processors use only in-order dispatching. Thus, the program
order of instructions is enforced at the time instructions are dispatched and again at
the time instructions are retired. Between these two events, the execution of several
instructions can proceed at their own speed, subject only to any interdependencies that
may exist among instructions.

In the next section, we present the UltraSPARC II as a case study of a commercially
successful, superscalar, highly pipelined processor. The way in which the various issues
raised in this chapter have been handled in this processor and the choices made are highly
instructive.

8.7 UltraSPARC II EXAMPLE

Processor design has advanced greatly in recent years. The classification of processors as
either purely RISC or CISC is no longer appropriate because modern high-performance
processors contain elements of both design styles.
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The early RISC processors showed how certain features can contribute to high
performance. The following two observations proved to be particularly important:

e Pipelining, which enables a processor to execute several instructions at the same
time, can lead to significant performance enhancements provided that the pipeline
is not stalled frequently.

* A close synergy between the hardware and compiler design enables the compiler
to take maximum advantage of the pipelined structure by reducing the events that
lead to pipeline stalls.

It is these factors, rather than simply a reduced instruction set, that have contributed to
the success of RISC processors. Of particular importance in this regard is the close co-
ordination between the design of the hardware, particularly the structure of the pipeline,
and the compiler. Much of the credit for today’s high levels of performance goes to
developments in compiler technology, which in turn have led to new hardware features
that would have been of little use a few years ago.

The SPARC architecture, which is the basis for the processors used in Sun work-
stations, is an excellent case in point. One of Sun’s implementations of the SPARC
architecture is called UltraSPARC II. This is the processor we will discuss. We have
chosen it instead of one of the processors presented in Chapter 3 because it illus-
trates very well superscalar operation as well as most of the pipeline design options
and trade-offs discussed in this chapter. We will start with a brief introduction to the
SPARC architecture. For a complete description, the reader should consult the SPARC
Architecture Manual [1].

8.7.1 SPARC Architecture

SPARC stands for Scalable Processor ARChitecture. It is a specification of the in-
struction set architecture of a processor, that is, it is a specification of the processor’s
instruction set and register organization, regardless of how these may be implemented in
hardware. Furthermore, SPARC is an “open architecture,” which means that computer
companies other than Sun Microsystems can develop their own hardware to implement
the same instruction set.

The SPARC architecture was first announced in 1987, based on ideas developed at
the University of California at Berkeley in the early eighties, in a project that coined the
name reduced instruction set computer and its corresponding acronym RISC. The Sun
Corporation and several other processor chip manufacturers have designed and built
many processors based on this architecture, covering a wide range of performance.
The SPARC architecture specifications are controlled by an international consortium,
which introduces new enhanced versions every few years. The most recent version is
SPARC-VO.

The instruction set of the SPARC architecture has a distinct RISC style. The ar-
chitecture specifications describe a processor in which data and memory addresses are
64 bits long. Instructions are of equal length, and they are all 32 bits long. Both integer
and floating-point instructions are provided.
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There are two register files, one for integer data and one for floating-point data.
Integer registers are 64 bits long. Their number is implementation dependent and can
vary from 64 to 528. SPARC uses a scheme known as register windows. At any given
time, an application program sees only 32 registers, called RO to R31. Of these, the
first eight are global registers that are always accessible. The remaining 24 registers are
local to the current context.

Floating-point registers are only 32 bits long because this is the length of single-
precision floating-point numbers according to the IEEE Standard described in Chap-
ter 6. The instruction set includes floating-point instructions for double- and quad-
precision operations. Two sequentially numbered floating-point registers are used to
hold a double-precision operand and four are used for quad precision. There is a total
of 64 registers, FO to F63. Single precision operands can be stored in FO to F31,
double precision operands in FO, F2, F4, ..., F62, and quad-precision in FO, F4,
FS, ..., F6O0.

Load and Store Instructions

Only load and store instructions access the memory, where an operand may be
an 8-bit byte, a 16-bit half word, or a 32-bit word. Load and store instructions also
handle 64-bit quantities, which come in two varieties: extended word or doubleword.
An LDX (Load extended) instruction loads a 64-bit quantity, called an extended word,
into one of the processor’s integer registers. A doubleword consists of two 32-bit words.
The two words are loaded into two sequentially numbered processor registers using a
single LDD (Load double) instruction. They are loaded into the low-order 32 bits of
each register, and the high order bits are filled with Os. The first of the two registers,
which is the register named in the instruction, must be even numbered. Load and store
instructions that handle doublewords are useful for moving multiple-precision floating-
point operands between the memory and floating-point registers.

Load and store instructions use one of two indexed addressing modes, as
follows:

1. The effective address is the sum of the contents of two registers:
EA = [Radrl] 4 [Radr2]

2. The effective address is the sum of the contents of one register plus an immediate
operand that is included in the instruction

EA = [Radrl] + Immediate

For most instructions, the immediate operand is a signed 13-bit value. Itis sign-extended
to 64 bits and then added to the contents of Radrl.
A load instruction that uses the first addressing mode is written as

Load [Radrl+Radr2], Rdst

It generates the effective address [Radrl] + [Radr2] and loads the contents of that
location into register Rdst. For an immediate displacement, Radr2 is replaced with the
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immediate operand value, which yields
Load [Radrl+4Imm], Rdst

Store instructions use a similar syntax, with the first operand specifying the source
register from which data will be stored in the memory, as follows:

Store Rsrc, [Radrl+Radr2]
Store Rsrc, [Radr]l+Imm)]

In the recommended syntax for SPARC instructions, a register is specified by a % sign
followed by the register number. Either %r2 or %?2 refers to register number 2. However,
for better readability and consistency with earlier chapters, we will use RO, R1, and so
on, to refer to integer registers and F0, F1, ... for floating-point registers.

As an example, consider the Load unsigned byte instruction

LDUB [R2+R3], R4

This instruction loads one byte from memory location [R2] 4 [R3] into the low-order
8 bits of register R4, and fills the high-order 56 bits with Os. The Load signed word
instruction:

LDSW [R2+4-2500], R4

reads a 32-bit word from location [R2] + 2500, sign extends it to 64 bits, and then
stores it in register R4.

Arithmetic and Logic Instructions

The usual set of arithmetic and logic instructions is provided. A few examples
are shown in Table 8.1. We pointed out in Section 8.4.2 that an instruction should set
the condition code flags only when these flags are going to be tested by a subsequent
conditional branch instruction. This maximizes the flexibility the compiler has in re-
ordering instructions to avoid stalling the pipeline. The SPARC instruction set has been
designed with this feature in mind. Arithmetic and logic instructions are available in
two versions, one sets the condition code flags and the other does not. The suffix cc in
an OP code is used to indicate that the flags should be set. For example, the instructions
ADD, SUB, SMUL (signed multiply), OR, and XOR do not affect the flags, while
ADDcc and SUBcc do.

Register RO always contains the value 0. When it is used as the destination operand,
the result of the instruction is discarded. For example, the instruction

SUBcc R2,R3,R0

subtracts the contents of R3 from R2, sets the condition code flags, and discards the
result of the subtraction operation. In effect, this is a compare instruction, and it has the
alternative syntax

CMP R2,R3

In the SPARC nomenclature, CMP is called a synthetic instruction. It is not a real
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Table 8.1 Examples of SPARC instructions

Instruction Description

ADD R5, R6, R7 Integer add: R7 < [R5] + [R6]

ADDcc R2,R3,R5 RS < [R2] + [R3], set condition code flags

SUB RS, Imm, R7 Integer subtract: R7 <— [R5] — Imm(sign-extended)

AND R3, Imm, RS Bitwise AND: RS < [R3] AND Imm(sign-extended)

XOR R3,R4,R5 Bitwise Exclusive OR: R5 <— [R3] XOR [R4]

FADDq F4,F12, F16 Floating-point add, quad precision: F12 < [F4] 4 [F12]

FSUBs F2, F5, F7 Floating-point subtract, single precision: F7 < [F2] — [F5]

FDIVs F5, F10, F18 Floating-point divide, single precision, F18 <« [F5]/[F10]

LDSW R3, R5, R7 R7 < 32-bit word at [R3] + [R5] sign extended to a 64-bit value

LDX R3,R5,R7 R7 < 64-bit extended word at [R3] + [R5]

LDUB R4, Imm, RS Load unsigned byte from memory location [R4] + Imm, the byte is loaded
into the least significant 8 bits of register RS, and all higher-order bits
are filled with Os

STW R3,R6, R12 Store word from register R3 into memory location [R6] + [R12]

LDF R5, R6, F3 Load a 32-bit word at address [R5] + [R6] into floating-point register F3

LDDF R5, R6, F8 Load doubleword (two 32-bit words) at address [R5] + [R6] into
floating-point registers F8 and F9

STF F14, R6, Imm Store word from floating-register F14 into memory location [R6] + Imm

BLE icc, Label Test the icc flags and branch to Label if less than or equal to zero

BZ.,pn xcc, Label Test the xcc flags and branch to Label if equal to zero, branch is

predicted not taken
BGT,a,pt icc, Label Test the 32-bit integer condition codes and branch to Label if greater than
zero, set annul bit, branch is predicted taken

FBNE,pn Label Test floating-point status flags and branch if not equal, the annul bit is set
to zero, and the branch is predicted not taken

instruction recognized by the hardware. It is provided only for the convenience of the
programmer. The assembler replaces it with a SUBcc instruction.

A condition code register, CCR, is provided, which contains two sets of condition
code flags, icc and xcc, for integer and extended condition codes, respectively. Each set
consists of four flags N, Z, V, and C. Instructions that set the condition code flags, such
as ADDcc, will set both the icc and xcc bits; the xcc flags are set based on the 64-bit
result of the instruction, and the icc flags are set based on the low-order 32 bits only.
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The condition codes for floating-point operations are held in a 64-bit register called the
floating-point state register, FSR.

Branch Instructions

The way in which branches are handled is an important factor in determining
performance. Branch instructions in the SPARC instruction set contain several features
that are intended to enhance performance of a pipelined processor and to help the
compiler in optimizing the code it emits.

A SPARC processor uses delayed branching with one delay slot (see Section 8.3.2).
Branch instructions include a branch prediction bit, which the compiler can use to give
the hardware a hint about the expected behavior of the branch. Branch instructions
also contain an Annul bit, which is intended to increase flexibility in handling the
instruction in the delay slot. This instruction is always executed, but its results are not
committed until after the branch decision is known. If the branch is taken, execution
of the instruction in the delay slot is completed and the results are committed. If the
branch is not taken, this instruction is annulled if the Annul bit is equal to 1. Otherwise,
execution of the instruction is completed.

The compiler may be able to place in the delay slot an instruction that is needed
whether or not the branch is taken. This may be an instruction that logically belongs
before the branch instruction but can be moved into the delay slot. The Annul bit should
be set to 0 in this case. Otherwise, the delay slot should be filled with an instruction
that is to be executed only if the branch is taken, in which case the Annul bit should be
setto 1.

Conditional branch instructions can test the icc, xcc, or FSR flags. For example,
the instruction

BGT,a,pt icc, Label

will cause a branch to location Label if the previous instruction that set the flags in icc
produced a greater-than-zero result. The instruction will have both the Annul bit and
the branch prediction bit set to 1. The instruction

FBGT,a,pt Label

is exactly the same, except that it will test the FSR flags. If neither pt (predicted taken)
nor pn (predicted not taken) is specified, the assembler will default to pt.

An example that illustrates the prediction and annul facilities in branch instructions
is given in Figure 8.22, which shows a program loop that adds a list of n 64-bit integers.
We have assumed that the number of items in the list is stored at address LIST as a
64-bit integer, followed by the numbers to be added in successive 64-bit locations. We
have also assumed that there is at least one item in the list and that the address LIST
has been loaded into register R3 earlier in the program.

Figure 8.22a shows the desired loop as it would be written for execution on a
nonpipelined processor. For execution on a SPARC processor, we should first reorganize
the instructions to make effective use of the branch delay slot. Observe that the ADD
instruction following LOOPSTART is executed during every pass through the loop.
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LDX R3, 0, R6 Load number of items in the list.

OR RO, RO, R4 R4 to be used as offset in the list

OR RO, RO, R7 Clear R7 to be used as accumulator.
LOOPSTART LDX R3, R4, R5 Load list item into R5.

ADD R5, R7, R7 Add number to accumulator.

ADD R4, 8, R4 Point to the next entry.

SUBcc R6, 1, R6 Decrement R6 and set condition flags.

BG xce, LOOPSTART  Loop if more items in the list.
NEXT

(a) Desired program loop

LDX R3, 0, R6
OR RO, RO, R4
OR RO, RO, R7
LOOPSTART LDX R3, R4, R5
ADD R4, 8,R4
SUBcec R6, 1, R6
BG,pt xcc, LOOPSTART Predicted taken, Annul bit = 0
ADD  R5, R7,RT7
NEXT

(b) Instructions reorganized to use the delay slot

Figure 8.22 An addition loop showing the use of the branch delay slot and branch
prediction.

Also, none of the instructions following it depends on its result. Hence, this instruction
may be moved into the delay slot following the branch at the end of the loop, as shown
in Figure 8.22b. Since it is to be executed regardless of the branch outcome, the Annul
bit in the branch instruction is set to O (this is the default condition).

As for branch prediction, observe that the number of times the loop will be executed
is equal to the number of items in the list. This means that, except for the trivial case
of n = 1, the branch will be taken a number of times before exiting the loop. Hence,
we have set the branch prediction bit in the BG instruction to indicate that the branch
is expected to be taken.

Conditional branch instructions are not the only instructions that check the condi-
tion code flags. For example, there is a conditional move instruction, MOVcc, which
copies data from one register into another only if the condition codes satisfy the con-
dition specified in the instruction suffix, cc. Consider the two instructions

CMP R5, R6
MOVle icc, RS, R6

The MOVle instruction copies the contents of RS into R6 if the condition code flags
in icc indicate a less-than-or-equal-to condition (Z + (N & V) = 1). The net result is
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to place the smaller of the two values in register R6. In the absence of a conditional
move instruction, the same task would require a branch instruction, as in the following
sequence

CMP  R5,R6

BG icc, GREATER

MOVA icc, R5,R6
GREATER

where MOVA is the move-always instruction. The MOVle instruction not only reduces
the number of instructions needed, but more importantly, it avoids the performance
degradation caused by branch instructions in pipelined execution.

The instruction set has many other features that are intended to maximize per-
formance in a highly pipelined superscalar processor. We will discuss some of these
features in the context of the UltraSPARC II processor. The ideas behind these features
have already been introduced earlier in the chapter.

8.7.2 UltraSPARC II

The main building blocks of the UltraSPARC II processor are shown in Figure 8.23. The
processor uses two levels of cache: an external cache (E-cache) and two internal caches,
one for instructions (I-cache) and one for data (D-cache). The external cache controller
is on the processor chip, as is the control hardware for memory management. The
memory management unit uses two translation lookaside buffers, one for instructions,
iTLB, and one for data, dTLB. The processor communicates with the memory and the
I/O subsystem over the system interconnection bus.

There are two execution units, one for integer and one for floating-point operations.
Each of these units contains a register set and two independent pipelines for instruction
execution. Thus, the processor can simultaneously start the execution of up to four
instructions, two integer and two floating-point. These four instructions proceed in
parallel, each through its own pipeline. If instructions are available and none of the four
pipelines is stalled, four new instructions can enter the execution phase every clock
cycle.

The Prefetch and Dispatch Unit (PDU) of the processor is responsible for maintain-
ing a continuous supply of instructions for the execution units. It does so by prefetching
instructions before they are needed and placing them in a temporary storage buffer called
the instruction buffer, which performs the role of the instruction queue in Figure 8.19.

8.7.3 PIPELINE STRUCTURE

The UltraSPARC II has a nine-stage instruction execution pipeline, shown in Fig-

ure 8.24. The function of each stage is completed in one processor clock cycle. We will

give an overview of the operation of the pipeline, then discuss each stage in detail.
The first three stages of the pipeline are common to all instructions. Instructions
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Figure 8.23 Main building blocks of the UltraSPARC Il processor.

are fetched from the instruction cache in the first stage (F) and partially decoded in
the second stage (D). Then, in the third stage (G), a group of up to four instructions
is selected for execution in parallel. The instructions are then dispatched to the integer
and floating-point execution units.

Each of the two execution units consists of two parallel pipelines with six stages
each. The first four stages are available to perform the operation specified by the
instruction, and the last two are used to check for exceptions and store the result of the
instruction.
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Figure 8.24 Pipeline organization of the UltraSPARC Il processor.

Instruction Fetch and Decode

The PDU fetches up to four instructions from the instruction cache, partially de-
codes them, and stores the results in the instruction buffer, which can hold up to 12
instructions. The decoding that takes place in this stage enables the PDU to determine
whether the instruction is a branch instruction. It also detects salient features that can
be used to speed up the decisions to be made later in the pipeline.

A cache block in the instruction cache consists of 32 bytes. It contains eight instruc-
tions. As instructions are loaded into the cache they are stored based on their virtual
addresses, so that they can be fetched quickly by the PDU without requiring address
translation. The PDU can maintain the rate of four instructions per cycle as long as each
group does not cross cache block boundaries. If there are fewer than four instructions
left in a cache block, the unit will read only the remaining instructions in the current
block.

The PDU uses a four-state branch prediction algorithm similar to that described in
Figure 8.15. It uses the branch prediction bit in the branch instruction to set the initial
state to either LT or LNT. For every two instructions in the instruction cache, the PDU
uses two bits to record the state of the branch prediction algorithm. These bits are stored
in the cache, in a tag associated with the instructions.

For each four instructions in the instruction cache, a tag field is provided called
Next Address. The PDU computes the target address of a branch instruction when the
instruction is first fetched for execution, and it records this address in the Next Address
field. This field makes it possible to continue prefetching instructions in subsequent
passes, without having to recompute the target address each time. Since there is only
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one Next Address field for each half of a cache line, its benefit can be fully realized
only if there is at most one branch instruction in each group of four instructions.

Grouping

In the third stage of the pipeline, stage G, the Grouping Logic selects a group of
up to four instructions to be executed in parallel and dispatches them to the integer
and floating-point execution units. Figure 8.25 shows a short instruction sequence and
the way these instructions would be dispatched. Parts b and ¢ of the figure show the
instruction grouping when the PDU predicts that the branch will be taken and not taken,
respectively. Note that the instruction in the delay slot, FCMP, is included in the selected
group in both cases. It will be executed, but not committed until the branch decision is
made. Its results will be annulled if the branch is not taken, because the Annul bit in the
branch instruction is set to 1. The first two instructions in each group are dispatched to
the integer unit and the next two to the floating-point unit.

ADDcc  R3, R4, R7 R7 < [R3] + [R4],
Set condition codes

BRZ,a Label Branch if zero, set Annul bit to 1
FCMP  F1,F5 FP: Compare [F2] and [F5]
FADD F2, F3,F6 FP: F6 «— [F2] + [F3]

FMOVs F3, F4 Move single precision operand from F3 to F4

Label FSUB  F2,F3,F6 FP:F6 — [F2] —[F3]
LDSW  R3, R4, R7 Load single word at location [R3] 4+ [R4] into R7

(a) Program fragment

ADDcc  R3, R4, R7
BRZ,a Label
FCMP  F1,F5
FSUB F2, F3, F6

(b) Instruction grouping, branch taken

ADDcec R3, R4, R7
BRZ,a Label
FCMP RI1,R5
FADD R2, R3, R6

(c) Instruction grouping, branch not taken

Figure 8.25 Example of instruction grouping.
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The grouping logic circuit is responsible for ensuring that the instructions it dis-
patches are ready for execution. For example, all the operands referenced by the in-
struction in a group must be available. No two instructions can be included in the same
group if one of them depends on the result of the other. Branch instructions are excepted
from this condition, as will be explained shortly.

Instructions are dispatched in program order. Recall that if a group includes a
branch instruction, that instruction will have already been tentatively executed as a
result of branch prediction in the prefetch and decode unit. Hence, the instructions in
the instruction buffer will be in correct order based on this prediction. The grouping logic
simply examines the instructions in the instruction buffer in order, with the objective of
selecting the largest number at the head of the queue that satisfy the grouping constraints.

Some of the constraints that the grouping logic takes into account in selecting
instructions to include in a group are:

1. Instructions can only be dispatched in sequence. If one instruction cannot be
included in a group, no later instruction can be selected.

2. The source operand of an instruction cannot depend on the destination operand
of any other instruction in the same group. There are two exceptions to this rule:

e A store instruction, which stores the contents of a register in the memory, may be
grouped with an earlier instruction that has that register as a destination. This is
allowed because, as we will see shortly, the store instruction does not require the
data until a later stage in the pipeline.

e A branch instruction may be grouped with an earlier instruction that sets the con-
dition codes.

3. No two instructions in a group can have the same destination operand, unless the
destination is register R0O. For example, the LDSW instruction in Figure 8.26a cannot
be grouped with the ADD instruction and must be delayed to the next group as shown.

4. In some cases, certain instructions must be delayed two or three clock cycles
relative to other instructions. For example, the conditional instruction

MOVRZ R1,R6,R7

(Move on register condition) moves the contents of R6 into R7 if the contents of R1 are
equal to zero. This instruction requires an additional clock cycle to check if the contents

ADD R3, R5, R6 G E C NI N2 N3 W
LDSW R4, R7, R6 G E C NI N2 N3 W

(a) Instructions with common destination
MOVRZ RI1, R6, R7 G E C NI N2 N3 W
OR R7, R8, R9 G E C NI N2 N3 W

(b) Delay caused by MOVR instruction

Figure 8.26 Dispatch delays due to hazards.
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Figure 8.27 Integer execution unit.

of R1 are equal to zero. Hence, an instruction that reads register R7 cannot be in the
same group or in the following group. The earliest dispatch for such an instruction is
as shown in Figure 8.26b.

When the grouping logic dispatches an instruction to the integer unit, it also fetches
the source operands of that instruction from the integer register file. The information
needed to access the register file is available in the decoded bits that were entered into
the instruction buffer by the prefetch and decode unit. Thus, by the end of the clock
cycle of stage G, one or two integer instructions will be ready to enter the execution
phase. The data read from the register file are stored in interstage buffers, as shown in
Figure 8.27. Access to operands in the floating-point register file takes place in stage
R, after the instruction has been forwarded to the floating-point unit.

Execution Units

The Integer execution unit consists of two similar but not identical units, IEUQ
and IEU1. Only unit IEUO is equipped to handle shift instructions, while only IEU1
can generate condition codes. Instructions that do not involve these operations can be
executed in either unit.

The ALU operation for most integer instructions is completed in one clock cycle.
This is stage E in the pipeline. At the end of this clock cycle, the result is stored in the
buffer shown at the output of the ALU in Figure 8.27. In the next clock cycle, stage C,
the contents of this buffer are transferred to a part of the register file called the Annex.
The Annex contains the temporary registers used in register renaming, as explained in



Hamacher-38086 book June 28, 2001 11:50

8.7 UltraSPARC II EXAMPLE 499

Section 8.6. The contents of a temporary register are transferred to the corresponding
permanent register in stage W of the pipeline.

Another action that takes place during stage C is the generation of condition codes.
Of course, this is done only for instructions such as ADDcc, which specify that the
condition code flags are to be set. Such instructions must be executed in unit IEUT1.

Consider an instruction Icc that sets the condition code flags and a subsequent con-
ditional branch instruction, BRcc, that checks these flags. When BRcc is encountered
by the prefetch and dispatch unit, the results of execution of Icc may not yet be available.
The PDU predicts the outcome of the branch and continues prefetching instructions
on that basis. Later, the condition codes are generated when Icc reaches stage C of the
pipeline, and they are sent to the PDU during the same clock cycle. The PDU checks
whether its branch prediction was correct. If it was, execution continues without inter-
ruption. Otherwise, the contents of the pipeline and the instruction buffer are flushed,
and the PDU begins to fetch the correct instructions. Aborting instructions at this point
is possible because these instructions will not have reached stage W of the pipeline.

When a branch is incorrectly predicted, many instructions may be incorrectly
prefetched and partially executed. The situation is illustrated in Figure 8.28. We have
assumed that the grouping logic has been able to dispatch four instructions in three
successive clock cycles. Instruction Icc at the beginning of the first group sets the con-
dition codes, which are tested by the following instruction, BRcc. The test is performed
when the first group reaches stage C. At this time, the third group, Iy to I;,, is entering
stage G of the pipeline. If the branch prediction was incorrect, the nine instructions I4
to I, will be aborted (recall that instruction I3 in the delay slot is always executed). In
addition, any instructions that may have been prefetched and loaded into the instruction
buffer will also be discarded. Hence, in the extreme case, up to 21 intrustions may be
discarded.

No operation is performed in pipeline stages N1 and N2. These stages introduce
a delay of two clock cycles, to make the total length of the integer pipeline the same

I; (TIcc)

I (BRec)
I3

Iy

I5

Is

I7

Qoo
cooommEH

CQoQQEaHEEHOOOQOQO

T Abort

Figure 8.28 Worstcase timing for an
incorrectly predicted branch.
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as that of the floating-point pipeline. For integer instructions that do not complete their
execution in stage C, such as divide instructions, execution continues through stages
N1 and N2. If more time is needed, additional clock cycles are inserted between N1 and
N2. The instruction enters N2 only in the last clock cycle of its execution. For example,
if the operation performed by an instruction requires 16 clock cycles, 12 clock cycles
are inserted after stage N1.

The Floating-point execution unit also has two independent pipelines. Register
operands are fetched in stage R, and the operation is performed in up to three pipeline
stages (X1 to X3). Here also, if additional clock cycles are needed, such as for the
square-root instruction, additional clock cycles are inserted between X2 and X3.

In stage N3, the processor examines various exception conditions to determine
whether a trap (interrupt) should be taken. Finally, the result of an instruction is stored
in the destination location, either in a register or in the data cache, during the Write
stage (W). An instruction may be aborted and all its effects annulled at any time up to
this stage. Once the Write stage is entered, the execution of the instruction cannot be
stopped.

Load and Store Unit

The instruction
LDUW R5,R6,R7

loads an unsigned 32-bit word from location [R5] + [R6] in the memory into register
R7. As for other integer instructions, the contents of registers RS and R6 are fetched
during stage G of the pipeline. However, instead of this data being sent to one of the
integer execution units, the instruction and its operands are forwarded to the Load and
Store Unit, shown in Figure 8.29. The unit begins by adding the contents of registers
R5 and R6 during stage E to generate the effective address of the memory location to
be accessed. The result is a virtual address value, which is sent to the data cache. At the
same time, it is sent to the data lookaside buffer, dTLB, to be translated into a physical
address.

Data are stored in the cache according to their virtual address, so that they can be
accessed quickly without waiting for address translation to be completed. Both the data
and the corresponding tag information are read from the D-cache in stage C, and the
physical address is read from the dTLB. The tag used in the D-cache is a part of the
physical address of the data. During stage N1, the tag read from the D-cache is checked
against the physical address obtained from the dTLB. In the case of a hit, the data are
loaded into an Annex register, to be transferred to the destination register in stage W.
If the tags do not match, the instruction enters the Load/store queue, where it waits for
a cache block to be loaded from the external cache into the D-cache.

Once an instruction enters the Load/store queue it is no longer considered to be
in the execution pipeline. Other instructions may proceed to completion while a load
instruction is waiting in the queue, unless one of these instructions references the register
awaiting data from the memory (R7 in the example above). Thus, the Load/store queue
decouples the operation of the pipeline from external data access operations so that the
two can proceed independently.
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Execution Flow

It is instructive to examine the flow of instructions and data in the UltraSPARC II
processor and between it and the external cache and the memory. Figure 8.30 shows the
main functional units of Figure 8.23 reorganized to illustrate the flow of instructions
and data and the role that the instruction and data queues play.

Instructions are fetched from the I-cache and loaded into the instruction buffer,
which can store up to 12 instructions. From there, instructions are forwarded, up to
four at a time, to the block labeled “Internal registers and execution units,” where they
are executed. On average, the speed with which the PDU can fill the instruction buffer is
higher than the speed with which the grouping logic dispatches instructions. Hence, the
instruction buffer tends to be full most of the time. In the absence of cache misses and
mispredicted branches, the internal execution units are never starved for instructions.
Similarly, the memory operands of load and store instructions are likely to be found
in the data cache most of the time, where they are accessed in one clock cycle. Hence
execution proceeds without delay.

When a miss occurs in the instruction cache, there is a delay of a few clock cycles
while the appropriate block is loaded from the external cache. During that time, the

External Main
] cache
Instructions memory
\
Instruction Data
cache /
Load/store
Y queue
Instruction
buffer

——1—— Elastic interface ——|

Internal
. Data
registers and
cache

execution units

Figure 8.30 Execution flow.
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grouping logic continues to dispatch instructions from the instruction buffer until the
buffer becomes empty. It takes three or four clock cycles to load a cache block (eight
instructions) from the external cache, depending on the processor model. This is about
the same length of time it takes the grouping logic to dispatch the instructions in a full
instruction buffer. (Recall that it is not always possible to dispatch four instructions in
every clock cycle.) Hence, if the instruction buffer is full at the time a cache miss occurs,
operation of the execution pipeline may not be interrupted at all. If a miss also occurs
in the external cache, considerably more time will be needed to access the memory. In
this case, it is inevitable that the pipeline will be stalled.

A load operation that causes a cache miss enters the Load/store queue and waits for
a transfer from the external cache or the memory. However, as long as the destination
register of the load operation is not referenced by later instructions, internal instruction
execution continues. Thus, the instruction buffer and the Load/store queue isolate the
internal processor pipeline from external data transfers. They act as elastic interfaces
that allow the internal high-speed pipeline to continue to run while slow external data
transfers are taking place.

8.8 PERFORMANCE CONSIDERATIONS

We pointed out in Section 1.6 that the execution time, 7', of a program that has a
dynamic instruction count N is given by

N xS

R
where S is the average number of clock cycles it takes to fetch and execute one instruc-
tion, and R is the clock rate. This simple model assumes that instructions are executed
one after the other, with no overlap. A useful performance indicator is the instruction
throughput, which is the number of instructions executed per second. For sequential
execution, the throughput, P; is given by

P, =R/S

In this section, we examine the extent to which pipelining increases instruction
throughput. However, we should reemphasize the point made in Chapter 1 regarding
performance measures. The only real measure of performance is the total execution
time of a program. Higher instruction throughput will not necessarily lead to higher
performance if a larger number of instructions is needed to implement the desired task.
For this reason, the SPEC ratings described in Chapter 1 provide a much better indicator
when comparing two processors.

Figure 8.2 shows that a four-stage pipeline may increase instruction throughput by
a factor of four. In general, an n-stage pipeline has the potential to increase throughput
n times. Thus, it would appear that the higher the value of n, the larger the performance
gain. This leads to two questions:

T =

e How much of this potential increase in instruction throughput can be realized in
practice?

*  What is a good value for n?
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Any time a pipeline is stalled, the instruction throughput is reduced. Hence, the per-
formance of a pipeline is highly influenced by factors such as branch and cache miss
penalties. First, we discuss the effect of these factors on performance, and then we
return to the question of how many pipeline stages should be used.

8.8.1 EFFECT OF INSTRUCTION HAZARDS

The effects of various hazards have been examined qualitatively in the previous sections.
We now assess the impact of cache misses and branch penalties in quantitative terms.

Consider a processor that uses the four-stage pipeline of Figure 8.2. The clock rate,
hence the time allocated to each step in the pipeline, is determined by the longest step.
Let the delay through the ALU be the critical parameter. This is the time needed to add
two integers. Thus, if the ALU delay is 2 ns, a clock of 500 MHz can be used. The
on-chip instruction and data caches for this processor should also be designed to have
an access time of 2 ns. Under ideal conditions, this pipelined processor will have an
instruction throughput, P,, given by

P, = R =500 MIPS (million instructions per second)

To evaluate the effect of cache misses, we use the same parameters as in Sec-
tion 5.6.2. The cache miss penalty, M, in that system is computed to be 17 clock
cycles. Let 7 be the time between two successive instruction completions. For se-
quential execution, 7; = S. However, in the absence of hazards, a pipelined processor
completes the execution of one instruction each clock cycle, thus, 7; = 1 cycle. A
cache miss stalls the pipeline by an amount equal to the cache miss penalty. This means
that the value of 7 increases by an amount equal to the cache miss penalty for the
instruction in which the miss occurs. A cache miss can occur for either instructions or
data. Consider a computer that has a shared cache for both instructions and data, and
let d be the percentage of instructions that refer to data operands in the memory. The
average increase in the value of 7; as a result of cache misses is given by

Smiss = (1 = hi) +d(1 — hg)) x M),

where h; and h, are the hit ratios for instructions and data, respectively. Assume that
30 percent of the instructions access data in memory. With a 95-percent instruction hit
rate and a 90-percent data hit rate, 8, is given by

Smiss = (0.05 4 0.3 x 0.1) x 17 = 1.36 cycles
Taking this delay into account, the processor’s throughput would be

R R

= =—— =042R
TI 1 + Smiss

P P

Note that with R expressed in MHz, the throughput is obtained directly in millions of
instructions per second. For R = 500 MHz, P, = 210 MIPS.

Let us compare this value to the throughput obtainable without pipelining. A pro-

cessor that uses sequential execution requires four cycles per instruction. Its throughput
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would be

P R 0.19R
’ 4 + (Smiss

For R = 500 MHz, P, = 95 MIPS. Clearly, pipelining leads to significantly higher
throughput. But the performance gain of 0.42/0.19 = 2.2 is only slightly better than
one-half the ideal case.

Reducing the cache miss penalty is particularly worthwhile in a pipelined processor.
As Chapter 5 explains, this can be achieved by introducing a secondary cache between
the primary, on-chip cache and the memory. Assume that the time needed to transfer
an 8-word block from the secondary cache is 10 ns. Hence, a miss in the primary cache
for which the required block is found in the secondary cache introduces a penalty, M,
of 5 cycles. In the case of a miss in the secondary cache, the full 17-cycle penalty (M)
is still incurred. Hence, assuming a hit rate i, of 94 percent in the secondary cache, the
average increase in 7 is

Omiss = (1 — hy) +d(1 — hg)) x (hg x My + (1 — hg) x M) = 0.46 cycle

The instruction throughput in this case is 0.68 R, or 340 MIPS. An equivalent non-
pipelined processor would have a throughput of 0.22R, or 110 MIPS. Thus, pipelining
provides a performance gain of 0.68/0.22 = 3.1.

The values of 1.36 and 0.46 are, in fact, somewhat pessimistic, because we have
assumed that every time a data miss occurs, the entire miss penalty is incurred. This
is the case only if the instruction immediately following the instruction that references
memory is delayed while the processor waits for the memory access to be completed.
However, an optimizing compiler attempts to increase the distance between two instruc-
tions that create a dependency by placing other instructions between them whenever
possible. Also, in a processor that uses an instruction queue, the cache miss penalty
during instruction fetches may have a much reduced effect as the processor is able to
dispatch instructions from the queue.

8.8.2 NUMBER OF PIPELINE STAGES

The fact that an n-stage pipeline may increase instruction throughput by a factor of n
suggests that we should use a large number of stages. However, as the number of pipeline
stages increases, so does the probability of the pipeline being stalled, because more
instructions are being executed concurrently. Thus, dependencies between instructions
that are far apart may still cause the pipeline to stall. Also, branch penalties may become
more significant, as Figure 8.9 shows. For these reasons, the gain from increasing the
value of n begins to diminish, and the associated cost is not justified.

Another important factor is the inherent delay in the basic operations performed by
the processor. The most important among these is the ALU delay. In many processors,
the cycle time of the processor clock is chosen such that one ALU operation can be
completed in one cycle. Other operations are divided into steps that take about the same
time as an add operation. It is also possible to use a pipelined ALU. For example, the
ALU of the Compaq Alpha 21064 processor consists of a two-stage pipeline, in which
each stage completes its operation in 5 ns.
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Many pipelined processors use four to six stages. Others divide instruction execu-
tion into smaller steps and use more pipeline stages and a faster clock. For example, the
UltraSPARC II uses a 9-stage pipeline and Intel’s Pentium Pro uses a 12-stage pipeline.
The latest Intel processor, Pentium 4, has a 20-stage pipeline and uses a clock speed in
the range 1.3 to 1.5 GHz. For fast operations, there are two pipeline stages in one clock
cycle.

8.9 CONCLUDING REMARKS

Two important features have been introduced in this chapter, pipelining and multiple
issue. Pipelining enables us to build processors with instruction throughput approaching
one instruction per clock cycle. Multiple issue makes possible superscalar operation,
with instruction throughput of several instructions per clock cycle.

The potential gain in performance can only be realized by careful attention to three
aspects:

e The instruction set of the processor

e The design of the pipeline hardware

e The design of the associated compiler

It is important to appreciate that there are strong interactions among all three. High
performance is critically dependent on the extent to which these interactions are taken

into account in the design of a processor. Instruction sets that are particularly well-suited
for pipelined execution are key features of modern processors.

PROBLEMS

Consider the following sequence of instructions

Add #20,RO,R1

Mul #3,R2,R3
And #$3A,R2,R4
Add RO,R2,R5

In all instructions, the destination operand is given last. Initially, registers RO and R2
contain 2000 and 50, respectively. These instructions are executed in a computer that has
afour-stage pipeline similar to that shown in Figure 8.2. Assume that the first instruction
is fetched in clock cycle 1, and that instruction fetch requires only one clock cycle.

(a) Draw a diagram similar to Figure 8.2a. Describe the operation being performed by
each pipeline stage during each of clock cycles 1 through 4.

(b) Give the contents of the interstage buffers, B1, B2, and B3, during clock cycles 2
to 5.
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Repeat Problem 8.1 for the following program:
Add #20,RO,R1

Mul #3,R2,R3
And #$3AR1,R4
Add RO,R2,R5

Instruction I, in Figure 8.6 is delayed because it depends on the results of I;. By
occupying the Decode stage, instruction I, blocks I3, which, in turn, blocks I;. Assuming
that I3 and I4 do not depend on either I; or I, and that the register file allows two Write
steps to proceed in parallel, how would you use additional storage buffers to make it
possible for I3 and I to proceed earlier than in Figure 8.6?7 Redraw the figure, showing
the new order of steps.

The delay bubble in Figure 8.6 arises because instruction I, is delayed in the Decode
stage. As aresult, instructions I3 and I4 are delayed even if they do not depend on either
I; or I,. Assume that the Decode stage allows two Decode steps to proceed in parallel.
Show that the delay bubble can be completely eliminated if the register file also allows
two Write steps to proceed in parallel.

Figure 8.4 shows an instruction being delayed as a result of a cache miss. Redraw this
figure for the hardware organization of Figure 8.10. Assume that the instruction queue
can hold up to four instructions and that the instruction fetch unit reads two instructions
at a time from the cache.

A program loop ends with a conditional branch to the beginning of the loop. How would
you implement this loop on a pipelined computer that uses delayed branching with one
delay slot? Under what conditions would you be able to put a useful instruction in the
delay slot?

The branch instruction of the UltraSPARC II processor has an Annul bit. When set by
the compiler, the instruction in the delay slot is discarded if the branch is not taken. An
alternative choice is to have the instruction discarded if the branch is taken. When is
each of these choices advantageous?

A computer has one delay slot. The instruction in this slot is always executed, but only
on a speculative basis. If a branch does not take place, the results of that instruction are
discarded. Suggest a way to implement program loops efficiently on this computer.

Rewrite the sort routine shown in Figure 2.34 for the SPARC processor. Recall that the
SPARC architecture has one delay slot with an associated Annul bit and uses branch
prediction. Attempt to fill the delay slots with useful instructions wherever possible.

Consider a statement of the form

IF A>B THEN action 1 ELSE action 2

Write a sequence of assembly language instructions, first using branch instructions
only, then using conditional instructions such as those available on the ARM processor.
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Assume a simple two-stage pipeline, and draw a diagram similar to that in Figure 8.8
to compare execution times for the two approaches.

The feed-forward path in Figure 8.7 (blue lines) allows the content of the RSLT register
to be used directly in an ALU operation. The result of that operation is stored back in
the RSLT register, replacing its previous contents. What type of register is needed to
make such an operation possible?

Consider the two instructions

I;: Add R1,R2,R3
I,: Shift_left R3

Assume that before instruction I; is executed, R1, R2, R3, and RSLT contain the
values 30, 100, 45, and 198, respectively. Draw a timing diagram for a 4-stage pipeline,
showing the clock signal and the contents of the RSLT register during each cycle.
Use your diagram to show that correct results will be obtained during the forwarding
operation.

Write the program in Figure 2.37 for a processor in which only load and store in-
structions access memory. Identify all dependencies in the program and show how you
would optimize it for execution on a pipelined processor.

Assume that 20 percent of the dynamic count of the instructions executed on a computer
are branch instructions. Delayed branching is used, with one delay slot. Estimate the
gain in performance if the compiler is able to use 85 percent of the delay slots.

A pipelined processor has two branch delay slots. An optimizing compiler can fill one of
these slots 85 percent of the time and can fill the second slot only 20 percent of the time.
What is the percentage improvement in performance achieved by this optimization,
assuming that 20 percent of the instructions executed are branch instructions?

A pipelined processor uses the delayed branch technique. You are asked to recommend
one of two possibilities for the design of this processor. In the first possibility, the
processor has a 4-stage pipeline and one delay slot, and in the second possibility, it
has a 6-stage pipeline with two delay slots. Compare the performance of these two
alternatives, taking only the branch penalty into account. Assume that 20 percent of the
instructions are branch instructions and that an optimizing compiler has an 80 percent
success rate in filling the single delay slot. For the second alternative, the compiler is
able to fill the second slot 25 percent of the time.

Consider a processor that uses the branch prediction mechanism represented in Fig-
ure 8.15b. The initial state is either LT or LNT, depending on information provided in
the branch instruction. Discuss how the compiler should handle the branch instructions
used to control “do while” and “do until” loops, and discuss the suitability of the branch
prediction mechanism in each case.

Assume that the instruction queue in Figure 8.10 can hold up to six instructions. Redraw
Figure 8.11 assuming that the queue is full in clock cycle 1 and that the fetch unit can
read up to two instructions at a time from the cache. When will the queue become full
again after instruction Iy is fetched?
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8.18 Redraw Figure 8.11 for the case of the mispredicted branch in Figure 8.14.

8.19 Figure 8.16 shows that one instruction that uses a complex addressing mode takes
the same time to execute as an equivalent sequence of instructions that use simpler
addressing modes. Yet, the use of simple addressing modes is one of the tenets of the
RISC philosophy. How would you design a pipeline to handle complex addressing
modes? Discuss the pros and cons of this approach.
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