
Introduction to VB.NET

Agenda

Why VB.NET

What is new in VB.NET

Update to VB.NET?

VB.NET Language Essential

Why VB.NET (from technical
standpoint)

The world of applications is changing:
The move to Web
The need for reusability, centralization
and scalability
MTS, COM+, and Component Services
cannot be fully taken advantage of by
VB.
SOAP: features can be implemented
more completely with .NET.

Why VB.NET (cont.)

To get the benefit of .NET
framework and its core execution
engine: CLR.

Garbage collection

OO mechanism

Standard security services

Integrated debugging tools

Why VB.NET (cont.)

Why not C#
VB.NET----”The most productive tool for
building .NET-connected applications. ”----
Microsoft Corporation

Root in Basic, the most pure-flavor language
product from MS.

Easier for VB programmers: a number of unique
features.

E.g.: Only VB.NET has background compilation,
dropdown list of the code window.

What is New in VB.NET ----For
Experienced VB Programmers

IDE changes
Project Changes
Web Changes
WebClass Changes
Data Changes
Component Authoring Changes
UserControl Changes
Forms Changes
Debugging Changes
Setup and Deployment Changes
International Changes
Windows API Changes
Registry Access Changes
Constant Changes
Namespace Changes
Run-Time Changes

Overview of Big Changes in
VB.Net

Everything is object-oriented: abstraction,
inheritance, overloading, encapsulation and
polymorphism.(Note: no multiple
inheritance, but interfaces supported.)

Multithreaded applications are possible.

Language syntax changes

……

Changes in VB Language

All data are objects, based on the class:
System.Object.

E.g. class supports Windows forms:
System.Windows.Forms.Form.

The built-in VB functionality is
encapsulated in a namespace called System.

E.g Collection has be replaced by
System.Collections.

Old control are gone, and new ones have
appeared.

Changes in VB Language (cont.)

Many keywords are renamed or gone, while
some new added.

E.g. Gosub removed

Strict data typing is now enforced
Variable must be declared before used by
default.
Cannot assign one data type to another, but can
use Ctype to convert between types.
The same as in VC++ and C#.

Structured exception handling:
Try…Catch…Finally.

Changes in VB Language (cont.)

When calling procedures, must use
parentheses.

Parameters are by default passed by value,
instead of by reference.

Supports constructors and destructors for
use when initializing an object of a class.

If…Then statements are now short-
circuited.

Changes in VB Language (cont.)

A number of new compound operators
E.g. x+=2

The And, Or, Not and Xor operators have
changed from bitwise to boolean operators.
Meanwhile, the bitwise versions are
BitAnd, BitOr, BitNot, and BitXor.
No default property supported

E.g. VB6: TextBox1=“Hello”
VB.Net: TextBox1.Text=“Hello”

Changes in VB Language (cont.)

Three new data
types

Char: unsigned 16-
bit

Short: signed 16-bit

Decimal: signed 96-
bit (replaces
Variant)

Integer Type VB 6.0 VB.NET

8 bit Byte Byte

16 bit Integer Short

32 bit Long Integer

64 bit Not Applicable Long

Changes in Data Handling

A new data-handling model: ADO.NET.
Facilitates Web application.
Uses XML to exchange data.

COM/DCOM technologies have been
replaced by .NET framework.
Datasets (not record sets now) are based
on XML schema, so they are strongly
typed.
Many new tools are provided to handle
data.
But can still work with ADO using COM
interoperability in the .NET framework.

Changes in Web Development

Two major types of Web application:
Web forms: web-based applications with
GUI.

Based on ASP.NET
Can use standard HTML control, or new
Server control handled by the Web server.
Controls can be bound on a Web form by
setting the codes in the properties.

Web services: to process data using
HTTP and XML files on the Internet.

Update to VB.NET ?

“Visual Basic .NET represents a major
departure form previous versions of Visual
Basic in several ways.”

----Microsoft Corporation
Plenty changes in VB.NET will take lots of
effort of even the experienced VB
developers.
Old but running fine systems, fund,
experienced developers…

Update to VB.NET ? (cont.)

Consideration
Unsupported features

OLE Container Control
Dynamic Data Exchange
DAO or RDO Data Binding
VB5 Controls
DHTML Applications
ActiveX Documents
Property Pages

Update to VB.NET ? (cont.)

Carefully reworked
Single-tier Database Applications

VB Add-ins

Games

Graphics

Drag and Drop Functionality

Variants

Windows APIs

Update to VB.NET ? (cont.)

Visual Basic Upgrade Wizard
Automatically invoked when open a VB6
project.

Results are not satisfactory due to the
big different.

Recoding by hand.

VB.NET Language Essential ----
For Non-VB Programmers

Projects Types
Three most commonly used:

Windows Forms

Web Forms

Console Applications

Statements

Statement: If…Else

Module Module1
Sub Main()

Dim intInput As Integer
System.Console.WriteLine(“Enter an interger…”)
intInput=Val(System.Console.ReadLine())
If intInput=1 Then

System.Console.WriteLine(“Thank you!”)
ElseIf intInput=2 Then

System.Console.WriteLine(“That’s good!”)
Else

System.Console.WriteLine(“Not a right number!”)
End If

End Sub
End Module

Statement: Select Case
Module Module1
Sub Main()

Dim intInput As Integer
System.Console.WriteLine(“Enter an interger…”)
intInput=Val(System.Console.ReadLine())
Select Case intInput

Case 1
System.Console.WriteLine(“Thank you!”)

Case 2
System.Console.WriteLine(“That’s good!”)

Case 3 To 7
System.Console.WriteLine(“OK”)

Case Is> 7
System.Console.WriteLine(“Too Big”)

Case Else
System.Console.WriteLine(“Not a right number!”)

End Select
End Sub

End Module

Functions: Switch and Choose

Switch Function
Syntax

Switch(expr1, value1[, expr2, value2…[,exprn, valuen]])

E.g.
intAbsValue=Switch(intValue<0, -1 * intValue,
intValue>=0, intValue)

Choose Function
Syntax

Choose(index, choice1[, choice2,…[,choicen]])
Note: unlike array index, choose index from 1 to n

E.g.
Str=Choose(intValue, “Thank you!”, “That is good!”)

Loop Statement: Do

Syntax:
Do [While|Until] condition]

[statements]
[Exit Do]
[statements]

Loop

E.g.
Module Module1
Sub Main()

Dim strInput As String
Do Until Ucase(strInput)=“Stop”

System.Console.WriteLine(“What should I do?”)
strInput=System.Console.ReadLine()

Loop
End Sub
End Module

Loop Statement: For

Syntax:
For index=start To end [Step step]

[statements]
[Exit For]
[statements]

Next [index]

E.g.
Module Module1
Sub Main()

Dim loopIndex As Integer
For loopIndex=0 to 3

System.Console.WriteLine(“Hello!”)
Next loopIndex

End Sub
End Module

Loop Statement: While

Syntax:
While condition

[statements]
End While

E.g.
Sub CheckWhile()

Dim intCounter As Integer =0
Dim intNumber As Integer =10
While intNumer>6

intNumber-=1
intCounter+=1

End While
MsgBox(“The loop ran “ & intCounter & “ times.”)

End Sub

Loop Statement: For Each…Next

Syntax:
For Each element In group

[statements]
[Exit For]
[statements]

Next element

E.g.
Sub Main()

Dim intArray(2), intItem As Integer
intArray(0)=0
intArray(1)=1
intArray(2)=2
For Each intItem In intArray

System.Console.WriteLine(intArray)
Next intItem

End Sub

Like a Loop: With

Syntax:
With object

[statements]

End With

E.g.
With TextBox1

,Height = 1000

.Width = 3000

.Text = “Welcome, World!”

End With

Thank you!

Introducing the

Microsoft .NET Framework

and Visual Basic .NET

2

Objectives

• Explore the Microsoft .NET Framework

• Write a Visual Basic .NET module definition

• Define Visual Basic .NET variables and data types

• Write basic computational statements

• Read input from the keyboard

3

Exploring the Microsoft .NET

Framework

• .NET Framework key parts:

– Compilers for:

• VB .NET

• Other supported .NET languages

– Common Language Runtime (CLR)

– Framework Class Library (FCL)

4

5

The Microsoft .NET Compilers

• Includes compilers for:

– VB

– C++

– C#

– J#

– COBOL

6

The Microsoft .NET Compilers

(continued)

• Compiler has two primary purposes:

– Check source code for valid syntax

– Translate it into executable form

• Compilers translate source code into language

called Microsoft Intermediate Language (MSIL)

– Language used by CLR

– CLR translates IL into executable code

7

The Common Language

Runtime

• Responsibility:

– Connect IL files coming from various .NET

compilers

– Translate these into executable files

– Manage execution of code in file

8

9

The Common Language

Runtime (continued)

• CLR consists of

– Common Type System (CTS)

– Common Language Specification (CLS)

– Just-In-Time (JIT) compiler

• Allocates and reclaims memory while application

running

10

The Framework Class Library

• Assembly

– File containing IL

– Each contains one or more classes

• FLC

– Consists of approximately 100 assemblies

– Have suffix of .dll

• Members

– Methods and attributes in .NET classes

11

The Framework Class Library

(continued)

• Namespaces

– Organize classes

– Can contain both classes and other namespaces

– Compilers do not automatically search all

namespaces for classes used by code

• Must use keyword Imports

• Tell compiler specific namespaces to access

12

13

14

Writing a Visual Basic .NET

Module Definition

• Module definition

– Begins with keyword Module

– Ends with keyword End Module

• Statements contain:

– Keywords

– Identifiers

15

Writing a Visual Basic .NET

Module Definition (continued)

• Identifier

– Name assigned to things such as:

• Modules

• Procedures

• Variables

16

Writing a Visual Basic .NET

Module Definition (continued)

• Identifier naming rules:

– Can be up to 1023 characters long

– Can include any:

• Letter

• Number

• Underscore character

• No spaces

– Cannot begin with a number

– Cannot be a keyword

17

Writing a Visual Basic .NET

Module Definition (continued)

• Code not case sensitive

• Comment lines

– Add explanations to code

– Ignored by compiler

• Module header

– Names module

– Syntax:

• Module modulename

18

Writing a Visual Basic .NET

Module Definition (continued)

• Procedure:

– Contains statements that perform processing

– Types:

• Sub

• Function

– Begin with header

• Procedure Main invoked automatically

19

Writing a Visual Basic .NET

Module Definition (continued)

• Argument

– Information contained in parentheses when calling

procedure

– Passed to procedure

• Literal

– Value defined within a statement

20

Defining Visual Basic .NET

Variables And Data Types

• Variable

– Memory location that contains data

– Characteristics:

• Name

• Data type

• Value

21

Understanding VB .NET Data

Types

• Each variable has a data type

• Can be:

– Primitive

– Complex

• Unicode character set

– Allocates two bytes for each character

– Accommodates all characters of major international

languages

22

23

Declaring and Populating

Variables

• Declaration statements

– Define variables

• Syntax:

– Dim variablename As datatype

• Assignment operator

– =

– Assigns value on right side to variable named on

left side

24

Example 3-2: Declaring

Variables

Dim myInteger As Integer

Dim myDouble As Double

Dim myBoolean As Boolean

25

Example 3-4: Populating

Variables

myInteger = 1

myDouble = 2.5

26

Defining Constants

• Constant

– Variable with a value that does not change

– Contain values such as:

• Company name

• Tax identification number

– Syntax:

• Const constantname As datatype

– Must be initialized in the same statement that

declares them

27

Defining Constants (continued)

• Naming convention:

– Capitalize constant names

– If name consists of more than one word

• Separate words with underscore character (_)

– Example:

• TAX_ID

28

Converting Data Types

• Numeric data types have different capacities:

– Byte variable can hold maximum value of 255

– Integer variable has maximum value of 2.1 billion

• Implicit type conversion

– Use assignment operator to assign contents of

variable to a variable with different data type

29

Example 3-7: Implicit Type

Conversion

Dim myInteger As Integer = 1

Dim myDouble As Double = 2.5

myDouble = myInteger

• Assign Integer value to Double variable

– Data type Double has greater capacity than Integer

– No potential loss of data

30

Example 3-8: Loss of Precision

• Loss of precision

– Computing error that can occur when decimal

positions are dropped

Dim myInteger As Integer = 1

Dim myDouble As Double = 2.5

myInteger = myDouble

• VB .NET will automatically round decimal values

before truncating

31

Example 3-8: Loss of Precision

(continued)

• Option Strict

– Prevent unintentional loss of precision when

mixing data types in assignment statements

– Compiler detects potential loss of precision

• Displays error message

• Explicit type conversion

– Invoke Convert method to convert data types

32

33

Converting Data Types

(continued)

• Option Explicit

– Must define variable before using it in a statement

– Otherwise

• Compiler generates error message

– Generally set On

34

Using Reference Variables

• Uses class name as data type

• For example:

– String

• Variable refers to or points to instance of class

– Does not actually contain data

– Contains memory address of instance of class that

contains data

35

36

Writing Basic Computational

Statements

• Concatenate operator

– &

– Joins two Strings

• Arithmetic operators

– For multiplication, division, addition, and

subtraction

– *, /, +, -

37

Using the Arithmetic Operators

• Evaluated in predetermined order called

precedence

– Standard algebraic rules of precedence apply

• Other operators:

– Exponentiation

– Integer division

– Remainder computation

38

Example 3-15:

Integer Division (\)

Dim firstInt As Integer = 11

Dim secondInt As Integer = 2

Dim integerResult As Integer = 0

integerResult = firstInt \ secondInt

Console.WriteLine(“integerResult = firstInt \

secondInt: “ & integerResult)

• Sample Run:

– integerResult = firstInt \ secondInt: 5

39

40

Using the Arithmetic Operators

(continued)

• Assignment operators:

– Formed by combining arithmetic operator with

assignment operator

– Example:

• i += 1

41

Invoking Methods in the Math

Class

• System namespace includes Math class

– Contains methods to accomplish

• Exponentiation

• Rounding

• Trigonometric calculations

• Use .NET Help facility to explore methods

• Invoke method:

– Math.Pow(firstInt, secondInt)

42

Invoking Methods in the Math

Class (continued)

• Math class constants:

– PI

– E

– To access:

• Math.E

43

Reading Input From the

Keyboard

• Use Console class

– ReadLine method

• Read one or more characters from keyboard

• Convert any numeric data to desired data type

• Prompt

– Message displayed to user asking for input

