Introduction to VB.NET

"\

(Agenda

¥ Why VBINET -
¥ What is new in VBINET
Update to VB.NET?

% VB.NET Language Essential

Why VB NET (from ’rechmcal
(standpoint)

The world of applications is changing:
+ The move to Web

+ The need for reusability, cen‘rrallza’ruon :
and scalability

= MTS, COM+, and Component Services

canno‘r be fully taken advantage of by
VB.

= SOAP: features can be implemented -
‘more completely with .NET.

Why VB.NET (cont.)

To get the benefit of NET
framework and its core execution
engine: CLR.
= Garbage collection-
= OO mechanism
r.Standard security services
= Integrated debugging tools -

‘Why VB.NET (cont.)

% Why not CH#

= VB.NET----"The most productive ’rool for'
building .NET-connected applications. “----
Microsoft Corporation

+ Root in Basic, the most pure-flavor language
-product from MS. |

= Easier for VB programmers: a number' of unique
features.

‘= £.9.: Only VB.NET has background compilation,
~dropdown list of the code window.

What is New in VBNET ----For
(Experienced VB Programmers

IDE changes

Project Changes

Web Changes

WebClass Changes

Data Changes

Component Authoring Changes
UserControl Changes

Forms Changes = -
Debugging Changes |
Setup and Deployment Changes
International Changes
Windows API Changes
Registry Access Changes
Constant Changes

Namespace Changes

Run-Time Changes

#H OB O # & o B & # & o5 B B &

Overvuew of Blg Changes in
(VB.Net

¥ Everything is object-oriented: abstraction,
inheritance, overloading, encapsulation and
polymorphism.(Note: no multiple |
inheritance, but interfaces supporTed)

¥ Multithreaded applications are possuble

% Language syn’rax changes

Changes in VB Language

|

% All data are objects, based on the class:
System.Object.

= E.g. class supports Windows forms:
System. Windows.Forms.Form.

¥ The built-in-VB functionality is
encapsulated in a namespace called System.

+ E.g Collection has be replaced by
System .Collections.

Old control are gone,-and new ones have
appeared.

Changes in VB Language (cont.)

|

% Many keywords are renamed or gone, while
some new added.

+ E.g. Gosub removed

Strict data typing is now enfor'ced

= Variable must be declared before used by -
~default.

= Cannot assugn ohe da‘ra ’rype to ano’rher bu’r can
use Ctype to convert between types.

= The same as in VC++ and C#.

¥ Structured exception handling:
.. Try..Catch...Finally.

Changes in VB Language (cont.)

|

When calling procedures, must use
parentheses.

% Parameters are by defaul’r passed by value
instead of by reference.

¥ SupporTs constructors and destructors for
use when initializing an object of a class.

¥ If..Then s’ra‘remen‘rs are how shor"r—
cur'cuu‘red |

Changes in VB Language (cont.)

|

% A number of new compound operators
= E.g. x+=2
% The And, Or' 'Not and Xor operaTors have

changed from bitwise to boolean operators.
Meanwhile, the bitwise versions are

BitAnd, B:tOr' BitNot, and B:thr

% No default pr'oper’ry supported
= E.g. VB6: TextBox1="Hello"
~~ VB.Net: TextBox1.Text="Hello"

|

‘Changes in VB Language (cont.)

% Three new data

Types _

= Char: unsigned 16-
bit

+ Short: signed 16-bit

+ Decimal: sighed 96-
bit (replaces
Variant)

Integer Type

8 bit

16 bit

32 bit

| 64 bit

VB 6.0
Byte
Ihteger
Long :

Not Applicable

VB.NET
Byte
Shon
Integer -:

Long

Changes in Data Handling

(& A new data-handling model: ADO.NET.

+ Facilitates Web application.
r Uses XML to exchange data.

% COM/DCOM technologies have been
replaced by .NET framework.

% Datasets (not record sets now) are based
on XML schema, so they are strongly
typed.

Many new tools are provided to handle
data. e e e _

% But can still work with ADO using COM
interoperability in the NET framework.

Changes in Web Development

|

Two major types of Web application:

= Web forms: web based appllca’ruons with
GUL. |
= Based on ASP.NET

‘= Can use standard HTML control, or new -
~Server control handled by the Web server.

= Controls can be bound on a Web form by
setting the codes in the properties.

= Web services: to process data using -
"HTTP and XML files on the Internet.

Update to VB.NET ?

|

¥ "Visual Basic .NET represents a major -
departure form previous versions of Visual
Basic in several ways.’ |

----Microsoft Corporation

Plenty changes in VB.NET will take lots of
effort of even the expemenced VB i
developers.

¥ Old but running fine systems, fund,
exper'lenced developer's

Update to VB.NET ? (cont.) -

|

¥ Consideration

= Unsupported features
= OLE Container Control
= Dynamic Data Exchange
'+ DAO or RDO Data Binding
= VB5 Controls |
= DHTML Applications
= ActiveX Documents
= Property Pages

‘Update to VB.NET ? (cont.)

|

+ Carefully reworked

- m Single-tier Database Appllccmons
= VB Add-ins - |
= Games
= Graphics

= Drag and Drop Functionality
= Variants
-+ Windows APIs

Update to VB.NET ? (cont.) -

|

Visual Basic Upgrade Wizard

= Automatically invoked when open a VB6
project. | | | |

+ Results are not satisfactory due to the
‘big different.

% Recoding by hand.

VB.NET Language Essential ----
(For Non-VB Programmers

¥ Projects Types

+ Three most commonly used:
= Windows Forms |
= Web Forms |
~ ®Console Applications

% Statements

~ Statement: If..Else

" Module Modulel
Sub Mam()
Dim intInput As In'reger -
System.Console.WriteLine(" EnTer an interger-.. ")
intInput= Val(Sys’rem Console. ReadLme())
If intInput=1 Then
System.Console. Wm‘reLme(Thcmk youl")
" ElseIf infInput=2 Then i’
System.Console. Wm‘reLme(Tha’r S goodl")
Else. - -
SysTem Console Wm’reLme(No‘r a mgh‘r numberl") -
End"If- - -
End Sub
- End Module

~Statement: Select Case

‘Module Modulel
Sub Main() .
Dim intInput As Integer
Sys'rem Console.WriteLine("Enter an iri‘rerger'...")
intInput=Val(System. Console ReadLme())
Select Case- m‘rInpu‘r _
Casel
.. System. Console. er’reLme(Thank you"’)
Case2 =
System. Console er’reLme(Tha’r s good!”). -
Case 3.To 7 05 |
- .- System:Console. WruTeLme("OK")
Case.Is> 7
.System. Console. Wr'l‘reLme(Too Blg")
Case Else :
System. Console er‘reLme(NoT a r'lgh‘r number'")
End Select:
- End Sub
End Module*

‘Functions: Switch and Choose .

|

¥ Switch Function
= Syntax

m Squch(éxprl valuel[expr2 value2 [exprn valuen]])
= E.g.
= intAbsValue=Switch(intValue<0, -1 * intValue,
intValue>=0, m’rVaIue)

% Choose Function

#-Syntax

= Choose(index, choicel[, choice2,...[,choicen]])

+ Note: unhke array mdex choose mdex from1ton
= Eg..

f S’rr‘:Choose(in’rValue, “Thank you!”, “Thaf is good!")

Loop Statement: Do

W Syn’rax
Do [While|Until] condlt/on]
[s’ra’remen’rs]
[Exit Do]
_ [statements]
Loop
* Eg..
Module Modulel
Sub Main() -
Dim strInput As String
+ ‘Do Until Ucase(strInput)="Stop”
System.Console.WritelLine(* What should T do?”)
v .strInput= Sys’rem Console: ReadLme() By
Loop
End Sub,
End Module

Loop Statement: For

¥ Syntax:
For index=start To end [Step step]
[s’ra’remen’rs]
[Exit For]
[statements]
Next [index]
* Eg..
Module Modulel
Sub Main() -
Dim loopIndex As Integer
For loopIndex=0 to'3
System.Console.WritelLine(* Hellol”)
‘Next loopIndex-
End Sub
End Module

Loop Statement: While

¥ Syntax:
While condition
[statements]
End Whlle
& Eg.
Sub CheckWhile()
Dim intCounter As Integer =0
Dim intNumber As Integer =10
While intfNumer>6. '
intNumber-=1
intCounter+=1
End While
MsgBox("The loop ran " & m’rCoun‘rer' & " times.")-
End Sub

Loop Statement: For Each..Next

¥ Syntax:
For Each element In group
[sTaTemenTs]
[Exit For]
[statements]
Next element
* Eagq.
Sub Mam()
Dim intArray(2), mTI’rem As InTeger
intArray(0)=0 '
intArray(1)=1
intArray(2)=2
For.Each intItem In intArray
- System:Console. er‘reLme(mTArr"ay)
Next intItem
End Sub .

Like a Loop: With

¥ Syntax:
~ With object
 [statements] -
End With
® kg, ..
‘With TextBox1 . .
. - Height =.1000
Width =-3000 _
. Text = “*Welcome, World!"
End With ' --

Thank you! -

S——

Introducing the
Microsoft NET Framework
and Visual Basic .NET

Objectives

Explore the Microsoft .NET Framework

Write a Visual Basic .NET module definition
Define Visual Basic .NET variables and data types
Write basic computational statements

Read input from the keyboard

Exploring the Microsoft .NET
Framework

NET Framework key parts:

Compilers for:
VB .NET
Other supported .NET languages

Common Language Runtime (CLR)

Framework Class Library (FCL)

NET compilers

C++ Cit VB COBOL

Common Language Runtime (CLR)

CTS CLS JIT
Common Common Justin
Type Language Time
System Specification compiler

Framework Class Library (FCL)

System
I

1 1 1

|
Windows Data Drawing I/0
I I I I
Forms

Figure 3-1 The .NET Framework

The Microsoft NET Compilers

Includes compilers for:
VB
C++
C#
J#

COBOL

The Microsoft NET Compilers
(continued)

Compiler has two primary purposes:
Check source code for valid syntax

Translate 1t into executable form

Compilers translate source code into language
called Microsoft Intermediate Language (MSIL)

Language used by CLR

CLR translates IL into executable code

The Common Language
Runtime

Responsibility:

Connect IL files coming from various .NET
compilers

Translate these Into executable files

Manage execution of code in file

Source
code

Compiler

—p L

|

Just-In-Time
compiler

|

Executable
code

Figure 3-2 Compiling and executing

The Common Language
Runtime (continued)

CLR consists of
Common Type System (CTS)
Common Language Specification (CLS)
Just-In-Time (JIT) compiler

Allocates and reclaims memory while application
running

The Framework Class Library

Assembly
File containing IL
Each contains one or more classes
FLC
Consists of approximately 100 assemblies
Have suffix of .dll
Members
Methods and attributes in .NET classes

10

The Framework Class Library
(continued)

Namespaces
Organize classes
Can contain both classes and other namespaces

Compilers do not automatically search all
namespaces for classes used by code

Must use keyword Imports

Tell compiler specific namespaces to access

11

System

l

' :

Windows Data

Forms...

:

/0

'

Drawing

i

Figure 3-3 The .NET FCL namespaces

12

Table 3-1 Selected FCL namespaces

System Array
Console
Convert
DateTime
Exception
TimeSpan
String
Math

System.Collections ArrayList

System. IO StreamReader
StreamWriter

System.Data DataRow
DataTable
DataSet

System.Data.OleDb OleDbCommand
OleDbConnection
OleDbDataAdapter
OleDbParameter

System.Windows .Forms Button
CheckBox
Form
Label
Menu
Menultem
RadioButton
TextBox

13

Writing a Visual Basic .NET
Module Definition

Module definition
Begins with keyword Module
Ends with keyword End Module
Statements contain:
Keywords

ldentifiers

14

Writing a Visual Basic .NET
Module Definition (continued)

ldentifier

Name assigned to things such as:
Modules
Procedures

Variables

15

Writing a Visual Basic .NET
Module Definition (continued)

Identifier naming rules:
Can be up to 1023 characters long

Can include any:
Letter
Number
Underscore character
No spaces
Cannot begin with a number

Cannot be a keyword

16

Writing a Visual Basic .NET
Module Definition (continued)

Code not case sensitive

Comment lines
Add explanations to code
Ignored by compiler
Module header
Names module

Syntax:
Module modulename

17

Writing a Visual Basic .NET
Module Definition (continued)

Procedure:
Contains statements that perform processing

Types:
Sub

Function

Begin with header

Procedure Main invoked automatically

18

Writing a Visual Basic .NET
Module Definition (continued)

Argument

Information contained in parentheses when calling
procedure

Passed to procedure

Literal

Value defined within a statement

19

Defining Visual Basic .NET
Variables And Data Types

Variable
Memory location that contains data

Characteristics:
Name
Data type

Value

20

Understanding VB .NET Data

Types
Each variable has a data type
Can be:
Primitive
Complex

Unicode character set
Allocates two bytes for each character

Accommodates all characters of major international
languages

21

Table 3-3 VB .NET primitive data types

Numeric with 1. Byte 0 to 255 8 bits
no decimals
2. Short -32,768 10 32,767 16 bits
3. Integer -2,147 483 648 to 2,147,483,647 32 bits
4. Long +9 223,372 ,036,854,775,807 64 hits
Numeric with 5. Single +1.5E-45 10 +3.4E+38; 32 bits
decimals up to 6 decimal positions
6. Double +h OF-324 to +1.7E+308; 64 bits
up to 14 decimal positions
/. Decimal 1.0E-28 to 7.9E+28; 128 bits
up to 28 decimal positions
Other 8. Boolean True or False 16 bits

9. Char Any Unicode character 16 hits

22

Declaring and Populating
Variables

Declaration statements

Define variables
Syntax:

Dim variablename As datatype
Assignment operator

Assigns value on right side to variable named on
left side

23

Example 3-2: Declaring
Variables

Dim mylnteger As Integer
Dim myDouble As Double
DIm myBoolean As Boolean

24

Example 3-4: Populating
Variables

mylinteger = 1
myDouble = 2.5

25

Defining Constants

Constant
Variable with a value that does not change

Contain values such as:

Company name

Tax identification number
Syntax:

Const constantname As datatype

Must be Initialized in the same statement that
declares them

26

Defining Constants (continued)

Naming convention:
Capitalize constant names

If name consists of more than one word

Separate words with underscore character ()

Example:

TAX_ID

27

Converting Data Types

Numeric data types have different capacities:
Byte variable can hold maximum value of 255
Integer variable has maximum value of 2.1 billion

Implicit type conversion

Use assignment operator to assign contents of
variable to a variable with different data type

28

Example 3-7: Implicit Type
Conversion

Dim mylnteger As Integer =1
Dim myDouble As Double =2.5
myDouble = mylnteger

Assign Integer value to Double variable
Data type Double has greater capacity than Integer
No potential loss of data

29

Example 3-8: Loss of Precision

Loss of precision

Computing error that can occur when decimal
positions are dropped

Dim mylnteger As Integer =1
Dim myDouble As Double = 2.5
mylinteger = myDouble

VB .NET will automatically round decimal values
before truncating

30

Example 3-8: Loss of Precision
(continued)

Option Strict

Prevent unintentional loss of precision when
mixing data types In assignment statements

Compiler detects potential loss of precision

Displays error message

Explicit type conversion

Invoke Convert method to convert data types

31

Table 3-4 Methods in the Convert class

N

ToIntl6(x) Converts the argument to Short
ToInt32(x) Converts the argument to Integer
ToInt64(x) Converts the argument fo Long
ToSingle(x) Converts the argument to Single
ToDouble(x) Converts the argument to Double

ToString(x) Converts the argument to String

32

Converting Data Types
(continued)

Option Explicit
Must define variable before using it in a statement

Otherwise

Compiler generates error message

Generally set On

33

Using Reference Variables

Uses class name as data type
For example:
String
Variable refers to or points to instance of class

Does not actually contain data

Contains memory address of instance of class that
contains data

34

Primitive variable

1

myInteger

myString

.

Hello
Again

String instance

Figure 3-5 Contrasting primitive and reference variables

35

Writing Basic Computational
Statements

Concatenate operator
&
Joins two Strings
Arithmetic operators

For multiplication, division, addition, and
subtraction

*1/’+1-

36

Using the Arithmetic Operators

Evaluated In predetermined order called
precedence

Standard algebraic rules of precedence apply
Other operators:

Exponentiation

Integer division

Remainder computation

37

Example 3-15:
Integer Division (\)

DIm firstint As Integer = 11

DIm secondint As Integer = 2
DIm integerResult As Integer =0
IntegerResult = firstint \ secondInt

Console. WriteLine(“integerResult = firstInt \
secondInt: “ & integerResult)

Sample Run:
IntegerResult = firstint \ secondInt: 5

38

Table 3-5: VB .NET arithmetic -:Jperaturs

T T T

Exponentiation 121
* Multiplication 5 22
/ Division S 55
\ Integer division ML 5
Mod Remainder 11 Mod 2 1
+ Addition 11 + 2 13

- Subtraction ik 9

39

Using the Arithmetic Operators
(continued)

Assignment operators:

Formed by combining arithmetic operator with
assignment operator

Example:

| +=1

40

Invoking Methods in the Math
Class

System namespace includes Math class

Contains methods to accomplish
Exponentiation
Rounding

Trigonometric calculations
Use .NET Help facility to explore methods

Invoke method:
Math.Pow(firstint, secondInt)

41

Invoking Methods in the Math
Class (continued)

Math class constants:
Pl
E

To access:

Math.E

42

Reading Input From the
Keyboard

Use Console class

ReadLine method
Read one or more characters from keyboard

Convert any numeric data to desired data type

Prompt

Message displayed to user asking for input

43

