
http://www.tutorialspoint.com/cplusplus/cpp_signal_handling.htm Copyright © tutorialspoint.com

C++ SIGNAL HANDLINGC++ SIGNAL HANDLING

Signals are the interrupts delivered to a process by the operating system which can terminate a
program prematurely. You can generate interrupts by pressing Ctrl+C on a UNIX, LINUX, Mac OS X
or Windows system.

There are signals which can not be caught by the program but there is a following list of signals
which you can catch in your program and can take appropriate actions based on the signal. These
signals are defined in C++ header file <csignal>.

Signal Description

SIGABRT Abnormal termination of the program, such as a call to abort

SIGFPE An erroneous arithmetic operation, such as a divide by zero or an operation
resulting in overflow.

SIGILL Detection of an illegal instruction

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

The signal function:
C++ signal-handling library provides function signal to trap unexpected events. Following is the
syntax of the signal function:

void (*signal (int sig, void (*func)(int)))(int);

Keeping it simple, this function receives two arguments: first argument as an integer which
represents signal number and second argument as a pointer to the signal-handling function.

Let us write a simple C++ program where we will catch SIGINT signal using signal function.
Whatever signal you want to catch in your program, you must register that signal using signal
function and associate it with a signal handler. Examine the following example:

#include <iostream>
#include <csignal>

using namespace std;

void signalHandler(int signum)
{
 cout << "Interrupt signal (" << signum << ") received.\n";

 // cleanup and close up stuff here
 // terminate program

 exit(signum);

}

int main ()
{
 // register signal SIGINT and signal handler
 signal(SIGINT, signalHandler);

 while(1){

http://www.tutorialspoint.com/cplusplus/cpp_signal_handling.htm

 cout << "Going to sleep...." << endl;
 sleep(1);
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result:

Going to sleep....
Going to sleep....
Going to sleep....

Now, press Ctrl+c to interrupt the program and you will see that your program will catch the signal
and would come out by printing something as follows:

Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.

The raise function:
You can generate signals by function raise, which takes an integer signal number as an argument
and has the following syntax.

int raise (signal sig);

Here, sig is the signal number to send any of the signals: SIGINT, SIGABRT, SIGFPE, SIGILL,
SIGSEGV, SIGTERM, SIGHUP. Following is the example where we raise a signal internally using raise
function as follows:

#include <iostream>
#include <csignal>

using namespace std;

void signalHandler(int signum)
{
 cout << "Interrupt signal (" << signum << ") received.\n";

 // cleanup and close up stuff here
 // terminate program

 exit(signum);

}

int main ()
{
 int i = 0;
 // register signal SIGINT and signal handler
 signal(SIGINT, signalHandler);

 while(++i){
 cout << "Going to sleep...." << endl;
 if(i == 3){
 raise(SIGINT);
 }
 sleep(1);
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result and would come

out automatically:

Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

