

C Programming

Absolute basics

 languages: natural and artificial

 machine languages

 high-level programming languages

 obtaining the machine code: compilation process

 recommended readings

 your first program

 variable – why?

 integer values in real life and in “C”, integer literals

Data types

 floating point values in real life and in “C”, float literals

 arithmetic operators

 priority and binding

 post- and pre -incrementation and -decrementation

 operators of type op=

 char type and ASCII code, char literals

 equivalence of int and char data

 comparison operators

 conditional execution and if keyword

 printf() and scanf() functions: absolute basics

Flow control

 conditional execution continued: the “else” branch

 more integer and float types

 conversions – why?

 typecast and its operators

 loops – while, do and for

 controlling the loop execution – break and continue

 logical and bitwise operators

Arrays

 switch: different faces of ‘if’

 arrays (vectors) – why do you need them?

 sorting in real life and in a computer memory

 initiators: a simple way to set an array

 pointers: another kind of data in “C”

 an address, a reference, a dereference and the sizeof operator

 simple pointer and pointer to nothing (NULL)

 & operator

 pointers arithmetic

 pointers vs. arrays: different forms of the same phenomenon

 using strings: basics

 basic functions dedicated to string manipulation

Memory management and structures

 the meaning of array indexing

 the usage of pointers: perils and disadvantages

 void type

 arrays of arrays and multidimensional arrays

 memory allocation and deallocation: malloc() and free() functions

 arrays of pointers vs. multidimensional arrays

 structures – why?

 declaring, using and initializing structures

 pointers to structures and arrays of structures

 basics of recursive data collections

Functions

 functions – why?

 how to declare, define and invoke a function

 variables' scope, local variables and function parameters

 pointers, arrays and structures as function parameters

 function result and return statement

 void as a parameter, pointer and result

 parameterizing the main function

 external function and the extern declarator

 header files and their role

Files and streams

 files vs. streams: where does the difference lie?

 header files needed for stream operations

 FILE structure

 opening and closing a stream, open modes, errno variable

 reading and writing to/from a stream

 predefined streams: stdin, stdout and stderr

 stream manipulation: fgetc(), fputc(), fgets() and fputs() functions

 raw input/output: fread() and fwrite() functions

Preprocessor and complex declarations

 preprocessor – why?

 #include: how to make use of a header file

 #define: simple and parameterized macros

 #undef directive

 predefined preprocessor symbols

 macrooperators: # and ##

 conditional compilation: #if and #ifdef directives

 avoiding multiple compilations of the same header files

 scopes of declarations, storage classes

 user -defined types – why?

 pointers to functions

 analyzing and creating complex declarations

