
 

Test Automation Using Selenium 
WebDriver with Java

						      Navneesh Garg

•	 Selenium WebDriver 2.0

•	 Learn Automation on a 
Web Based Application

•	 Real Life Experiences 

•	 Step By Step Instructions

•	 Interview Questions Based 
on Selenium

Selenium WebDriver  
Step By Step Guide



2

All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system or transmitted in any form or by any means, electronic, mechanical, 
photocopying, recording, scanning, or otherwise without either the prior written 
permission of the author or authorization through payment of the appropriate per-copy 
fee to the Author. For permission please contact author at adactin.com/contact.html.

Test Automation Using Selenium WebDriver with Java

By Navneesh Garg

ISBN - 978-0-9922935-1-2

Publisher: AdactIn Group Pty Ltd.

Copyright © 2014 AdactIn Group Pty Ltd.

This document also contains registered trademarks, trademarks and service marks that are owned by 
their respective companies or organizations. The publisher and the author disclaim any responsibility 
for specifying which marks are owned by which companies or organizations.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE 
AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO 
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND 
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, 
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE 
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE 
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER 
IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING OR OTHER PROFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES 
OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE 
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN 
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFOR-
MATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES 
THE INFORMATION. THE ORGANIZATION OR WEBSITE MAY PROVIDE OR MAKE 
OWN RECOMMENDATIONS.



3

Contents

About the Author ...................................................................................................... 9

Preface..................................................................................................................... 11

1. Introduction to Automation................................................................................ 15

1.1  What is Functional Automation?...........................................................................15

1.2  Why do we Automate?..........................................................................................16

1.3  When should we Automate? Economics of Automation........................................... 17

1.4  Commercial and Open Source Automation Tools.................................................18

2. Training Application Walkthrough...................................................................... 20

2.1  Training Application Walkthrough .......................................................................20

3 . Planning before Automation............................................................................... 26

3.1  Pre-requisites Before you Start Recording..............................................................26

3.2  Test Automation Process .......................................................................................30

4. Introduction to Selenium..................................................................................... 32

4.1  Selenium’s Tool Suite.............................................................................................32

4.2   How to Choose the Right Selenium Tool for your need.......................................36

4.3  Installation Requirements for Selenium ................................................................38

5. Installing Selenium Components......................................................................... 39

5.1  Installing Selenium IDE........................................................................................39

5.2  Installing Firebug plug-in......................................................................................42

5.3  Installing the FirePath ..........................................................................................46

5.4  Installing Java Development Kit............................................................................50

5.5  Installing and Configuring Eclipse.........................................................................53

5.6  Installing WinANT...............................................................................................57



4

Test Automation Using Selenium WebDriver with Java

6. Using Selenium IDE............................................................................................ 62

6.1  Selenium IDE Interface.........................................................................................63

6.2  Recording Using Selenium IDE............................................................................65

6.3  Save and Replay the Script using IDE...................................................................68

6.4  Inserting/Editing Test Steps Manually...................................................................72

6.5  Adding Verifications and Asserts with the Context Menu......................................74

7. Managing User Interface Controls....................................................................... 80

7.1  How Does Selenium IDE Replay Scripts?.............................................................80

7.2  Locate the elements on a Web page.......................................................................81

7.3  Find XPath using Firefox Add-on..........................................................................88

8. Basics of Java....................................................................................................... 91

8.1  Object-oriented Programming Concepts...............................................................91

8.2  Language and Syntax Basics..................................................................................99

8.3  Working with Classes, Objects and Methods.......................................................116

8.4  Exception Handling............................................................................................126

9. Creating First Selenium WebDriver Script......................................................... 131

9.1  Recording and Exporting Script from IDE..........................................................131

9.2  Configure Eclipse to Work with Selenium...........................................................137

9.3  Running the Test.................................................................................................148

10. Selenium Methods........................................................................................... 152

10.1  Common Selenium WebDriver Methods..........................................................154

11. Multiple Choice Questions Set-1..................................................................... 158

12. Verification Point in Selenium......................................................................... 162

12.1  Need for a Verification Point.............................................................................162

12.2  Inserting a Verification Point.............................................................................163

12.3  Understand how to Implement a Few Common Validations.............................171

12.4  Assert Statements in Junit..................................................................................173



Contents

5

13. Shared UI Map................................................................................................ 177

13.1  What is a Shared UI Map?.................................................................................178

13.2  Add a Shared UI Map to Selenium Project........................................................180

13.3  Using a Shared UI Map file in Script.................................................................185

14. Using Functions .............................................................................................. 191

14.1  Creating Functions in WebDriver.....................................................................191

14.2  Calling a Function in WebDriver Script............................................................199

15. Using a Configuration File............................................................................... 203

15.1  Create a Configuration File...............................................................................204

15.2  Using Configuration File Parameters in a Script................................................206

16. Data Driven Testing - Parameterization........................................................... 209

16.1  Data Drive a Script with a Single Value from an Excel Sheet.............................210

16.2  Parameterize the Script with Multiple Values from an Excel Sheet.....................219

17. Synchronizing WebDriver scripts..................................................................... 223

17.1  What is Synchronization?..................................................................................224

17.2  Approaches used for Script Synchronization......................................................224

17.3  Using Script Synchronization in a Script...........................................................230

18. Handling Pop-up Dialogs and Multiple Windows........................................... 239

18.1  Handle Alerts or Prompts..................................................................................239

18.2  Working with Multiple Windows......................................................................243

19. Working with Dynamic UI Objects................................................................. 247

19.1  Understanding Dynamic UI Objects.................................................................247

19.2  Handling Dynamic Objects using Programming...............................................249

19.3  Handling Dynamic Objects using Partial Match...............................................254

20. Multiple Choice Questions Set-2..................................................................... 257

21. Debugging Scripts........................................................................................... 260

21.1  Debugging Features...........................................................................................260

21.2  Run Tests in Debug mode with Breakpoints......................................................262



6

Test Automation Using Selenium WebDriver with Java

21.3  Step Commands, Variables and Watch..............................................................267

22. Exception Handling in WebDriver................................................................... 272

22.1  Handling WebDriver Exceptions ......................................................................273

22.2  Handle Specific Exceptions...............................................................................279

22.3  Common WebDriver Exceptions.......................................................................280

23. Reporting in Selenium..................................................................................... 282

23.1  Test Framework Reporting Tools.......................................................................282

23.2  Configuring JUnit HTML Reports...................................................................283

23.3  Configuring TestNG Report for your Tests........................................................292

23.4  Custom Reporting in Excel Sheets or Databases................................................308

24. Batch Execution............................................................................................... 310

24.1  Batch Execution with TestNG...........................................................................310

24.2  Batch Execution with Master WebDriver Script................................................314

25. Continuous Integration with Jenkins.............................................................. 319

25.1  Installing Jenkins Tool.......................................................................................320

25.2  Jenkins Configuration.......................................................................................322

25.3  Selenium WebDriver Test Execution in Jenkins.................................................324

26. Automation Frameworks.................................................................................. 335

26.1  Why do we need Automation Frameworks?.......................................................335

26.2  What exactly is an Automation Framework?......................................................336

26.3  Types of Frameworks.........................................................................................338

27. Selenium Functions, Common Questions and Tips......................................... 343

27.1  How to use JavaScript.......................................................................................343

27.2  How to take a Screenshot..................................................................................345

27.3  How to use Keyboard or Mouse movements.....................................................347

27.4  How to read Rows, Columns and Cell Data from Table....................................350

27.5  Working with Multiple Browsers.......................................................................352

27.6  How to Maximize Browser Window..................................................................353



Contents

7

27.7  Checking an Element’s Presence........................................................................353

27.8  Checking an Element’s Status............................................................................355

27.9  Working with Drop-down lists..........................................................................355

27.10  Working with Radio Buttons and Groups.......................................................357

27.11  Working with Checkboxes...............................................................................358

27.12  Measuring Response time for Performance Testing using Timer......................358

27.13  Xpath and Properties Finder in IE and Chrome browsers................................361

27.14  How to use WebDriver test remotely using Selenium Grid..............................367

28. Multiple Choice Questions Set-3..................................................................... 377

29. Sample Naming and Coding Conventions....................................................... 380

29.1  Sample Naming Conventions............................................................................380

29.2  Coding Conventions.........................................................................................382

30. Common Selenium Interview Questions......................................................... 385

30.1  Common Test Automation and Selenium Interview Questions.........................385

31. Sample Test Cases for Automation................................................................... 389



8



9

About the Author 

Navneesh Garg

Navneesh Garg is a recognized test automation architect and corporate trainer, specializing 
in test automation, performance testing, security testing and test management. As a tool 
specialist, he has worked on a variety of functional automation tools including Selenium, 
HP QTP/UFT, TestComplete, TestPartner, SilkTest, Watir, RFT, and on varied technologies 
including Web, Java, Dot-net, SAP, Peoplesoft and Seibel.

His previous book “Test Automation using Unified Functional Testing” is among the 
bestselling books on HP QTP. This book has consistently ranked among the top 100 
testing books on Amazon. It was the first book to be released globally on the latest version 
of HP QTP.

He is an entrepreneur and founder of several successful IT companies which encompass 
the AdactIn Group, CresTech Software, and Planios Technologies.

As an experienced corporate trainer, he has trained professionals in Selenium and other 
test tools across a wide range of global clients such as Macquarie Bank, Corporate Express, 
Max New York Life, Accenture, NSW Road and Maritime Services, Australian Dept of 
Education, HCL Technologies, Sapient, Fidelity Group, Adobe Systems, and many more. 
He has training experience in diverse geographies such as Australia, India, Hong Kong and 
USA.

As a technical test delivery head for his company, he has led and managed functional 
automation testing and performance testing teams across a wide range of domains, using 
commercial tools and open source tools. Certified in HP QTP, HP Quality Center, HP 
LoadRunner, IBM Rational Functional Tester and as a Certified Ethical Hacker, he has 
designed several high-end automation frameworks including using Selenium and its 
integrations with tools like TestNG, JUnit, Selenium Grid, Jenkins and ANT.



10



11

Preface

My motivation for writing this book stems from my hands-on experience in the IT and 
testing domain and the experience I have gained as an automation consultant working in 
numerous complex automation projects. 

Selenium, being an open source tool, is gaining huge popularity but still is not conceived 
as an easy to use tool especially by testers due to a variety of reasons, including tool setup, 
programming background and support issues.  A key objective of this book is showcase 
in a simple guided way how to use Selenium WebDriver so that we can attain maximum 
return on investment from using the tool. Not only will we learn how to use the tool but 
also how to effectively create maintainable frameworks using Selenium.

In my previous book “Test Automation using HP Unified Functional Testing” we had 
taken a similar step by step guided approach using commercial tool HP UFT which has 
been excellently received by the testing fraternity.

Scope of Topics

As part of the scope of this book we will cover Selenium WebDriver (Selenium 2.0) with 
Java as a programming language. We will also cover how to use Selenium IDE which is a 
Firefox based Selenium Plug-in for easy record and replay. 

We will be using Eclipse as the main IDE for creating Selenium WebDriver tests. 

No prior knowledge of Java language is required for this book but having understanding 
of object oriented programming language concepts will definitely help. As part of this book 
we will be covering Basics of Java which would be required to use Selenium WebDriver 
for beginner users.

In the later section we also show how to configure and use Selenium Grid to run parallel 
tests on multiple browsers and OS configurations.

As part of reporting frameworks, the book will show how to configure and use both custom 
JUnit and TestNG reports.

We will also see how Selenium WebDriver integrates with continuous Integration tools 
like Jenkins. 



12

Test Automation Using Selenium WebDriver with Java

My intent in this book is to discuss the key features of Selenium WebDriver, WebDriver 
methods and cover all crucial aspects of the tool which help to create effective automation 
frameworks.

The book does not have samples or examples on how to use Selenium WebDriver with 
Python, C# and Ruby languages. The book focuses on using Selenium WebDriver with 
Java language. 

Key Audience

The target audience for this book are manual functional testers who want to learn Selenium 
WebDriver quickly and who want to create effective automation frameworks that generate 
positive ROIs to stakeholders.

Salient Features of this Book 

This book has been designed with the objective of simplicity and ease of understanding. 

A major fear amongst functional testers who want to learn Selenium is the fear of 
programming language and coding. As a part of this we will cover just enough basics 
on Java programming language that will give the readers confidence to use Selenium 
WebDriver.

This book follows a unique training based approach instead of a regular text book 
approach. Using a step by step approach, it guides the students through the exercises using 
pictorial snapshots.

Selenium being an open source tool needs quite a few independent components to be 
installed like Eclipse, TestNG, ANT, etc. This would usually scare testers. In this book we 
will cover step by step installation and configuration of each of these components.

Another major highlight of this book is a custom developed Web based application used 
throughout the book instead of learning automation on custom html pages with few 
form fields and links.

Another differentiator is that I have tried to include many practical examples and 
issues which most of the automation testers encounter in day-to-day automation. These 
experiences will give you an insight into what challenges you could face with automation 
in the real world. Practical examples cover how to use most of the features within Selenium 
WebDriver.

It also covers aspects of Continuous Integration tool; Jenkins so that Selenium WebDriver 
scripts can be integrated with the development environment and run on nightly builds.

The book also covers the most common interview questions on Selenium WebDriver and 
automation.

Sample Application and Source Used in Book



Preface

13

The sample application used in the book can be accessed at the following URL: 

www.adactin.com/HotelApp/

The source code used in the book can be found at the following link

www.adactin.com/store/

Feedback and Queries 

For any feedback or queries you can contact the author at www.adactin.com/contact.html 
or email navneesh.garg@adactin.com

Order this book

For bulk orders, contact us at orders@adactin.com

You can also place your order online at adactin.com/store/

Acknowledgements

I would like to thank my family (my parents, my wife Sapna, my wonderful kids Shaurya 
and Adaa) for their continued support. Without them this book would not have been 
possible. 

Special thanks to Emily Jones and William B. for their reviews and feedback, which 
immensely helped as I worked on this book.

I would also like to thank my colleagues and clients for the inspiration, knowledge and 
learning opportunities provided.



14



15

1
Introduction to Automation

Introduction 

In this chapter we will talk about automation fundamentals and understand what 
automation is and the need for automation. An important objective of this chapter is 
to understand the economics of automation, and determine when we should carry out 
automation in our projects. We will also discuss some popular commercial and open source 
automation tools available in the market.

Key objectives:

•	 What is automation?
•	 Why automate? What are the benefits of automation?
•	 Economics of automation
•	 Commercial and Open Source automation tools

1.1  What is Functional Automation?
Automation testing is to automate the execution of manually designed test cases without 
any human intervention.

The purpose of automated testing is to execute manual functional tests quickly and in a 
cost-effective manner. Frequently, we re-run tests that have been previously executed (also 
called regression testing) to validate functional correctness of the application. Think of a 
scenario where you need to validate the username and password for an application which 
has more than 10,000 users. It can be a tedious and monotonous task for a manual tester 
and this is where the real benefits of automation can be harnessed. We want to free up 
manual functional tester’s time so that they can perform other key tasks while automation 
provides extensive coverage to the overall test effort.

When we use the term “automation”, there is usually confusion about whether automation 
scope includes functional and performance testing. Automation covers both.

•	 Functional Automation – Used for automation of functional test cases in the 
regression test bed.



16

Test Automation Using Selenium WebDriver with Java

•	 Performance Automation – Used for automation of non-functional performance test 
cases. An example of this is measuring the response time of the application under 
considerable (for example 100 users) load. 

Functional automation and performance automation are two distinct terms and their 
automation internals work using different driving concepts. Hence, there are separate tools 
for functional automation and performance automation.

For the scope of this book, we will be only referring to Functional Automation.

1.2  Why do we Automate?
Find below key benefits of Functional Automation:

1.	 Effective Smoke (or Build Verification) Testing 

Whenever a new software build or release is received, a test (generally referred to as “smoke 
test” or “shakedown test”) is run to verify if the build is testable for a bigger testing effort 
and major application functionalities are working correctly. Many times we spend hours 
doing this only to discover that a faulty software build resulted in all the testing efforts 
going to waste. Testing has to now start all over again after release of a new build. 

If the smoke test is automated, the smoke test scripts can be run by developers to verify the 
build quality before being released to the testing team. 

2.	 Standalone - Lights Out Testing 

Automated testing tools can be programmed to kick off a script at a specific time. 

If needed, automated tests can be automatically kicked off overnight, and the testers can 
analyse the results of the automated test the next morning. This will save valuable test 
execution time for the testers.

3.	 Increased Repeatability 

At times it becomes impossible to reproduce a defect which was found during manual 
testing. Key reason for this could be that the tester forgot which combinations of test steps 
led to the error message; hence, he is unable to reproduce the defect. Automated testing 
scripts take the guess work out of test repeatability.

4.	 Testers can Focus on Advanced Issues 

As tests are automated, automated scripts can be base-lined and re-run for regression 
testing. Regression tests generally yield fewer new defects as opposed to testing newly 
developed features. So, functional testers can focus on analysing and testing newer or more 
complex areas that have the potential for most of the defects while automated test scripts 
can be used for regression test execution.



Introduction to Automation

17

5.	 Higher Functional Test Coverage 

With automated testing a large number of data combinations can be tested which might 
not be practically feasible with manual testing. We use the term ‘Data driven testing’ which 
means validating numerous test data combinations using one automated script. 

6.	 Other Benefits

•	 Reliable: Tests perform precisely the same operations each time they are run, thereby 
eliminating human error. 

•	 Repeatable: You can test how the software reacts under repeated execution of the 
same operations.

 	 Programmable: You can program sophisticated tests that bring out hidden 
information from the application.

•	 Comprehensive: You can build a suite of tests that cover every feature in your 
application. 

•	 Reusable: You can re-use tests on different versions of an application, even if the 
user-interface changes. 

•	 Better Quality Software: Because you can run more tests in less time with fewer 
resources. 

•	 Fast: Automated tools run tests significantly faster than human users. 

1.3  When should we Automate?  
Economics of Automation

Let us take a scenario. If your Test Manager comes up to you and asks whether it is advisable 
for your company to automate an application, how would you respond?

In this scenario, the manager is interested in knowing if functional automation will deliver 
the organization a better return on investment (ROI) besides improving application quality 
and test coverage.

We can determine whether we should automate a given test if we can determine that the 
cost of automation would be less than the total cost of manually executing the test cases.

For example, if a test script is to run every week for the next two years, automate the test 
if the cost of automation is less than the cost of manually executing the test 104 times (2 
years will have 104 weeks).

Calculating the Cost of Test Automation

Cost of Automation = Cost of tool + labor cost of script creation +  
			   labor cost of script maintenance



18

Test Automation Using Selenium WebDriver with Java

Automate if: 

Cost of automation is lower than the manual execution of those scripts.

The key idea here is to plan for the cost of script maintenance. I have seen a lot of automation 
projects fail because project managers did not plan for the labor costs involved in script 
maintenance.

Example

Let me give you an example from my personal experience.

I performed some automation work for one of our investment banking clients. We had 
a five-member team, which automated almost 3000 test cases in about six months time, 
which included around total 30 man months of effort. At the end of project, we gave the 
client’s testing team a hand-over of the entire automation suite created by our team. Our 
recommendation to them was that they would need at least a one or two member team 
to continuously maintain the scripts. This was because there were still functional changes 
happening to the application and scripts would need maintenance. But since the client 
project manager had no budget allocated for this activity; they skipped this advice and 
continued to execute automation scripts. After the first six months of the 3000 test cases, 
only 2000 test cases were passing, while the rest started failing. These scripts failures were 
because script fixes were needed due to application changes. The client team was okay with 
that and continued to execute those 2000 working test cases, and got rid of the remaining 
1000 test cases, which were now executed manually. After another six months, only scripts 
corresponding to 1000 test cases were passing. So they got rid of another 1000 test cases 
and started executing them manually. After another six months (1.5 years in total), all the 
scripts were failing, and testing had to move back to manual functional testing. 

In the above real-life scenario, the cost of automation and its benefits could have been 
reaped, if the client had allocated 1-2 automation testers (could have been part-time) to 
maintain the scripts and had properly planned and budgeted for it.

1.4  Commercial and Open Source Automation Tools
This section lists some of the popular Commercial and Open Source Automation Tools.

Vendor Tool Details

OpenSource 
(free)

Selenium Open Source tools and market leader 
in Open Source segment. Primary for 
WWeb-based automation. Support C#, 
Java, Python, and Ruby as programming 
language.



Introduction to Automation

19

OpenSource 
(free)

Watir Watir stands for “Web application testing 
in Ruby”. It is again primarily for WWeb 
application automation and uses Ruby as 
the programming language.

HP Unified Functional 
Testing

HP UFT (previous version was called QTP) 
is the market leader in Test Automation 
in the commercial tools segment. It uses 
VBScript as the programming language 
and its ease of use makes it a tool of choice 
against other competing tools.

IBM Rational Functional 
Tester

IBM Rational Functional tester is another 
popular test Automation Tool. We can 
program in VB.net or Java using this tool. 
Is recommended for technical testers.

Microfocus SilkTest Microfocus bought SilkTest from Borland. 
It is still a very popular automation tool 
which uses 4Test (propriety) language. 
Good for technical testers.

Microsoft VSTP –  
Coded UI tests

Coded UI tests come with Microsoft Visual 
studio Ultimate or Premium version. 
You can program using VB.net or C# 
as languages of choice. Fairly good for 
technical testers. 

SmartBear TestComplete Low cost alternative to other commercial 
tools with good features for automation. 
You have the option to program using 
VBScript, JScript, C++Script, C#Script or 
DelphiScript language.

2



32

4
Introduction to Selenium

Introducing Selenium

Selenium is an Open Source tool for automating browser-based applications. Selenium is 
a set of different software tools, each with a different approach to support test automation. 
The tests can be written as HTML tables or coded in a number of popular programming 
languages and can be run directly in most modern Web browsers. Selenium can be 
deployed on Windows, Linux, and Macintosh and many OS for mobile applications like 
iOS, Windows Mobile, and Android.

Among all Open Source tools, Selenium functional testing tool is considered to be a highly 
portable software testing framework and one of the best tools available in the current 
market for automation of Web applications.

Key objectives: 

1.	 Understand Selenium Tool Suite
2.	 Choosing right Selenium Tool for use
3.	 Requirements for Selenium Setup

4.1  Selenium’s Tool Suite
Selenium is not just a single tool but a suite of software, each catering to different testing 
needs of an organization. It has four components.



Introduction to Selenium

33

Figure 4.1 - Selenium Suite Structure

In the section below we will understand more about each of these components.

1.	 Selenium IDE

Selenium IDE (Integrated Development Environment) is a prototyping tool for building 
test scripts. It comes as a Firefox plug-in and provides an easy-to-use interface for developing 
automated tests. Selenium IDE has a recording feature, which records user actions as they 
are performed and then exports them as a reusable script in one of many programming 
languages for execution later.

Selenium IDE is simply intended to be a rapid prototyping tool. Selenium IDE has a 
“Save” feature that allows users to keep the tests in a table-based format for later import 
and execution. Selenium IDE doesn’t provide iteration or conditional statements for test 
scripts. Use Selenium IDE for basic automation. Selenium developers usually recommend 
Selenium 2 or Selenium 1 to be used for serious, robust test automation.

2.	 Selenium 1- Selenium RC or Remote Control

Selenium RC is the main Selenium project allowing user actions to be simulated in a 
browser like clicking a UI element, input data, etc. It executes the user commands in the 
browser by injecting Java script functions to the browser when the browser is loaded. As we 
know, Java Script has its own limitations and so does Selenium RC.

How Selenium RC Works

First, we will describe how the components of Selenium RC operate and the role each plays 
in running your test scripts.

RC Components: Selenium RC components are:



39

5
Installing Selenium Components

Introduction

Before we can start using Selenium, there are a few Selenium and non-Selenium components 
that we need to install. In this chapter we will perform step by step installation and setup 
of the components which we will need to use over the scope of this book.

Note: You need access to the internet to download the required setup files.

Key objectives: 

1.	 Setup Instructions for installing Selenium IDE
2.	 Setup Instructions to install add-on Firebug
3.	 Setup Instructions to install add-on Firepath
4.	 Setup Instructions to install Java Development toolkit
5.	 Setup Instructions to install and setup Eclipse
6.	 Setup Instructions to install WinANT

5.1  Installing Selenium IDE
Pre-requisite – Firefox browser should be installed locally on the test machine.

1.	 Launch Firefox browser and open URL http://seleniumhq.org/download/ to 
download Selenium IDE from the SeleniumHQ download Page. 

2.	 Click on the latest version of Selenium IDE link within Selenium IDE section

Note: The version of the link is constantly being updated. Click on the 
latest link available at the time you install Selenium IDE.



40

Test Automation Using Selenium WebDriver with Java

Figure 5.1 – Download Selenium IDE

3.	 Firefox will protect you from installing add-ons from unfamiliar locations, so you 
will need to click ‘Allow’ to proceed with the installation

Figure 5.2 – Allow IDE Installation

4.	 Add-on will get downloaded and you will see Software Installation pop-up. Click 
on Install Now



Installing Selenium Components

41

Figure 5.3 – Install Selenium IDE from Firefox Add-on

5.	 Firefox will show restart dialog to restart Firefox. Click on Restart Now

Figure 5.4 - Restart Now Firefox

6.	 After Firefox reboots you will find the Selenium-IDE listed under the Firefox Tools 
menu. Go to Tools → Selenium IDE

Figure 5.5 – Selenium IDE in Tools Menu



42

Test Automation Using Selenium WebDriver with Java

5.2  Installing Firebug plug-in
Now we will install Firefox add-on Firebug (if we haven’t done that already). 

Firebug integrates with Firefox to give access to Web development tools to edit, debug, and 
monitor CSS, HTML, and JavaScript live in any Web page.

In Selenium, Firebug helps in inspecting UI elements and finding its associated properties 
and values.

1.	 To install Firebug add-ons, Open Firefox browser, launch www.google.com and 
search for Firebug. Click on Firebug link.

Figure 5.6 Firebug link in Google Search



Installing Selenium Components

43

2.	 Add-ons page appears. Click on + Add to Firefox button

Figure 5.7 – Add Firebug to Firefox

3.	 Wait for Firebug add-ons to be downloaded. Once downloaded, click on Install 
Now button in Software Installation pop-up.

Figure 5.8 – Install Now Firebug



131

9
Creating First Selenium  
WebDriver Script

Now that we understand Selenium Basics (Selenium IDE and Locators) and basics of Java 
we are ready to jump into the real Selenium automation tool – Selenium WebDriver.

In this chapter we will see how to create a WebDriver script. Also, we will configure Eclipse 
environment.

Key objectives:

•	 Exporting Selenium IDE script as a Java Selenium WebDriver script
•	 Configuration of project structure in Eclipse and use Selenium WebDriver script
•	 Running of Selenium WebDriver script

9.1  Recording and Exporting Script from IDE
In this section we will record the test case using Selenium IDE and then export the test case 
using Java/JUnit 4/WebDriver option. Follow the steps given below:

1.	 Open Selenium IDE and verify that recording mode is ON

2.	 Assuming that application login page is already open in Firefox browser with login 
page visible, perform the following steps (in IDE recording mode):
a.	 Login (Use the username/password with which you have registered earlier)
b.	 Search for a Hotel

i.	 Select a location, e.g., Sydney
ii.	Select number of rooms, e.g., 2-Two
iii.	Select adults per rooms, e.g., 2-Two
iv.	Click on Search button

c.	 Select a Hotel
i.	 Select one of the Hotel Radio buttons, e.g., select radio button next to Hotel 

Creek
d.	 Book a Hotel



132

Test Automation Using Selenium WebDriver with Java

i.	 Enter First Name
ii.	 Enter Last Name
iii.	 Enter Address
iv.	 Enter 16-digit Credit Card No.
v.	 Enter Credit Card type
vi.	 Enter Expiry Month
vii.	 Enter Expiry Year
viii.	 Enter CVV number
ix.	 Click on Book Now

e.	 After you see the Booking confirmation page, click on Logout link in the top 
right corner

f.	 Click on “Click here to Login again” link to go back to Home page
3.	 Stop recording by clicking on Stop Recording button in record toolbar
4.	 Verify the steps below that are recorded Selenium ID

Figure 9.1  IDE Script

1.	 Select  to File → Export Test Case As → Java/ JUnit 4/WebDriver



Creating First Selenium WebDriver Script


133

Figure 9.2  Export IDE Test

Note: We will focus on Selenium WebDriver with Java but as you can see 
Selenium supports export as C#, Python and Ruby languages as well.

2.	 Save it as MyFirstWebDriverTest in C:\Selenium Folder. You will notice that the 
script is saved as MyFirstWebDriverTest.java file

3.	 Try to open the script you have saved in an editor like NotePad++ (you can download 
this freely from internet)



134

Test Automation Using Selenium WebDriver with Java

Figure 9.3 - Java code for WebDriver test

Next step will be to review this code and use it in Eclipse.

1.	 Let us review the exported Java code. The exported test is Junit test. JUnit is a unit 
testing framework for the Java programming language. 

2.	 We will see a class “MyFirstWebDriverTest” shown in the snapshot below 
The highlighted lines in the snapshot below will acquire an instance of a new Firefox 
browser and assign it to the driver (WebDriver) object which we will use to perform all of 
our browser actions.



Verification Point in Selenium

173

12.4  Assert Statements in Junit
JUnit provides static methods in the Assert class to test for certain conditions. These 
assertion methods typically start with assert and allow you to specify the error message, the 
expected and the actual result. An assertion method compares the actual value returned by 
a test to the expected value, and throws an AssertionException if the comparison test fails. 

When we use the Assert statement we do not have to use an ‘If-Else’ logical statement as 
the Assert statement will verify the result for us and return the correct value. 

But important to note is that in case of failure, the Assert statement will Abort and exit the 
script. There are ways of implementing the Assert statement to avoid stopping and exiting 
the script. We will see a sample implementation in the script below.

The following table gives an overview of these methods. Parameters in [] brackets are 
optional. 

Test methods

Statement Description
fail(String) Let the method fail. Might be used to 

check that a certain part of the code is 
not reached. Or to have a failing test 
before the test code is implemented. The 
String parameter is optional. 

assertTrue([message], boolean condition) Checks that the boolean condition is 
true.

assertFalse([message], boolean condition) Checks that the boolean condition is 
false.

assertEquals([String message], expected, 
actual)

Tests that two values are the same. Note: 
for arrays the reference is checked, not 
the content of the arrays. 

assertEquals([String message], expected, 
actual, tolerance) 

Test that float or double values match. 
The tolerance is the number of decimals 
which must be the same. 

assertNull([message], object) Checks that the object is null.
assertNotNull([message], object) Checks that the object is not null.
assertSame([String], expected, actual) Checks that both variables refer to the 

same object. 
assertNotSame([String], expected, actual) Checks that both variables refer to 

different objects. 

Figure 12.18 – Junit Assert Statements 



174

Test Automation Using Selenium WebDriver with Java

Let us see an example where we had earlier used the Assert statement.

1.	 Go to your Selenium IDE and make sure script “IDEVerificationScript” is Open

Figure 12.19– Verification Point IDE Script

2.	 Go to File → Export Test  Case As… → Java/JUnit4/WebDriver and export the 
script as a WebDriver Junit test

3.	 Open the exported WebDriver test in NotePad++

Figure 12.20 - Exported Verification Point Script

If you notice a new statement, assertTrue has been added which validates that the logout 
link is present.



191

14
Using Functions 

Functions help divide your test into logical units, such as areas of key functionalities of 
the application. Functions help make our scripts modular and reusable, which will save 
us maintenance effort and also help us improve productivity. These functions can then be 
re-used in different scripts.

For example, all of our scripts will have to login to the application. Now, instead of 
recording login steps repeatedly in every script, we can keep an external login function and 
re-use that function in all of our scripts.

Example

Let us see another practical example here:

At one of our client engagements, we were automating an investment banking application. 
As a first step of every test case, we had to create investment instruments after which we 
had to validate, and add details in later steps (we had more than 100 test cases for each 
instrument type). Creating an instrument was a tedious step with up to 50 field values to 
be entered. Based on the test scenario, input data would change. Now recording the steps 
of investment instrument creation in each and every script would have been a nightmare 
and time consuming. It would have also been a maintenance issue, if in later development 
stages the application workflow is changed or new fields were added.

So we created functions to create instruments and for each of the test cases that were 
automated, we just invoked the same function in every script. This helped us reduce 
the overall time to automate. This also assisted in maintenance down the line, when the 
investment instrument creation workflow changed.

Key objectives: 

•	 Create Functions 
•	 Calling Functions in WebDriver script

14.1  Creating Functions in WebDriver
Key steps in creating Functions in WebDriver using Eclipse IDE include:

1.	 Create a separate Package and Class for Functions



192

Test Automation Using Selenium WebDriver with Java

2.	 Create Function definition and import any required Java libraries in the class
3.	 Add steps to functions based on function’s objective
4.	 Replace any data within functions with arguments from that function
5.	 Within the script, import Functions Package and Extend class to use function 

within your scripts

Pre-conditions

1.	 Select HotelApp_TestAutomation/src folder, right click and select New → Package

Figure 14.1 – New Package Creation



Using Functions

193

2.	 In Java Package dialog enter the Name functions and click Finish

Figure 14.2 – Package Name

A new package is created with the name functions.

3.	 Right click on package functions and select New → Class

Figure 14.3 – New Class Creation



272

22
Exception Handling in WebDriver

We have already learned about exceptions and their handling techniques in the chapter on 
Basics of Java. An exception is an event which occurs during the execution of a program that 
disrupts the normal flow of the program’s instructions.

Exception handling in Selenium is also a crucial exercise. Most of the time when a selenium 
script fails, it is because it has landed into an exception. The cause could be anything like:

•	 Element not found
•	 Couldn’t click the element
•	 Element not visible

The moment the driver comes across an exception it will halt the test. So it’s important for 
a tester to foresee these exception conditions and handle them according to the script or 
test requirements. This way the script failures are contributed to failures of test conditions 
and not to unhandled code exceptions. So, we have a bug corresponding to every test 
failure- which is our ultimate goal.  

To catch an exception we first put the code which we suspect will throw an error into a try 
block like

WebElement txtbox_username = driver.findElement(By.id(“username”));

try{

if(txtbox_username.isEnabled()){

txtbox_username.sendKeys(“adactin123”);}

  }

 catch(NoSuchElementException e){

System.out.println(e.toString());}

This is followed by a catch block of code where we tell the system what should be done 
when the exception occurs. Generally this is where we display the message of the exception 
object so that we know which exception has occurred and why.



Exception Handling in WebDriver

273

22.1  Handling WebDriver Exceptions 
In WebDriver we can use try-catch blocks or the throws statement with the purpose of 
handling the exceptions. The key point is that the exceptions we are catching here are 
Selenium exceptions rather than Java exceptions.

Test Scenario – If we provide an invalid username and password to the Login function, 
then the script should exit gracefully with a message. 

Let us follow the steps to implement the above scenario.

1.	 Now what visual cue tells us that a user is logged in to the application? There can be 
multiple visual cues but let us pick one of them being a welcome message.

Figure 22.1 – User Welcome message

2.	 Let’s use Firebug/FirePath to get its locator value

Figure 22.2 – Locator value for Welcome message



274

Test Automation Using Selenium WebDriver with Java

You see in the above snapshot the value for locator id is username_show

3.	 Add this to our SharedUIMap.properties file for further use 

Figure 22.3 – Welcome message added to Shared UI Map

4.	 Double click and open our HotelApp_BusinessFunctions.java script to view our 
existing login function

Figure 22.4 – Existing Login Function

5.	 Modify the function as given below to handle a successful or unsuccessful login

public void HA_BF_Login (WebDriver driver, String sUserName, String sPassword ) throws 
InterruptedException{

		

// Provide user name.

	               driver.findElement(By.xpath(prop.getProperty(“Txt_Login_Username”))).
clear();

	  driver.findElement(By.xpath(prop.getProperty(“Txt_Login_Username”))).
sendKeys(sUserName);

 // Provide Password.

driver.findElement(By.id(prop.getProperty(“Txt_Login_Password”))).clear();

	   driver.findElement(By.id(prop.getProperty(“Txt_Login_Password”))).



282

23
Reporting in Selenium

One of the very important features of a test automation solution is its reporting structure. 
After test execution we inspect the test report for results and defect detection. Selenium 
does not have its own mechanism for reporting results. Rather, it allows the automation 
tester to build their own reporting structure, customized to their needs, using features of 
the programming language of your choice. 

As part of this section, we are going to try to understand Test Framework Reporting tools

Key objectives:

•	 Test Framework Reporting Tools
•	 Configuring Junit HTML Report
•	 Configuring TestNG reports
•	 Custom Excel or Database reports

23.1  Test Framework Reporting Tools
Building your own reporting structure! It’s great! But what if you simply want something 
quick that’s already done for you? Often an existing library or test framework can meet 
your needs faster than developing your own test reporting code.

Test frameworks are available with all programming languages. Along with their primary 
function of providing a flexible test engine for executing your tests, they also include library 
code for reporting results. For example, Java has two commonly used test frameworks, 
JUnit and TestNG. .NET also has its own, NUnit.

What’s The Best Approach?

Most people new to testing frameworks will begin with the framework’s built-in reporting 
features since that’s less time consuming than developing your own. 

As you begin to use Selenium no doubt you will start putting in your own “print statements” 
for reporting progress. That may gradually lead to you developing your own reporting, 
possibly in parallel to using a library or test framework. Regardless, after the initial, but 
short learning curve, you will naturally develop what works best for your own situation, 
existing testing frameworks or your custom framework.



Reporting in Selenium

283

Test Reporting Examples in Java

We’ll direct you to some specific tools supported by Selenium. The ones listed here are 
common and have been used extensively (and therefore recommended).

•	 If Selenium Test cases are developed using JUnit then JUnit Report can be used to 
generate test reports. To use JUnit Report you would need to integrate Eclipse with 
ANT.

•	 If Selenium Test cases are developed using TestNG then no external task is required 
to generate test reports. The TestNG framework generates an HTML report which 
list details of tests. 

Advantages of using these frameworks:

•	 Very good reporting structure is available
•	 Can generate XML, HTML reports
•	 There are options available to create test methods, test suites, etc.
•	 Utilizes Selenium IDE or Firebug/FirePath to record test scripts

Disadvantages:

•	 We will not be able to define our own reporting format

23.2  Configuring JUnit HTML Reports
To create a JUnit based HTML report we will be using ANT with Eclipse.  We had installed 
WinANT as part of the earlier setup components chapter.

ANT - Apache Ant is a Java based build tool from Apache whose aim is to drive processes 
described in build files as targets and extension points dependent upon each other. The 
main known usage of Ant is the build of Java applications. Ant supplies a number of built-
in tasks allowing to compile, assemble, test and run Java applications. Ant can also be 
used effectively to build non Java applications, for instance C or C++ applications. More 
generally, Ant can be used to pilot any type of process which can be described in terms of 
targets and tasks. 

Apache Ant’s build files are written in XML and take advantage of the open standard, 
portable and easy to understand nature of XML.

Ant is extremely flexible and does not impose coding conventions or directory layouts to 
the Java projects which adopt it as a build tool. 

Key steps in creation of JUnit HTML report include 

•	 Generate ANT Build
•	 Run the Build file as Ant Build and Junit report option



319

25
Continuous Integration with Jenkins

Why do we need Continuous Integration tools for test automation? 

Continuous Integration (CI) tools assists in creating builds frequently (usually on a 
daily basis) and running developer driven tests (unit tests) to provide timely feedback on 
application quality. 

We can integrate our Selenium based functional test automation scripts with CI tools to 
execute our scripts as soon as a new build is created which will provide instant feedback on 
application issues.

Popular open source tools include Hudson, Jenkins (the fork of Hudson), CruiseControl 
and CruiseControl.NET. 

Commercial tools include ThoughtWorks’ Go, Urbancode’s Anthill Pro, Jetbrains’ Team 
City and Microsoft’s Team Foundation Server.

As part of this chapter we will learn how Selenium WebDriver scripts integrate with 
Jenkins, one of the popular open source CI tools.

About Jenkins

Jenkins is a popular continuous integration server in the Java development community. It is 
derived from the Hudson CI server. It supports configuration management tools including 
CVS, Subversion, Git, Mercurial, Perforce, and ClearCase, and can execute Apache Ant 
and Apache Maven based projects as well as arbitrary shell scripts and Windows batch 
commands.

Jenkins can be deployed to set up an automated testing environment where you can 
runSelenium WebDriver tests unattended based on a defined schedule, or every time 
changes are submitted in configuration.

Key objectives:

•	 Install Jenkins tool
•	 Jenkins Configuration
•	 Run Jenkins with ANT
•	 Scheduling Auto-Runs



320

Test Automation Using Selenium WebDriver with Java

25.1  Installing Jenkins Tool
Let us first install Jenkins.

Note: In a typical software development environment you would already 
have it installed by the development team.

1.	 Go to URL - http://jenkins-ci.org/
2.	 Download the Jenkins for the correct environment (in our case it is Windows)

Figure 25.1- Download Jenkins

3.	 Unzip the install file and click on Setup.exe (incase of windows)



343

27
Selenium Functions,  
Common Questions and Tips

In this chapter we will try to address a few of the important selenium functions and other 
common questions and tips that can be used in Selenium.

Key objectives:

•	 How to use JavaScript?
•	 How to take a Screen Shot?
•	 How to use Keyboard or Mouse movements?
•	 How to read row, columns and cells data from a table?
•	 Working with multiple browsers	
•	 How to maximize the Browser window	
•	 Checking an Element’s Presence	
•	 Checking an Element’s Status	
•	 Working with drop-down lists	
•	 Working with Radio buttons and groups	
•	 Working with Checkboxes	
•	 Measuring Response time for performance testing using timer	
•	 Xpath and Properties finder in IE and Chrome browsers	
•	 How to use WebDriver test remotely using Selenium Grid?	

27.1  How to use JavaScript
Selenium WebDriver API provides the ability to execute JavaScript code with the browser 
window. This is a very useful feature where tests need to interact with the page using 
JavaScript. Using this API, client-side JavaScript code can also be tested using Selenium 
WebDriver. 

For those browsers that support it, you can execute JavaScript by casting the WebDriver 
instance to a JavascriptExecutor . 



344

Test Automation Using Selenium WebDriver with Java

Example

Below code executes javascript and returns the Web page title

JavascriptExecutor js = (JavascriptExecutor) driver;

// returns Web page title

String title = (String) js.executeScript(“return document.title”);

//returns handle to Webelement with id myid

WebElement element = (WebElement)js.executeScript(“return document.
getElementById(myid)”);

Figure 27.1 – Using JavaScript Executor

You need to return from your Javascript snippet to return a value, so:

js.executeScript(“document.title”);

will return null, but:

js.executeScript(“return document.title”);

will return the title of the document.

Note: Based on the type of return value, we need to cast the executeScript() 
method. For decimal values, Double can be used, for non-decimal numeric 
values Long can be used, and for Boolean values Boolean can be used.

Example

Below code will return the count of combo boxes on the Search Hotel Page




