STANDARD - XII Reg. No.

Time: 3.00 Hrs.

MATHEMATICS Section - A

Marks : 200

Choose the best answer:

1. The non-parametric vector equation of a plane passing through three non collinear points

whose Pvs are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is

a)
$$\begin{bmatrix} \overrightarrow{r} - \overrightarrow{a} & \overrightarrow{b} - \overrightarrow{a} & \overrightarrow{c} - \overrightarrow{a} \end{bmatrix} = 0$$
 b) $\begin{bmatrix} \overrightarrow{r} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix} = 0$

b)
$$\begin{bmatrix} \overrightarrow{r} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix} = 0$$

c)
$$\begin{bmatrix} \overrightarrow{r} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$$

d)
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

2. The point of intersection of the line $\vec{r} = (\vec{i} - \vec{k}) + t(\vec{3}\vec{i} + 2\vec{j} + 7\vec{k})$ and the plane

$$\overrightarrow{r} \cdot (\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}) = 8 \text{ is}$$
a) (8.6.22)

3. \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then $(\overrightarrow{a} + \overrightarrow{b})$ is a unit vector if a) $\theta = \frac{\pi}{3}$ b) $\theta = \frac{\pi}{4}$ c) $\theta = \frac{\pi}{2}$ d) $\theta = \frac{2\pi}{3}$

a)
$$\theta = \frac{\pi}{3}$$

b)
$$\theta = \frac{\pi}{4}$$

c)
$$\theta = \frac{\pi}{2}$$

d)
$$\theta = \frac{2\pi}{3}$$

4. The centre and radius of the sphere $|\overrightarrow{r} - (2\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k})| = 5$ are a) (2,-1,4) and 5 b) (2,1,4) and 5 c) (-2,1,4) and 6 d) (2,1,-4) and 5

5. If $[\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}] = 64$ then $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]$ is

6. The workdone in moving a particle from the point A with position vector $2\vec{i} - 6\vec{j} + 7\vec{k}$ to the point B, with position vector $3\vec{i} - \vec{j} - 5\vec{k}$ by a force $\vec{F} = \vec{i} + 3\vec{j} - \vec{k}$ is b) 26

7. The d.c.s. of a vector whose direction ratios are 2, 3, -6 are

a)
$$\left(\frac{2}{7}, \frac{3}{7}, -\frac{6}{7}\right)$$

a)
$$\left(\frac{2}{7}, \frac{3}{7}, -\frac{6}{7}\right)$$
 b) $\left(\frac{2}{49}, \frac{3}{49}, -\frac{6}{49}\right)$ c) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{3}}{7}, -\frac{\sqrt{6}}{7}\right)$ d) $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$

c)
$$\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{3}}{7}, -\frac{\sqrt{6}}{7}\right)$$

d)
$$\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$$

8. The values of $z + \overline{z}$ is

9. If $|z - z_1| = |z - z_2|$ then the locus of z is

a) a circle with centre at the origin

b) a circle with centre at z₁

c) a straight line passing through the origin

d) is a perpendicular bisector of the line joining z_1 and z_2

10. The arguments of nth roots of a complex number differ by a) $\frac{2\pi}{}$

a)
$$\frac{2\pi}{n}$$

b)
$$\frac{\pi}{n}$$

c)
$$\frac{3\pi}{2}$$

d)
$$\frac{4\pi}{}$$

11. Which of the following is incorrect

a) \overline{z} is the mirror image of z on the real axis b) The polar form of \overline{z} is $(r-\theta)$

c) -z is the point symmetrical to z about the origin

d) The polar form of -z is $(-r, -\theta)$

12. The number of values of $(\cos \theta + i \sin \theta)^{p/q}$ where p and q are non-zero integers prime

13. Polynomial equation P(x) = 0 admits conjucate pairs of imajinary roots only if the coefficients are b) q c) p + q d) p - qb) complex c) real d) either real or complx

14. If a = 3 + i and z = 2 - 3i then the points on the Argand diagram representing az, 3az,

a) vertices of right angled triangle

b) vertices of an equilateral triangle

c) vertices of an isosceles triangle

d) collinear