Mark the correct alternative in each of the following:

 Let R be the relation on the set N given by R = {(a, b): a = b - 3, b > 4}. Then, (a) (2,4) ∈ R (b) (c) (1,4) ∈ R (d) (2,6) ∈ R R is a relation on the set Z of integers and it is given by
$(x,y) \in R \leftrightarrow x-y \le 1$. Then R is (a) Reflexive and transitive (b) reflexive and symmetric
(c) Symmetric and transitive (d) an equivalence relation
3. If $A = \{1,2,3\}$. Then, the number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(a) 1 (b) 2 (c) 3 (d) 4
4. The relation $R = \{(1,1), (2,2), (3,3)\}$ on the set $\{1,2,3\}$ is
(a) Symmetric only (b) Reflexive only
(c) an equivalence relation (d) Transitive only.
5. In the Z of all integers, which of the following relation R is not an equivalence relation?
(a) xRy : if $x \le y$ (b) xRy : if $x = y$
(c) xRy : if $x - y$ is an even integer (d) xRy : if $x \equiv y \pmod{3}$
6. Let R be a relation on N defined by $x + 2y = 8$. the domain of R is
(a) {2,4,8} (b) {2,4,6,8}
(c) {2,4,6} (d) {1,2,3,4}
7. Let $R = \{(a, a), (b, b), (c, c), (a, b)\}$ be a relation on set $A = \{a, b, c\}$, then, R is
(a) identity function (b) reflexive
(c) symmetric (d) anti-symmetric
8. A relation \emptyset from C to R is defined by $x\emptyset y \leftrightarrow x = y$. which one is correct? (a) $(2+3i)\emptyset 13$ (b) $3\emptyset (-3)$ (b) $(1+i)\emptyset 2$ (d) $i\emptyset 1$
 9. If R is the largest equivalence relation on a set A and S is any relation on A, then (a) R c S (b) S cR (c) R=s (d) None of these 10. If A={1,2,3}, B={1,4,6,9} and R is a relation from A to B defined by 'x is a greater than y'. the
range of R is (a) {2,4,8} (b) {2,4,6,8} (c) {2,4,6} (d) {1,2,3,4}