## **PERMUTATIONS**

- Find the value of  ${}^9P_5$ ,  ${}^6P_4$ ,  ${}^{10}P_7$ ,  ${}^{\overline{n}}P_{\overline{n}}$ .
- 2. If  ${}^{n}P_{4} = 360$ , find the value of n.
- 3. If  ${}^9P_r = 3024$ , find the value of r.
- If  ${}^{n}P_{4} = 12 \times {}^{n}P_{2}$ , find the value of n.
- 5. If  ${}^{2n+1}P_{n-1}$ :  ${}^{2n-1}P_n = 3:5$ , find the value of n.
- If  ${}^{n}P_{5}: {}^{n}P_{3} = 2:1$ , find the value of n.
- 7. Prove that:

$${}^{1}P_{1} + 2$$
.  ${}^{2}P_{2} + 3$ .  ${}^{3}P_{3} + ... + n$ .  ${}^{n}P_{n} = {}^{n+1}P_{n+1} - 1$ .

- In how many ways can the letters of the word CIVILISATION be re-arranged?
- 9. Evaluate  $\frac{n!}{(n-r)!}$ , when
  - (i) n = 6, r = 2 (ii) n = 9, r = 5
- 10. Find r if (i)  ${}^{5}P_{r} = 2 {}^{6}P_{r-1}$  (ii)  ${}^{5}P_{r} = {}^{6}P_{r-1}$ .
- 11. How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
  - (i) repetition of the digits is allowed?
  - (ii) Repetition of the digits is not allowed?
- 12. How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
- 13. How many 4-digit numbers are there with no digit repeated?
- 14. How many words with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
- 15. Find the value of n such that:

  - (i)  ${}^{n}P_{5} = 42 {}^{n}P_{3}, n > 4$  (ii)  $\frac{{}^{n}P_{4}}{n-1_{P_{4}}} = \frac{5}{3}, n > 4$
- 16. Find r, if  $5^{4}P_{r} = 6^{5}P_{r-1}$ .
- 17. Number of words that can be formed with the letters of the words BIHAR.
  - (a) 120

(b) 130

(c) 140

(d) 110

- 18. In how many different ways, other than the given one, can the letters A, B, C, D be arrangement in a row?
  - (a) 20

(b) 21

(c) 22

- (d) 23
- 19. How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5, if the digits can be repeated in the same number?
  - (a) 120

(b) 625

(c) 635

- (d) 645
- 20. If  ${}^{n}P_{s} = 20 \times {}^{n}P_{3}$  then find the value of n.
- 21. If  ${}^{22}P_{r+1}$ :  ${}^{20}P_{r+2} = 11:52$  then find the value of r.
- 22. If  ${}^{10}P_r = 5040$ , find the value of r.
- 23. Find the number of numbers of 5 digits that can be formed with the digits 0, 1, 2, 3, 4, if the digits can be repeated in the same number.
- 24. How many four digit numbers can be formed using the digits 1, 2, 3, 4, 5 such that at least one of the digit is repeated
  - (a)  $4^4 5!$
- (b)  $4^5 4!$
- (c)  $5^4 4!$
- (d)  $5^4 5!$
- 25. If  ${}^{12}p_r = {}^{11}p_6 + 6 {}^{11}p_5$  then r is equal to
  - (a) 4

(c) 6

- (d) none of these
- 26. If  ${}^{12}P_r = 1320$ , then r is equal to: [UPSEE-2000]

(c) 3

- (d) 2
- 27. If  ${}^{n}P_{4} = 24 {}^{n}C_{5}$ , then the value of n is **[KCET-2001]** 
  - (a) 10

(c) 9

- (d) 5
- 28. If  ${}^{22}P_{r+1}$ :  ${}^{20}P_{r+2} = 11:52$  then the value of r is

(b) 5

(c) 6

- (d) 7
- 29. The value of  $\sum_{m=1}^{n} m \cdot {}^{m}P_{m}$  is
  - (a) 11!

- (b) 11! 1
- (c) 11! + 1
- (d) none of these

- 30. The value of  $\sum_{m=0}^{n} \left( \sum_{r=0}^{m} \frac{^{m} P_{r}}{r!} \right)$  is
  - (a) n = 2-1

(b)  $\frac{n}{2+}$ 

(c) n+1 2-1

- (d) n+1
- 31. The number of five-digit telephone numbers having at least one of their digits repeated is
  - (a) 90000

(b) 100000

- (c) 30240
- (d) 69760
- 32. If  $^{m+n}P_2 = 90$  &  $^{m-n}P_2 = 30$ , then (m, n) is given by
  - (a) (7, 3)

(b) (16, 8)

(c) (9, 2)

- (d) (8, 2)
- 33. The total number of permutations of n(>1) different things taken not more than r at a time, when each thing may be repeated any number of times is \_\_\_\_\_\_.
- 34. The number of ways of arranging 2m white and 2n red counters in a straight line so that each arrangement is symmetrical with respect to a central mark is \_\_\_\_\_.