PERMUTATIONS

	(A) 21000	(B) 20000	(C) 18000	(D) 16000			
2.	The number of five digit numbers which are even formed by using the digits 0,1,2 and 3 is						
	(A) 265	(B) 482	(C) 681	(D) 384			
3.	Between two junctions A and B there are 12 intermediate stations. The number of ways in which a train can halt at 4 of these stations so that no two of these halts are consecutive						
	(A) C (12,4)	(B) C (9,4)	(C) C (11,5)	(D) C (9,3)			
4.	The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is						
	(A) 150	(B) 240	(C) 126	(D) 225			
5.	The total number of 9 digit numbers which have all different digits is						
	(A) 10!	(B) 9!	(C) $9 \times 9!$	(D) 9999			
6.	Set A contains $n \ge 3$ elements. The number of ttriplets (x,y,z) of the elements of set A in which						
	at least two coord	at least two coordinates are equal is					
	(A) $^{n}P_{3}$	(B) $n^3 - {}^nP_3$	(C) $n^3 - 2.^n P_3$	(D) $n^3 - 2 \cdot {}^n P_3 + {}^n P_1$			
7.	The number of times the digit 3 will be written when listing all the intergers between 1 and 1000						
	(A)333	(B) 331	(C) 301	(D) 300			
8.	Let Set $P = \{x : x \text{ is prime number and } x < 30\}$. The number of different rational numbers						
	whose numerator	and denominator belong	to P is				
	(A) 100	(B) 31	(C) 91	(D) 90.			
	` '		The number of arrangments of the letters of the word BHARAT taken 3 at a time				
9.	The number of ar	=					
	The number of art (A) 68	(B) 72	(C) 98	(D) 84			
9. 10.	The number of art (A) 68 The letters of the	(B) 72	(C) 98 nged all possible ways. T	(D) 84 The words so formed are			

Permutations(Hints and solutions)

1. Ans:C Hint: In the 6 digit number the first five places can be filled in 9 x 10x 10x 10x 10 x 10 x 10x 10 ways. The sum of the first five digts can be of the form 5m,5m+1,5m+2,5m+3 or 5m+4. The possible digits taken by the last digits can be.

Sum of the digits 5m	last digits 0 or 5	
5m+1	4 or 9	
5m+2	3 or 8	
5m+3	2 or 7	
5m+4	1 or 6	

Therefore corresponding to each way of filling first five places there are two ways of filling the last digit. Hence the required number of ways is $9 \times 10 \times 10 \times 10 \times 10 \times 2 = 18000$

- 2. An even number will have 0 or 2 in the units place. So the units place can be filled in 2 ways. The remaining four places with four digits can be filled in $3 \times 4 \times 4 \times 4$ ways. Here the first place can be filled in 3 ways only. Hence the total number of numbers is $2 \times 3 \times 4 \times 4 \times 4 = 384$
- 3. Ans:B Hint: The train stops at 4 of the stations. So it does not stop at 8 of the stations. So there are 9 halts in which it has to stop at 4 stations. This can be done in C(9,4) ways.
- 4. Ans: 150. Here the distribution is equal to the number of onto functions that can be formed from set containing 5 elements to set containing 3 elements.

$$= 3^5 - {}^3C_1 \cdot 2^5 + {}^3C_2 \cdot 1^5 = 243 - 96 + 3 = 246 - 96 = 150$$

- 5. Ans: C. The first can be filled with any one of the 9 non zero digits in 9 ways. The remaining 8 places with 9 remaining digits in P(9,8) ways. Hence the total number of ways is $9 \times P(9,8) = 9 \times 9!$.
- 6. Ans: B number of triplets = total number of triplets number of triplets in which no two are equal.
- 7. Ans: D . Since 1000 does not contain 3 we have count between 1 and 999. any number between 1 and 999 is of the form xyz where $0 \le x$, y, $z \le 9$. The number of times in which 3 occupies exactly one place is $3 \times 9 \times 9 = 243$ ways. Now 3 occurs exactly in two places in $C(3,2) \times 9$ ways. 3 three occurs three times is only once. Total $1 \times 243 + 2 \times 3 \times 9 + 3 \times 1 = 243 + 54 + 3 = 300$.
- 8. Ans:C. The prime numbers less than 30 are 2,3,5,7,11,13,17,19,23,29. To from a fraction we need two digits. So from these 10 2 and be picked in P(10,2) ways. Total is 90+1 (including 1)
- 9. Ans: B. The word contains 6 letters out of which 2A's,B,H,R,T. To form 3 letter word the possibilities are
 - (i) 2A's and one from remaining 4 letters = $4 \times \frac{3!}{2!} = 12$
 - (ii) one A and two from the remaining $4 = {}^4P_2 \times 3! = 36$
 - (iii) zero A's and all the three from B,H,R,T = 24 total = 12 = 36 + 24 = 72
- 10. Ans: B.

Words starting with M = 60, starting with 0 = 60, starting with PM, PO, PP = 3 X 24 = 72 Words starting with PRM = 3! = 6. Next word is PROMPT. Total = 60+60+72+6+1=199