

Abstraction

Example of Abstraction –

 Driving of a car.

o From outside car is a single object

o Driving the car consists of functioning of various subsystems like

steering, brakes, accelerators, engine etc

o To outside person driving of a car appears much easy with a

driver/person who is driving it.

o The outside person or even the person who is driving the same he/she

is unaware about the detailed functionality that is performed by the

individual subsystems when the car is moving.

 Making a phone call

o A person who is making a phone call is unaware about the different

actions/functions that take place while he/she is making the phone

call.

Class (Example of Encapsulation in Java)

Class defines the structure and behavior (which is data and code) that will be

shared by a set of objects.

Objects of a given class contain data and code defined by that class. So objects are

sometimes referred to as ‘instance of class’. So class is logical construct and object

has physical reality.

Class constitutes of code and data. Code and data are collectively known as

members

Data defined by the class are known as member variables

Code that operates on data referred to as methods.

Methods or variables inside a class can be marked as Private or Public

Object and Class Example: main within class

In this example, we have created a Student class that have two data members id

and name. We are creating the object of the Student class by new keyword and

printing the objects value.

Here, we are creating main() method inside the class.

File: Student.java

class Student

{

 int id;//field or data member or instance variable

 String name;

 public static void main(String args[])

{

 Student s1=new Student();//creating an object of Student

 System.out.println(s1.id);//accessing member through reference variable

 System.out.println(s1.name);

 }

}

Output :

0

null

Inheritance

Inheritance in java is the mechanism where one object (which is the child object)

derives or acquires all the properties and behavior of parent object.

class Subclass-name extends Superclass-name

{

 //methods and fields

}

The keyword extends indicates making of a new class from an existing class.

Meaning of ‘extends’ is increasing of functionality.

Single Inheritance

public class ClassA

{

 public void dispA()

 {

 System.out.println("disp() method of ClassA");

 }

}

public class ClassB extends ClassA

{

 public void dispB()

 {

 System.out.println("disp() method of ClassB");

 }

 public static void main(String args[])

 {

 //Assigning ClassB object to ClassB reference

 ClassB b = new ClassB();

 //Call dispA() method of ClassA

 b.dispA();

 //Call dispB() method of ClassB

 b.dispB();

 }

}

Output :

disp() method of ClassA

disp() method of ClassB

Multiple Inheritance

Multiple Inheritance is nothing but one class extending more than one

class. Java does not support multiple inheritance as it throws compile errors. The

scenario explained below –

Consider a scenario where A, B and C are three classes. The C class inherits A and

B classes. If A and B classes have same method and you call it from child class

object, there will be ambiguity to call method of A or B class.

class A

{

 void msg(){System.out.println("Hello");}

}

class B

{

 void msg(){System.out.println("Welcome");}

}

class C extends A,B{//suppose if it were

 Public Static void main(String args[])

 {

 C obj=new C();

 obj.msg();//Now which msg() method would be invoked?

 }

}

Here the program will throw compilation error as object of class C will be in

confusion as to which class msg() function to call.

Multilevel Inheritance

In Multilevel Inheritance a derived class will be inheriting a parent class and as

well as the derived class act as the parent class to other class.

From the diagram it is seen that Class B is a derived class and inherits the property

of Class C. Again Class B is the parent of Class A. In short Class C is the parent

for Class B and Class B is the parent for Class A

public class ClassA

{

 public void dispA()

 {

 System.out.println("disp() method of ClassA");

 }

}

public class ClassB extends ClassA

{

 public void dispB()

 {

 System.out.println("disp() method of ClassB");

 }

}

public class ClassC extends ClassB

{

 public void dispC()

 {

 System.out.println("disp() method of ClassC");

 }

 public static void main(String args[])

 {

 //Assigning ClassC object to ClassC reference

 ClassC c = new ClassC();

 //call dispA() method of ClassA

 c.dispA();

 //call dispB() method of ClassB

 c.dispB();

 //call dispC() method of ClassC

 c.dispC();

 }

}

Output :

disp() method of ClassA

disp() method of ClassB

disp() method of ClassC

Hierarchical Inheritance

Here ClassA acts as the parent for sub classes ClassB, ClassC and ClassD.

public class ClassA

{

 public void dispA()

 {

 System.out.println("disp() method of ClassA");

 }

}

public class ClassB extends ClassA

{

 public void dispB()

 {

 System.out.println("disp() method of ClassB");

 }

}

public class ClassC extends ClassA

{

 public void dispC()

 {

 System.out.println("disp() method of ClassC");

 }

}

public class ClassD extends ClassA

{

 public void dispD()

 {

 System.out.println("disp() method of ClassD");

 }

}

public class HierarchicalInheritanceTest

{

 public static void main(String args[])

 {

 //Assigning ClassB object to ClassB reference

 ClassB b = new ClassB();

 //call dispB() method of ClassB

 b.dispB();

 //call dispA() method of ClassA

 b.dispA();

 //Assigning ClassC object to ClassC reference

 ClassC c = new ClassC();

 //call dispC() method of ClassC

 c.dispC();

 //call dispA() method of ClassA

 c.dispA();

 //Assigning ClassD object to ClassD reference

 ClassD d = new ClassD();

 //call dispD() method of ClassD

 d.dispD();

 //call dispA() method of ClassA

 d.dispA();

 }

}

Output :

disp() method of ClassB

disp() method of ClassA

disp() method of ClassC

disp() method of ClassA

disp() method of ClassD

disp() method of ClassA

POLYMORPHISM

Method Overloading

class Overloading

{

 public void disp()

 {

 System.out.println("Inside First disp method");

 }

 public void disp(String val)

 {

 System.out.println("Inside Second disp method, value is: "+val);

 }

 public void disp(String val1,String val2)

 {

 System.out.println("Inside Third disp method, values are :

"+val1+","+val2);

 }

}

public class MethodOverloading_Example

{

 public static void main (String args[])

 {

 Overloading oo = new Overloading();

 oo.disp(); //Calls the first disp method

 oo.disp("Java Interview"); //Calls the second disp method

 oo.disp("JavaInterview", "Point"); //Calls the third disp method

 }

}

https://www.javainterviewpoint.com/category/java-interview/

The output will be

Inside First disp method

Inside Second disp method, value is: Java Interview

Inside Third disp method, values are : JavaInterview,Point

Here the disp() method will be called three times, but the question is how the

different disp() are called. The answer is based on the parameter the compiler will

choose which methods to be called.

Method Overriding

class ParentClass

{

 public void disp()

 {

 System.out.println("Parent Class is called");

 }

}

class ChildClass extends ParentClass

{

 public void disp()

 {

 System.out.println("Child Class is called");

 }

}

public class Overriding_Example

{

 public static void main(String args[])

 {

 ParentClass obj1 = new ParentClass();

 //ParentClass reference but ChildClass Object.

 ParentClass obj2 = new ChildClass();

 // Parent Class disp () will be called.

 obj1.disp();

 // Child Class disp () will be called, as it reference to the child

class.

 obj2.disp();

 }

}

The Child Class disp is called because though the obj2 reference may be a

ParentClass reference but the object is ChildClass object and hence the disp() of

the child class is called . This is called as Dynamic Binding or Late Binding or

Runtime Polymorphism

	Abstraction
	Class (Example of Encapsulation in Java)
	Object and Class Example: main within class

	Inheritance
	POLYMORPHISM
	Method Overloading
	Method Overriding

