
Linux Fundamentals by Commands and Examples

version 1.0

Editor: Ahmed Baraka

Document Purpose

This document is edited to be a quick reference of Linux essential commands. It can be used
by Linux beginners as a reminder of basic Linux commands usage. It cannot be used to learn
Linux from scratch.

The document is oriented based on the required task, the command(s) to do the task, basic
syntax of the command, and examples. No explanation will be presented.

Usage Terms

• Anyone is authorized to copy this document to any means of storage and present it in any format to any
individual or organization for non-commercial purpose free.

• No individual or organization may use this document for commercial purpose without a written
permission from the editor.

• There is no warranty of any type for the code or information presented in this document. The editor is
not responsible for any loses or damage resulted from using the information or executing the code in
this document.

• If any one wishes to correct a statement or a typing error or add a new piece of information, please
send the request to info@ahmedbaraka.com . If the modification is acceptable, it will be added to
the document, the version of the document will be incremented and the modifier name will be listed in
the version history list.

Page 1 Linux Fundamentals by Commands and Examples

http://www.ahmedbaraka.com/
mailto:info@ahmedbaraka.com

Version History

Version Date Updates

1.0 25-June-2009 Initial document.

Resources

Resource Name

Linux Essentials article by Thomas Girke.

The Linux Cookbook: Tips and Techniques for Everyday Use by Michael Stutz

Red Hat Linux Getting Started Guide, 2003

Red Hat Essentials RH033 (courseware material)

Linux Reviews website

The Linux Tutorial website

Zytrax Info website

Academic Computing And Communications Center ACCC website

The Linux Information Project website

UNIX & Linux Shell Scripting Tutorial website

Page 2 Linux Fundamentals by Commands and Examples

http://wiki.biocluster.ucr.edu/Linux-Essentials
http://www.usinglinux.org/docu/guides/linuxcookbook-1.2.pdf
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/getting-started-guide/
http://linuxreviews.org/
http://www.linux-tutorial.info/
http://www.zytrax.com/tech/web/regex.htm
http://www.uic.edu/depts/accc/software/unixgeneral/vi101.html
http://www.linfo.org/
http://www.dreamsyssoft.com/unix-shell-scripting/tutorial.php

Contents

Introduction ___ 7
Unix variants ___7

GNU/Linux distributions ______________________________________7

Getting Started ___ 8
Virtual Consoles __8

Changing password __8

Logging-In___8

Date and Time Commands_____________________________________8

Making Arithmetic Calculations _________________________________8

Generating Sequential Numbers ________________________________8

Getting Help ___9

Handy shortcuts __9

Managing Files and Directories____________________________ 10
Files and Directories Commands _______________________________10

Determining File Content_____________________________________11

Viewing Files __11

Hard and Symbolic (Soft) Links________________________________12

Checking Free Space __12

Searching Files By Names ____________________________________12

Searching Files By Names and Attributes ________________________12

Archiving Files___14

Compression Utilities _______________________________________14

Text File Processing Tools ____________________________________14

Users, Groups and Permissions ___________________________ 15
Change Password __15

Change Your Identity _______________________________________15

User Information Commands _________________________________15

Changing File Ownership_____________________________________15

Changing Permissions _______________________________________15

Default File Permission ______________________________________15

Special Permission ___16

Page 3 Linux Fundamentals by Commands and Examples

bash Shell Basics ______________________________________ 17
File Blobbing __17

History Tricks ___17

Command Line Expansion ____________________________________17

Local Shell Variables __18

Aliases___19

Type __19

Environment Variables ______________________________________19

Showing Path of Executable __________________________________19

Login and Non-Login Shells___________________________________20

Startup and Logout Scripts ___________________________________20

Recording a Shell Session ____________________________________20

Standard I/O and Pipes _________________________________ 21
Redirecting Output to a File __________________________________21

Redirecting STDOUT to a Program (Piping)_______________________21

Redirecting to Multiple Targets ________________________________21

Redirecting STDIN from a File_________________________________21

Sending Multiple Lines to STDIN _______________________________21

Text Files and String Manipulation _________________________ 22
Viewing File Contents _______________________________________22

Viewing File Excerpts _______________________________________22

Extracting Text by Column ___________________________________22

Gathering Text Statistics_____________________________________22

Sorting Text___23

Eliminating Duplicates_______________________________________23

Comparing Files__23

Spell Checking with aspell____________________________________23

Converting Characters_______________________________________24

Combining Files__24

Expanding Tabs Into Spaces __________________________________24

Regular Expressions __24

Extended Regular Expressions ________________________________25

Extracting Text by Keyword __________________________________25

Search and Replace ___26

Page 4 Linux Fundamentals by Commands and Examples

Editing Text by Programming Language _________________________26

Using the Text Editor vi _________________________________ 27
Modes ___27

Search and Replace (Command Mode) __________________________27

Manipulating Text (Command Mode)____________________________27

Undoing Changes (Command Mode) ____________________________28

Visual Mode ___28

Using Multiple "windows" ____________________________________28

Configuring vi and vim ______________________________________28

Managing Processes ____________________________________ 29
Listing Processes___29

Sending Signals to Processes _________________________________31

Changing Process Scheduling Priority ___________________________31

Listing Background and Suspended Jobs_________________________31

Resuming Suspended Jobs ___________________________________31

Compound Commands_______________________________________32

Scheduling a Process__32

Scheduling a Process Periodically ______________________________32

bash Shell Scripting Basics_______________________________ 33
Creating Shell Scripts _______________________________________33

Handling Input __33

Shell Script Debugging ______________________________________33

Handling Positional Parameters (Arguments)_____________________33

Using Functions__34

Exit Status__34

Conditional Execution _______________________________________34

Using the if Statement_______________________________________34

Using the Case Statement ____________________________________35

Using the For Loop ___35

Using the While loop __35

Disrupting Loops ___36

File Tests ___36

String Tests ___37

Page 5 Linux Fundamentals by Commands and Examples

Shell Option Test ___37

Logical Tests __37

Comparison ___37

Page 6 Linux Fundamentals by Commands and Examples

Introduction

Unix variants

• Unix, GNU/Linux, Solaris, IRIX, HP-UX, FreeBSD, OpenBSD, NetBSD, Darwin (Mac),
and more...

GNU/Linux distributions

• Ubuntu, Edubuntu, Debian, RedHat, Fedora, Slackware, SuSE, Darwin, and more...

• Family tree of the GNU/Linux distributions

Page 7 Linux Fundamentals by Commands and Examples

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux
http://www.sun.com/software/solaris/
http://www.sgi.com/products/software/irix/
http://h20338.www2.hp.com/hpux11i/cache/324545-0-0-0-121.html
http://www.freebsd.org/
http://www.openbsd.org/
http://www.netbsd.org/
http://www.opensource.apple.com/darwinsource/
http://en.wikipedia.org/wiki/Unix-like
http://ubuntu.com/
http://edubuntu.org/
http://debian.org/
http://redhat.com/
http://fedoraproject.org/
http://www.slackware.com/
http://www.novell.com/linux
http://www.opensource.apple.com/darwinsource/
http://distrowatch.com/
http://futurist.se/gldt/gldt76.png

Getting Started

Virtual Consoles

• In Red Hat: available through CTRL+ALT+F[1-6]

• If X is running, it is available as CTRL+ALT+F7

Changing password

• passwd

Logging-In

• From Mac or LINUX

ssh -X your_username@hostname

• From Windows: Open Putty and select ssh.

• Use WinSCP software for file exchange.

Date and Time Commands

• date

u display date and time in UTC

R display date and time in RFC822 (used in email messages)

• chrony package maintains time by connecting to servers over the Internet.

• cal output a calendar for the current month

y print calendar of current year

cal 2010 #output a calendar for the year 2010

Making Arithmetic Calculations

• bc

• supported operators: + - * / % ^ sqrt()

Generating Sequential Numbers

• seq

w make all generated numbers of same width

s 'b' make b character as the separator between numbers

seq 7

seq -5 5

Page 8 Linux Fundamentals by Commands and Examples

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://wiki.biocluster.ucr.edu/%5B%5Bhttp%3A/winscp.net/eng/download.php

seq 1 2 10 # from 1 to 10 increment by 2

seq −s ' ' 1 23 # separated by spaces

Getting Help

• man

• info

• apropos search for only exact matches

• whatis to list a one−line description of a program

• Software packages may store its help files in /usr/share/doc

• Online help: SuperMan Pages, Linux Documentation Project (LDP)

• LinuxQuestions.org

man ls

man –k copy # search for "copy" in the whatis database

apropos copy # search for "copy" (not "xcopy") in the whatis database

man –f copy # restrict search for the whole word

ls -- help # brief help usage

info cp # information is organized into sections

whatis who

Handy shortcuts

up(down)_key scrolls through command history

<something-incomplete> TAB completes path/file_name

Ctrl+a # cursor to beginning of command line

Ctrl+e # cursor to end of command line

Ctrl+d # delete character under cursor

Ctrl+k # cut line from cursor into kill buffer

Ctrl+y # paste content from Ctrl k

Page 9 Linux Fundamentals by Commands and Examples

http://linuxcommand.org/superman_pages.php
http://tldp.org/index.html
http://www.linuxquestions.org/

Managing Files and Directories

Files and Directories Commands

• pwd

• cd

• ls (see the options in the example below)

• File types that may be listed by ls –l :

- regular file

d directory

l symbolic link

b block special file

c character special file

p named pipe

s socket

• cp # for copying between hosts, see next section

• rm

• mv

• mkdir

• rmdir

• touch create empty files or update file timestamps

• File Name Expansion characters can be used with these commands.

cd .. # one level up

cd # home directory

cd - # previous directory

ls –a # include hidden files

ls –l # long listing

ls –R # recurses through subdirectories with contents

ls –d # directory names without their contents

ls –lh # print sizes in human readable format

ls –ld # avoid listing directory contents

ls –i # print index number

ls –S # sort by file size

ls –t # sort by modification time (newest first)

ls –r # reverse order while sorting

ls –l --time-style=STYLE # STYLE: full-iso, long-iso, iso, locale, +FORMAT

cp file1 file2 # timestamp changes for the new file

Page 10 Linux Fundamentals by Commands and Examples

cp –p file1 file2 # all of the attributes are preserved

cp file1 dir1

cp file1 file2 dir1

cp ./dir1/* dir2

cp –r dir1 dir2 # -r (same as -R) copy entire directory tree
 # links aren't copied, permissions aren't preserved

cp –a dir1 dir2 # copy the entire tree including permissions and links

mv file1 file2 # renames directories or files

mv file1 ./dir1 # moves file/directory as specified in path

rm file1 # removes file name

rm -r dir1 # removes directory including its content,

rm -rf dir # 'f' argument turns confirmation off

rm -- -myfile # the fielename containes hyphen

touch {doc,sheet}_{jan,feb,mar}

touch file{0..6}.txt

Determining File Content

• file

file myfile

Viewing Files

• cat

• less

• less navigation commands:

space ahead one full screen

ENTER ahead one line

b back one full screen

k back one line

g top of the file

G bottom of the file

/text search forward for text (Regular Expressions can be used)

n repeat last search

N repeat backward last search

q quit

Page 11 Linux Fundamentals by Commands and Examples

Hard and Symbolic (Soft) Links

• ln

• ls –l in case of soft link, it displays the link name and the referenced file

ln –s filename

Checking Free Space

• df space usage by file systems

• du disk space by directories and subdirectories

df –h # -h prints size in readable format

du –h –s ~ # -s reports single directory summary

Searching Files By Names

• locate [options] name(s)

• slocate [options] name(s)

• Only the files you own are searched

• Some options are shown in the example below.

• locate.db or slocate.db databases are used

• updatedb or locate -u to manually update the database

locate "*.png" # wildcard characters can be used

locate "*.png" -q # supress errors

locate -n 15 "*.html" # only 15 resultes returned

locate -i "*.HtmL" # case-insensitive search

Searching Files By Names and Attributes

• find <dirs> [conditions] [–exec cmd {} \;]

-atime n File was last accessed n days ago

-ctime n File was last changed n days ago

-user uname File is owned by user uname (or user ID)

-group gname File belongs to group gname (or group ID)

-size n[cwbkMG] b 512-byte blocks (default), c in bytes, w two-byte words, k kilobyte

-iname case -insensitive version of –name

-o logical operator between criteria (by default it is AND)

-not negate (logical NOT)

-perm mode permission bits are exactly mode (octal or symbolic).

-perm -mode ALL of the permission bits mode are set for the file.

Page 12 Linux Fundamentals by Commands and Examples

-perm +mode Any of the permission bits mode are set for the file.

-regex pattern Full path filename (not only filename) matches regular expression
pattern.

-mtime n Files was last modified Exactly n*24 hours ago.

-mtime +n Files was last modified >= n*24 hours ago.

-mtime -n Files was last modified <= n*24 hours ago.

-mmin n Files was last modified n minutes ago.

−daystart measure time in the options above from the beginning of the current
day instead of 24 hours ago.

-newer <file> Files newer than <file> modification date

find . –name "*.html"

find -iname snow.png

find -user peter -group peter

find -user joe -not -group joe

find -user joe -o -user jane

find -not \(-user joe -o -user jane \)

find -perm 755 # matches if mode is exactly 755

find -perm +222 # matches if anyone can write

find -perm -222 # matches if everyone can write

find -perm -002 # matches if other can write

find -size 1024k # excatly 1 MB

find -size +1024k # over 1 MB

find -size -1024k # less than 1 MB

find ~ −empty # find empty regular files or directories

find -size +102400k -ok gzip {} \; # OK prompte before acting

find . -regex '.*[124].*ms$'

find ~ −mtime 1 # files modified exactly 24 hours ago

find ~ −mtime 1 −daystart # modified yesterday

find ~ −mtime +356 # one year or longer ago

find ~ −mtime 2 −mtime −4 −daystart # two to four days ago

files that were modified after May 4 of the current year
touch −t 05040000 /tmp/timestamp
find ~ −newer /tmp/timestamp

Page 13 Linux Fundamentals by Commands and Examples

Archiving Files

• tar cvf archive_name files … to create an archive file

c create a new archivd

v produces verbose messages

f archive file name

j use bzip2 compression

z use gzip compression

• tar tf archive_name to inspect files in an archive, if v option is used, long file list

• tar xvf archive_name to extract an archive file (always to current directory)

tar cvf mywork.tar .bas_profile /tmp

tar cvf myHome.tar ~

Compression Utilities

• gzip –v file(s) v option displays compression percentage, original file replaced

 only regular files are compressed

• bzip2 –v file better compression

• gunzip filename.gz uncompress the file

• gzip –d filename.gz uncompress the file

• gunzip –c filename.gz list contents of the compressed file in STDOUT, the file
 unchanged

• bunzip2 –v file

Text File Processing Tools

• Check the section Text File Processing Tools

Page 14 Linux Fundamentals by Commands and Examples

Users, Groups and Permissions

Change Password

• passwd

Change Your Identity

• su username

• su - username # start a login shell

User Information Commands

• whoami # who you are

• groups, id # what groups you belong to

• users, who, w # who is logged on

• last # login/reboot history

Changing File Ownership

• chown user_name file|directory

• chgrp group_name file|directory

chown john myfile

chown –R john dir # operate on files and directories recursively

Changing Permissions

• chmod mode file

where mode is: [u,g or o] [+ or -] [r, w or x] (Symbolic Method)

 where mode is: 4:r 2:w 1:x (Numeric Method)

chmod o-rwx file1

chmod u-w,go-x file1

chmod +x file1 # the file is executable to all security levels

chomod 775 file1

Default File Permission

• umask # if case of 0002, 664 permission for files, 775 for directories

Page 15 Linux Fundamentals by Commands and Examples

Special Permission

• chmod Xnnn # X: 4 for suid, 2 for sgid, 1 for sticky bit

• suid and sgid are effective on executable files: the program runs with permissions of the
owner, not the executor.

• sgid and sticky bit are effective on directories:

o sticky bit: files in the directory can be deleted by the owner or the root, regardless of
the directory write permission.

o Sgid: files created in the directory will inherit its group affiliation from the directory,
rather than the user.

ls -l /usr/bin/passwd

-r-s--x--x 1 root root

ls -ld /tmp/

drwxrwxrwt 10 root root

chmod 2770 GroupDir

Page 16 Linux Fundamentals by Commands and Examples

bash Shell Basics

File Blobbing

* matches zero of more characters

? matches any single character

[a-z] matches a range of characters

[^a-z] matches all except the range

ls file*

ls ??file

ls file[1-9]

ls file[^6-0]

History Tricks

• history

• Use the up and down keys to scroll through previous commands.

• Type Ctrl-r to search for a command in command history.

• Esc+. to recall last argument from previous command.

• !n re-execute command number n

Command Line Expansion

• Command Expansion: $() or ``

• Brace Expansion: { }

• Arithmetic: $[]

• Arithmetic Evaluations: + - * / ** % (Full list in Arithmetic Evaluation section in bash
man page)

• \ backslash makes the next character literal and can be used as last character on line to
continue command on next line.

• To pass special characters as a string: $'string'

• Special backslash escape sequences:

\a Alert (rings the system bell).

\b Backspace.

\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

Page 17 Linux Fundamentals by Commands and Examples

\v Vertical tab.

\\ Backslash.

\NNN Character whose ASCII code is NNN in octal (base 8).

• Filename Expansion Characters: used with commands handling files and directories:

* zero or more characters

? exactly one character

[list] one character in the list. Examples: [abc],[a-m], a[-b]c

[!list] except the characters in the list. For example: a[!b]c matches aac a-c adc, but
not abc.

echo "This system's name is $(hostname)"

echo $'Note the space below\n' # doesn't work if you use double quote

echo current date is `date`

echo file{1,3,5}

echo Area: $[$X * $Y] # equivalent to $[$X*$Y]

echo Your cost: \$8.00

find / -name myfile*

mv /usr/tmp/song[0−9].cdda ~/music

Local Shell Variables

• VARIABLE=value

• echo $VARIABLE

• To see list of the local variables that configure the shell, see the Shell Variables section
of the bash man page.

• Common Local Configuration Variables

o PS1 the prompt

\d date

\h short hostname

\t time

\u user name

\w current working directory

\! history number of the current command

\$ $ for superusers, # for non-privileged user

o HISTFILESIZE how many commands to save in history

o COLUMNS width of the terminal

o LINES height of the terminal

Page 18 Linux Fundamentals by Commands and Examples

• Common Local Information Variables

o HOME user's home directory

o EUID user's effective UID

PS1="\u\w\$"

Aliases

• alias

alias lf="ls –Fca"

alias rm="rm –i"

\rm –r myfile #to run the command, not the alias

Type

• type to ask the shell what it is using to fulfill the command

type rm

tyupe cate

Environment Variables

• export VARIABLE=value

• Common Environment Variables:

o HOME user home directory path

o LANG default language (like en_US.UTF-8)

o PWD current working directory

o EDITOR default editor used by programs

o LESS options to pass to the less command

• reset when the screen become corrupted

EDITOR=/usr/bin/vim; export EDITOR

export EDITOR=/usr/bin/pico

EDITOR= # once exported, no need to export it again to change its value

Showing Path of Executable

• which

which xboard

Page 19 Linux Fundamentals by Commands and Examples

Login and Non-Login Shells

• Login shells are:

o Any shell created at login (includes X login)

o su -

• Non-login shells are:

o su

o graphical terminals

o executed scripts

o any other bash instances

Startup and Logout Scripts

• Login Sells
/etc/profile
 /etc/profile.d

~/.bash_profile

 ~/.bashrc

 /etc/bashrc

• Non-Login Shells

~/.bashrc

 /etc/bashrc

 /etc/profile.d

• Logout Script

~/.bash_logout

Recording a Shell Session

• script <filename> record session typescript records in filename

• exit end session recording

Page 20 Linux Fundamentals by Commands and Examples

Standard I/O and Pipes

Redirecting Output to a File

• > Redirect STDOUT to file (overwrite)

• >> Redirect STDOUT to file (append)

• 2> Redirect STDERR to file

• &> Redirect all output to file

• 2>&1: Redirects STDERR to STDOUT

• (): Combines STDOUTs of multiple programs

find /etc -name passwd > find.out 2> find.err

find /etc -name passwd &> find.all

(cal 2007 ; cal 2008)

Redirecting STDOUT to a Program (Piping)

• Pipes (the | character) can connect commands

ls -l /etc | less

Redirecting to Multiple Targets

• tee - read from standard input and write to standard output and files

• command1 | tee filename | command2 store STDOUT of command1 in filename, then
pipes to command2

find /etc -name "r*" | tee foundlist.txt | less

Redirecting STDIN from a File

• Redirect standard input with <

$ tr 'A-Z' 'a-z' < myfile # equivalent to cat myfile | tr 'A-Z' 'a-z'

Sending Multiple Lines to STDIN

• Redirect multiple lines from keyboard to STDIN with <<WORD

• All text until WORD is sent to STDIN

$ mail -s "Please Call" test@mydomain.com <<END

Page 21 Linux Fundamentals by Commands and Examples

Text Files and String Manipulation

Viewing File Contents

• cat dump one or more files to STDOUT

• less view file or STDIN one page at a time

• less navigation commands:

space ahead one full screen

ENTER ahead one line

b back one full screen

k back one line

g top of the file

G bottom of the file

/text search forward for text

n repeat last search

N repeat backward last search

q quit

Viewing File Excerpts

• head

• tail

head -n 5 .bash_profile

tail -n 5 .bash_profile

tail -n 5 -f mylogfile # follow subsequent additions to the file
 # useful for monitoring log files!

Extracting Text by Column

• cut

-d to specify the column delimiter (default is TAB)
-f to specify the column to print
-c to cut by characters

cut -d: -f1 /etc/passwd

grep root /etc/passwd | cut -d: -f7

cut -c2-5 /usr/share/dict/words

Gathering Text Statistics

• wc
-l for only line count
-w for only word count

Page 22 Linux Fundamentals by Commands and Examples

-c for only byte count
-m for character count

wc story.txt # words, lines, bytes

39 237 1901 story.txt

Sorting Text

• sort
-r performs a reverse (descending) sort
-n performs a numeric sort
-f ignores (folds) case of characters in strings
-u (unique) removes duplicate lines in output
-t c uses c as a field separator
-k X sorts by c-delimited field X

grep bash /etc/passwd | sort

sort –t : -k 3 –n /etc/passwd # sort by uid

Eliminating Duplicates

• sort -u: removes duplicate lines from input

• uniq: removes duplicate adjacent lines

-c prefix lines by the number of occurrences

-d only print duplicate lines

-u only print unique lines

cut –d: -f7 /etc/passwd | sort | uniq

Comparing Files

• diff

diff file1 file2

Spell Checking with aspell

• aspell

aspell check letter.txt

aspell list < letter.txt

aspell list < letter.txt | wc -l

Page 23 Linux Fundamentals by Commands and Examples

Converting Characters

• tr converts characters in one set to corresponding characters in another set

tr 'a-z' 'A-Z' < lowercase.txt

Combining Files

• paste combines files horizontally and separate the pasted lines by TAB by default.

paste –d: ids.txt names.txt > merged.txt # separate the data with colon

Expanding Tabs Into Spaces

• expand convert the tabs in the file to spaces

expand tabfile.txt > tabfile.expanded.txt

Regular Expressions

• Wildcard Characters
another single character

. any single character

[abc] any single character in the set

[a-c] any single character in the range

[^abc] any single character not in the set

[^a-c] any single character not in the range

• Modifiers
number of the previous character

* zero or more of the previous char

\+ one or more of the previous char

\? zero or one of pervious char

\{i\} exactly i of the previous char

\{i,\} i or more of the previous char

\{i,j\} i to j of the previous char

• Anchors
match the beginning or end of a line or word

^ line begins with

$ line ends with

\< word begins with

\> word ends with

• Other expressions
[:alnum:] Alpha-numeric characters 0 to 9 OR A to Z or a to z

[:alpha:] Alpha character a-z A-Z

[:cntrl:] Control characters

[:digit:] Digits 0 to 9

Page 24 Linux Fundamentals by Commands and Examples

[:graph:] Graphics characters

[:print:] Printable characters

[:punct:] Punctuation " ' ? ! ; : # $ % & () * + - / < > = @ [] \ ^ _ { } | ~

[:space:] White spaces (space, tab, NL, FF, VT, CR)

[:blank:] Space and Tab characters only

^S[^]* R # the last name begins with S and first name begins with R.

^[M-Z].*[12] # the last name begins with a letter from M to Z and where the
 # phone number ends with a 1 or 2.

'^..$' # any word of only two characters

'^.\{17\}$' # words of exactly seventeen characters wide

[0-9]\{5,10\} # all number combinations between 5 and 10 number long

[a-z]\)$ # The \ is an escape characher

\(.*l # contains ls and preceeded by an open bracket

Extended Regular Expressions

• Except word anchors, basic regular expressions requiring a preceding backslash do not
require backslash

• Used by:

o egrep

o grep –E

o awk

Extracting Text by Keyword

• grep [OPTION]... PATTERN [FILE] ...

-i to search case-insensitively
-n to print line numbers of matches
-v to print lines not containing pattern
-AX to include the X lines after each match
-BX to include the X lines before each match

• grep uses by default basic Regular Expressions

• egrep uses Extended Regular Expressions

grep 'root' file*.doc # this will list the file name

grep –h 'root' file*.doc # to avoid listing the file names

grep 'ahmed' /etc/passwd # highly advisable to use sing quote

date --help | grep year

egrep 'a{2,5}' myfile # search for counter 2,3,4 or 5 letter a's

egrep '\<bye\>' myfile

Page 25 Linux Fundamentals by Commands and Examples

Search and Replace

• sed (stream editor) uses regular expressions in search string (but not in replace)

sed 's/cat/dog/' petsfile # makes the replacement once per line

sed 's/cat/dog/g' petsfile # multiple changes per line

sed 's/[Cc]at/dog/g' petsfile

sed 's/\<[Cc]at\>/dog/g' petsfile # search by word (not string)

sed 's/\<[Cc]at\>/& and dog/g' petsfile # whatever found (Cat or cat), it will

 # be replaced with cat and dog

sed '10,40s/cat/dog/g' petsfile # only lines from 10 and 40 searched

sed '/begin/,/end/s/cat/dog/' petfiel # search will start from the line

 # containing "begin" to the line

 # containing "end"

sed –e 's/cat/dog/g' –e 's/cow/goat/g' petsfile # multiple find and replaces

Editing Text by awk

• awk
• All extended regular expressions work except curly brace counters. To use them, use --

posix or --re-interval options.

awk ' { print } ' myfile # equivalent to cat command

awk '/bye/ { print } ' myfile # print lines containing the pattern

awk '/[2-5]+/ { print } ' myfile

awk ' { print $2, $1 } ' myfile # print fields 2 and 1 in a space separated
 # text file.

awk ' { print $2 " " $1 } ' myfile # in a tab separated file

Page 26 Linux Fundamentals by Commands and Examples

Using the Text Editor vi

Modes

Command Mode

o Default mode of vim

o Move by character: Arrow Keys, h, j, k, l

o Move by word: w, b

o Move by sentence:), (

o Move by paragraph: }, {

o Jump to line x: xG

o Jump to end: G

Insert mode

o i begins insert mode at the cursor

o A append to end of line

o I insert at beginning of line

o o insert new a line (below)

o O insert new line (above

Ex Mode

o :w writes (saves) the file to disk

o :wq writes and quits

o :q! quits, even if changes are lost

Search and Replace (Command Mode)

• /, n, N Search

• <>/<>/<> Search/Replace (as in sed command)

:1,5s/cat/dog/g # search in lines 1 to 5 and replace all words in any line

:%s/cat/dog/gi # the whole file

Manipulating Text (Command Mode)

Action followed by Target

Possible actions:

• change (c)

• cut (d)

• yank (y)

• paste (p) without target

Page 27 Linux Fundamentals by Commands and Examples

Possible target:

• Line as in action

• Letter l

• Word w

• Sentence ahead)

• Sentence behind (

• Paragraph above {

• Paragraph below }

Undoing Changes (Command Mode)

• u undo most recent change.

• U undo all changes to the current line since the cursor landed on the line.

• Ctrl-r redo last "undone" change

Visual Mode

• Allows selection of blocks of text

• v starts character-oriented highlighting

• V starts line-oriented highlighting

• Highlighted text can be deleted, yanked, changed, filtered, search/replaced, etc.

Using Multiple "windows"

• Multiple documents can be viewed in a single vim screen.

• Ctrl-w, s splits the screen horizontally

• Ctrl-w, v splits the screen vertically

• Ctrl-w, Arrow moves between windows

• :q close the current window

• Ex-mode instructions always affect the current window

Configuring vi and vim

• :set or :set all Configuring on the fly

• ~/.vimrc or ~/.exrc Configuring permanently

• :set showmode show when you are in insert mode

• :set ic ignore case when searching

• :set noic turn ignore case off

• :set nu turn on line numbering

• :set nonu turn line numbering off

Page 28 Linux Fundamentals by Commands and Examples

Managing Processes

Listing Processes

• top continuously updated list

• ps shows processes from the current terminal by default

o -a all processes except session leaders and processes not associated with a
terminal.

o -A prints all processes. Identical to -e.

o -e prints all processes. Identical to -A.

o -H show process hierarchy

o –u prints process owner information

o –l show log-listing format

o –L show thread information

o –a exclude processes not associated with a terminal

o –x includes processes not attached to terminals

o –f prints process parentage

o -- sort some sorting options are:
c cmd simple name of executable
C pcpu cpu utilization
r rss resident set size
R resident resident pages
s size memory size in kilobytes
S share amount of shared pages
T start_time time process was started
U uid user ID number
u user user name
v vsize total VM size in kB

o -o CODE prints custom information where CODE taken from the following list:

Code Header Description
%cpu %CPU cpu utilization of the process in "##.#" format. (alias pcpu)
%mem %MEM physical memory in percentage. (alias pmem)
Bsdstart START time the command started.
bsdtime TIME accumulated cpu time, user + system. "MMM:SS"
comm. COMMAND command name (only the executable name)
Egid EGID effective group ID number of the process (alias gid)
egroup EGROUP effective group ID of the process. (alias group)
etime ELAPSED elapsed time since the process was started, [[dd-]hh:]mm:ss.
euid EUID effective user ID. (alias uid)
euser EUSER effective user name.
fgid FGID filesystem access group ID. (alias fsgid)
fname COMMAND first 8 bytes of the base name of the proces executable file.
fuid FUID filesystem access user ID. (alias fsuid)
fuser FUSER filesystem access user ID.
label LABEL security label (used for SE Linux context data).
lstart STARTED time the command started.
lwp LWP lwp (light weight process, or thread)

Page 29 Linux Fundamentals by Commands and Examples

ID of the lwp being reported. (alias spid, tid)
ni NI nice value. This ranges from 19 (nicest) to -20

(not nice to others) (alias nice)
nlwp NLWP number of lwps (threads) in the process. (alias thcount)
pgid PGID process group ID or, equivalently, the process ID of the process group
 leader. (alias pgrp)
pid PID process ID number of the process.
ppid PPID parent process ID.
psr PSR processor that process is currently assigned to.
rgid RGID real group ID.
rss RSS resident set size, the non-swapped physical memory that a

task has used (in kiloBytes). (alias rssize, rsz).
ruid RUID real user ID.
ruser RUSER real user ID (textual, if possible)
s S minimal state display (one character). See sub-section below

(alias state)
sched SCH scheduling policy of the process (0,1,2)
sess SESS session ID (alias session, sid).
sig PENDING pending. (alias pending, sig_pend).
sigcatch CAUGHT caught. (alias caught, sig_catch).
sigignore IGNORED ignored. (alias ignored, sig_ignore).
sigmask BLOCKED blocked. (alias blocked, sig_block).
start_time START starting time or date of the process.
stat STAT multi-character process state.
suid SUID saved user ID. (alias svuid).
suser SUSER saved user name (textual, if possible) (alias svuser).
time TIME cumulative CPU time
tname TTY controlling tty (terminal). (alias tt, tty).
tt TT controlling tty (terminal). (alias tname, tty).
tty TT controlling tty (terminal). (alias tname, tt).
vsize VSZ virtual memory usage of entire process.
vsz VSZ see vsize. (alias vsize).

Process statuses:

R Runnable: executing

S Sleeping: waiting for an event to occur to wake up

T Stopped: not executing

D Uninterruptible sleep

Z Zombie: just before a process dies. It no notification acknowledgment received from
parent, all resources except PID are released.

When the stat keyword is used, additional characters may be displayed:
< high-priority (not nice to other users)
N low-priority (nice to other users)
L has pages locked into memory (for real-time and custom IO)
s is a session leader
l is multi-threaded
+ is in the foreground process group

ps aux # commonly used and equivalent to -aux

ps –e # to see every process on the system

ps –ef # to see every process on the system

ps –eH # to print a process tree

Page 30 Linux Fundamentals by Commands and Examples

ps –eLf # to show threads

ps –el # to display long listing format

To see every process with a user-defined format:

ps -eo pid,euser,ruser,lstart,stat,pcpu,pmem,rss,vsize --sort -rss

ps -eo pid,tid,class,rtprio,ni,pri,psr,pcpu,stat,wchan:14,comm.

ps -eo euser,ruser,suser,fuser,f,comm,label # To get security info.

Sending Signals to Processes

• kill [-signal] pid(s) the default signal is TERM (15)

• kill –l lists the signals (for more info use man 7 signal)

following commands send TERM signal (normal exiting)

kill 3453

kill -15 3453

kill –TERM 3453

following commands send KILL signal (can be used if TERM failed)

kill –KILL 3453

kill -9 3453

Changing Process Scheduling Priority

• nice [-n adj] command where adj between -20 (highest) and 19 (lowest)

• renice adj [[-p|-g] PID [[-u] user] for running processes

nice –n 10 myapp

renice -15 –p 201 # only superuser can increase priority

renice 15 –u john # for all processes owned by john

Listing Background and Suspended Jobs

• jobs

Resuming Suspended Jobs

• bg [%job_number] or Ctl+Z brings the current process into background

• fg [%job_number] brings the background process into foreground

You can use the following code example to test the commands:

(while true; do echo –n B >> file.log; sleep 1; done) &

Page 31 Linux Fundamentals by Commands and Examples

Compound Commands

• List of commands separated by semi-colons

• Put the list between () to run them all in a subshell (treat it all as a one command)

date; who | wc –l >> mylogfile.txt # only the second command will be logged

(date; who | wc –l) >> mylogfile.txt # all output will be logged

Scheduling a Process

• at time <commands> commands entered one per line, terminate with Ctl+D

• atq [user] lists the current at jobs

• atrm [user|atJobID] removes at jobs

at 8:00pm December 7

at 7 am Thursday

at now + 5 minutes

at midnight + 23 minutes

Scheduling a Process Periodically

• crontab used to install, deinstall or list the tables (crontabs).

-u user the user whose crontab is to be tweaked

-l display the current crontab file

-r remove the current crontab file

-e edit. After exit from the editor, the modified crontab will be installed

• Cronttab file:

o Space delimited

o Fields: minute, hour (0-23), day of month (0-31), month (1-12), and day of
week (0=Sun to 6).

Min Hour DoM Month DoW Commands

3 4 * * 1,3,5 find ~ -name core | xargs rm –f P{}

Page 32 Linux Fundamentals by Commands and Examples

bash Shell Scripting Basics

Creating Shell Scripts

• First line contains the magic "shbang" #!/bin/bash

• Comments start with #

• One command spans multiple lines with \

• By convenient, they have sh extension

Handling Input

• read assigns an input word(s) to a shell variable

• words are separated by default with space. IFS variable controls the separator.

#!/bin/bash

read –p "Enter the words:" word1 word2 word3

echo "Word1 : $word1"

echo "Word2 : $word2"

echo "Word3 : $word3"

Shell Script Debugging

• Modify the shebang as follows

#!/bin/bash –x

#!/bin/bash -v

• Alternatively, Invoke the shell interpreter with debug options

bash –x scriptname

bash –v scriptname

Handling Positional Parameters (Arguments)

• accessed by $1, $2, …, $9, ${10},${11},…

• $0 reserved for the program name

• $* holds all command line parameters

• $# holds number of command line parameters

#!/bin/bash

printf "First Parameter :%s\n" $1

printf "Second Parameter :%s\n" $2

echo –e "\nAll Parameters: $*\n" # -e option enables interpretation of the
 # backslash-escaped characters

Page 33 Linux Fundamentals by Commands and Examples

Using Functions

• functionname() { [return ...] }

• Arguments passed to a function are accessed by its positional parameters $1, $2 … etc.

• return keyword sets the special variable $?

• Variables are made local in a function using local keyword.

#!/bin/bash

printname(){

 local firstname=$1 lastname=$2

 echo –e "Full name: $lastname $firstname\n"

 return 1

}

printname Ahmed Baraka

retval=$?

echo "Returned value: $retval"

Exit Status

• $? contains exit status of the most recently executed command.

• It takes values 0 for success, 1-255 for failure

• exit sets an exist status in a script

Conditional Execution

• <cmd1> && <cmd2> execute cmd2 if cmd1 succeeds

• <cmd1> || <cmd2> execute cmd2 if cmd1 fails

ping -c1 -W2 pc1 &> /dev/null \
> && echo "pc1 is up" \
> || $(echo 'pc1 is unreachable'; exit 1)

Using the if Statement

if [condition]; then
 …
elif [condition]; the
 …
else
 …
fi

if [$retval != 0]; then
 echo "There was an error running the application"
 exit $retval
fi

Page 34 Linux Fundamentals by Commands and Examples

Using the Case Statement

case variable in

 pattern1)

 <command>;;

 pattern2)

 <command>;;

esac

#!/bin/bash

. ~/lib/funcs

case $1 in
 start)
 start_func;;
 stop)
 stop_func;;
 restart)
 stop_func
 start_func;;
 status)
 status_func;;
 *)
 echo "Use Command"
 esac

Using the For Loop

for variable in list-of-vlaues

do

 commands...

done

#!/bin/sh

echo "Please enter a list of numbers between 1 and 100. "

read NUMBERS

for NUM in $NUMBERS

do
 if ["$NUM" -lt 1] || ["$NUM" -gt 100]; then
 echo "Invalid Number ($NUM) - Must be between 1 and 100!"
 else
 echo "$NUM is valid."
 fi
done

Using the While loop

while condition

do

 commands...

done

Page 35 Linux Fundamentals by Commands and Examples

#!/bin/sh
Guess the number game.

ANSWER=5 # The correct answer
CORRECT=false # The correct flag

while ["$CORRECT" != "true"]
do
 # Ask the user for the number...
 echo "Guess a number between 1 and 10. "
 read NUM

 # Validate the input...
 if ["$NUM" -lt 1] || ["$NUM" -gt 10]; then
 echo "The number must be between 1 and 10!"
 elif ["$NUM" -eq "$ANSWER"]; then
 echo "You got the answer correct!"
 CORRECT=true
 else
 echo "Sorry, incorrect."
 fi
done

(while true; do echo –n B >> file.log; sleep 1; done)

Disrupting Loops

• continue jump back to the initial condition

• break jump to the command past the done

File Tests

• Common file tests are:

-e file exists

-f file exists and is a regular file

-d file exists and is a directory

-x file exists and is an executable

-h file exists and is symbolic link

-r file exists and is readable by you

-s file exists and is not empty

-w file exists and is writable by you

-O file exists and is effectively owned by you

-G file exists and is effectively owned by your group

• help test for the complete list

if [-f $HOME/lib/functions]; then
 ...
fi

Page 36 Linux Fundamentals by Commands and Examples

String Tests

• String operators:

-z STRING True if string is empty.

 -n STRING True if string is not empty.

 STRING1 = STRING2 True if the strings are equal.

 STRING1 != STRING2 True if the strings are not equal.

 STRING1 < STRING2 True if STRING1 sorts before STRING2 lexicographically.

STRING1 > STRING2 True if STRING1 sorts after STRING2 lexicographically.

Shell Option Test

• Shell option operator

-o OPTION True if the shell option OPTION is enabled.

Logical Tests

• Logical Operators

! EXPR True if expr is false.
EXPR1 -a EXPR2 True if both expr1 AND expr2 are true.
EXPR1 -o EXPR2 True if either expr1 OR expr2 is true.

Comparison

• Comparison Operators

arg1 OP arg2 OP is one of: -eq, -ne, -lt, -le, -gt, or -ge.

Page 37 Linux Fundamentals by Commands and Examples

	Introduction
	Unix variants
	GNU/Linux distributions

	Getting Started
	Virtual Consoles
	Changing password
	Logging-In
	Date and Time Commands
	Making Arithmetic Calculations
	Generating Sequential Numbers
	Getting Help
	Handy shortcuts

	Managing Files and Directories
	Files and Directories Commands
	Determining File Content
	Viewing Files
	Hard and Symbolic (Soft) Links
	Checking Free Space
	Searching Files By Names
	Searching Files By Names and Attributes
	Archiving Files
	Compression Utilities
	Text File Processing Tools

	Users, Groups and Permissions
	Change Password
	Change Your Identity
	User Information Commands
	Changing File Ownership
	Changing Permissions
	Default File Permission
	Special Permission

	bash Shell Basics
	File Blobbing
	History Tricks
	Command Line Expansion
	Local Shell Variables
	Aliases
	Type
	Environment Variables
	Showing Path of Executable
	Login and Non-Login Shells
	Startup and Logout Scripts
	Recording a Shell Session

	Standard I/O and Pipes
	Redirecting Output to a File
	Redirecting STDOUT to a Program (Piping)
	Redirecting to Multiple Targets
	Redirecting STDIN from a File
	Sending Multiple Lines to STDIN

	Text Files and String Manipulation
	Viewing File Contents
	Viewing File Excerpts
	Extracting Text by Column
	Gathering Text Statistics
	Sorting Text
	Eliminating Duplicates
	Comparing Files
	Spell Checking with aspell
	Converting Characters
	Combining Files
	Expanding Tabs Into Spaces
	Regular Expressions
	Extended Regular Expressions
	Extracting Text by Keyword
	Search and Replace
	Editing Text by awk

	Using the Text Editor vi
	Modes
	Search and Replace (Command Mode)
	Manipulating Text (Command Mode)
	Undoing Changes (Command Mode)
	Visual Mode
	Using Multiple "windows"
	Configuring vi and vim

	Managing Processes
	Listing Processes
	Sending Signals to Processes
	Changing Process Scheduling Priority
	Listing Background and Suspended Jobs
	Resuming Suspended Jobs
	Compound Commands
	Scheduling a Process
	Scheduling a Process Periodically

	bash Shell Scripting Basics
	Creating Shell Scripts
	Handling Input
	Shell Script Debugging
	Handling Positional Parameters (Arguments)
	Using Functions
	Exit Status
	Conditional Execution
	Using the if Statement
	Using the Case Statement
	Using the For Loop
	Using the While loop
	Disrupting Loops
	File Tests
	String Tests
	Shell Option Test
	Logical Tests
	Comparison

