Solving ODEs Euler Method & RK2/4

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM

Euler Method

http://numericalmethods.eng.usf.edu

Euler's Method

Euler's Method

 http:// **Figure 2.** General graphical interpretation of Euler's method

How to write Ordinary Differential **Equation**

How does one write a first order differential equation in the form of

 $\frac{dy}{dx} = f(x, y)$

Example

$$
\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5
$$

is rewritten as

$$
\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5
$$

In this case

$$
f(x, y) = 1.3e^{-x} - 2y
$$

 http:// 5 numericalmethods.eng.usf.edu

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right) \theta (0) = 1200 K
$$

Find the temperature at $t = 480$ seconds using Euler's method. Assume a step size of

 $h = 240$ seconds.

Solution

Step 1:

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)
$$

\n
$$
f(t, \theta) = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)
$$

\n
$$
\theta_{i+1} = \theta_i + f(t_i, \theta_i)h
$$

\n
$$
\theta_1 = \theta_0 + f(t_0, \theta_0)h
$$

\n
$$
= 1200 + f(0,1200)240
$$

\n
$$
= 1200 + (-2.2067 \times 10^{-12} (1200^4 - 81 \times 10^8))240
$$

\n
$$
= 1200 + (-4.5579)240
$$

\n
$$
= 106.09K
$$

\n
$$
\theta_1 \text{ is the approximate temperature at } t = t_1 = t_0 + h = 0 + 240 = 240
$$

\n
$$
\theta(240) \approx \theta_1 = 106.09K
$$

 http:// 7 numericalmethods.eng.usf.edu

Step 2: For $i = 1$, $t_1 = 240$, $\theta_1 = 106.09$ $\theta_2 = \theta_1 + f(t_1, \theta_1)h$ $= 106.09 + f(240,106.09)240$ $= 106.09 + (-2.2067 \times 10^{-12} (106.09^{4} - 81 \times 10^{8}))240$ $= 106.09 + (0.017595)240$ $=110.32K$

 θ_2 is the approximate temperature at $t = t_2 = t_1 + h = 240 + 240 = 480$ θ (480) $\approx \theta$ ₂ = 110.32K

 http:// 8 numericalmethods.eng.usf.edu

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$
0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1} (0.00333\theta) = -0.22067 \times 10^{-3} t - 2.9282
$$

The solution to this nonlinear equation at $t=480$ seconds is

 $\theta(480) = 647.57K$

 http:// 9 numericalmethods.eng.usf.edu

Comparison of Exact and Numerical Solutions

Figure 3. Comparing exact and Euler's method

 http:// 10 numericalmethods.eng.usf.edu

Effect of step size

Table 1. Temperature at 480 seconds as a function of step size, h

14.806 $\theta(480) = 647.57K$ (exact)

 http:// 11 numericalmethods.eng.usf.edu

Comparison with exact results

Figure 4. Comparison of Euler's method with exact solution for different step sizes

Effects of step size on Euler's Method

Figure 5. Effect of step size in Euler's method.

 http:// 13 numericalmethods.eng.usf.edu

Errors in Euler's Method

It can be seen that Euler's method has large errors. This can be illustrated using Taylor series.

$$
y_{i+1} = y_i + \frac{dy}{dx}\bigg|_{x_i, y_i} (x_{i+1} - x_i) + \frac{1}{2!} \frac{d^2 y}{dx^2}\bigg|_{x_i, y_i} (x_{i+1} - x_i)^2 + \frac{1}{3!} \frac{d^3 y}{dx^3}\bigg|_{x_i, y_i} (x_{i+1} - x_i)^3 + \dots
$$

$$
y_{i+1} = y_i + f(x_i, y_i)(x_{i+1} - x_i) + \frac{1}{2!} f'(x_i, y_i)(x_{i+1} - x_i)^2 + \frac{1}{3!} f''(x_i, y_i)(x_{i+1} - x_i)^3 + \dots
$$

As you can see the first two terms of the Taylor series

 $y_{i+1} = y_i + f(x_i, y_i)$ are the Euler's method.

The true error in the approximation is given by

$$
E_t = \frac{f'(x_i, y_i)}{2!}h^2 + \frac{f''(x_i, y_i)}{3!}h^3 + \dots
$$
 $E_t \propto h^2$

 http:// 14 numericalmethods.eng.usf.edu

Runge 2nd Order Method

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Runge-Kutta 2nd Order Method

http://numericalmethods.eng.usf.edu

Runge-Kutta 2nd Order Method

For
$$
\frac{dy}{dx} = f(x, y), y(0) = y_0
$$

Runge Kutta 2nd order method is given by

$$
y_{i+1} = y_i + (a_1 k_1 + a_2 k_2) h
$$

where

$$
k_1 = f(x_i, y_i)
$$

$$
k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)
$$

 http:// 3 numericalmethods.eng.usf.edu

Heun's Method

 $k_1 = f(x_i, y_i)$ $k_2 = f(x_i + h, y_i + k_1 h)$

 http:// 4 numericalmethods.eng.usf.edu

Midpoint Method

Here $a_2 = 1$ is chosen, giving

 $a_1 = 0$ $p_1 = \frac{1}{2}$ $q_{11} = \frac{1}{2}$

resulting in

$$
y_{i+1} = y_i + k_2 h
$$

where

$$
k_1 = f(x_i, y_i)
$$

$$
k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)
$$

 http:// 5 numericalmethods.eng.usf.edu

Ralston's Method

Here $a_2 = \frac{2}{3}$ is chosen, giving $a_1 = \frac{1}{3}$ $p_1 = \frac{3}{4}$ $q_{11} = \frac{3}{4}$ resulting in $y_{i+1} = y_i + \left(\frac{1}{3}k_1 + \frac{2}{3}k_2\right)h$ where $k_1 = f(x_i, y_i)$

$$
k_2 = f\left(x_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h\right)
$$

 http:// 6 numericalmethods.eng.usf.edu

How to write Ordinary Differential **Equation**

How does one write a first order differential equation in the form of

 $\frac{dy}{dx} = f(x, y)$

Example

$$
\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5
$$

is rewritten as

$$
\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5
$$

In this case

$$
f(x, y) = 1.3e^{-x} - 2y
$$

 http:// 7 numericalmethods.eng.usf.edu

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right) \theta(0) = 1200 K
$$

Find the temperature at $t = 480$ seconds using Heun's method. Assume a step size of $h = 240$ seconds.

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8\right)
$$

$$
f(t, \theta) = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8\right)
$$

$$
\theta_{i+1} = \theta_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h
$$

 http:// 8 numericalmethods.eng.usf.edu

Solution

Step 1: $i = 0, t_0 = 0, \theta_0 = \theta(0) = 1200K$

$$
k_1 = f(t_0, \theta_o)
$$

\n
$$
= f(0,1200)
$$

\n
$$
= -2.2067 \times 10^{-12} (1200^4 - 81 \times 10^8)
$$

\n
$$
= -4.5579
$$

\n
$$
= -4.5579
$$

\n
$$
= 0.017595
$$

\n
$$
k_1 = f(t_0 + h, \theta_0 + k_1 h)
$$

\n
$$
= f(0 + 240,1200 + (-4.5579)240)
$$

\n
$$
= f(240,106.09)
$$

\n
$$
= -2.2067 \times 10^{-12} (106.09^4 - 81 \times 10^8)
$$

\n
$$
= 0.017595
$$

$$
\theta_1 = \theta_0 + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h
$$

= 1200 + $\left(\frac{1}{2}(-4.5579) + \frac{1}{2}(0.017595)\right)240$
= 1200 + $\left(-2.2702\right)240$
= 655.16K

 http:// **9 numericalmethods.eng.usf.edu**

 $i = 1, t₁ = t₀ + h = 0 + 240 = 240, \theta₁ = 655.16K$ **Step 2:** $k_{2} = f(t_{1} + h, \theta_{1} + k_{1}h)$ $k_1 = f(t_1, \theta_1)$ $= f(240 + 240,655.16 + (-0.38869)240)$ $= f(240,655.16)$ $= f(480, 561.87)$ $= -2.2067 \times 10^{-12} (655.16^4 - 81 \times 10^8)$ $= -2.2067 \times 10^{-12} \left(561.87^4 - 81 \times 10^8\right)$ $=-0.38869$ $=-0.20206$

$$
\theta_2 = \theta_1 + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h
$$

= 655.16 + $\left(\frac{1}{2}(-0.38869) + \frac{1}{2}(-0.20206)\right)240$
= 655.16 + (-0.29538)240
= 584.27K

 http:// 10 numericalmethods.eng.usf.edu

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$
0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1} (0.0033333 \theta) = -0.22067 \times 10^{-3} t - 2.9282
$$

The solution to this nonlinear equation at $t=480$ seconds is

 $\theta(480) = 647.57K$

 http:// **11 numerical methods.eng.usf.edu numerical methods.eng.usf.edu**

Comparison with exact results

Figure 2. Heun's method results for different step sizes

Effect of step size

Table 1. Temperature at 480 seconds as a function of step size, h

 $\theta(480) = 647.57K$ (exact)

 http:// 13 numericalmethods.eng.usf.edu

Effects of step size on Heun's Method

Figure 3. Effect of step size in Heun's method

Comparison of Euler and Runge-Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

Step size,	$\theta(480)$			
	Euler	Heun	Midpoint	Ralston
480		-987.84 -393.87	1208.4	449.78
240	110.32	584.27	976.87	690.01
120	546.77	651.35	690.20	667.71
60	614.97	649.91	654.85	652.25

 $A(180) - 647.57K$ (exact) (exact)

Comparison of Euler and Runge-Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

$$
\theta(480) = 647.57K
$$
 (exact)

 http:// 16 numericalmethods.eng.usf.edu

Comparison of Euler and Runge-Kutta 2nd Order Methods

Figure 4. Comparison of Euler and Runge Kutta 2nd order methods with exact results.

 http:// 17 numericalmethods.eng.usf.edu

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

[http://numericalmethods.eng.usf.edu/topics/](http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html) runge kutta 2nd method.html

Runge 4th Order Method

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Runge-Kutta 4th Order Method

http://numericalmethods.eng.usf.edu

Runge-Kutta 4th Order Method

For
$$
\frac{dy}{dx} = f(x, y), y(0) = y_0
$$

Runge Kutta 4th order method is given by

$$
y_{i+1} = y_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) h
$$

where

$$
k_1 = f(x_i, y_i)
$$

\n
$$
k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)
$$

\n
$$
k_3 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right)
$$

\n
$$
k_4 = f\left(x_i + h, y_i + k_3h\right)
$$

 http:// 3 numericalmethods.eng.usf.edu

How to write Ordinary Differential **Equation**

How does one write a first order differential equation in the form of

 $\frac{dy}{dx} = f(x, y)$

Example

$$
\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5
$$

is rewritten as

$$
\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5
$$

In this case

$$
f(x, y) = 1.3e^{-x} - 2y
$$

 http:// 4 numericalmethods.eng.usf.edu

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right) \theta(0) = 1200 K
$$

Find the temperature at $t = 480$ seconds using Runge-Kutta 4th order method.

Assume a step size of $h = 240$ seconds.

$$
\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8\right)
$$

$$
f(t, \theta) = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8\right)
$$

$$
\theta_{i+1} = \theta_i + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4\right)h
$$

 http:// 5 numericalmethods.eng.usf.edu

Solution

Step 1: $i = 0, t_0 = 0, \theta_0 = \theta(0) = 1200$ $k_1 = f(t_0, \theta_0) = f(0,1200) = -2.2067 \times 10^{-12} (1200^4 - 81 \times 10^8) = -4.5579$ $k_2 = f\left(t_0 + \frac{1}{2}h, \theta_0 + \frac{1}{2}k_1h\right) = f\left(0 + \frac{1}{2}(240), 1200 + \frac{1}{2}(-4.5579)\right)240\frac{1}{7}$ $= f(120,653.05) = -2.2067 \times 10^{-12} (653.05^4 - 81 \times 10^8) = -0.38347$ $k_3 = f\left(t_0 + \frac{1}{2}h_0\theta_0 + \frac{1}{2}k_2h\right) = f\left(0 + \frac{1}{2}(240)\frac{1200}{2} + \frac{1}{2}(-0.38347)\frac{240}{1}\right)$ $= f(120, 1154.0) = 2.2067 \times 10^{-12} (1154.0^4 - 81 \times 10^8) = -3.8954$ $k_4 = f(t_0 + h, \theta_0 + k_3 h) = f(0 + (240)1200 + (-3.984)240)$ $= f(240,265.10) = 2.2067 \times 10^{-12} (265.10^4 - 81 \times 10^8) = 0.0069750$

Solution Cont

$$
\theta_1 = \theta_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)h
$$

= 1200 + $\frac{1}{6}$ (-4.5579 + 2(-0.38347) + 2(-3.8954) + (0.069750))240
= 1200 + $\frac{1}{6}$ (-2.1848)240
= 675.65K

is the approximate temperature at θ_1

$$
t = t_1 = t_0 + h = 0 + 240 = 240
$$

 θ (240) $\approx \theta_1 = 675.65K$

 http:// 7 numericalmethods.eng.usf.edu

 $i = 1, t_1 = 240, \theta_1 = 675.65K$ **Step 2:**

$$
k_1 = f(t_1, \theta_1) = f(240, 675.65) = -2.2067 \times 10^{-12} \left(675.65^4 - 81 \times 10^8 \right) = -0.44199
$$

$$
k_2 = f\left(t_1 + \frac{1}{2}h, \theta_1 + \frac{1}{2}k_1h\right) = f\left(240 + \frac{1}{2}(240), 675.65 + \frac{1}{2}(-0.44199)240\right)
$$

= f(360,622.61) = -2.2067 × 10⁻¹² (622.61⁴ – 81 × 10⁸) = -0.31372

$$
k_3 = f\left(t_1 + \frac{1}{2}h, \theta_1 + \frac{1}{2}k_2h\right) = f\left(240 + \frac{1}{2}(240)\right)675.65 + \frac{1}{2}(-0.31372)240\frac{1}{7}
$$

= f(360, 638.00) = 2.2067×10⁻¹² (638.00⁴ - 81×10⁸) = -0.34775

$$
k_4 = f(t_1 + h, \theta_1 + k_3 h) = f(240 + (240)675.65 + (-0.34775)240)
$$

= f(480,592.19) = 2.2067 × 10⁻¹² (592.19⁴ – 81 × 10⁸) = -0.25351

 http:// 8 numericalmethods.eng.usf.edu

$$
\theta_2 = \theta_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) h
$$

= 675.65 + $\frac{1}{6}$ (-0.44199 + 2(-0.31372) + 2(-0.34775) + (-0.25351))240
= 675.65 + $\frac{1}{6}$ (-2.0184)240
= 594.91K

 θ_2 is the approximate temperature at

$$
t_2 = t_1 + h = 240 + 240 = 480
$$

$$
\theta (480) \approx \theta_2 = 594.91K
$$

 http:// 9 numericalmethods.eng.usf.edu

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$
0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1} (0.00333 \theta) = -0.22067 \times 10^{-3} t - 2.9282
$$

The solution to this nonlinear equation at $t=480$ seconds is

 $\theta(480) = 647.57K$

 http:// 10 numericalmethods.eng.usf.edu

Comparison with exact results

 http:// **Figure 1.** Comparison of Runge-Kutta 4th order method with exact solution

11 numericalmethods.eng.usf.edu

Effect of step size

Table 1. Temperature at 480 seconds as a function of step size, h

 $\theta(480) = 647.57K$ (exact)

Effects of step size on Runge-Kutta 4th Order Method

Figure 2. Effect of step size in Runge-Kutta 4th order method

 http:// 13 numericalmethods.eng.usf.edu

Comparison of Euler and Runge-Kutta Methods

 http:// **Figure 3.** Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order.

14 numericalmethods.eng.usf.edu

THE END