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Euler’s Method
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Figure 1  Graphical interpretation of the first step of Euler’s method 
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Euler’s Method
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Figure 2. General graphical interpretation of Euler’s method 
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How to write Ordinary Differential 
Equation

Example 
 

is rewritten as
 

In this case
 

How does one write a first order differential equation in the form of
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Example
A ball at 1200K is allowed to cool down in air at an ambient temperature 
of 300K.  Assuming heat is lost only due to radiation, the differential 
equation for the temperature of the ball is given by 
 

  
Find the temperature at seconds using Euler’s method.  Assume a step size of  

 seconds.
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Solution
Step 1:      

 is the approximate temperature at
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Solution Cont
For Step 2:     

 is the approximate temperature at 
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Solution Cont

The exact solution of the ordinary differential equation is given by the 
solution of a non-linear equation as

The solution to this nonlinear equation at t=480 seconds is
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Comparison of Exact and 
Numerical Solutions

Figure 3.  Comparing exact and Euler’s method 
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Step, h θ(480) Et |єt|%

480
240
120
60
30

−987.8
1
110.32
546.77
614.97

1635.4
537.26
100.80
32.607
14.806

252.54
82.964
15.566
5.0352
2.2864
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Effect of step size

Table 1.  Temperature at 480 seconds as a function of step size, h

(exact)
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Comparison with exact results
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Figure 4.  Comparison of Euler’s method with exact solution for different step sizes 
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Effects of step size on Euler’s 
Method
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Figure 5.  Effect of step size in Euler’s method. 
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Errors in Euler’s Method

It can be seen that Euler’s method has large errors.  This can be illustrated using 
Taylor series.

As you can see the first two terms of the Taylor series

The true error in the approximation is given by

are the Euler’s method.



02/11/10 http://numericalmethods.eng.usf.edu 1

Runge 2nd Order Method

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM 

Undergraduates

http://numericalmethods.eng.usf.edu/
http://numericalmethods.eng.usf.edu/
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Runge-Kutta 2nd Order Method

Runge Kutta 2nd order method is given by 

where

For
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 Heun’s Method
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Figure 1  Runge-Kutta 2nd order method  (Heun’s method) 

Heun’s method

resulting in

where

Here a2=1/2 is chosen
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Midpoint Method
Here  is chosen, giving

resulting in

where
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Ralston’s Method
Here is chosen, giving 

resulting in

where
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How to write Ordinary Differential 
Equation

Example 
 

is rewritten as
 

In this case
 

How does one write a first order differential equation in the form of
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Example
A ball at 1200K is allowed to cool down in air at an ambient temperature 
of 300K.  Assuming heat is lost only due to radiation, the differential 
equation for the temperature of the ball is given by 
 

  
Find the temperature at seconds using Heun’s method.  Assume a step size of  

 seconds.
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Solution
Step 1:      
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Solution Cont
Step 2:     
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Solution Cont

The exact solution of the ordinary differential equation is given by the 
solution of a non-linear equation as

The solution to this nonlinear equation at t=480 seconds is
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Comparison with exact results

Figure 2.  Heun’s method results for different step sizes 
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Effect of step size
Table 1.  Temperature at 480 seconds as a function of step size, h

Step size, h θ(480) Et |єt|%

480
240
120
60
30

−393.87
584.27
651.35
649.91
648.21

1041.4
63.304
−3.7762
−2.3406
−0.63219

160.82
9.7756
0.58313
0.36145
0.097625

(exact)
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Effects of step size on Heun’s 
Method

Figure 3.  Effect of step size in Heun’s method 



Step 
size,
h

θ(480)θ(480)θ(480)θ(480)Step 
size,
h Euler Heun Midpoint Ralston
480
240
120
60
30

−987.84
110.32
546.77
614.97
632.77

−393.87
584.27
651.35
649.91
648.21

1208.4
976.87
690.20
654.85
649.02

449.78
690.01
667.71
652.25
648.61
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Table 2.  Comparison of Euler and the Runge-Kutta methods

(exact)
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Table 2.  Comparison of Euler and the Runge-Kutta methods

Step size,
h
Step size,
h Euler Heun Midpoin

t
Ralston

480
240
120
60
30

252.54
82.964
15.566
5.0352
2.2864

160.82
9.7756
0.58313
0.36145
0.097625

86.612
50.851
6.5823
1.1239
0.22353

30.544
6.5537
3.1092
0.7229
9
0.1594

(exact)
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Figure 4.  Comparison of Euler and Runge Kutta 2nd order methods with 
exact results. 
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Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/
runge_kutta_2nd_method.html

http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html
http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html
http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html
http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html
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Runge-Kutta 4th Order Method

where

For

Runge Kutta 4th order method is given by
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How to write Ordinary Differential 
Equation

Example 
 

is rewritten as
 

In this case
 

How does one write a first order differential equation in the form of
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Example
A ball at 1200K is allowed to cool down in air at an ambient temperature 
of 300K.  Assuming heat is lost only due to radiation, the differential 
equation for the temperature of the ball is given by 
 

  
Find the temperature at seconds using Runge-Kutta 4th order method.  

 seconds.Assume a step size of
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Solution
Step 1:      
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Solution Cont

is the approximate temperature at 
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Solution Cont
Step 2:     
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Solution Cont

θ2 is the approximate temperature at 
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Solution Cont

The exact solution of the ordinary differential equation is given by the 
solution of a non-linear equation as

The solution to this nonlinear equation at t=480 seconds is
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Comparison with exact results

Figure 1. Comparison of Runge-Kutta 4th order method with exact solution    



Step size, 
h

θ (480) Et |єt|%

480
240
120
60
30

−90.278
594.91
646.16
647.54
647.57

737.85
52.660
1.4122
0.033626
0.00086900

113.94
8.1319
0.21807
0.0051926
0.00013419
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Effect of step size
Table 1.  Temperature at 480 seconds as a function of step size, h

(exact)
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Effects of step size on Runge-
Kutta 4th Order Method

Figure 2.  Effect of step size in Runge-Kutta 4th order method 
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Comparison of Euler and Runge-
Kutta Methods

Figure 3.  Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order. 



THE END


