
KUBERNETES PRIMER
An INTRODUCTION to CONTAINER ORCHESTRATION TOOL



Difference between Virtual Machine &
Container

Virtual Machines
abstract host
physical
infrastructure
resources through
hypervisor. Each VM
runs isolated on
separate Guest OS

A container is a self-
sustained process
having the source
code,
binaries/dependenci
es together running
on a cloud infra.
Compared to a VM,
a container engine
interact with the
kernel properties of
the host system &
spins up light-
weight VMs.



Need for Kubernetes

To manage distributed (micro-service based) application & services , their is a need to
enable clustering of containers to would provide easy manageability, scalability &
agility across the entire Cloud platform. Kubernetes, as an container management
solution perfectly fits into the Orchestration solution for automating deployment,
scaling and management of containerized applications.

Kubernetes is originally designed by Google and is now maintained by the Cloud
Native Computing Foundation. It aims to provide a platform for automating
deployment, scaling, and operations of application containers across clusters of hosts.
It works with a range of container tools, including Docker, Rockt, CoreOS.

One of the key components of Kubernetes is, it can run application on clusters of
physical and virtual machine infrastructure. It also has the capability to run
applications on cloud. It helps in moving from host-centric infrastructure to container-
centric infrastructure.



Kubernetes Architecture

§ Node – It is the host that container runs on.
§ Pod – It is the smallest deployment unit in

Kubernetes that contains one or more managed
containers. Each pod has its own unique IP
address and storage namespaces. All
containers share these networking and storage
resources. One of the characteristics mentioned
in this presentation is that pods are “mortal.”

§ Deployment - A Deployment specifies how
many instances of a pod will run. A YAML file is
used to define a Deployment. Kubernetes can
make sure that the number of Pods that a user
specifies is always up and running in the
system.

§ Service - A Kubernetes Service is an
abstraction which defines a logical set of Pods
and a policy by which to access them. Service
are categorized in terms of ClusterIP &
NodePorts. Cluster IP is internal to Kubernetes,
and the NodePorts are the published IP
addresses for external users to access the
services



Kubernetes – Master & Node
Structure


