CLASS TEST

NEET / JEE - MAINS

TIME: 1 Hour

Instructions:

- 1. Attempt all questions.
- 2. Question number 1 15 are MCQ with one correct option only.
- 3. For each correct response +4 marks will be awarded, for each wrong choice -1 marks will be given.
- Q.1 If position time graph of a particle is sine curve as shown, what will be its velocity-time graph.

- If angular velocity of a disc depends on angle rotated θ as $\omega = \theta^2 + 2\theta$, then its angular acceleration α Q.2 at $\theta = 1$ rad is:
 - (A) 8 rad/sec^2
- (B) 10 rad/sec^2
- (C) 12 rad/sec^2
- (D) None
- Q.3 If a particle takes t second less and acquires a velocity of v m s⁻¹ more in falling through the same distance (starting from rest) on two planets where the accelerations due to gravity are 2 g and 8 g respectively then:
 - (A) v = 2gt
- (B) v = 4gt
- (C) v = 5 gt
- (D) v = 16 gt
- A particle is projected from a horizontal plane (x-z plane) such that its velocity vector at time t is given by Q.4 $\vec{V} = a\hat{i} + (b - ct)\hat{i}$. Its range on the horizontal plane is given by
 - (A) $\frac{ba}{c}$
- (B) $\frac{2ba}{c}$
- (C) $\frac{3ba}{c}$
- (D) None
- Q.5 Acceleration versus velocity graph of a particle moving in a straight line starting from rest is as shown in figure. The corresponding velocity-time graph would be

- Q.6 The acceleration of a particle which moves along the positive x-axis varies with its position as shown. If the velocity of the particle is 0.8 m/s at x = 0, the velocity of the particle at x = 1.4 is (in m/s)
 - (A) 1.6

(B) 1.2

(C) 1.4

(D) none of these

Q.7	A ball is projected from top of a tower with a velocity of 5 m/s at an angle of 53 ⁰ to horizontal. Its speed when it is at a height of 0.45 m from the point of projection is:								
	(A) 2 m/s	(B) 3 m/s	(C) 4 m/s	(D) da	ta insufficient.				
Q.8	Average velocity of a particle is projectile motion between its starting point and the highest point of its trajectory is: (projection speed = u , angle of projection from horizontal = θ)								
	$(A) u \cos\theta$	(B) $\frac{\mathrm{u}}{2}\sqrt{1+3\cos^2\theta}$	(C) $\frac{\mathrm{u}}{2}\sqrt{2+\mathrm{co}}$	$\overline{\text{os}^2 \theta}$ (D) $\frac{\text{u}}{2}$	$\sqrt{1+\cos^2\theta}$				
Q.9	Particle is dropped from the height of 20 m from horizontal ground. There is wind blowing due to which horizontal acceleration of the particle becomes 6 ms ⁻² . Find the horizontal displacement of the particle till it reaches ground.								
	(A) 6 m	(B) 10 m	(C) 12 m	(D) 24	ł m				
Q.10	A projectile is fired with a speed u at an angle θ with the horizontal. Its speed when its direction of motion makes an angle ' α ' with the horizontal is								
	(A) u $\sec\theta\cos\alpha$	(B) $u \sec \theta \sin \alpha$	(C) $u \cos\theta \sec\theta$	cα (D) u	$\sin \theta \sec \alpha$				
Q.11	In the figure shown, the two projectiles are fired simultaneously. The minimum distance between them during their flight is $ \begin{array}{ccccccccccccccccccccccccccccccccccc$								
	(A) 20 m	(B) $10\sqrt{3}$ m	(C) 10 m	(D) None	60° 20 m	30°			
Q.12	A swimmer swims in still water at a speed = 5 km/hr . He enters a 200 m wide river, having river flow speed = 4 km/hr at point A and proceeds to swim at an angle of 127° (sin $37^{\circ} = 0.6$) with the river flow direction. Another point B is located directly across A on the other side. The swimmer lands on the other bank at a point C, from which he walks the distance CB with a speed = 3 km/hr . The total time in which he reaches from A to B is								
	(A) 5 minutes	(B) 4 minutes	(C) 3 minutes	(D) N	one				
Q.13	Wind is blowing in the north direction at speed of 2 m/s which causes the rain to fall at some angle with the vertical. With what velocity should a cyclist drive so that the rain appears vertical to him:								
	(A) 2 m/s south	(B) 2 m/s north	(C) 4 m/s west	t (D) 4 t	m/s south				
Q.14	A flag is mounted on a car moving due North with velocity of 20 km/hr. Strong winds are blowing due East with velocity of 20 km/hr. The flag will point in direction								
	(A) East	(B) North - East	(C) South - Ea	ast (D) Se	outh - West				
Q.15	A particle moves along an arc of a circle of radius R. Its velocity depends on the distance covered s as $v = a\sqrt{s}$, where a is a constant then the angle α between the vector of the total acceleration and the vector of velocity as a function of s will be								

(A) $\tan \alpha = \frac{R}{2s}$ (B) $\tan \alpha = \frac{2s}{R}$ (C) $\tan \alpha = \frac{2R}{s}$ (D) $\tan \alpha = \frac{s}{2R}$

PHYSICS
CLASS TEST

NEET / JEE - MAINS

ANSWER KEY

ONLY ONE OPTION IS CORRECT.

Q.1	С	Q.2	С	Q.3	В	Q.4	В	Q.5	D
Q.6	В	Q.7	C	Q.8	В	Q.9	C	Q.10	C
0.11	C	0.12	В	O 13	В	O 14	C	0.15	R