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Preface to the second edition

The main structure of the first edition has been retained, but we have
taken the opportunity in this second edition to update the text and clarify
an occasional obscurity. The text has in places been expanded, and also
additional topics have been added. The growing interest of physics stu-
dents in astrophysics has encouraged us to extend our discussions of the
nuclear and neutrine physics of supernovae, and of solar neatrinos. There
is a new chapter devoted to neutrino masses and neutrino oscillations. In
other directions, a description of muon-catalysed fusion has been
included, and a chapter on radiation physics introduces an important
applied field.

We should like to thank Dr John Andrews and Professor Denis
Henshaw for their useful comments on parts of the text, Mrs Victoria
Parry for her secretarial assistance, and Cambridge University Press for
their continuing support.

W. N. Cottingham
D. AL Greenwood
Bristol, March 2000




Preface to the first edition

Inwriting this text we were concerned to assert the continuing importance
of nuclear physics in an undergraduate physics course. We set the subject
in the context of current notions of particle physics. Our treatment of
these ideas, in Chapters 1 to 3, is descriptive, but it provides a unifying
foundation for the rest of the book. Chapter 12, on S-decay, returns to
the basic theory. It also seems to us important that a core course should
include some account of the applications of nudear physics in controlled
fission and fusion, and should exemplify the role of nuclear physics in
astrophysics. Three chapters are devoted to these subjects,

Experimental technigues are not described in detail. Itis impossible in
a short text to do justice to the ingenuity of the experimental scientist,
from the carly discoveries in radicactivity to the sophisticated experi-
ments of today. However, experimental data are stressed throughout:
we hope that the interdependence of advances in experiment and theory
s apparent to the reader.

We have by and large restricted the discussion of processes involving
nuclear excitation and nuclear reactions to energies less than about
10 MeV. Even with this restriction there is such a richness and diversity
of phenomena that it can be difficult for a beginner to grasp the under-
lying principles. We have therefore placed great emphasis on a few simple
theoretical models that provide a successful deseription and understand-
ing of the properties of nuclel at low energies. The way in which simple
models can elucdate the properties of a complex system is one of the
surprises of the subject, and part of its general educational value.

We have tried to keep the mathematics as simple as possible. We
assume 8 knowledge of the basic formulae of spedal relativity, and

Preface to tha first edition ®i

some basic quantum mechanies: wave-equations, energy levels and the
quantisation of angular momentum. A few topics which may not be
covered in elementary courses in quantum mechanics are treated in
appendices. We consider the technicalities of angular momentum algebra,
phase shift analysis and isotopic spin to be nappropriate to a first course
in nuclear physics. Equations are written to be valid in 81 units; results are
usually expressed in MeV and fm. Each chapter ends with a set of pro-
blems intended to amplify and extend the text; some refer to further
applications of nuclear physics. We have covered the bulk of the material
m this book in 35 lectures of the core undergraduate curriculum at
Bristol; these are given in the second and third vears of the honours
physics course,

We thank colleagues and students who read drafts of the text and
drew our attention to errors and obscurities, which we have tried to
eliminate. We are grateful to Margaret James and Mrs Lilian Murphy
for their work on the typescript.

There 15 a lkess obvious debt: to the sometime Department of
Mathematical Physics of the University of Birmingham where, under
Professor Peierls, we first learned about physics.

W. N. Cottingham
D. A. Greenwood
Bristol, August 1985




Constants of nature, conversion factors
and notation

299792 x 10° m s
105457 5 107 Js
L6218 x 1071 C
1.3807 x 102 J K™

= 8617 = 1077 eV K!
6.67x 107" m kg 572

Velocity of light €
Planck’s constant h=h/2x
Proton charge

Beltzmann™s constant &y

Gravitational constant

Fermi coupling Gy 1.166 = 107" (he) Mev ™
constant
Electron mass g 9.1094 % 107" kg
— (.511 00 MeV/ e
Proton mass nr, 1007 276 amu
— 938.27 MeV /¢’
Meutron mass iy 1008 66 amu

= 939.57 MeV /¢
{mass 2C atom)/12 1.660 54 x 107 kg
= 931.49 MeV/c*
578838 x 107" MeV T
un = eh/2m, 315245 x 107" MeV T
ag = 4wy I fmge® 0.529177 x 107" m
& fAmey he 1/137.036

Atomic mass unit
Bohr magneton g = eh/2m,
Nuclear magneton
Bohr radus
Fine-structure
constant

he = 197.327 MeV fm, 82,.-’4.11'1-:,:} = 1.43996 MeV fm

I MeV=160218 %1077

1 fm=10"m, 1barn=10""m’ =10 fm’

(Source: Review of Particle Physics (1998), Eur. Phys. J. C3, 1-794)

MNotation
r, k, ete., denote vectors (x, v, 2), (ke &y, k2), and r = ||, k= |K|,
dr=dvdydz, d'k=dk, dk, dk..

a N 1 &
L sin? @ ag’

d£2 = sin 8dAd¢ denotes an infinitesimal element of solid angle.
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Glossary of some important symbols

A

ﬂ{ r, f}
a
BlZ.N)
Bir. 1)

b

E(r, t}
E

F(Z.E,)
MZ. Ey)
(7

nuclear mass number (=N + £)
electromagnetic vector potential

84,1 nuclear surface width; §4.5 bulk binding coefficient

binding energy of nucdeus
magnetic field

84,5 surface tension coefficient; §14.1 impact parameter

electnc field

energy; £, £, neutron energy, proton energy; E;, 51[;

neutron, proton Fermi energy, measured from the bot-
tom of the shell-model neutron potential well; E; §8.3

§12.3 Coulomb correction factor in S-decay

§12.3 Kinematic factor in total g-decay rate

§6.2 exponent in the tunnelling formula

§12.2 weak interaction coupling constant (= Gl )
§8.1 statistical factor in Breit—-Wigner formula

§5.6 orbital and intrinsic magnetic moment coefficients

§12.5 axial coupling constant

§6.2 tunnelling integral

.3 total angular momentum operator

quantum number associated with J?

quantum number of J,

wave vector

value of k& = [k| at the Fermi energy

§C.1 orbital angular momentum operator
quantum number assodated with L% Chapter
Chapter 14 mean free path
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v Glossary of some impaortant symbals

m

i,
ml:l

_?;‘.'
a(E)
N(E)
p

g

q
R

o
S.(N. Z)
S(E)

SWE), S.(E)

quantum number of L_; reduced mass

quantum number of &,

mass of e-particle; miy, miy,e mass of atom, nucleus
number of neutrons in nuclews

density of states

integrated density of states

moment um

§5.7 nuclear electric quadrupole moment; §6.1 kinetic
energy release in nuclear reaction

§9.4 fission probability

&4.3 nuclear radius; §12.3 reaction rate

§6.2 potential barrier parameters

§5.2 neutron separation energy

§8.3 parameter of nuclear reaction eross-section for
energies below the Coulomb barrier

§12.3 electron (positron) energy spectrum without and
with Coulomb correction

§C.2 intrinsic angular momentum operator

quantum number associated with s §4.5 symmetry
energy coefficient

kinetic energy

decay half life

$5.2 nuclear time scale

§9 4 prompt neutron life

potential energy; {7 mean proten-neutron potential
energy difference in nucleus

radial wave-function

normalisation volume; §3.3 F{r) nucleon—nucleon
potential

§12.5 element of Kobayashi-Maskawa matrix

veloaty

atomic number (number of protons in nucleus)

width, partial width, of an exeited state

§14.1 relativistic factor (1 — 1.'2|.'rf2}_£'

§4.4 coefficient of pairing energy

permittivity of free space

§11.1 Fermi energy of electron gas

§13.3 neutrino mixing angle

413.1 Weinberg angle

§5.5 magnetic dipole operator

Glossary of some impotant symbols H
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Qg Sdyp
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newtron, proton magnetic moment

§5.5 magnetic dipole moment; §11.1 stellar mass per
electron; §14.3 photon linear attenuation coefficient
permeability of free space

§9.3 mean number of prompt neutroms, delayed
neutrons, per fission

42,1 electric charge density; §14.1 mass density

§4.1 electric charge density in units of ¢

§4.3 nucleon aumber density in nuclear matter

aumber density of nuclel, neutrons, protons

§C.2 Pauli spin matrices

cross-section; o, ., op total, elastic, fission cross-
section

mean life; gy, Ty electric, magnetie, dipole transition
mean life; §74 (r;)"" partial decay rate

§3.4 meson field

electromagnetic scalar potential

single particle wave-function

8131 general wave-function

$3.3 angular terms in the nucleon—nucleon potential
angular frequency




L

Prologue

More than 100 elements are now known to exist, distinguished from each
other by the eectric charge Ze on the atomic nucleus. This charge is
balanced by the charge carried by the Z electrons which together with
the nucleus make up the neutral atom. The elements are also distin-
guished by their mass, more than 99% of which resides in the nucleus.
Are there other distinguishing properties of nucle? Have the nuclei been
in existence since the beginning of time? Are there elements in the
Universe which do not exist on Earth? What physical principles underlie
the properties of nuclei? Why are ther masses so closely correlated with
their electric charges? Why are some nucle radicactive? Radioactivity is
used to man's benefit in medicine. Nuclear fission is exploited in power
generation. But man’s use of nuclear physics has also posed the terrible
threat of nuclear weapons.

This book aims to set out the basic concepts which have been devel-
oped by nuclear physicists in their attempts to understand the nucleus.
Besides satisfying our appetite for knowledge, these concepts must be
understood if we are to make an informed judgment on the benefits
and problems of nuclear technology.

After the discovery of the neutron by Chadwick in 1932, it was
accepted that a nuecleus of atomic number Z was made up of Z protons
and some number N of neutrons. The proton and neutron were then
thought to be elementary particles, although it is now clear that they
are not but rather are themselves structured entities. We shall also see
that in addition to neutrons and protons several other particles play an
mportant, if indirect, role in the physics of nuclei. In this and the follow-
ing two chapters, to provide a background to our subsequent study of the




2 Prologue

nucleus, we shall deseribe the elementary particles of nature, and their
interactions, as they are at present understood.

1.1 Fermions and bosons

Elementary particles are classified as either fermions or bosons. Fermions
are particles which satisfy the Pauli exclusion principle: if an assembly of
identical fermions is described in terms of single-particle wave-functions,
then no two fermions can have the same wave-function. For example,
electrons are fermions. This rule explains the shell structure of atoms and
hence underlies the whole of chemistry. Fermions are so called because
they obey the Fermi-Dirac statistics of statistical mechanics.

Bosons are particles which obey Bose—Finstein statisties, and are
characterised by the property that amy number of particles may be
assigned the same single-particle wave-function. Thus, in the case of
bosons, coherent waves of macroscopic amplitude can be constructed,
and such waves may to a good approximation be described classically.
For example, photons are bosons and the corresponding classical field i
the familiar electromagnetic field E and B, which satisfies Maxwells
equations.

At a more fundamental level, these properties are a consequence of
the possible symmetries of the wave-function of a system of identical
particles when the coordinates of any two particles are interchanged. In
the case of fermions, the wave-function changes sign; it 15 completely anti-
symmetric. In the case of bosons the wave-function is unchanged; it is
completely symmetrie.

There is also an observed relation between the intrinise angular
momentum, or spin, of a particle and its statistics, The intrinsic spin s
s quantised, with spin quantum number 5 (see Appendix C). For a fer-
mion, 5 takes one of the values % ;- ;- ...; for a boson, 5 takes one of the

2, ... . A theoretical explanation of this relationship can be
given within the framework of relativistic quantum field theory.

values ), 1, 2

1.2 The particle physicist's picture of nature

Elementary particle physics describes the world in terms of elementary
fermions, interacting through fields of which they are sources. The parti-
cles associated with the interaction fields are bosons. To take the most
familiar example, an electron is an elementary fermion; it carries electric
charge —¢ and this charge produces an electromagnetic field E, B, which

1.3 Congservation laws and symmetnies: parity 3

Table 1.1. Types of interaction field

Interaction field Boson Spin
Giravitational field ‘Grravitons” postulated 2
Weak field W, W, Z particles 1
Electromagnetic field Photons 1
Strong field ‘Ciluons” postulated 1

exerts foraes on other charged particles. The electromagnetic field, quan-
tised according to the rules of quantum mechanics, corresponds to an
assembly of phorons, which are bosons. Indeed, Bose—Einstein statistics
were first applied to photons.

Four types of interaction field may be distinguished in nature (see
Table 1.1). All of these interactions are relevant to nuclear physics,
though the gravitational field becomes important only in densely aggre-
gated matter, such as stars. Gravitational forees act on all particles and
are important for the physics on the lar ge scale of macroscopic bodies. On
the small scale of most terrestrial atomic and nuclear physics, gravita-
tonal forees are insignificant and except in Chapter 10 and Chapter 11 we
shall ignore them.

Mature provides an even greater diversity of elementary fermions
than of bosons. It s convenient to divide the elementary fermions nto
two classes: leprons, which are not sources of the strong fields and hence
do not participate in the strong interaction; and guarks, which take part
m all interactions.

The electron is an example of a lepton. Leptons and their interactions
are described in Chapter 2. Quarks are always confined in compound
systems which extend over distances of about 1 fm. The term hadron is
used generically for a guark system. The proton and neutron are hadrons,
as are mesons. The proton and neutron are the subject matter of
Chapter 3.

1.3 Conservation laws and symmetries: parity

The total energy of an solated system is constant in time. So also are its
hinear momentum and angular momentum. These conservation laws are
derivable from Newton's laws of motion and Maxwells equations, or
from the laws of quantum mechanics, but they can also, at a deeper




4 Prologue

level, be regarded as consequences of ‘symmetries” of space and time.
Thus the law of conservation of linear momentum follows from the
homogeneity of space, the law of conservation of angular momentum
from the sotropy of space; it does not matter where we place the origin
of our coordinate axes, or in which direction they are oriented.

These conservation laws are as significant in nuclear physics as else-
where, but there is another symmetry and conservation law which is of
particular importance in quantum systems such as the nucleus: reflection
symmetry and parity. By reflection symmetry we mean reflection about
the origin, r — r = —r. A single-particle wave-function 1¥(r) is said to
have parity +1 if it is even under reflection, i.c.

W) = ¥ir),
and parity —1 if it is odd under reflection, i.e.
W) = ().

More generally, a many-particle wave-function has parity +11f it is even
under reflection of all the particle coordinates, and parity —1 if it is odd
under reflection.

Parity is an important concept because the laws of the electromag-
netic and of the strong interaction are of exactly the same form if written
with respect to a reflected left-handed coordinate system (Ox', 0y, 02) as
they are in the standard right-handed system (Ox, Oy, 02) (Fig. 1.1). We
shall see in Chapter 2 that this is not true of the weak interaction.
Mevertheless, for many properties of atomic and nuclear systems the
weak interaction is unimportant and wave-functions for such systems
can be chosen to have a definite parity which does not change as the
wave-function evolves in time according to Schridinger’s equation.

1.4 Units

Every branch of physics tends to find certain units particularly congenial.
In nuclear physics, the size of the nucleus makes 107" m = 1 fm (femto-
metre) convenient as a unit of length, usually called a fermi. However,
nuclear cross-sections, which have the dimensions of area, are measured
in barns; 1 b= 107" m? = 100 fm?>. Energies of interest are usually of the
order of MeV. Since me” has the dimensions of energy, it is convenient to
quote masses in units of MeV/c*.

Problams 5

X

1
|
|
I
|
|
|
|

Fig. L1 The point P at r with coordinates {x, ¥, z) has coordinates (—x, —y, —2)
in the primed, reflected coordinate axes. (02, 03, 02" make up a fefi-handed set of
axes. In the figure, the 0z axis s out of the plane of the page.

For order-of-magnitude calculations, the masses m, and my, of the
electron and proton may be taken as

m, = 0.5 MeV/ ¢
nr, & 938 MeV /it

and it 15 useful to remember that

fic = 197 MeV fm,  ¢7/4ms, =~ 1.44 MeV fm,
& fAneghc = 17137, ¢=3 x10° fms™.

The student will perhaps be surprised to find how easily many expressions
in nuclear physics can be evaluated using these guantities.

Problems

1.1 Show that the ratio of the gravitational potential energy to the Coulomb
potential energy between two electrons is == 24 = 10 i
1.2(a) Show that in polar coordinates (r, 4, ¢) the reflection
r— ' =—risequivalent to r— ¥ =r
B @ == = f =,
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{#) What are the parities of the following electron states of the hydrogen

1.3a)
(5

arom:

¥

T
(i) 1#'1::-::—1& (ﬂn)e A

o l (.)ér iy s
i) o= — | —a o0z,
M s\ @

2

1 I%TF :

(i) Yy _—[—) ! e~ ging e
Hﬁ g /iy

la1g = (doeg ) W fme” is the Bohr radius.)

Show that the wavelength of a photon of energy 1 MeV is = 1240 fin.

The electrostatic self-energy of a uniformly charged sphere of total
charge ¢, radius R, is U = (3/5)e* (dneqB). Show that if B =1 fin,

L' = 0586 MeV.

2 .

Leptons and the electromagnetic and weak
interactions

2.1 The electromagnetic interaction

The electromagnetic field is most conveniently described by a vector
potential A and a scalar potential ¢. For simplicity, we consider only
the potential @ir, ¢). Using Maxwell’s equations, this may be chosen to
satisly the wave-equation

1 r'?"q!r pir, £}
Vi — e ] 2.1
¢ Iy ﬂ!‘z &g ( '}

Here pir, ) 13 the electric charge density due to the charged particles,
which in atomic and nuclear physics will usually be electrons and protons,
and ¢ is the velocity of light.

In regions where p =0, equation (2.1) has solutions in the form of
propagating waves; for example, the plane wave

#ir. 1) = (constant) ™=, 2.2
This satisfies

14
Vg — ?E‘_ﬁ:ﬂ (2.3)

provided
o =k, (24)




8 Lepbns and the electomagnatic and weak interactions

The wave velocity is therefore ¢, as we should expect. In quantum theory,
unlike classical theory, the total energy and momentum of the wave are
quantised, and can only be integer multiples of the basic quantum of
energy and momentum given by the de Broglie relations:

Such a quantum of radiation is called a photon. A macroscopic wave can
be considered to be an assembly of photons, and we can regard photons
as particles, each carrying energy E and momentum p.

Using (2.4) and (2.5), £ and p are related by

E* =p*c. (2.6)
For a particle of mass m, the Einstein equation gives
E? :p‘zr"z +nc.

We therefore infer that the photon is a particle having zero mass.

A second important type of solution of (2.1) exists when charged
particles are present. If these are moving slowly compared with the velo-
cty of light, so that the term ﬂzqﬁr,"{c‘z ar') can he neglected, the solution is
approximately the Coulomb potential of the charge distribution. For a
particle with charge density py, we can take

Plr. 1) foMd?‘r’. 2.7

dmeg | v —1'

Another charged particle with charge density pa will have a potential
energy given by

Uia= f palr, epir, Hd'r

S 1 {ﬂ1{rll~f}ﬁ'2{f: I}djrdjr'l
ey | Ir—r'] '

@58)

Electric potential energy is basically responsible for the binding of
electrons n atoms and molecules. We shall see that, in nuclear physies, it
is responsible for the instability of heavy nuclei. If magnetic effects due to
the motion of the charges are included, equation (2.8) is modified to

22 The weak interaction 9

¥ A ¥
frg st f':'”” "':’I{i’:':_]'" LR (2.9

where j = pv is the current associated with the charge distribution which
has velodty w(r). Thus this magnetic contribution to the energy is of
relative order 1.'2f|:‘2.

The electromagnetic interaction also gives rise to the scattering of
charged particles. For example, for two electrons approaching each
other the interaction gives a mutual repulsion which leads to a transfer
of momentum between the particles. The process can be represented by a
diagram such as Fig. 2.1, In quantum electrodynamics, these diagrams,
mvented by Feynman, have a precise technical interpretation in the the-
ory. We shall use them only to help visualise the physics involved. The
scattering of the two electrons may be thought of as caused by the emis-
sion of a “virtual” photon by one electron and its absorption by the other
electron. In a virtual process the photon dees not actually appear to an
observer, though it appears in the mathematical formalism that describes
the process.

2.2 The weak interaction

There are three weak interaction fields assocated with the W™, W™ and Z
particles. Each one, like the electromagnetic field, is described by a vector
and a scalar potential. However, the bosons associated with the weak

k k—q

k k' +q

Fig. 2.1 The scattering of two electrons of momenta fik, ik’ by the exchange of a
virtual photon carrying momentum fg. Time runs from left o right in thess
diagrams. (In prinaple, the exchange of a & particle (§2.3) ako contributes Lo
electron—electron seattering, but the very short range and weakness of the weak
interaction makes this contribution almest completely neghgible: the electrons are
in any case kept apart by the Coulomb repulsion induced by the photon
exchange.)




10 Leptons and the dectromagnetic and weak interactions

fields all have mass, and the W™ and W' bosons are electrically charged.
The Z boson is neutral, and most similar to the photon, but it has a mass

Mz =(91.1870.007) GeV/e® ~ 100 proton masses,

which 15 very large by nuclear physics standards.

The interactions between leptons and the electromagnetic and weak
fields were combined into a unified ‘electro-weak” theory by Weinberg
and by Salam. The existence of the Z and W* bosons was predicted by
the theory, and the theory together with experimental data from neu-
trino—nuclear scattering also suggested values for their masses. These
predictions were confirmed by experiments at CERN in 1983,

The wave equation satisfied by the scalar potential ¢ associated with
the Z boson is a generalisation of (2.1) and includes a term involving M.:

2 2

“i}

where pz 15 the neutral weak-charge density. There is a close, but not
exact, analogy between weak-charge density and electric-charge density,
and particles carry weak charge somewhat as they carry electric charge. In
the case of a nucleus, pg will extend over the nuclear dimensions.

In free space where p; = 0 there exist plane wave solutions of (2.10),

$5(r, 1) = (constant) *¥T=0
but now to satisfy the wave equalion we require
mz = fzk‘! +(2[Mx_li‘,u'rﬁ}2,

and with the de Broglie relations (2.5) for the field quanta we obtain the
Finstein energy-momentum relation for the Z boson:

E? =p2c2 4 Mﬁf“_

The static solution of (2.10) which corresponds to a point unit weak
charge at the origin is

1 &

e i Mz
—, WwWnhnge = 5
r

h

pzlr) = (2.11)

2.2 The weak interaction 1"

At points away from the origin where V¢, — ¢, =0, this satisfies
equation (2.10), as may be easily checked by substitution, using the for-
mula Véy = (1/d(rdz)/dr’. Close to the origin the solution (2.11)
behaves like the corresponding Coulomb potential 1/(d4megr) of a unit
point electric charge, and hence has the correct point source behaviour.
The generalisation of (2.11) to a distribution of weak charge gives the
quasi-static solution (cf. (2.7))

1 v, el
G20, ) > f”‘f{ s i"ﬂ dr. (2.12)

The exponential factor in the integral effectively vanishes for |r—r’)
greater than a few times k' = h/M,c and

hiMze~2% 107 fm.
This is a very small distance compared with the size of the nucleus. Hence

in the integral in (2.12) the factor p; is slowly varying over the range of
the exponential and may be taken outside the integral (which is then

clementary):
1 il i
: = — gzl d’
Pa(r.1) dmrey Pz(F. 1) [ r—r]| f
o i
= P 2.13
yrd A 0 - 47R*dR (2.13)
.
= a(ﬂ.fr_.f) pz-l:l', f}.

The potential energy between two particles associated with the scalar field
iy 15, by analogy with (2.8),

Uf‘a = [l':'jf._.!{_r: f}é‘ﬁ]{_r, f}dﬁl'

1{ &Y :
=—| == {ﬂﬂ{r.!}pﬁ_{r.!}d r,

- & ﬂ’f}_’f

and there is also a contribution from the vector part of the field, analo-
gous to the magnetic contribution in (2.9), of the form
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l(h zf.{”.{!}d,a
T r: i r: r:
o \ Myc 1z Jez

where j, is the weak-current density.

The physical consequences of these expressions are guite different
from the physical consequences of the eectromagnetic interaction. Ut
i very much suppressed by the large mass factor in the denominator, and
it is this which largely accounts for the ‘weakness’ of the weak interaction.
Also the interaction at low energies appears as a ‘contact interaction’,
effectively having zero range.

The electrically charged W™ and W™ boson fields give rise to the
most important weak interactions, and in particular to S-decay. They
obey equations similar to those of the Z field, but the masses of the
associated particles are somewhat smaller;

Mg+ = My- = (80,41 =0.10) GeV/c*.

2.3 Mean lite and half life

Not all particles are stable: some, for example the W™ and Z bosons, have

only a transient existence. Suppose that an unstable particle exists at some

stant ¢ = {; its miean {ife is the mean tme it exists in solation, before it

under goes radioactive decay. If we denote by P(¢) the probability that the

particle survives for a ume ¢, and make the assumption that the particle

has a comsrant probability 1/t per unit time of decaying, then
Pit+de)= Pl — di/fz),

sinee (1 — de/r) 18 the probability it survives the time interval dr. Hence

1dP 1

Pdt T
and integrating,
P(t) = P(0)e ",

Since P0) =1 we have

Pity=e"". (2.14)

2 4 Laptons 13

Equation (2.14) is the familiar exponential-decay law for unstable parti-
cles. It is well verified experimentally.

The probability that the particle decays between times ¢, ¢+ dr is
clearly P(f) = (d¢/t), so that the mean life is

fw tPOdefT) = [mn:"-“"d;;'r =r
i S

The “half life” T, is the time at which there is a 50% probability that
the particle has decayed, i.e.

P(T) = e ¥T=1
Hence
Tﬁ' =r1iln2 =0.6931.

In this book we have preferred to quote mean lives rather than half
lives. We refer to (1/1) as the decay rate.

2.4 Leptons

Leptons are spin 3 fermions which interact through the electromagnetic
and weak interactions, but not through the strong interaction. The known
leptons are listed in Table 2.1

The electrically charged leptons all have magnetic moments of mag-
nitude = ¢h/2 (mass) anti-aligned with their spins,

Of these charged leptons, only the familiar electron is stable.
Electrons are structureless particles that are described by the Dirac rela-
tivistic wave-equation. This equation explains the spin and magnetic
moment of the electron, and has the remarkable feature that it predicts
the existence of anti-particles: these are particles of the same mass and
spin, but of opposite charge and magnetic moment to the particle. The
anti-particle of the electron is called the positron. Positrons were identified
experimentally by Anderson in 1932 spon after their theoretical predic-
tion.

Since leptons do not interact with the strong interaction field, elee-
trons and positrons interact principally through the electromagnetic field.
A positron will eventually annihilate with an electron, usually to produce
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Table 2.1. Known leprons

Mass Mean life

(MeV/ch) is) Charge
Electron e L5110 ao &
Electron neutrino v, <15 %1078 ot 0
Muon p 1053.658 2197 % 1675 €
Muon neutrino v, < 0.17 oc? 1]
Tau 1777 290 % 107" ¢
Tau neutrino v, = 18.2 ot 0

two or three photons, so that all the lepton energy appears as electro-
magnetic radiation. We write these processes as

& +e =2y

e 4ot = 1y

Annihilation with the production of a single photon is not allowed,
by energy and momentum conservation (Problem 2.4).

The converse processes of pair-production by photons are also possi-
ble, and pair-production from a single photon is possible provided
another (charged) particle is present to take up momentum. Quantum
electrodynamics, based on the Dirac and Maxwell equations, describes
all processes involving electrons, positrons and photons to a high degree
of accuracy.

It is a curious fact that nature provides us also with the electrically
charged muon p~ and tau T and their anti-particles the g and . Apart
from their greater masses and finite lifetimes, muons and taus seem to be
Just copies of the electron, and like the electron they are accurately
deseribed by IDirac equations. We shall see that the p~ can be used as
a probe of nueclear charge density, but otherwise neither the muons nor
the taus play any significant role in nuclear physics.

The remaining leptons are the newtrinos v and ther corresponding
anti-neutrings denoted by 1. The experimental evidence (Table 2.1) sug-
pests that the mass of a newtrino is certainly very small compared with the
mass of its charged lepton partner. I the mass of a neutrino were zero, it
would, like the photon, travel with the velocity of light.

25 The instability of the heavy leptons : muon dacay 15

It is exceedingly difficult and expensive to carry out experiments with
neutrinos, but there is compelling experimental evidence that the electron,
muon and tau have different neutrinos, v, v,, 1, associated with them.

2.5 The instability of the heavy leptons: muon decay

The W™ and W™ bosons lead to processes called f-decay, which neither
photons nor Z bosons can induce. In this chapter we illustrate this with
the example of the g-decay of the muon; in the next chapter we shall
describe f-decay processes involving hadrons,

The muon decays to a muon neutrino, together with an electron and
an electron anti-neutring:

g, e+

The W fields play the mediating role in this decay through the two virtual
processes illustrated in Fig 2.2, Again, in a virtual process actual W
bosons do not appear o an observer.

The W bosons can in princple produce any charged lepton and its
anti-neutring or an anti-lepton and its neutrine, but energy must be con-
served overall. Hence in the case of muon decay the charged lepton must
be an electron. A tau decay can produce a muon or an electron (and
imdeed it is sufficiently massive to decay alternatively to hadrons).

It is of fundamental significance that electric charge is conserved at
every stage of a decay. It is also believed to be true of all interactions that

I ¥ u ¥y
we a" w* 2=
P i:
ia) ()

Fig. 22 The deway o= — v, + ¢ + @b In (2) the muon changes to its neutninog
and a “virtual' W~ boson, which then decays to the eleciron and the eleciron anti-
newtring. In {b) a *virtual” W™ 15 areated from the vacuum with the electron and
the elactron anti-nentring. The W then transforms the moon into 2 muon new-
tringe. In these diagrams, the direction of the arrows on the fermion lines follows

the direction of fermion number. {The arrows on anti-partick lines then run
hackwards in time.)
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to a high degree of approximation a single lepton can only change to
another of the same type, and a lepton and an anti-lepton of the same
type can only be created or destroyed together. There is thus a conserva-
tion law, the ‘conservation of lepton number’ (anti-leptons being counted
negatively), for each separate type of lepton. The experimental evidence
for a possible breakdown of this law will be discussed in Chapter 13.

2.6 Parity violation in muon decay

It is observed experimentally that in the decay of the negative muon, the
electron momentum p, is strongly biased to be in the direction opposite to
that of the muon spin s,. To explain the implication of this observation
for parity violation, we must first point out that there are two types of
vEeCtor.

Under the reflection in the origin (Fig. 1.1), the position vector r of a
particle and its momentum p transform:

—dr

d
r—r=-r and |1=m—r—>[f=m—=—|l, (2.15)

dr de

rand p are both frue vectors.
The angular momentum L = r x p has many of the attributes of a
vector, but under reflection

L—L =i{-r) * (—p) = +L.

Thus L does not have the reflection property (2.14) of the true vectors r
and p. It is called an axial vector or pseudo-vector. The intrinsic angular
momentum s of a particle s likewise an axial vector.

Returning to muon decay, in the reflected coordinate system,
P. —* —Pe S, — + 8, s0 that the momentum would be said to be biased
in the same direction as the muon spin! It appears that the equations of
the theory are only valid in the original right-handed frame, and would
have to be rewritten to hold in the left-handed reflected frame. Thus the
laws are not invariant under reflection and hence parity s not conserved
in muon decay. More generally, parity is not conserved in any process
involving the weak interaction fields.

The inequivalence of right-handedness and left-handedness is most
extreme in the case of neutrinos. Neutrinos produced in a weak interac-
tion process are always ‘left-handed’, with their spin anti-parallel to their

Probilarms 17

Neutring 1 ‘ Anti-neutring

L v

Fig. 23 The relition between momentum p and spin for a neutrino v and an
ant-nentring .

direction of motion, and anti-neutrinos are always ‘right-handed’ (Fig.
2.3). There is no evidence that right-handed neutrinos (or left-handed
anti-neutrinos) exist at all.

The breakdown of parity conservation may be expressed slightly dif-
ferently. The reflection in the origin r — r = —r is easily seen to be
equivalent to mirror reflection in a plane, followed by a rotation through
mabout an axis perpendicular to that plane (e.g. the xyp-plane and the z-
axis, cf. Problem 1.2). There is no evidence that the laws of physics break
down under rotations, so the breakdown is in the mirror reflection: the
assumption that the mirror image of a physical process is also a possible
physical process is wrong, in so far as the weak interaction s mvolved.

Problems

[ S

Plane wave solutions of the relativistic wave-equation for a free particle
of mass m are of the form

wir, 1) = (constant)e®® =0
where

w =k 4 {.rrrznf‘i,-".h‘z}.

Show that the group velocity of a wave-packet representing a particle of
total energy £ = hes is the same as the velocity of a relativistic classical
particle having the same total energy.

[
I

The weak charge density of an electron bound in an atom has a similar
magnitude to the electric charge density and has, similarly, a probability
distribution over the atomic dimensions of the electron’s wave-function.
Show that the ratio of the weak interaction energy to the electrostatic
interaction energy between two electrons bound inan atom is of order of
magnitude 4 ki {aq .-'pfzc}}"' ~ 10 15, where ap 15 the Bohr radius.
{Compare this result with Problem 1.1.)
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An electron-positron pair bound by their Coulomb attraction is called
positronium. Show that when positronium decays from rest to two
photons, the photons have egual energy.

Use energy and momentum conservation to show that pair annihilation
with the emission of a single photon, e’ + &~ — , is impossible in free
space.

Show that a muon in free space with a kinetic energy of 1 MeV will
travel a mean distance of about 90 m before it decavs.

An electron and a u* bound by the Coulomb attraction is called
muanim. Which of the following decays can occur?

(whe?) = y+y

(ute )= w+ 75,
(ute™) = et
The masses of the electron and neutrinos from a muon decay are neg-
ligible compared with the muon mass. Show that if the muon decays
from rest and the kinetic energy released is divided equally berween the

final leptons then the angle between the paths of any two of them is
approximately 1207,

FET + 1+ T

Starting from the Coulomb law and the Biot-Savart law, show that the
electric field E is a true vector field, but that the mapnetic field B is an
axial vector field.

Show that a muon is more tightly bound in the lowest state of a "H
muon atom than in the lowest state of a deuteron-muon atom, by about
48 eV, (Mote that in the expression m{cz,-"cim-:,:,}z,-"? K for the binding
energy of a hydrogen-like system, m is the reduced mass) Take the
mass of the deuteron to be 1876 MeV and the mass of the triton *H
to be 2H09 MeV.

2.

Nucleons and the strong interaction

We turn now to the hadrons, bound systems of quarks which interact by
the strong fnteraction, as well as by the weak and eectromagnetic inter-
actions. In particular we shall describe the aucleons, that is to say, the
proton and the pewtron, the forees between nucleons, and the effect of the
weak interaction on the stability of nucleons.

3.1 Properties of the proton and the neutron

Nucleons, like leptons, are fermions with spin §. The mass of the neutron
s 0.14% greater than that of the proton:

i, = 939.566 MeV/c%,

. (3.1)
nty = 938.272 MeV/e”,
Thus the mass difference m, — =129 Ml:"'l-'r,."r.'z (= 2 electron masses).

The neutron has no net electric charge. The proton has the opposite
charge to the electron: protons are responsible for exactly cancelling the
charge of the electrons in electrically neutral atoms.

The electric charge on a proton is not concentrated at a point, but is
symmetrically distributed about the centre of the proton. By the experi-
mental methods to be discussed in Chapter 4, the mean radius R, of this
charge distribution is found to be R, = 0.8 fm. An extended charge dis-
tribution is also found in the neutron, positive charge in the central region
being cancelled by negative charge at greater distances. The matter dis-
tribution in nucleons also extends to a distance of about R,




20 Muclesns and the strang interaction

Both the proton and the neatron have a magnetue dipole moment,
aligned with their spin:

[y = 2.792 B5(e haf2m), 32)
fin = —1.913 04(e b/ 2m,).
Clearly neither magnetic moment is simply related to the wvalue
ehf|2inucleon mass)] expected from a simple Dirac equation, and this
s a clear indication that the nucleons are not themselves fundamental
particles.
Compelling evidence that the nucleons are the ground states of a
composite system is given by data of which that in Fig. 3.1 1s an example.
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Fig. 31 The tots]l photon cross-section for hadron production on protons
{dashes) and deuterons (crosses). The difference between these cross-ssctions 1s
approximately the crosssection on neatrons. {After Armstrong, T. AL er al
(1972), Phys. Rev. DS, 1640; Nucl, Phys. B4l 45
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This shows the cross-section for absorption of photons by protons and by
deuterons (see §3.3), as a function of photon energy up to 1300 MeV. The
cross-sections vary rapidly with energy. A precise definition of cross-sec-
tion 15 given in Appendix A, but for our immediate purpose it is sufficient
to remark that the peaks are due to photons being preferentially absorbed
to create an excited state when the photon energy matches the excitation
energy of that state. Perhaps a more familiar example of photons being
absorbed by a composite system is that of atomic absorption. Similar
peaks in atomic absorption cross-sections, but at energies of a few elec-
tron volts, correspond to the excitation of the atom to higher energy
states. The nucleon peaks have a similar mterpretation, albeit on a very
different energy scale. The first peak in the proton cross-section is at a
photon energy of about 294 MeV, and corresponds to the formation of a
state called the AT. The AT is a fermion with mass of about
(938 +294) MeV = 1232 MeV; its spin has been determined to be 3
Data for the neutron show that it has a sequence of excted states of
the same spins and almost identical energies as has the proton. The
electrical energies associated with the charge distributions of the proton
and neutron are of order of magnitude -:*2,"{4.1?5“}??} == 2 MeV (taking
R, = 0.8 fm), which is small compared with the nucleon rest mass ener-
gies and exctation energies. We shall see that, in all strong interactions,
protons and neutrons behave in the same way to a good approximation,
The near independence of the strong mteraction on nucleon type 15 an
mmportant fact for our understanding of the properties of the nucleus.

3.2 The guark model of nuclecns

Any composite system with spin ;—musl contain an odd number of fer-
mion constituents. {An even number would give integral spin.) The highly
successful quark model postulates that nucleons contain three fundamen-
tal fermions called guarks. We cannot here present the particle physics
which establishes the validity of the quark model, but since particle phy-
sics does have implications for the concepts of nuclear physics we give —
without attempting justification — some of the most relevant results,
Asis the case with the elementary leptons, there are several types of
quark, with a curious and so far unexplained mass hierarchy. For
nucleons and nuclear physics only the two least-massive quarks are
mvolved, the up quark u and the down quark d. The proton basically
contains two up quarks and a down quark (uud) and the neutron two
downs and one up (ddu). These quarks are bound by the fundamental
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strong interaction field, called by particle physicists the gluon field. The
fact that the strong interactions of neutrons are almost the same as those
of protons is explained by the gluon field having the same coupling to all
quarks, independent of ther type.

What are the properties of these quarks? They have mass, but the
mass of a particle is generally determined by isolating it and measuring its
acceleration in response to a known force. Because a single quark has
never been isolated, this procedure has not been possible, and our knowl-
edge of the quark masses is indirect. The consensus is that much of the
nucleon mass resides in the gluon force fields that bind the quarks, and
only afew MeV /c” need be assigned to the u and d quark masses. It is well
established that the d quark is heavier than the u quark, since in all cases
where two particles differ only in that a d quark is substituted for a u
quark, the particle with the d quark is heavier. The principal example of
this is the difference in mass between the neutron and proton. The mass,
~ 2 MeV/ ¢, associated with the electrical energy of the charged proton is
far greater than that associated with the (overall neutral) charge distribu-
tion of the neutron, so that one might expect the proton to be heavier.
However, the extra d quark in the neutron more than compensates for
this, and makes the neutron heavier than the proton.

The electric charges carried by quarks are well verified by measure-
ments of the electromagnetic transitions between the nucleon ground
states and exated states. The u has charge E:c and the d has charge
—+te. Thus the proton (uud) has net charge e and the neutron (ddu)
has net charge zero. Apgain, since a quark has never been isolated, the
evidence for these assignments is all indirect.

The differences between neutrons and protons, other than their elec-
tric and weak charges, are due to the u—d mass difference. This has only a
small effect on the basic strong interactions, so that the resulting strong
interaction between nucleons is almost independent of nucleon type. This
independence may be expressed mathematically by introducing the con-
cept of ‘Botopic spin symmetry’, but for our purposes this elaboration is
UNAECEsSUry.

3.3 The nuclecn—nucleon interaction: the phenomenclogical
description

We shall see m later chapters that the kinetic enermes and potential
energies of nucleons bound together in a nucleus are an order of magni-
tude smaller than the energies (~ 290 MeV) required to excite the quarks
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m an individual nueleon. Itis, therefore, reasonable to regard a nucleus as
an assembly of nucleons interacting with each other, but basically remain-
ing in their ground states. To understand the physics of nuclei it is there-
fore important to be able to describe the interactions between nucleons.
Since nucleons are composite particles, we can anticipate that their inter-
actions with each other will not be simple. In fact they are rather com-
plicated. Newvertheless, after 70 yvears of experimental and theoretical
effort a great deal is known empirically about the forces between two
nucleons, especally at the low energies relevant to nuclear physics.

The empirical approach is to construct a possible potential which
mcorporates our hmited theoretical knowledge (which we shall discuss
in §3.4) and has adjustable features, mainly to do with the short-range
part of the interaction. The Schrodinger equation for two nucleons inter-
acting through this potential is then solved numerically and the adjustable
features are varied to fit the experimental facts, namely the properties of
the dewteron and the low-energy scattering data.

The deuteron is a neutron—proton bound state with:

binding energy = 2.2245 MeV,
angular momentum j = 1,

(33)

magnetic moment = 0.8574{e b/ 2m;),

electric quadrupole moment = 0286 fm?.

Neither proton—proton nor neutron-neutron bound states exist.

The scattering data provide much more information. Nucleons have
spind, which may be ‘flipped” in the scattering. It can be shown that there
are five independent differential cross-sections for spin-polarised proton—
proton and a further five for proton—-neutron scattering which can, in
principle, be measured. Neutron-neutron cross-sections have never
been measured directly because there are no targets of free neutrons.

As has been explained, the strong neutron—neutron interaction should
be almost the same as the strong proton—proton interaction, and both
these should be almost the same as the proton—neutron interaction for the
same states of relative motion. However, we must remember here the
Pauli exclusion principle: the neutron and proton can exist together in
states which are not allowed for two protons or two neutrons. This is why
the neutron and proton can have a bound state, whereas two protons or
two neutrons do not bind, without any contradiction of the principle that
the strong interaction is almost independent of nucleon type.
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A large amount of careful and accurate data has been accumulated,
and the most sophisticated and accurate empirical potential has been
constructed by a group of scientists working in Paris. Two expressions
are needed: one for the (anti-s ymmetric) states allowed for two protons or
two neutrons, as well as a proton and a neutron, and one for symmetric
states accessible only to the neutron—proton system. For both cases, when
the spins of the two nucleons are coupled to give a total spin § =0 (see
Appendix C) the nucleons only experience a central potential.

In Fig. 3.2, the central potential for the anti-symmetric states with
8§ =015 denoted by Feg. The central potential for symmetric states dif-
fers from this, and 15 not shown.

When the sping couple to § = 1 there are four contributions to these
potentials, which are then each of the form

Vir) = Veylr) + Vplr) iy + Vaplr) sy + Faoal F2gps.
where

g, L 'I:E_a‘z i )&
hQgo = (0, +a3)- L (3.4)

Q501 = (01 - LYoa - L) + (62 - LYoy - L).

Qr=13

In these expressions af fi/2) is the nucleon spin operator, L is the orbital
angular momen tum operator of the nucleon pair, and the subscripts 1 and
2 refer to the two nucleons present,

Again, the radial factors differ in the two cases of symmetric and anti-
symmetric states. In Fig. 3.2, Feq, Voo and Py correspond to symmetric
slates.

Vi 15 essentially an ordinary central potential. PpQp s called the
tensor potential. It has the same angular structure as the potental
between two magnetic dipoles and it is also interesting because it is the
only part of the potential which does not commute with L, so that [ is
not a good quantum number, FgnQon and FoqaQons mive rise to different
terms for the different couplings of spin and orbital angular momenta.
Spin—orbit couphng 1% well known in atomie physics, where it 15 due to
magnetic interactions. However, these terms in the nueclear potential,
which are of major importance, arise out of the strong interaction.
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Fig. 32 The most important components of the "Pans potential’. (After
Lacombe, M. e af. (1980), Phys. Rev. C21, 861.)

In Fig. 3.2 we show the four potentials that are most important at low
energies of interaction (= 100 MeV) and in particular are important for
nucleons in nuclei.

The potential Fenlr) is appropriate for low-energy proton—proton
and neutron—neutron interactions. The attractive tail s not, however,
sufficiently deep to bind two nucleons. The potentials Fey(r), Fenlr)
and Fp(r) are responsible for binding the deuteron: note the deeply
attractive part of Fyp(r), which is assodated also with the large electric
quadrupole moment of the deuteron.

The tensor potential is particularly important for binding the deu-
teron, but since it is zero on averaging over all directions it becomes less
mportant in heavier nuelel. This last remark presupposes that the poten-
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tial established for the interaction of two nucleons in isolation is relevant
when many nucleons are interacting in an atomic nucleus. We shall dis-
cuss this assumption further in Chapter 4.

For the moment, we simply note the similarity between the central
potentials and the well-known Lennard-Jones pair potential between neu-
tral atoms, which also has a repulsive core and attractive tail, and (albeit
on a different scale) binds the atoms together in condensed matter.

3.4 Mesons and the nuclecn—nuclecn interaction

Like all fermions, quarks have corresponding anti-particles. Anti-protons
and anti-neutrons can exist, made up of anti-quarks, {ﬂﬂa} and {1:11:1&}; the
excited states of nucleons have images of identical mass but opposite
charge in anti-quark matter. In fact the electromagnetic and strong nter-
actions of anti-matter seem to be identical to those of matter. [tis possible
to contemplate the existence of stable anti-atoms, and macroscopic
bodies, made up of anti-matter, but as electrons annihilate with positrons,
s0 do nucleons annmihilate with anti-nucleons; matter and anti-matter,
though stable in isolation, cannot coexist. To study anti-particles we
must create them in laboratories.

As well as hinding three quarks or three anti-quarks together to make
nucleons and anti-nucleons, the strong gluon field can bind a quark and
an anti-quark together to form a short-lived particle called a meson. Like
nucleons, such bound pairs have a sequence of excited states,

OF most importance for nuclear physics are the m mesons. The elec-
trically charged n* and 7 are made up of (ud) and (d@l) pairs respec-
tively, and the neutral 7° is a superposition (ull — dd)/+/2 of quark anti-
quark pairs. (The orthogonal combination (ui +d{:1},."y'*2 belongs to a
meson called the i)

The masses of the T mesons are:

mass of 77 = mass of 7~ = 139.57 Ml:\",r‘f‘!

mass of 7' = 134.9 MeV /%,

s

(The n has mass =2 547 Mu\"ffz.}

The quark-anti-quark pairs in these mesons have orbital angular
momentum zero and intrinsic sping coupled to give total angular momen-
tum zero. The first excited states also have orbital angular momentum
zero, but the intrinsic spins are coupled to give a total spin with quantum

3.4 Masong and the nuclecn-nuckon interaction 27

number § = 1. These states are called the p™, p~ and pﬂ mesons; they
have masses ~ 770 MeV /e,

Quarks are sources of the gluon field, and in a nucleon they are
confined by this field to hie within the nucleon. At distances = 1 fm the
force between nucleons is not mediated by the basic gluon field, but rather
by the exchange of mesons. Mesons have integral spin and are bosons, as
are the photons which mediate the electromagnetic interaction and the
W* and Z particles which mediate the weak interaction.

Although mesons are composite particles, their motion as a whole is
still described by a wave-function ®(r, ¢), obeying in free space the wave-
equation for massive particles:

[v" - %%— (%)1@(:, =0, (3.6)

where mr s the mass of the particle (cf. equations (2.100+2.12)).
Ome solution of this equation describes the 7 meson field assoaated
with a nucleon having operator spin a( fi/2) at ry:

L_—.rm‘|:r-r| ik

Pir. 1) = gulor - Vi) ——. (3.7)
\r—r|

where g is a measure of the meson source strength of the nucleon. The
gradient operator ¥, acts only on ry, so that (3.7) is evidently a solution of
(3.6) (cf. (2.11)).

The field (3.7) changes sign under reflection in the orgin (see §2.6)
and 1% said to be a pyendo-sealar field. 1t 1s the simplest such field we can
construct which satisfies the wave-equation. The ‘dipole-like’ nature of
the field is well understood by particle physicists, and the interaction
energy between two nucleons associated with it is of *dipole—dipole” form:

i R

Uy o gAea - Va)ay - Vi) ————. (3.8)
il"_z — ]'].

The m mesons are the mesons of smallest mass and hence give the
largest contribution to the interaction at large distances. The appropriate

length scale, from the exponential in (3.7), is

fifme== 14 fm.
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Explicit differentiation shows that (3.8) includes a potential of the
tensor form Fyp(r)@p. It is well established that = meson exchange is
responsible for most of the tensor potential (3.4), and is the dominant
contribution to the whole potential at distances ra — iy = 1.4 fm. At
smaller distances other meson exchange processes become important,
including the exchange of p mesons. However, the potentials at distances
< 0.8 fm and, in particular, the short-range repulsion, are empirical and
50 far have no established explanation.

3.5 The weak interaction: A-decay

Hadrons are subject to the weak interaction as well as to the electromag-
netic and strong interactions, and it is through the weak interaction that
quarks, like leptons, are coupled to the W and Z bosons. For example,
one quark can change to another by emitting or absorbing a virtual W
boson. The phenomena of f-decay, in which a neutron becomes a proton
or a proton becomes a neutron, proceed in this way.

In free space, the proton is the only stable three-quark system. The
neutron in free space has enough excess mass over the proton to decay to
it by the process shown in Fig 3.3,

The mean kife of the neutron in free space is 886.7 5= 15 minutes.
However, a neutron bound in a nuclens will be stable if the nuclear
binding energies make decay energetically forbidden. Conversely, a pro-
ton bound in a nucleus may change into a neutron

p—n +et 4 Vg,
if the nuclear binding energies involved allow the process to occur. The

energetics of A-decay will be dealt with in detail in Chapter 4, and a more
quantitative theory of f-decay will be given in Chapter 12.

L

g [ u
Neutron  d— =——gd Proton
d u

Fig. 33 The decay n— p+e + 0. As with muon decay, panty 1s not con-
served m this weak mteracton.
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Table 3.1. Propertics of guariks

Cruark Approximate mass Electric charge (¢)
Down d 39 MeV/? LS
Upu 1.5-3 MeV/e? 2
Stranpe 3 60-170 Me ¥/ ]I
Charm ¢ 1.1-1.4 (ieh’_.'r:}' %
Bottom b 4.1-44 (ieh’_.'r:}' ]I
Top t 174 GeV/c® 2

3.6 More quarks

The u and d quarks are merely the two least massive of a sequence of
types, or ‘flavours” of quark, and to set the discussion of f-decay above
mto this wider context we list in Table 3.1 all the presently known fla-
VO LTS,

The existence of the more massive quarks in this table 1s revealed by
the observation of states similar to the nucleon states and meson states we
have already discussed, but which are apparently formed by substituting
any of the ‘new’ quarks for the u or d quarks. Thus, for example, sub-
stituting an s quark for a d quark, there exists a K7 meson (us) (mass
493 68 Mu\"_."r‘!} like the 77 meson {ua} but heavier, and a T" baryon
{uds) (mass 1193 Mt‘ﬁ."_."rz} like the neutron (udd) but heavier. Baryon
and anti-baryon are the generic names for particles essentially made up
of three quarks or three anti-quarks. Again, since no quark has ever been
wolated, the masses given in Table 3.1 are effective masses and have no
precise significance.

Were it not for the weak interaction a heavy quark would be stable
and there would be more absolute conservation laws, for example, the
conservation of strangeness and the conservation of charm. Such laws
hold for processes involving only the electromagnetic and strong interae-
tions, but are not absolute since all quarks couple to the W™ and Z weak
interaction fields, and a quark changes its flavour (but remains a quark!)
when it emits or absorbs a virtual W* boson. Thus, for example, the s
quark in the T~ baryon can decay through processes like those shown in
Fig. 3.4. We shall see that nuclear binding energies are not sufficiently
large to make a baryon contaiming a heavy quark stable evenin a nuclens.

The weak interaction makes o/f mesons unstable. Mesons containing
a heavy quark can decay by the heavy quark changing into a lighter
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Fig. 3.4 The decays ¥ —n+m, B —n4+p + 0,

quark. Another possible process is illustrated in Fig. 3.5, in which a quark
and an anti-quark annihilate through the weak interaction into an anti-
muon and a muon neutrine. This latter process is the predominant type of
decay of the charged pions. The mean life of charged pions i
2.60 % 10~"s.

The 7 usually decays into two photons by the direct annihilation of
the quarks with their own anti-quarks, in a way rather sitmlar to the
decay of positronium (an electron—positron pair ¢ "¢ in a bound state).
Such a decay (Fig. 3.6) takes place through the electromagnetic interac-
tion, and is therefore much quicker: the mean life of the ¥ is
0.84 % 107" 5,

All the available experimental evidence is consistent with there being
a law of ‘conservation of baryon mumber’ the total number of baryons
(anti-baryons being counted negatively) is conserved in all interactions, so

that a baryon and an anti-baryon are always created or destroyed

w u"

By

Fig. 35 The decay m° — " + v,. Thecharged pion was discovered by Powel
and co-waorkers in Bristol in 1947 by the observation of this decay.

|
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Fig. 3.6 The eleciromagnetic decay 7% — p+ .
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together. Indeed, it has been established that a lower limit to the mean life
of an isolated proton exceeds 1.6 = 107 years.

3.7 The Standard Model of particle physics

The electromagnetic, weak, and strong interactions of leptons and quarks
are combined in the theoretical edifice known as the Standard Model of
particle physics. This model has been remarkably successful in the inter-
pretation of the data of particle physics. It 18 generally believed that the
properties of nuclei, and the phenomena of nuclear physics in general, are
a consequence of the established laws of particle physics. Our presenta-
tion of nuclear physics has been guided by the Standard Model, but a
detailed understanding of, even, the proton within the Standard Model
remains an experimental and theoretical challenge.

The concepts which are useful at the low energies we consider, were
developed long before the Standard Model was established. We shall see
i the following chapters that quite simple theoretical models are highly
successful in elucidating the properties of nucle.

Problems

T

The spins of the neutron and the proton in the deuteron are aligned.
Show that the magnetic moment of the deuteron is within 3% of the
sum of the neutron and proton moments. What might be the origin of
the discrepancy?

3.2{a) Show that the magnetic interaction energy between two magnetic dipoles
ey and e,y is of the form Fr(r)Qy with For) = —{(ug /4 vy is
the permeability of the vacuum.)

(#) Verify that equation (3.8) includes terms in the nucleon-nucleon poten-
tial of tensor form.

3.3 The Coulomb self-enerpy of a hadron with charge +¢& or —e is about
1 MeV. The quark content and rest enerpgies {in MeV) of some hadrons
are!
m{wdd) 9440, plund) 938
T (dds) 1197, T%uds) 1192, =" (uus) 1189
K (d5) 498, K*(us) 494,

The u and d guarks make different contributions to the rest energy.
Estimate this difference.

3.4 Which of the following processes are allowed by the conservation laws?

fa) n—p+y,
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i p 5 gt ¥

le)

d) p+n—a +m.

3.3

P T +y,

Q

The decay of the 2*7 initiates the sequence of decavs shown below:

-

= « 48
Lsa® 4y
lsp +e™ 47,
T -+ _1':'
Ly +y
» L | '-’y
—p & o 1, vy
The quark content of the hadrons involved is:
E*"(ssd), ET(sud), A'(sud), pluud),
K=(s. @), =(di), =%(ui - dd).
Classify the decays as strong, electromagnetic, or weak.

..

Nuclear sizes and nuclear masses

We now begin our study of the nucleus. A nucleus is a bound assembly of
neutrons and protons. X denotes a nucleus of an atom of the chemical
element X containing 4 nucleons, of which Z are protons and
N =(A - Z) are neutrons. For example, ?-S,I{IE denotes a chlorine nucleus
with 18 neutrons and 37C1 a chlorine nucleus with 20 neutrons. Since the
chemical symbol determines the atomic number 2, B0 or 71 is identi-
fication enough, but the addition of the Z label is often useful.
A =N+ Z)is called the mass aumber of the nucleus. Nuclel which differ
only in the number of neutrons they contain are called isotopes. Nuclel of
the same A but different Z are called isobars.

4.1 Electron scattering by the nuclear charge distribution

Rutherford’s famous analysis in 1911 of the scattering of a-particles by
matter established that the size of the nuclens of an atom is small com-
pared with the size of the atom. Whereas the electronic distribution
extends to a distance of the order of Angstroms (1 A = 107" m) from
the nucleus, these and later experiments showed that the distribution of
nucleons is confined to a few fermis (1 fm = 107" m). Early theories of a-
decay and nuclear binding energies gave estimated values for nuclear radii
of a similar magnitude.

Precise information came in the 19503, with experiments using the
elastic scattering of high-energy electrons to probe the nuclear charge
distribution. There 15 an obvious advantage in using charged leptons
(electrons or muons) to probe nuclear matter, since leptons interact
with nucleons primarily through electromagnetic forces: the complica-

13
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tions of the strong nuclear interaction are not present, and the weak
interaction is negligible for the scattering process. The most significant
interaction between a charged lepton, which can be regarded as a struc-
tureless point object, and the nuclear charge is the Coulomb force, and
this 13 well understood. If the nucleus has a magnetic moment, the mag-
netic contribution to the scattering becomes important at large scattering
angles, but this alse 15 well understood.

If scattering experiments are to give detailed information on the
nuclear charge distribution, it is clear that the de Broglie wavelength A
of the incident particle must be less than, or at least comparable with, the
distances over which the nuclear charge density changes. An electron with
(Af2r)~1fm has momentum p=2wh/k and hence encrgy
F = {pzr’!I +me }%m 200 MeV. At these energies, the electrons are
described by the Dirae relativistic wave-equation, rather than by the
Schrédinger equation. The experiments yield a differential cross-section
do(E, 8)/d22 (Appendix A) for elastic scattering from the nucleus through
an angle #, which depends on the energy £ of the inddent electrons.
Typical experimental data are shown in Fig 4.1

The incident electrons are, of course, also scattered by the atomic
electrons in the targel. However, this scattering 15 easily distingmshed
from the nuclear scattering by the lower energy of the scattered electrons.
Whereas the recoil energy taken up by the heavy nucleus is very small, the
recoil energy taken up by the atomic electrons s appreciable, except for
scattering in the forward direction. (Sce Problem 4.1.)

The nuclear charge density will be described by some density function
epg(r). (The proton charge ¢ 15 put in as a factor for convenience. ) This
function is not necessarily spherically symmetric — we shall mention this
later — but for nucle which are spherically symmetric, or nearly so, wecan
assume the charge density depends only on the distance r from the centre
of the nucleus. Then, using the Dirac wave-equation for the electron,
do/d2 15 in principle completely determined by g,,(r), though the caleu-
lations are not trivial. The inverse problem, that of finding pa,(7) from a
knowledge of do/dQ, is even more difficult (see Problem 4.2). The
restricted amount of experimental information available means that, at
best, only a partial resolution of the problem can be made. Some idea of
the results of a direct inversion of scattering data is given by Fig 4.2,

It has been more usual to assume a plausible shape for pg(r), describe
this by a simple mathematical expression involving a few parameters, and
then determine the parameters by fitting to the scattering data. A form
which has been widely adopted is
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Fig. 4.1 Expenimental elaste electron-seattering differential eross-section from
zold “3Au at energies of 126 MeV and 151 MeV . The fitted curves are caleulated
with an assumed charge distribution of the form given by equation 4.1}, with
R=6.631m, 2=045 fm. The cross-section to be expected, at 126 MeV, if the
gold nuclews had a point charge 1s shown for comparison. {Data and theoretical
curves taken from Hofstadter, B, {1963), Eeciron Scattering and Nuclear and
Nuclean Structure, Wew York: Benjmin.)
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Paplrl =

where the parameters to be determined are R and a, and g}, is a normal-
isation constant chosen so that

f,ach{r}djr = -'ln'jw pa(rirdr = Z.
[

It should be stressed that the choice of this expression has no fundamental
significance, it just conveniently describes a charge distribution which
extends almost uniformly from the centre of the nucleus to a distance
R, and falls to z2ero over a well-defined surface region of thickness ~ a.
This picture is consistent with the results of direct inversion.
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Fig. 4.2 The eleciric charge density of 22 Pb from 2 model-independent analysis
of electron scattering data. The bars indicate the uncertainty. (Friar, 1. L. &
Megele, 1. W (1973), Nuc!. Phyvs. A212, 93))

In Fig 4.3 we show nuclear charge distributions for a light [12{)}, a
medium (" Ag) and a heavy (%3Pb) nucleus obtained from experimental
scattering data, using this parametrisation of the charge density. The
corresponding values of R and a are given in Table 4.1.

As the examples in the table indicate, it appears that there is a well-
defined “surface region’ which has much the same width for all nuclei,
even light ones.

4.2 Muon interactions
The negative muon is another leptonic probe of nuclear charge. [ts prop-

erties, other than its mass of m, =207 m. and its mean life of

Table 4.1. Nuclear radii {R) and nuclear surface widths (a)

R a R4
Mucleus {tim) {tim) {tim)
0 2.6 0.513 1.04
A 513 0.523 1.12
2pb 5 0.526 1.12

4.3 The distribution of nuclear matter in nucled ar
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Fig. 43 The eckcme charge demsity of three nucel as  fited by
Palr)= oS /11 +explir — R)fa)]. The parameters are taken from the compila-
tion in Barrett, K. C. & Jackson, 1. F. (1977), Nuclear Sizes and Struciure,
Orxford: Clarendon Press.

22 % 107% s, are similar to those of the electron. However, the radius of
its lowest Bohr orbit in an atom of charge Z is (dmwey) hz,-'m“ Ze*, and this
15 smaller than the corresponding electron orbit by a factor (mgfm,). For
Z = 50 the radius is only 5 fm. Hence the wave-functions of the lowest
muonic states will lie to a considerable extent within the distribution of
nuclear charge, particularly in heavy nuclei, and the energies of these
states will therefore depend on the details of the nuclear charge distribu-
tion.

Experimentally, negative muons are produced in the target material
by the decay of a beam of negative pions, and are eventually captured in
outer atomic orbitals. Before they decay, many muons fall into lower
orbits, emitting X-rays in the transitions. The measured energies of
these X-rays may be compared with those caleulated with various cholees
of parameters for gy (r). Values of R and @, found in this way, agree well
with results from electron scattering.

4.3 The distribution of nuclear matter in nuclei

From the distribution of charge in a nucleus, which as we have seen can
be determined by experiment, we can form some idea of the distribution
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of nuclear matter. If the proton were a point object, we could identify the
proton number density pu(r) with pay(r). Since the strong nuclear forces
which bind nucleons together are charge independent and of short range,
we can assume that to a good approximation the ratio of neutron density
Pn to proton density g, is the same at all points in a nucleus, ie.
Palr)/pp(r) = N/Z. Then the total density of nucleons p= py + pp can
be expressed as p = (A/Z)pay, where 4 =N 4+ Z. The resulting nuelear
matter densities for the same nuclei we took in Fig. 4.3 are plotted in Fig.
4.4, These densities are only approximate, since we have neglected the
finite size of both proton and neutron and the effect of Coulomb forces,
but they indicate that at the centre of a nucleus the nuclear matter density
p is roughly the same for all nuclei. It increases with A4, but appears to
tend to a limiting value py of about 0.17 nucleons fm™ for large 4. The
existence of this limiting value pg, known as the ‘density of nuclear mat-
ter’, is an important result. Consistently with this, we find (Table 4.1),
that the ‘radius’ R of a nucleus is very closely proportional to A, and,
approximately, {4R;‘3}R3p[, = A. We shall take

po = 0.17 nucleons fin (4.2)
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Fig. 4.4 The mucleon density of the nuclel of Fig. 4.3, with p{r) = (4 Z)p (7).
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which imphes

R=1124 fm.

4.4 The masses and binding energies of nuclei in their ground
states

It thus appears that a nucleus is rather like a spherical drop of liguid, of
nearly uniform density. How are we to understand its properties? A
nucleus is a guantum-mechanical systemn. We shall see later that its
excited states are penerally separated by energies ~ 1 keV or more from
its ground state, so that to all intents and purposes nuclei in matter at
temperatures that are aceessible on Earth are in their ground states. Like
any other finite system, a nucleus in its ground state has a well-defined
energy and a well-defined angular momentum. In this chapter we shall be
concerned with the ground-state energy. Other ground-state properties of
a nucleus will be discussed in the next chapter.

Since a nuelews is a bound system, an energy B2, N) 15 needed to pull
it completely apart into its Z protons and N neutrons. From the Einstein
relation between mass and energy, the binding encrgy B(Z, N) is related to
the mass miy, (2, N) of the nucleus by

My Z, N) = Zmy + Nmy, — B(Z, N)/ &, 4.3)

and B(Z, N} must be positive for the nucleus to be formed. We shall sec

that nuclear binding energies are of the order of 1% of the rest-mass
2

:II.LI.\:I:' 2

Experimentally, the masses of atomic tons, rather than the masses of

energy m

bare nucled, are the guantities usually measured directly. If pi(Z, N) s the
mass of the neutral atom,

M Z, N) = Z(m, + m,)+ No, — B(Z, N}/ — Basereonic/ €
(4.4)

where byeerone 15 the binding energy of the atomic electrons. These elec-
tronic contributions are, for many purposes, negligible, (The simple
Thomas—Fermi statistical model of a neutral atom gives the total electro-
n¢ binding energy = 20871 eV

Atomic masses are known very accurately, and published tables gve
atomic masses rather than nuclear masses. Measurements in ‘mass spec-
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trometers’ depend on the deflection of charged ions in electric and mag-

netic fields. Instruments of great ingenuity have been developed, giving

relative masses accurate to about one part in 10°. The unit employed is

5511: atomic mass wid, which s defined to be %ﬂ-f the mass of the neutral
C atom:

1 amu = 931.494 32 + 0.000 28 MeV /%

Differences between the masses of stable atoms and unstable, radio-
active, atoms (for which mass spectrometers may be inappropriate) can
be determined by measuring the energy release in the unstable atom
decay, agan using the Einstein mass—energy relation.

Table 42 shows the experimental binding energies for some of the
ighter nucle, those formed by successively adding a proton followed by a
neutron to an ongnal neutron. Note that all the binding enermes are
positive: this reflects the basic long-range attraction of the nucleon-
nucleon interaction.

Also given in the table is the average binding energy per nucleon,
B Z. N)/A. For the heavier nuele in the table, the average binding energy
appears o be gradually increasing to around 8 MeV, but the numbers
fluctuate somewhat from nucleus to nucleus. The fluctuation is more
dramatically exhibited in the binding energy difference between a nucleus
and the one preceding it, also shown in the table. This energy can be
interpreted as the binding energy of the last nucdeon added to the nucleus
in the gmven sequence. It is particularly large for the ‘even—even’ nuclei
4He, $Be, '3C and "0, and particularly small for the nuclei immediately
following, growing steadily as the next three nucleons are added to form
the next even—even nucleus. Clearly we see here some extra binding
energy associated with neutron—neutron and proton—proton pairing.
The effect stems from the attractive character of the nuclkon—nucleon
interaction, and is associated with the pairing of angular momenta
which will be discussed in Chapter 5. Table 4.2 also gives the spins and
parities of the nuelei for later reference; it will be seen that the even—even
nuclel have spin zero.

As we shall see in Chapter 6, because of its low mass, low electric
charge, and relatively large binding energy, the first even—even nucleus
3He is particularly important in the nuclear physics of heavy nuclei.
Indeed, SHe played an important role in the early history of nuclear
physics and before it was properly identified it was given a speaal
name, the a-particle, a name still in use today.
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Table 4.2, Energies of some fght muclel

Binding Binding
Binding energy of energy per
energy last nucleon  nucleon Spin and
Mucleus {MeV) (MeV) (MeV) parity
H 433 22 1.1 1t
iH §.48 6.3 24 L
fHe 28.30 19.8 7.1 o
iHe 27.34 10 55 :
i 31.99 4.7 53 1t
iLi 39.25 7.3 5.6 :
*Be 56.50 17.3 7.1 iy
iBe 56.16 1.7 6.5 3
B 64.75 6.6 6.5 3
"B 76.21 11.5 6.9 3
He 9216 16.0 77 o
2c 97.11 5.0 7.5 )
HN 104.66 7. 7.5 1t
"IN 115.49 10.8 7.1 !
ey 127.62 12.1 8.0 o
o 131.76 41 74 i

Some of the large binding energies of the nucle $He, SC and 50 can
be assocated with their ‘shell structure’, which will be discussed in
Chapter 5. As for SBe, its binding energy is less than that of two a-
particles by 0.1 MeV, and so the nucleus §Be is unstable. It does have a
transient existence for a long time compared with the ‘nuclear time-scale’
(§5.2), but if it is formed it will eventually fall apart into two a-particles.

Another interesting special case in Table 42 is that of 3He. The
binding energy of the last nucleon is here negative; if 3He is formed it,
too, has only a transient existence before falling apart into a neutron and
an e-particle. The other nuclei in Table 4.2 are all stable.

4.5 The semi-empirical mass formula

The features of ‘pairing energes” and shell-structure effects, superposed
on a slowly varying binding energy per nucleon, can be discerned
throughout the range of nuclel for which data are available. We saw in
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$4.3 that the density of nuclear matter is approximately constant, and also
that nuclei have a well-defined surface region. It appears as if a nucleus
behaves in some ways rather like a drop of liquid. This analogy is made
more precise n the ‘semi-emipivical mass formuda’, a remarkable formula
which, with just a few parameters, fits the binding energies of all but the
lightest nuclei to a high degree of accuracy. There are several versions of
the mass formula. The one which is sufficiently accurate for the purposes
of this book gives for the total binding energy of a nucleus of 4 nucleons,
made up of Z protons and N neutrons,

= 2
m—zf_dz i. @5

BIN.Z)=ad — b} — as
i J=a g T e

The parameters a, b, 5, « and § are found by fitting the formula to
measured binding energies. Wapstra (Handbuch der Physik, XX XVIII/
1y gives

a = 15835 MeV
h = 1H.33 MeV
5 = 230 MeV
d = 0.714 MeV
and
+11.2 MeV for odd—-odd nuclel (ie., odd N, odd Z)
§d = 10 for even—odd nuclei (even N odd Z, or even Z, odd N)

—11.2 MeV for even-even nuelei (even N, even Z).

It is the first two terms in this formula which have an analogue in the
theory of liquids. The term (ad) represents a constant bulk-binding
energy per nuclkeon, like the cohesive energy of a simple liquid. The sec-
ond term represents a surface energy, in particular the surface energy of a
sphere. The surface area of a sphere is proportional to the two-thirds
power of its volume and hence, at constant density of nucleons, to A%
Asina liquid, this term subtracts from the bulk binding since the particles
in the surface are not in the completely enclosed environment of those in
the bulk. In liquids this term is identified with the energy of surface
tension, and is responsible for drops of liquid being approxmately sphe-
rical when gravitational effects are small. In nuclei, gravitational effects
are always small, and indeed nueler do tend to be spherical.

The term —ﬂ'Z“‘!I."fI*, called the Coulomb term, also has a simple
explanation; it is the electrostatic energy of the nuclear charge distribu-
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tHon. If the nucleus were a uniformly charged sphere of radius Rq.—ik
(equation {4.2)) and total charge Ze, it would have energy

2
% Lge] (4.6)

(dmeg)RyA?

With By = 1.12 fn this gives an estimate of d, d = 0.78 MeV, close to the
value found empirically.

The term —s(N — Z)°/A is the simplest expression which, by itself,
would give the maximum binding energy, for fixed A, when N =2 (4
even) or N =21 (A odd). It is called the symmetry energy, since it
tends to make nuclei symmetric in the number of neutrons and pro-
tons. As was exemplified in the case of the deuteron discussed in
Chapter 3, the average neutron-proton attraction i a nucleus is
greater than the average neutron—neutron or proton—proton attraction,
essentially as a consequence of the Pauli exclusion principle. Thus for a
gven A 1t is energetically advantageous to maximise the number of
neutron—proton pairs which can interact: this is achieved by making Z
and N as near equal as possible. Since the forces are short range, the
term must correspond to a ‘bulk’ effect, like the cohesive energy.
Hence there must be a factor 4 in the denominator, so that overall
the term is proportional to A for a fixed ratio of neutrons to protons.
One can also argue (see Problem 5.2) that the kinetic energy contribu-
tion to the energy results n a similar term, which is absorbed i the
coefficient 5.

The final term in the semi-empirical mass formula is the pairing
energy 5{.4'5, manifest in the light nuclei included in Table 4.2. It is purely
phenomenological in form and the 477 dependence is empirical. For the
larger nuclei the pairing energy is small but, as we shall see, it does give
rise to important physical effects,

More sophisticated versions of the formula include also ‘shell struc-
ture’ effects (Chapter 5), but for nuclei heavier than neon (4 =20) for
which our formula is appropriate these extra terms are of less significance
than the five terms of equation (4.5).

We have in the semi-cmpirical mass formula a description and an
understanding of the binding energies of the nuclel. We shall see that it
mives g simple but profound explanation of the masses of the chemical
elements and of why there is only a finite number of stable atoms in
chermstry.
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4.6 The g-stability valley

Using equations (4.3) and (4.5), the mass of the neutral atom with its
nucleus having Z protons and N neutrons s given by

N, Z}lz“2 = (N1, + Z(m, +r.r1'¢}}r:2 —ad+bAt + i

4.7
+.¢{N-Z}* ) el

5 +:i_lf,

(neglecting the electron binding energies).
For a fixed number of nucleons A4, we can write this as a function of
Z, replacing N by 4 — Z:

my(A, Z)c* = (Amyc® — ad + bt 54 +8475
— {4+ (1, —my, — HJ'L._}.(‘:E}Z +(dsd + a'zl_*}Z‘z
—a— fZ+yZ", say.
(4.8)

Consider first the case 4 odd, so that § = 0. The plot of »n( 4, Z) against
Z i a parabola, with a4 minimum at

(45 + (p1y — 1y — me}fz}zl

49
2ds + dat) @2

E=082y=

Thus the atom with the lowest rest-mass energy for given 4 has Z equal
to the integer Z,;, closest to 8/2y. From the form of the expression (4.9)
and the values of the parameters, it is evident that Z_;, = A4/2, so that
N = Z for this nucleus.

Now f-decay, described in §3.5, is a process whereby the Z of a
nucleus changes while 4 remains fixed, if the process is energetically
allowed. Thus if a nucleus has Z = Zg, the process

(A, Z) > (AL Z+D+e +10,
s possible if

Mue(A, Z) = my (A, Z 4+ 1)+ m,, (4. 10)
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since the mass of the anti-neutrino (if indeed it has mass) s exceedingly
small. Adding Zm, to each side of this inequality, the condition may be
written in terms of atomic masses:

mglA, Z) = mal A, Z + 1) (4.11})

More precisely, conditions (4.10) and (4.11) differ by a few (electron
volts)/*, associated with the electronic binding energy differences, and
since S-decay usually takes place in an atomic environment (4.11) is the
more suitable form. The energy released in nuclear f-decay is never large
enough to produce particles other than electrons or positrons, and neu-
trinos.

Asan example, $3Ge decays by a series of g-decays to 34Se, Z increas-
mg by one at each stage:

b

2Ge — pAs+e + 7, +2.75 MeV

(-]

|
-

HSe+¢” +7, +0.68 MeV.

14Se is the only stable nucleus with 4 =77
A nucleus with Z = Z;, can decay by emitting a positron and a
neutrine. For example, another sequence of decays ending in 145¢ is:

TKr— T8 +et 4 1 +289 MeV
}
4Se 4 et 4, 4+ 136 MeV.

For the process of f-decay by positron emission to be possible the con-
dition 15

Mguel A, Z) = mrge(d, £ — 1)+ mg,
or, in terms of atomic masses,
mald, £) = malA, £ — 1)+ 2. (4.12)
In an atomic environment, a g-decay process competing with posi-

tron emission is electron capiure, in which the nucleus absorbs one of its
cloud of atomic electrons, emitting only a neutrine. For example,
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TBr+ ¢ —3Se + 1 +2.38 MeV.

Such processes are often referred to as K-capture, since the electron is

most likely to come from the innermost “K-shell” of atomic dectrons. The

condition for K-capture to be possible 15 less restrictive than (4.12):
Moyl A, Z) 4 m, > Mg (A, Z — 1)+ b,/

where the main contribution to the ekctronic energy b, is the binding

energy of the K electron, or

malAd, Z) = mad, Z —1), (4.13)

where mt! is the mass of the excited atom. For example, |Be decays by K-

capture:
4Be+e — Li4 v, +0.86 MeV,

whereas it cannot decay by positron emission. When both processes are
possible, the energy release in K-capture will be Jm,_,r.‘z = | MeV greater
than in the corresponding positron emission.

The vacancy m the atomic K-shell will be filled by an ¢lectron falling
from a less bound atomic shell. The energy released in this transition will
appear either in the emission of a photon (X-ray), or in the gjection from
the atom of an duger electron, usually from the L-shell. The latter process
results from the Coulomb interaction between the electrons.

Thus odd- A nuclei decay to the value of Z closest to 8/2y. It is clearly
highly unlikely that there will be two values of Z giving exactly the same
atomic masses; we expect there to be only one f-stable Z value for odd- 4
nuclel, and such is the case.

Nuclei with even 4 must have Z and N both even numbers, or £ and
N both odd numbers. In the semi-empirical mass formula, the even—even
nuclel have a lower energy than the odd—odd nuclei by 2547, This quan-
tity varies from 5 MeV when 4 = 20 to 1.4 MeV when 4 = 250. Thus
there are two mass parabolas with relative vertical displacement 2847F ¢,
as in Fig 4.5, for each even value of 4.

In Fig. 4.5 the values Z =28 and Z = 30 on the lower even—even
parabola may both be regarded as effectively stable with respect to S-
decay. In this particular example the only energetically possible g-decay
process linking the two would be the ‘double K-capture’
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Fig. 4.5 The atomic masses of atoms with 4 = 64 relative to the atomic mass of
SHMi. Open circles 3 are odd—odd nucle, filled cirdes @ are even-even nudei.
The theoretical even—even and odd-odd parabolas are drawn using the para-
meters of equation (4.5 Mote the odd-odd nuckus 55Cu, which can g -decay
to 5Zn or £ decay to 53Mi. both of which are stable, naturally oceurring, iso-
topes. These decays are discussed in detail in Chapter 12

8070 +2e” —SINi+ 2u, + 1.1 MeV.

This decay has not been observed though it 1s theoretically possible.

Processes with the simultaneous emission of two electrons or two
positrons, or the simultaneous absorption of two electrons, have been
much investigated, both experimentally and theoretically. Experi-
mentally, the first direct laboratory observation of such a process was
made in 1987, with the double g-decay

$3Se =B Kr+ 2 + 2, + 3.03 MeV.
The mean lifetime for this decay was measured to be ~ 1.6 = 10% ¥T.
Measurements of such long lifetimes are difficult (see Problem 4.10).
Several other double f-decays have been observed since, all with lifetimes
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similar in magnitude to that of 8¢, These measurements are in govond
agreement with the theoretical estimates which have been made within the
Standard Model (§3.7). Much of the interest in double f-decay measure-
ments stems from the possibility of observing other modes of f-decay
which are predicted in certain extensions of the Standard Model,

Figure 4.5 is characteristic of nuclei with even A, and pairs of stable
nuclel with different (even) Z but the same 4 are common. The only odd-
odd nuclei which are stable are the four hghtest: TH, L, "B and "IN -
but for 4 = 20 the semi-empirical mass formula is less accurate.

The nuclei which are observed to be S-stable are plotted in Fig. 4.6 as
points in the (N, Z) plane. Nucla of constant A4 lie on the diagonal lines
N+Z=a. The bottom of the ‘f-stability valley’ where the S-stable
nuclet are found is given remarkably well by the approximation (equation
(4.9))

(ds+ (m, — m, — J"H',_.}fz}fl
Z=p{2y= : 4.14
Py 2(ds + dA) 1

4.7 The masses of the g-stable nuclei

With the approximation Z = /2y, the binding energies of the S-stable
nucle can be calculated from equation (4.5). For odd-A nuclei the pairing
energy term is zero, and the resulting binding energy per nucleon B(A)/ A
is plotted against 4 in Fig. 4.7 and the various contributions to B(A)/ 4
are displayed in Fig. 4.8,

It should be noted that apart from pairing effects the bulk term is the
only positive contribution to the binding energy. The initial rise of Bf A
with A is simply due to the negative surface contribution diminishing in
magnitude relative to the bulk contribution as the size of the nucleus
increases. However, as 4 and therefore 7 increase further, the
Coulomb term becomes important and produces a maximum on the
CLrve.

The curve gives the observed nuclear-binding energies quite well. The
small deviations of the experimental values from the smooth curve are for
the most part due to the quantum-mechanical ‘shell’ effects, which are
considered in the next chapter. The maximum binding energies liec in the
neighbourhood of *Fe.
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Atomic number £

The g-stahility valley. Filled squares denote the stable nuclet and long-

lived nuclei oocurning in mature. Meighbouring nucled are unstable. Those for
which data on masses and mean lives are known fill the area boundad by the
lines. For the most part these unstable nuclei have been made artifigally. (Data
taken from Chari of fhe Nuclides (1977), Schepectady: Ceneral Eledinc
Company.)
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Fig. 47 The hinding energy per nucleon of S-stable (odd-4) nucle. Mote the
displaced origm. The smooth curve 1s from the semi-emprical mass formula with
Z related to 4 by equation (4.14). Expenmental values for odd-A nucle are
shown for comparison; the man deviations { < 1%) are due Lo ‘shell’ effects not

included in our formula.

4.8 The energetics of w-decay and fission

The peak in the binding energy curve makes possible other modes of
decay for a heavy nucleus which is stable against S-decay. Since there is
a gradual decrease of (B/4) with 4 for the heavier nuclei, it may be
energetically advantageous for a heavy nucleus to split into two smaller
nuclei, which together have a greater net binding energy. The most com-
mon such process is the emission of an e-particle. As Table 4.2 shows,
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Fig. 48 The contmbutions to &8/4. Note that the surface, asymmetry and
Coulomb terms all subiract from the bulk term.

3He has the comparatively large binding energy of 28.3 MeV. The con-
dition for e-emission to be possible from a nucleus (4, Z) to give a
nucleus (A — 4, Z —2) 15

B(A,Z) < B(A —4,Z —2)+ 283 MeV. (4.15)

For (4, Z) on the line of f-stability, this condition is always satisfied for
sufficiently large 4. 4 = 165, and all such nuelei are, in prinaple, able to
emit a-particles. However, we shall see in Chapter 6, where the physical
mechanism of a-decay is analysed, that decay rates are so slow that the g-
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stable nucler can also be regarded as a-stable up to ‘*;'iﬂt_ Beyond, only
some isotopes of Th and U are suffidently long-lived to have survived on
Earth since its formation; other unstable heavy elements are produced
cither from the decay of these, or artificially.

Another energetically favourable process which is possible when A 18
large is the splitting of a nucleus into two more nearly equal parts. This is
called frsvion. The energetics of fission may be explored using the semi-
empirical mass formula, and in Chapter 6 we shall investigate the rate of
spontaneous fission processes.

Beyond the heavy elements of the actinide group, e-decay and fission
bring the Periodic Table to an end.

4.9 Muclear binding and the nucleon—nucleon potential

To what extent do the nuclear properties discussed in this chapter follow
from the nucleon—nucleon potential introduced in Chapter 37 Much the-
oretical effort has been expended on this question. In a nuecleus contain-
ing three or more nucleons, the nuclear potential energy need not be the
simple sum of two-body potentials over all pairs of nucleons: since the
nucleons are composite particles, there may well be additional interac-
tions.

Evenif the possibility of additional interactions is not considered, the
computations are not easy butit appears that the two-body potentials are
the dominant contribution to the nuclear potential energy. For ‘bulk’
nuclear matter the Paris potential gives a value of 16 MeV/nucleon for
the binding energy per nucleon, in good agreement with values found for
the parameter a in the semi-empirical mass formula (4.5), However, the
caleulated density of nuclear matter i somewhat too high. The Paris
potential gives 094 fm rather than the empirical 1.12 fm for the para-
meter in (4.2).

Similar semi-quantitative agreement s found when the two-nucleon
potential 1s applied to particular light nuclei. For example, the binding
energy of H is calculated to be 7.38 MeV, and the experimental value
(Table 4.2) is 8.48 MeV.

Problems

4.1 A relatvistic electron whose rest mass can be neglected has energy £. It
scatters elastically from a particle of mass M at rest and after the colli-
sion has turned through an anple ¢ and has energy E'.
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(a)

()

(e}

(a)
()

43

4.4

Show that the total energy of the struck particle after the collision is
Epy=F—FE 4 M.

Show that its momentum is
) 2 = L
Py=|E +E" =2EE cosff/e.

Hence (using Ei,a = qucz + _-'Lil'Qc'*} show that the fraction of energy lost
by the electron is
E-E 1

E 14+ McJE(l —cosd)]

For £ - a few hundred MeV, show that this is small if the struck particle
is a heavy nucleus, and is large (except for & = 0) if the struck particle is
an electron.

I gquantum mechanics, the differential cross-section for the elastic scat-
tering of a relativistic electron with energy £ % m ¢ from a fixed elec-
trostatic potential ¢4r) is given in the Born approximation, and
neglecting the effects of electron spin, by

A EN2AIV N
5= (%) () (e [oeme)

where q is the difference betwesn the final and the initial wave-vectors of
the electron.

Show that ¢ = |q| = (2E/hic)sin{#/2), where # is the scattering angle.
Poisson’s equation relates the potential ¢.(r) to the charge density epg(r)
by Vi, = —epn/ 0. Noting Ve = —4%e™" and integrating by parts,
show that

i~ () (7 (5w

For light nuclei (for which the Born approximation has a greater valid-
ity) a measured cross-section can be used to infer the Fourier transform
of the charge distribution, as this example indicates.

Show that the characteristic velocity v of a lepton of mass m bound in an
atomic orbit is given by wfe = h/ame :”L?, whara a :{4:19.;.}}12;::1-&2 s
the appropriate Bohr radius for that lepton. Hence show that the muon
mean life is long compared with the characteristic time scale a/v for its
motion in an atomic orbit.

The ground-state wave-function of a lepton of mass m in a Coulomb
potential -Z-ez,-"{d-n:-.‘,:,r} is
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la)

()

le)

4.6

i
.-L E i Zria
lﬁ{r}—*‘m(a) &

whare o 1{415.;.]-#2;:11@2, and the comresponding binding energy £ is
220 1 2ma

The finite size of the nuclews modifies the Coulomb energy for r = R,
the nuclear radius, by adding a term of the approximate form

Fir)=- zé [3 i i]

dmeoR|2 2RE 1

Show that the volume integral of this potential is

sy R
f;{r]d e

Show that the first-order correction to the hinding energy due to this
term, AE = [¢*(AVF(rwrd’r, is
W
o [ .
RE 1072, &£

{Mote that the lepton wave-function can be taken to be constant over
nuclear dimensions.)

For the nucleus Egz.n show that

AFE
?fazj % 107%  for electrons,

AK
?% 0.2 for muons.

Using Table 42 show that $Be can decay to two e-particles with an
energy release of 0.1 MeV, but that "2C cannot decay to three a-parti-
cles. Show that the energy released (including the energy of the photon)
in the reaction TH + $He — §Li 4 y is 1.5 MeV.

Consider muclei with small nucleon number 4 and such  that
Z =N= A/2 MNeplecting the pairing term, show that the semi-empirical
mass formula then gives the binding energy per nucleon

BiAd=a—bA"F = (d/ DA,

Show that this expression reaches a maximum for Z = A4/2 = 26 (iron).

Using the formula {4.14) calculate & for 4 = 100 and 4 = 200. Compare
vour results with Fig. 4.6 and comment.
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4.8

449

410

The carbon isotope "C is produced in nuclear reactions of cosmic rays
in the atmosphere. It is f-unstable.

He o UN4e + B +0.156 MeV,

with a mean life of 8270 vears.

It is found that a gram of carbon, newly extracted from the atmo-
sphere, gives on average 15.3 such radioactive decays per minute. What
is the proportion of "C isotope in the carbon?

What count rate would you expect from one gram of carbon extracted
from the remains of a wooden hut thought to be 4000 vears old?

In an experiment using 14 g of selenium containing 97% by weight of
$25e, 35 events associated with the douhle -decay

$35e = BKr+2e + 20

were counted over a period of 7960 hours. Assuming a detector effi-
ciency of 6.2%, estimate the mean life for this decay.

{See Elliott, 5. R., Haln, A. A and Moe, M. K. (1987), Phys. Rev. Leir
59, 2020.)

If a double fdecay without the emission of neutrinos were possible,
what would be its experimental signature?

On the basis of the different properties of nuclei with even 4 and with

odd 4, explain why there are about 300 g-stable nuclei with masses up to
that of 25 Bi. What is the average number of isotopes per element?




Ground-state properties of nuclei:
the shell model

5.1 Muclear potential wells

In the last chapter, we set out a semi-cmpirical theory for the binding
energy of an atomic nucleus, and gquantum-mechanical considerations
came in only rather indirectly. Experimental atomic masses show devia-
tions from the smooth curve given by the semi-empirical mass formula,
deviations which we said were of quantum-mechanical origin. Since a
nucleus in its ground state is a quantum system of finite size, it has
angular momentwm J, with quantum number j which is some integral
multiple of & If j # 0 the nucleus will have a magnetic dipole moment,
and it may have an electric quadrupole moment as well.

The nuclear angular momentum and magnetic moment manifest
themselves most immediately in atomic spectroscopy, where the interac-
tion between the nuclear magnetic moment and the electron magnetic
moments gives rise to the hyperfine structures of the electronic energy
levels. In favourable cases both j and the magnetic moment may be
deduced from this hyperfine splitting.

The observed values of nuclear angular momenta give strong support
to the validity of a simple quantum-mechanical model of the nucleus: the
nuclear shell model. In this model, each neutron moves independently in a
common potential well that is the spherical average of the nuclear poten-
tial produced by all the other nucleons, and each proton moves indepen-
dently in a common potential well that s the spherical average of the
nuclear potential of all the other nueleons, together with the Coulomb
potential of the other protons. Since the nuclear forces are of short range
we can guess that the shape of such an average nuclear potential will

B8R
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reflect the nuclear density exhibited 1in Fig. 4.4, In particular it will be
uniform in the central region and rise steeply in the surface region.
Indeed, we can anticipate that the steep rise will be even more pro-
nounced than the fall in nuclear density, since tunnelling into the classi-
cally forbidden region will make the nuclear density near the surface more
diffuse. Thus the potential wells for neatrons and protons will be, quali-
tatively, as sketched in Fig. 5. 1{a) and Fig. 5.1(h).

In order to model the effect of proton charge, we have added to the
proton well the Coulomb potential energy U.(r) of a proton in a sphere of
uniform charge density and total charge (2 — 1)e, corresponding to a
uniform distribution of the other (£ — 1) protons. (Such a charge distri-
bution gave an energy which agreed well with the empirical Coulomb
contribution in the mass formula.) Elementary eectrostatics gives

dmegR |2 2R2

(Z — 1)’
dmegr

Ur) = (5.1)

r= R,

where R is the nuclear radius.

Since the basic nucleon—nucleon interaction s state-dependent, there
are other factors which affect the relative depths of the neutron and
proton wells. For nuclei with more neutrons than protons the contribu-
tion of the strong nucleon—nucleon interaction to the potential is more

|

- m

(&} 6.5 fm

Fig. 5.1 A schematic representation of {2) the neutron poiential well and {4)
the proton potential well for the nucleus *5Pb. EF and (B — ) have been
estimated using equation {5.5). The ohserved neotron separation energy 5, of
7.4 MeVaimplies a neotron well-depth of 51 MeV . The observed proton separa-
tionenergy &, of 89 MeV implies that I =11 MeV. [/ represents the sum of the
mean electrosiate potential and the asymmetry energy.
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attractive for the protons than for the neutrons, since a proton in such a
nucleus is, on average, more subject to the neutron—proton interaction
(recall the discussion of symmetry energy in §4.5). This lowers the proton
well-depth relative to Usir), as 1s indicated in Fig. 5.1(5) (which is drawn
with parameters appropriate (o mﬁPb}. The nuclear shell model treats all
these effects empirically.

5.2 Estimates of nucleon energies

Let us, for the moment, disregard the details of the nuclear potential at
the surface, and replace it by a potential with infinitely high walls at
r= R, which force the nucleon wave-functions to be zero at, and outside,
r= R. We measure energies from the bottom of the neutron well, and for
simpheity take the proton well to be rased with respect to the neutron
well by a constant energy U7, This U represents the mean electrostatic
potential and any asymmetry contributions to the proton potential well.
Then the Schrodinger equations for the neutron states Y, and proton
states i, are respectively

S

i 2m, Vo, = Eqth,, (3:2)
W -

—E‘C"zy&],={£},— Ufrp. (5.3)

where any terms involving the intrinsic spin of the nucleons have been
neglected.

Nucleons are fermions, and the Pauli exclusion principle requires that
no two neutrons nor two protons are in the same state. Hence in the shell
model of the ground state of a nucleus with N neutrons and Z protons,
the lowest N neutron states are occupied up to some energy E, , called the
neutron Fermi energy, and the lowest Z proton states are occupied up to
some energy E&, the proton Fermi energy. To obtain a qualitative esti-
mate of the energies involved, we suppose that N and Z are sufficiently
large for us to use the elementary formula for the integrated density of
states A(E), derived in Appendix B,

; V ZmE :
! =—=|—— 5
N(E) Py ( 7z ) ; (34)
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where I is the volume of the system considered, in this case the nuclear
volume V =47 R /3. Hence EY and E]l; are given by

3 3
Fy I k. F Tt
Nal (fa)  zo F [2mE — D)) (5.5)
I\ 3 n

since proton kinetic energies are given by (E, — U).

In lighter nuclei, 4 <40, the number of neutrons and protons is
approximately equal, so that N/ is close to half the ‘density of nuclear
matter” given by equation (4.2), ie N/F == 0.085 fm . For this density,
equation (5.5) mves EF =38 MeV, irrespective of the particular nucleus.
For heavier nuclei, this figure will increase somewhat, but for energies of
this order the corresponding neutron velocities are quite low: 1.%-,-’:"’ = 0.1,
This gives some justification for our use of the non-relativistic
Schrédinger equation for the neutrons, Similarly, a proton at the Fermi
energy E]l: has Kinetic energy {E: — ) = 38 MeV also.

Similar energies are to be expected in more realistic potentials of finite
depth. In a finite well, the depth of E; below the external potential out-
side the nueleus is equal to the energy required to detach a neutron from
the nucleus. This energy, the aeutron separation energy 8§, 18 given in
terms of binding energes by

So(N,Z) = B(N,Z) — B(N - 1, 2), (5.6)

and hence is of the order of the binding energy per nucleon, about § MeV
(Fig. 4.7, see also Table 4.2). Thus the total depth of the neutron well is
=2 46 MeV.

Similarly the proton separation energy is defined by

SN, Z)=B(N.Z) —BIN. Z - 1).

The most stable nucleus of a given mass number 4 = N + Z will have
the neutron and proton Fermi energies approximately equal: if they were
to differ in energy by more than M{\m,:c2+ energy level spadng), the
nucleus would be unstable to f-decay. A nucleon at the higher Fermi
energy would decay to an empty state just above the lower Fermi energy,
to form a new nuceus with different charge, and lower total energy. An
equivalent condition 15 that 5, and 5, must be approxmately equal.

The characteristic velocity of a nucleon at the Fermi energy, and the

radius R of the nucleus, set a typical nuclear time scale ¢,
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R
= 26% 1078 x At s (5.7)

5.3 Energy shells and angular momentum

To obtain more precise information about the nucleon levels we must
solve the Schrddinger equations (5.2) and (5.3). For simplicity, we again
take the potential wells with infinite walls. The Schrédinger equations are
separable in (r, 8, ¢) coordinates so that

wir, 8, @) = wl ri¥ (8, @),

where (=0,1,2,3, ...and m=—{, ={+1,..., i— 1,1, are orbital angu-
lar momentum quantum numbers (Appendix C). States with { =10.1,2,
3.4,5,.. . are called s, p, d, f, g, h, ... states, the notation having been
established in the early days of atomic spectroscopy. Taking equation
(5.2) for neutrons (and the equation for protons differs only in the shiflt
[ in energy), the radial function wlr) satisfies

~#*1 d hid+y) o ™
E?F{rW}-"_Zn_ru_ré_w = Eu, (5.8)

with the boundary conditions that w(r) is finite at r = 0 and zero at r = R.
When [ =0 (s-states) we see immediately that the solutions finite at
r=10 are

with E = (5.9)

uy(¥) =

sinifkr) Wk
s

2m,

The boundary condition at r = R is satisfied by taking k =&, = nn/R,
where n=1,2,3, ..., and the corresponding energy levels 1s, 25, 3s, .,
are mven by

E(n, 5) _ (E)z (5.10)

2m, R

Thus there is a sequence of energy eigenstates having { =0, labelled by
the additional quantum number n. When [ = 1 (p-states) the Schrédinger
equation is
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Bt 1d° "
;F{ru],}+—u],= Eu,, (5.11)

2y, i,

and it is straightforward to check by differentiation that the solution
finite at r =10 1is

sinf(kr)  cosikr) IS
TN 2 = — k.
(krY (kr) 2,

1, (7) (5.12)

We must again choose k so that w,(R)=10. Let us write kR = x. The
vilues of x for which w,(R) =0 are x;, =449, x,, =7.73,.., and the
corresponding energies are Eijp,pl=( " 201, M X, ;'R}z. It should be
noted that the labelling of energy levels, n=1,2,3,..., for each {
value, differs from that conventionally adopted in atomic physics.

In fact 1 (r) and w,(r) are special cases of the spherical Bessel functions
Jilkr). For arbitrary { the zeros of jj(x), which give the allowed values of k,
are tabulated in standard tables of mathematical functions, and given in
column (2) of Table 5.1. Thus for any { the levels En, [) = {ﬁ‘zﬂm}{xmf
R)* are easily determined, and hence their sequence in order of increasing
energy. This is given in columns (1) and (7) of Table 5.1. For each E(n, {),
there are (21 + 1) allowed values of the quantum number m. Since we have
s0 far neglected any coupling between the intrinsic spin of a nucleon and
its orbital motion, cach nucleon has two possible spin states, which may
be characterised by m, =1.m, = —L so that there are (4/ + 2) states of
the same energy for a given (n, ().

The sequence of the levels E(n, {) is not very sensitive to the precise
details of the well, and is much the same for a well of finite depth and
appropriately rounded shape. If N neutrons are put into the neutron well,
the ground state (which may be degenerate) will correspond to the occu-
pation of the N lowest Iying energy states. Figure 5.2 expresses graphi-
cally the number of states available in terms of the dimensionless quantity
x=kR. N(x) is the number of states with energy less than (#*/2m,)
{’IIR}E or, equivalently, the number of zeros x,; with x, < x, each zero
being counted (47 + 2) times. Also drawn is the asymptotic formula, valid
for large x,

L
Vi }_4.1'3(1 o\ _ v (2m BN 3xsf # )
b = Y = R 5 G g vi\am.E) |

(5.13)
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Table 5.1
Xl Meutron Proton
Is 3l4 l5 F 2 Isé Is
Ip 4.44 Ip% 6 Ip% Ip
Ipé_ ] B Ipy
id 376 Iqiz-L 14 14 Id% id
23% 16 16 21%
25 628 'dir 20 25
20 1ds
if 6.99 It‘; 28
2 3 32 28 It;
2p 773 It‘_:r 3B §3
EF'} 4 32 Ep_}
g 818 Ig; 50 38 IF% 2p
2 - 56 Al Epé_
2d 9.10 Ig; 04
Ih.IiL 76 S lgs
1h 9.36 3%% 7 g
Ed% 82 58 |E-}
3s 942 Et‘zr a0 64 Ed_}
Ih-; 100}
pi 10.42 Sp_} 104 2d
1i 10,51 Ii.};_ 118 16 ”"L",
Et‘_:r 124 Bl 3"1; 1h
ip 10,90 3;::1r 126 B2 35{.
35
2ew 136
1j 11.66 ”‘a" 148 92 Ih;
Eg;_ 136 10W¥ 2t‘§
e 11.70

The first and last columns give the sequence of energy levek in a spherical well with nfinite
wills. The second column gives the corresponding values of x,; = & R. The third column
gives the ohserved sequence of spin—orbat couplked levels for nevirons, and the fourth the
cumulative number of available states in these levels, The remaimng two columns give the
levels and number of states for protons. The spacings are chosen so that the filling of the
neuiron and proton shells for stable nucki & approxmately in siep down the columns. Lines
are drawn at the ‘magic numbers'.
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Fig. 5.2 The exact A(x) compared with the asymptotc formula of equation
(5130 (Sec Bales, H. P. and Hilf, E. K. {1976), Specira of Finite Systems, for
the derivation of (5.13).)

This is an extension of the usual density of states formula we used in
equation (5.4) and ncludes a correction for the effects of the surface (of
arca 8. It follows the exact A(x) remarkably closely.

So far we have neglected spin. The crucial step in establishing the
nuclear shell model was the recognition that there must also be a spin—
orbit coupling term in the self-consistent potential seen by the nucleons, of
the form

U, (r)L -s. (5.14)

A term like this is not perhaps too surprising since in the basic nucleon—
nucleon interaction, equation (3.4), there 15 coupling between the spins
and the orbital motions of the nuceons.

With the introduction of this spin—orbit coupling term into the poten-
tial, L? and s° are still conserved since

(L3 L.s] =0, [sL.s]=0, (5.15)
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s0 that [ and s(= i—,} remain good quantum numbers, but m oand me, are
‘rood quantum numbers” no longer, since

[L.,L.s]#0, [m,L.s]%0 (5.16)

Thus the magnitudes, but not the directions, of L and s are preserved.
However, the rotal angular montentum J = L + s is of course conserved,
s0 that states may be specified by the gquantum numbers (L s . L) In
Appendix C it is shown that for a given { and s = j—z, the allowed values
of j are: [ +1 with [2(/+ 3} + 1] = 2/ + 2 allowed values of j,; and / -1,
with [2(/ — 3 + 1] = 2/ allowed values of j.. The parity of the state speci-
fied by (/.5 f £ L4 is (—1).
The expectation value of L. s may be obtained from the identity

L.s=[L4sf-L?—&| =1 -L2-¢) (5.17)
%0 that

(s LSl 8 i) = Y0+ 10— 0+ 1) — s(s + 1] A
Lin® ifj=1+1

_{—%{F+1}fz3 ifj=1-1
(5.18)

Thus the introduction of spin—orbit coupling splits the (4 + 2)-fold
degenerate level (n.{) into two levels which we may label by nlj 4, nlp L.
For example, when { = 2 (d-states),

nd (10 states) — ndy (6 states) and ﬂd§ (4 states).

Experiment shows that the sign of U, (r) is negative so that the state
with j=1{ +j—! always has lower energy than the state wath j=/- ;—
Equation (5. 18) suggests that the energy splitting increases with {, though
of course the form of the radial function is also relevant in the caleulation
of the energy levels. The splitting 15 great enough to change the orbital
sequence of columns (1) and (7) of Table 5.1, This effect is most apparent
in the heavier nuclei, where because of increasing R the orbital levels are
closer together in energy than in the hghter nueler.

The sequence of ‘shells” inferred from experiment is shown in columns
(3) and (6) for neutrons and protons respectively. The shift of the proton
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column relative to the neutron column reflects the shell filling observed
for the f-stable nuclei. In the filling of these levels there are departures
from the order given in the case of a few particular nuclei.

The major success of the shell model s the prediction of the angular
momenta of nuclel in their ground states. These values follow simple
rules: nuclei with an even number of protons and an even number of
neutrens (even—even nuecler) have angular momentum 2ero and positive
parity, nuclei with an even number of protons and an odd number of
neutrons or vice-versa (even—odd nudlei), have angular momentum and
parity equal to that of the odd nucleon in the shell that s being filled. We
saw in Chapter 4 that it was energetically favourable for nuclel to contain
even numbers of protons and even numbers of neutrons. The information
from nuclear spins makes more precise the origin of this energy: it seems
that it is energetically advantageous for nuclei to take pairs of protons
and pairs of neutrons into the energy shells, with the angular momenta of
the pairs coupled to zero, J; +J; =1, so that the angular momentum
and parity of an unpaired nucleon is the angular momentum and parity of
the whole nucleus. There are some exceptions to this last rule, but
remarkably few considering its simplicity.

In the case of odd-odd nuclei, the odd proton and odd neutron do
not combine their angular momenta in any systematic way; there is no
very clear empirical rule, and no simple theory. Indeed, odd-odd nuclei
are altogether energetically disfavoured. There are only four stable odd—
odd nucla {‘:'H, ";I_i, 1[5! B,1$ M), the rest undergo S-decay to become even—
even (Chapter 4).

The rules may be seen obeyved by the light nuclei of Table 4.2. For
example 'O has one odd neutron in the 1d; shell, and spin and parity ;—1'.

5.4 Magic numbers

In Table 5.1 lines have been drawn where the total numbers of states in
the shells above the lme are 2, ¥, 20, 28, 50, 82 and 126, the so-called
‘magic numbers”. The first two numbers just correspond to the filling of 1s
and 1p shells. The others appear to be somewhat arbitrary, but itis found
empirically that the energy gaps to the next shell are greater than average
at these points in the sequence. Muclei having Z or N equal to one of
these numbers have properties which reflect the existence of such a gap.
For example, tin (£ = 50) has ten stable 1sotopes, and there are seven
stable elements having N = 82 (see Fig. 4.6). These examples illustrate
that there must be a large gap in the energy spacing at Z = 50 in the
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proton sequence and at N =82 in the neutron sequence, as is clear from
our discussion in §5.2 of the condition Ef = E]l';.

The departures from the smooth curve of binding energy per nucleon,
gven by the semi-empirical mass formula, are associated with the nuclear
shell structure and the magic numbers, Magic number nuclel are particu-
larly strongly bound and have been marked on Fig 4.7. The heaviest o-
stable nuclei are 45Pb, which is ‘doubly magic’ with N =126, Z = 82,
and “23Bi which has N = 126.

The magic numbers were identified experimentally before the shell
model was established, and indeed the indications of shell structure pro-
vided by the existence of these numbers was g strong motivation for the
formulation of the shell model. Other consequences of the magc numbers
will be mentioned in the sections on the exated states of nucei and
atomic abundances in the Solar System.

5.5 The magnetic dipole moment of the nucleus

The successful description of nuclear angular momentum indicates the
essential validity of the shell model. The model also gives a qualitative
understanding of the magnetic dipole moments of nuclei. The magnetic
moments of paired nucleons, like their spins, cancel exactly, and all even-
even nuclel are found to have zero magnetic moments. A nucleus with
angular momentum operator J (quantum numbers §,7.) has a magnetic
moment operator g which, averaged over the nucleons, must be aligned
with J, since J s the only vector available giving a preferred direction.
The magneric dipole moment pis defined by writing

L

=-_(J 5.19
) fjﬁ}{ b (5.19)

where the brackets {- .-} indicate any matrix element between the (2f + 1)
states labelled by f..

In a magnetic field B= (0,0, B), which specifies the z-direction, the
magnetic potential energy of the nucleus in the field is the expectation
value of —p-B=—p.B. For a state of given j., this energy is, from
equation (5.19),

E(i)=—plj./i)B (5.20)

5.6 Calculation of the magnetic dipode momeant a7

s0 that there are (27 + 1) equally spaced energy levels corresponding to
E=—f—+ L

Transitions between these levels may be induced by a radio-frequency
oscillating electromagnetic field of angular frequency a where

fhew = || BT, (5.21)
Measurements of this resonance frequency in a known magnetic field give
a precise value for the magnetic dipole moment. The phenomenon is

called muclear magnetic resonance, and has many applications in physics,
chemistry and biology.

5.6 Calculation of the magnetic dipole moment

In our simple version of the shell model, the magnetic moment of an odd-
A nucleus will arise entirely from the unpaired nucleon. If this unpaired
nucleon is a proton, its orbital motion will give, as in classical magnetism,
a4 mement

cL. L
Br=-—=HEnl1T]-

A
2 h
where Ly =e.h,"2ml, 15 the ruclear magreton. A neutron, snce it is

uncharged, will give no orbital contribution.
To this must be added the intrinsic magnetic moment of the nucleon,

n = gﬁuNl:%), (5.23)

where (using the values quoted in equation (3.2)), g, = 5.59 for a proton
and g, = —3.83 for a neutron.
Thus the total magnetic moment operator for a single nucleon is
B=pp A+ p = pnlgel gsl/ b (5.24)
where g = 1 for a proton and g; = 0 for a neutron. We can write this as

=gl Mg + gL +8) +Hgp — g L—s)]/h,

and take the scalar product with J =L + s to give
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#-d = pulMer + 200 4 Yep — gL =)/ h

(since L and s commute). Then the expectation value of each side of this
equation for a state specified by (7, ./, 3) gives, using equation (5.19)

(3_1')"'{"' +1) = pnlier + 807G + D +Xee — g+ D) = s(s + 1)]

s0 that

1 1 —sf+s+1)
= pn| (gL + 8)i + 58 —g)—————|. 5.25
w=y N[ng;_ 8:)J+ (8L — &) G+ 1) (5.25)
Since s = 3 and j = { £ % we finally obtain for the contribution from the
upaired nucleon

= pyligr — Yew — g forj=1+1
(5.26)

= N [J'g.r. + ﬁ{m = gg}:| forj=1- %,
which are referred to as the ‘Schmidt values'.

These predictions of the simple model for a nuceus with an odd
unpaired nuecleon are not grossly wrong: almost all the observed magnetic
moments for such nuclel lie between these two values. But they are not
accurate predictions and there is no generally accepted explanation of the
discrepancies. One possible reason is that the intrinsic magnetic moment
of the nucleon s smaller in a nuclear environment than in free space.
Another interpretation is that the magnetic moments provide a more
sensitive test of the nuclear shell model than does the nuclear spin, and
cooperative effects which we have neglected may contribute.

5.7 The electric quadrupole moment of the nucleus

MNuclei with spin =1 usually have small permanent electric quadrupole
moments. The size of this electric quadrupole moment gives an indication
of the extent to which the distribution of charge (and hence matter) in the
nucleus deviates from spherical symmetry. A nucleus is coupled through
its electric quadrupole moment to the gradient, at the nuclear site, of the
external electric field produced by the molecular or erystalline environ-
ment of the nuclens. Like the nuclear magnetic dipole moment, the
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nuclear electric quadrupole moment provides a sensitive probe of this
environment for chemistry and condensed matter physics.

Classically, the energy of a nuclear charge distribution epa(r) in an
external electrostatic potential ¢(r) is

U=e¢ fp.:h{r}w{r}djr_
We take the originr = 0 to be the centre of mass of the nucleus. Since

papir) s confined to the small nueclear volume we can approximate ¢ir) by

the first few terms of a Taylor series,

L
Il
|
o

1
Br) ~ ¢0) —r- E+ =) Xy, .
24

where E = —V¢ is the electnic field, and

o AE,
o= =— . all evaluated at r =10
Py ;i ix;

Here the indices 7, j run from one to three, and we are using the notation
r=(x;,x, xq), ete.
We then have

U=¢Z0) —E.-d+ .]_Z'EZ &y f de{r]_I;_rJ.d-"r,
i

where d :c_i"pdllr}rdjr is the electric dipole moment. The first term
would be the energy if the nuclear charge Ze were a point charge at the
origin. The second term is the electric dipole energy. Apart from negli-
gible weak interaction effects, nuclear charge densities have the reflection
symmetry pg(r) = pa(—r); thus nuclear electric dipole moments are zero,
and the effects of the extended nuclear charge distribution appear in the
term

Al = ’1’-' Z‘ﬁ'{j [pdl{.r}xij dar?
]1; L

which in general does not vanish.
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If we neglect the charpe density of atomic electrons at the nueleus, the
external potential ¢ satisfies Laplace’s equation

Vip =) ¢y=0 (5.28)
We can therefore re-write AU in the form
e
su=5np,
o
where
Oy = [,a.:h{r}[i.x,-x_,- - rzﬁ,‘-,-]-d-jr.

Qy is defined to be the quadrupole moment tensor of the classical
charge distribution. 85 is the usual Kronecker 8. The additional term
containing §; does not change AU, because of (5.28), but makes @ =
0 if g (r) is spherically symmetric,

Dimensional analysis suggests that for a nucleus which has a non-
vanishing quadrupole moment

1@yl /e ~ (nuclear dimtrmiun]z ;

A nucleus in a neutral atom is subject to the electric field of the
surrounding atomic electrons. The closed shells of inner atomic electrons
will be distributed with near spherical symmetry, and will not contribute
appreciably to a quadrupole field at the nucleus. Any quadrupole field
will be produced by outer electrons, and it may therefore be anticipated
that

By~ ef(dmey )(atomic dime me.iun}a.
Hence typically the interaction energy is of magnitude

& (nuclear dimension)’

AU ~ ~ 1077 V.

dreg(atomic dimension)
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Such small energy shifts are detectable in radio-frequency speetro-
scopy, but it is clear that higher multi-pole moments arising from further
terms in the Taylor expansion (5.27) will be unimportant.

The charge distribution in a nuckeus must of course be treated quan-
tum mechanically rather than classically, and we define the electric guad-
rupole moment operator by

Q.'g' = Z {B_rm-.xm- - 5,‘-,-1']2,],
prolons p

where now the x,; are the proton coordinates.

Just as the matrix elements of the (vector) magnetic dipole operator p
are proportional to the matrix elements of the (vector) angular momen-
tum operator J, it can be shown that for the tensor operator Qy

(@) = CLBU, + 4T — 85},

where C is a constant, and again the brackets indicate any matrix ele-
ments between the (27 + 1) nuclear states of angular momen tum guan tum
number 7, labelled by j.. Thus all the matrix elements of @y are deter-
mined by a single quantity. It is conventional to take the expectation
value of O in the state with j, equal to its maximum value 7, and define
this as the muclear efectric guadrupole moment (0, so that

Q=137 —j(j+ D] = Gz - 1),
or

. ¢
=
H& =1

All other matrix elements are then determined in terms of . Note that @
vanishes for nuclei with j =0 orj = i—

Experimental values of  are obtained from spectral measurements
on systems in which the field gradients can be accurately caleulated. These
values are often very much larger than, and sometimes differ in sign from,
the predictions of the simple shell model. The implication is that the
deformation of many nuclei from spherical symmetry s much larger
than would be expected from the simple independent particle shell
model. In reality the deformations must result from collective effects
involving several nucleons. As might be expected, deviations from sphe-
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rical symmetry are least in the neighbourhood of closed shells and largest
for nuclei with shells which are around half-full.

by |

5.2(d)

(#)

le)

5.3(a)

(&)
5.4

Problems

In the model of §52, verify that when N=2F= 4/2 then
Ey =E; — U =38 MeV.

Show that in the model of §5.2 the total kinetic energy of a nucleus
containing N neutrons and Z protons is

ENE} + 325 - )

For (N =Z) < A, this expression may be Taylor expanded about
Ny=Af2, Zy= A2, EF =38 MeV. Show that

£~ ¥l bza..f'-; |(aﬁ)2
TR INg 9\UN /) |

s o : AN 1/AN

where AN = —AZ = (N — Z)/2.
Hence show that the total kinetic energy of the nucleons in the nucleus is
approximately

: AN = 2)
Y FREY (LN

and therefore contributes = —23 MeV to the coefficient ‘s’ in the semi-
empirical mass formula, and == 13 MeV to the symmetry coefficient ‘s
{equation (4.3)).
Show from equation (3.1) that the averape Coulomb energy of a proton
it a nucleus of atomic number Z is

2
- 6(Z—1
5 - 8Z- e

T 5 dnegR

Show that for 28Pb, ©, =207,
gg{_‘u is the heaviest stable nucleus with Z = N. ([t is doubly magic.) The

neutron separation energy is 15.6 MeV. Estimate the proton separation
energy, and compare vour estimate with the empirical value of 8.3 MeV.

Suggest values for the spins and parities of the following nuclel in their
ground states:

ilp &7 115
5P Gedn. gln

Probilarms 73

5.6 The measured spins, parities and magretic moments of some nuclei are:

Lh

Lh

7 A 3!
;3(7.-1[?. |.32#N)_ Eimh(T_ﬁ.n#N). ’ﬁm{’?,u.?alw)_

31
’?-Enu(T_u.Mi#N)_ Zalst not known).

Compare these values with the predictions of the shell model.
Calculate the nuclear magnetic resonance frequencies for (g) protons,
(#) $2Ca (see Problem 5.6), in a magnetic field of 1 tesla (= 10* gauss).
Show that for a uniformly charged ellipsoid of revolution

s

7 L™

=1,

of total charge Ze,

Q- =3Z(b* - d°).

The nucleus '] Lu has j = 7 and a very large electric quadrupole moment
of 8.0 harns. Suppose the mucleus in the state with j; = 7 has approxi-
mately an ellipsoidal charge distribution of the form above. Calculate o
and b.
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Alpha decay and spontaneous fission

6.1 Energy release in a-decay

We saw at the end of Chapter 4 that the binding energy per nucleon curve
of the f-stable nuclel has a maximum in the neighbourhood of ron (Fig.
4.7), and that the heavier elements may be unstable to spontaneous dis-
integration. The principal mode of break-up is by emission of a jHe
nucleus. Historically, the particles emitted in the decays of naturally
occurring e-unstable nuclei were called a-particles before they were iden-
tified by Rutherford in 1908 as 3He nuclei, and the name has stayed.

The kinetic energy release A4, Z) in an e-decay of a nucleus (A, Z) s
given in terms of the binding energies of the parent and daughter nuclei
by

QA Z)= B(A—4,Z — 2) + 28.3 MeV — B(A. Z), (6.1)

(where 28.3 MeV is the experimental binding energy of the 3He nucleus). If
the nucleus is assumed to lie on the g-stability curve, given approximately
by equation (4.14), then ) may be calculated as a function of Z (or of A)
from the semi-empirical mass formula, using equation (4.5). Neglecting
the pairing energy term, the effects of which are small, the resulting
smooth (Z) s plotted in Fig. 6.1 for Z = 50. Negative values of @
mmply absolute stability against g-decay. Also shown are (& values caleu-
lated from the experimentally measured masses of f-stable nuclel and their
corresponding daughter nuclei. The trend of the experimental points is
gven correctly by the semi-empirical formula. Though the detailed pre-
dictions can be out by as much as 5 MeV, this is very small ( <0.3%)

A
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Fig. 6.1 Expenimental and theoretical e-decay energies =84 —4. 7 - 2)
4283 MeV — B4, ), as a function of the atomic number 2 of the parent
nucleus. The expermental points are from cases where both parent nodens and
daughter maclet are fstable. The theoretical curve 1s from equation (4.5) (neglect -
ing the pairing energics) together with equation (4.14).

compared with the total binding energies of the nucle in this region. The
main deviation from the simple formula s due to the extra binding energy
of nuclel around the double-closed shell nucleus zﬂﬁPh. This extra binding
energy not only makes these nuclel more nearly stable than average, but
also makes less stable the nuclei immediately above them. At higher Z,
around 55U, there is another small region of relative stability.

From Fig. 6.1 it will be seen that f-stable nuclel with Z = 66 (and a
few with Z = 66) are in principle unstable to a-decay. In practice the
decay rate is so low as to be almost unobservable if the energy release (0 is
=4 MeV. Up to Bi (£ =§3) the lifetimes of f-stable nuclei are many
orders of magnitude greater than the age of the Earth.

6.2 The theory of a-decay
It is the electrostatic force which is responsible for inhibiting the a-decay

of those nucla for which the decay is energetically favourable. As an
example, consider the decay of bismuth to thallium,
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B 4TI+ dHe + 3.1 MeV,

which 15 in prinaple possible but 15 not observed.

Figure 6.2 shows the electrostatic potential energy of the a-particle
(charge 2¢) at a distance r from a thalium nucleus (Zg = 81),
276/ (dmsg)r. Also indicated on the graph is the distance r, at which
the strong interaction with the thalium nucleus takes over, which we
estimate as

re = L1[{205) + 47] fm = 823 fm,

where we have used equation (4.2) for the radii of the Tl and He nuclei. It
s around this distance, in the surface region of the parent Bi nucleus, that
the a-particle can be considered to be formed.

The graph mmediately explaing why the e-particle finds it difficult to
escape even if it is formed. At r, the height of the Coulomb potential is
284 MeV, very much greater than the energy @ = 3.11 MeV of the o-
particle. Classically, it cannot penetrate the barrier and is {ree to move
only at distances greater than r, where r, is given by

[ rifm)

Fip. 6.2 The potential energy of an e-particle in the Conlomb field of a thallium
nuclens, as a function of the separation distance r. At r 5= r, the g-particle from
the decay of Msmuth & formed. At r = r, it has penetrated through the classically
forbidden region.

6.2 The theory of edacay T

2Zrie"

=G (6.2)

Q

e 18 the classical distance of closest approach to the nuceus of an o-
particle of energy @ coming from the outside. For thallium, r, = 75 fm.
Thus classical mechanics forbids the e-particle to escape. Quantum
mechanics, however, allows it to tunnel through, and we now estimate
this important tunnelling probability.

Al distances r = r,, outside the range of the strong interaction, the
Schrédinger equation for the radial wave-function u(r) of the a-particle is

= (6.3)

E E;F{m} + (dmeghr = 2m

W1 e [22402 h HJ+1}:|

Here Z; is the atomic number of the daughter nucleus, and m is the
reduced mass, 1e.,

iRy
H=——
my + nig

(6.4)
where mg, mig are the masses of the e-particle and daughter nucleus. The
use of the reduced mass takes into account the recoil of the daughter
nucleus. To conserve angular momentum, the angular momentum of
the a-particle and the angular momentum of the daughter nucleus must
combine to give the angular momentum of the parent. Also the parity of
the final state, (—1)'x (parity of daughter nucleus), must equal to the
parity of the parent nucleus. In the example Hi{%_} e TE{%"_}, it is possible
to conserve angular momentum with /=4 or / = 5 (Appendix C), but
parity conservation requires { =35,

For simphicity we shall only consider the case { = 0. In fact the angu-
lar momentumn term s usually small compared with the Coulomb poten-
tal. Writing w(r) = f(r)/r, equation (6.4) then reduces to

W &f 2z, ‘
_EF+{4mﬂ}rf= Qor. (6.5)

If the Coulomb term were replaced by a constant potential ¥, we should
have solutions
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e eem, # ——f{@ o)
f)= 5 6.6)
EiKr, Q < Vﬂ, - — ":hz 'I:V _ Q,}

This suggests that we try to find solutions to equation (6.5) of the form

fir) =", (6.7)

where ¢(r) s to be determined. By substitution, g¢(r) satisfics

£l (1) (2
2m [drz *\ar T Ndmeg)r Q) i)

Ina constant potential Fy, dg/dr = 2k (Q = Fy), or K (@ = V) andin
both cases dzqfr,"dr’? = 0. We shall assume that the Coulomb potential in
(6.8) is sufficiently slowly varying for d*¢/dr* in this equation to be
neglected compared with (dg/dr)*. Then

do , [[2m (274
o [F ({4Hﬁn}r Q)]

and

== B2 o)

For r = r., we can write our approximate solution in the form
fir)= Atxp(+if k{r}dr) - Bu;r.p(—i.f k{r}dr), (6.10)

where

p— ."I m 27562
{r) = +]|||, [F (Q = t4.‘?-ﬁﬂ}!‘):|‘

and for r, < r < r, we can write
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Jfin= C'r.:xp(+ fru K{r}dr) +D1:xp(— f K{r}d.r), (6.11)

where

o=+ [F(E5-9))

A, B, C, D are constants to be determined by the boundary conditions.

The solution (6.10) represents outgoing and incoming waves, The
meoming wave would be needed in an analysis of the scattering of o-
particles by a nucleus. In the problem of w-decay, only the outgoing wave
1% present, so that B =10,

This solution must then be matched on to the exponentially increas-
ing and decreasing functions included in (6.11). Any admixture of the
second term in the expression (6.11) quickly becomes negligible as r
decreases, since the fall of the exponential is very rapid for typical values
of the parameters, so that in the region r, < r < r, we may take

FGY= f.'::np([u K{r}d.r)_ (6.12)

Atr=r, we must then match this solution to the appropriate radial
function of the e-particle in the region where it is subject to the strong
mteraction. Here, at the surface of the daughter nucleus, the description
of the a-particle is really a very complicated many-body problem. Butit is
reasonable to assume that in a heavy nuecleus the rate of formation of a-
particles is a property of the nuclear surface and does not vary greatly
from one nucleus to another. Given that an o-particle has been formed,
the radial probability demsity of finding the particle at r =r, relative
to the radial probability density of finding it at r = 7, is given by

4.11':';35 u{rc}iz _ Ef{rcjiz

- : 6.13
Amrdu(r )l If(r)P? (619
We can therefore interpret
Trr:}z —ts
— =& ", say, (6.14)
Bm} :
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as the transmission probability, through the Coulomb barrier, for a-par-
ticles created at r = r,. The essential correctness of this interpretation is
confirmed by a more exact analysis of the wave-functions and matching
conditions.

Using equation (6,12}

G::fﬁ;{r}dr

5 (2 ’=(r,: )i‘d

| ——1

5

With the substitution r = r, cos” # the integral is easily evaluated to give

1
G=2. /" ["24in*aas
Y & Ja

3

= '?'qu'll':—r:‘?{ﬂﬂ — sin & cos &), where 8, = cos™ [w.'llr—i|

|
T zzde‘* ,'Imr"’
= 5(4—) yig

16.15)

where the function

Gr fr.) = % [mu," Lf’r—*] s F.'f[:_“ (1 - :—“) H (6.16)

it dimensionless and lies between 1 and 0 for 0 < rfr, < 1 (Fig. 6.3). At
low enermes r, — o0 and ¥ — 1.

If the total flux of a-particles created at r, is 75 ', the probability per
unit time of e-particle emission is 5 'e™, and hence the mean life for o-
decay is given by

T = 1qe". (6.17)
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Fig. 6.3 The function {x) = (3/x)jcos " x — xl — K]}

We have argued that the rate of formation of o-particles, and hence
Ty, is a nuclear property unlikely to vary greatly from nucleus to nucleus.
In Table 6.1 we compare the formula (6.17) with experiment for a
sequence of naturally occurring e-decays (all with { = 0) nitiated by
the most common isotope of uranium U, taking 7y to be a constant.
The value 1, = 7.0 x 107 s was chosen to give a reasonable fit to this
sequence of measured lives. This value is not unreasonable on a nuclear
time scale of 2.6 x 1075 % AF 5(85.2), though it is somewhat shorter than
earlier estimates because we have chosen r, to be consistent with the
modern values for nuclear radii. Early workers obtamed estimates of
nuclear radn from assumed values of ;.

The qualitative agreement of the simple theory (which was pro-
posed in 1928 by Gamow and by Condon and Gurney) with exper-
ment is truly remarkable. The simple quantum-mechanical formula for
tunnelling comprehends time scales from as long as the age of the
Earth (1.45 = 10" 5) down to times less than a microsecond. The lar-
gest discrepancy between theory and experiment occurs with 219Po; this
discrepancy can be associated with the closed shell N =126 in this
Bsotope.
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Table 6.1. The a-decay serics from ‘z:;"; U

o fy Fe Tap Tiheary
(MeV)  (fim) {fim) # (3} 13)
BUSBTh 427 5.52 607 0.53 20% 10" 3.3 10"
CoTh — 5iPa — ' U)
U P1h 48 5.49 533 0.51 L1x 10" 1L1x10"
Th — ZRa 477 8.45 531 0.51 3.5% 10" 3.9 10"

Ry ZRn 487 8.41 504 0.50 735 10" 7.4 10"

ZRn — LiPo 559 8.37 433 0.46 48x 10° 4.2x10°

Lpo — LiPh 611 5.33 38.7 0.43 26 107 1.6x10°
(*3Pb — *1IBi — LPo)

Wpo — 2UPh 784 828 30.1 0.36 23x107% 1.1 %1071
(*2Pb — Z1IBi — Po)

po — 2iph 541 8.24 437 047 1.7% 107 3.8x10°

The values of { are from experiment. The intervening f-decays, which reduce the
pentron-to-proton ratio as the nuclei become lighter, are given in parentheses.

This particular sequence of decays is of interest in the early history of
the study of radicactivity. As is indicated in Table 6.1, the daughter
nucleus of an e-decay may be unstable to f-decay. Since the mass number
A decreases by lfour in an e-decay, and is unchanged in f-decay, we expect
there to be three other similar sequences of e-decays. Two of these, based
on zgﬁTh and 233[:, are also naturally occurring. The third, initiated by
‘23-;]\3]3, is made up of comparatively short-lived isotopes which must be
produced artifically for the series to be observed.

Since mean lives are dominated by the tunnelling factor, and this in
turn depends princpally on the value of @, we can now understand why
decay rates with @ < 4 MeV are so low,

It is found experimentally that e-particle emission can take place with
the daughter nucleus left in an excited state. With even—even nuclei such
processes usually oceur with much lower probability, since the value of
i reduced. However, the situation tends to be more complicated in the
case of even—odd and odd—odd nuclei. An unpaired nucleon is less likely
to take part in o-particle formation, and its state may form part of an
excited configuration of the daughter nucleus. In such a case, the daugh-
ter nucleus is likely to be found in this excited state after the emission of
an a-particle.

6.3 Spontanecus fission a3

6.3 Spontaneous fission

In e-decay, a heavy nucleus splits into a light helium nucleus and another
heavy nucleus. Fission 1s the name given to a similar but more symmetric
process of a nucleus spliting into two more or less equal masses, The two
pioces are called fission fragments.

The fragments are often nuclei in quite highly excited states, but we
can estimate the energy release in fission by considering the simple case of
the symmetric fission of an even—even nucleus (4, Z) into two identical
nuclei (A/2, Z/2) in their ground states, and using the semi-empirical
mass formula (4.5). We shall neglect the pairing energies. For a fixed
ratio of protons to neutrons, the symmetry term as well as the cohesive
energy term is proportional to the total number of nucdeons. Thus only
the surface and Coulomb energies contribute to the difference in binding
energy AB of the two fragments and the parent nucleus:

AB=28(A/2, Z/2)— B(A, £)

2 a8
= A2 - 1) - ‘%{z{%ﬁ ~1). e
I

If AR is positive then this fission is energetically possible, and the frag-
ments will acquire kinetic energy AB. From equation (6.18) nuclei for
which

22 - . Z
—_— .—= 18, .19
ﬂ}dﬂ%—l}’ Loy { )

are metastable with respect to fission. This condition is satisfied by §-
stable nuclei heavier than $iMo. The energy release on the fission of the
heavy elements is much larger than that in e-decay. For example, the
energy release in the symmetric fission of 53U is =~ 180 MeV. However,
although this 15 large, the process 15 strongly inhibited by the tunnelling
factor and spontaneous fission is only observed in the heaviest of ele-
ments.

We envisaged the process of e-decay as the imitial formation of an a-
particle at the surface of a nucleus and a subsequent tunnelling to free-
dom. It is not so easy to envisage the fission process, or to calculate the
potential barrier. Figure 6.4 gmives a schematic representation of the fission
process, in which the nueleus is treated as a liquid drop. For the early
stages of the fission of an initially spherical nucleus of radius R, it is
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Fip. 64 A schematic representation of a symmetrie fission in the liquid drop
maodel.

reasonable to consider the nucleus deforming into an ellipsoid of revolu-
tion as in the first step of Fig 6.4,
If we introduce a deformation parameter £ such that

a=(1+zR

. (6.20)
b= R/l +=F
where a, bare the major and minor semi-axes of the ellipsoid, the volume
of the drop {;}me‘! stays the same, It is not difficult to show that, for
small £, the surface area becomes to order &
2 3
S(e) = 4nR (1 + 27 — 2.6, (6.21)

and the surface energy will, correspondingly, increase. (For small £, the &
term 15 4 small correction.)

The Coulomb energy, on the other hand, decreases on deformation.
A (rather lengthy) caleulation for a uniformly charged ellipsoid gives the

result
E — p" lf drd’r’
“ T (Ameg)2J) e 1)

3(Ze)’ g g
= 1 -1+ 4;
Sk ¥ tah)

(6.22)

for small & (cf. equation (4.6)).

Using the parameters of the semi-empirical mass formula, these
results suggest that a small ellipsoidal deformation of a spherical nuceus
gives a change in energy of

2,0 L2\ afs52, 5 4. Z .
£ (5"”" 5"',4% s zldA% : 62
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The coefficient of £* is negative if

Z2 2k
> =51, (6.24)

Hence when this condition is satisfied the deformation energy is negative
even for small g, and fission would proceed uninhibited by any potential
barrier. Thus (6.24) suggests there is an absolute upper limit for chemical
elements of Z = 144 (using the relation between Z and A for S-stable
nuclei given by equation (4.9)).

For dements of lower Z, spontaneous fission involves tunnelling
through a potential barrier. We can crudely estimate the height of the
barrier from the expansion (6.23). For 33U this gives the deformation
energy

(83.35:" — 159.16:7) MeV.

The coefficient of £ is negative, which confirms that in the liquid drop
model the most likely deformation is indeed a prolate, rather than oblate,
ellipsoid, and the expression has a maximum of 3.4 MeV when £ = 0.35.
The measured potential barner 15 5.8 MeV. For 4 ~ 240 barner heights
are found to be between 5 and 6 MeV. Experimental values are deter-
mined from the threshold energics required to induce fission, when the
nucleus is bombarded with, for example, p-rays. Induced fission by neu-
tron capture also gives information on barrier heights. We shall consider
induced fission in more detail in Chapter 8 and Chapter 9. It is a subject
of great technological importance.

As the inequalities (6.19) and (6.24) indicate, Z*/A is a measure of the
ikelihood that a nucleus will be subject to spontancous fission. An
empirical, approximately linear, relationship exists between the logarithm
of the mean life for spontaneous fission and 72/ 4. This is shown in Fig.
6.5 for some even—even nuclei.

The fragments produced in spontaneous fission move apart rapidly
because of their Coulomb repulsion. They are neutron rich, since the
equilibrium neutron-to-proton ratio of a f-stable nucleus decreases as
A decreases, and they are in highly excited states. Typically, one to
four neutrons ‘boil off* from the fragments in a time of 107% 1o
107" s, Studies of the angular distribution of these ‘prompt neutrons’
show that they are indeed emitted from the moving fragments, rather
than at the moment of break-up of the fissioning nucleus. The resulting
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Fip. 6.5 Mean lives for spontanecus fission of some even—even nuclei (Data
from American instiute of Phvsics Handboolk, 3vd ed., 1972, MNew York:
MeGraw-Hill.)

nucler are still far from the line of S-stability. They reach their ground
states through the emission of prompt y-rays and gradually decay, by #-
emission, to stable nuclel. It occasionally happens that a nucleus pro-
duced by g-decay is unstable to neutron emission, and a ‘delayed neutron’
may result. For example, one of the fission products of **U is $1Br. This
p-decays with a mean life of 80 s to either the ground state 5 Kr or an
excited state 3K r* which can lie above the threshold for neutron emis-
sion. In the latter case the rapid decay EKr — ¥Kr +n sometimes
oceurs, Thus the time scale for the emission of the delayed neutrons is

nuclear reactors.

Probilarms ar

The semi-empirical mass formula predicts that the energy release in
spontaneous fission is at a maximum when the two fragments are of equal
mass. Notwithstanding this, it 15 usually found that there is a quite strik-
mgasymmetry in the mass distribution of the fission fragments. It is likely
that this asymmetry is due to shell structure effects. More detailed the-
ories of fission include these aspects of nuclear structure.

Froblems

6.1 §Be decays to two e-particles with a kinetic enerzy release of 0.094 MeV.
Estimate its mean life wsing the tunnelling formula (6.17), and compare

your estimate with the observed mean life of 2.6 = 10 7 s

6.2 The isotope 'sAu undergoes A-decay and has a mean life of 56 hours.

{a) One mode of decay is

1A — "23Pt+et + v+ 1.5 MeV.

The positron in this decay is created in the nucleus and must tunnel
through a Coulomb barrier to escape. Show that the barrier factor
suppresses the decay rate to a positron with an energy ~ 1 MeV only
by a factor of about four.

{#) Another energetically possible decay, which has not been observed, is

138 Au — '3%0r + $He + 1.8 MeV.

Estimate the mean life for this mode of decay.

6.3 T5pu decays by a-emission:
Bpu — B30 + o+ 549 MeV,

with a mean life of 128 years. The mean life of ®*U is much longer, 2.5 »
10° vears. Space probes to the outer planets use puasa POWEE SOUCE
for their equipment. Estimate the mass of “ Pu needed to supply a
minimum of 1 kW of heat for 50 years.

6.4 The intermediate members of the radioactive series stemming from 21
have negligible mean lives on geological time scales (Tahle 6.1), so that
25U may be said to decay to P%Pb with a mean life of 6.48 x 107 years.
Similarly, ¥ U decays to ™ Pb with a mean life of 1.03 x 10° years.

In a certain sample of uranium-bearing rock the proportions of atoms
of U, T30, 2% ph, ™ Ph were measured to be 1000:7.19:79.7:4.85. The
rock contained a negligible amount of ™ Pb, which is usually the most
common isotope of lead, indicating that all the lead in the rock came
from uranium decay. Estimate the age of all rock.
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6.5 Estimate the energy release and the velocity of the frapments in the
spontaneous fission
BU = Gpd” + 'Gpd”
where * denotes an excited state.
Meutrons ‘boil off” from the fragments. If in the frame of the moving

fragments the neutrons are emitted isotropically with energy == 2 MeV,
describe qualitatively how the neutrons appear in the laboratory.

r.

Excited states of nuclei

7.1 The experimental determination of excited states

So far we have for the most part been considering atomic nucled in their
quantum ground states. Most nuclei on Earth have been in their ground
states since the time of its creation. However, almost all nuclel possess
excited states of higher energy (and therefore less binding energy) than
their ground state. There are many ways of exhibiting these excited states,
and determining their energies and quantum numbers. One method is to
scatter energetic protons of known momentum p; from the nucleus of
interest and to observe their angle of scattering # and final momentum
pr. This process is illustrated in Fig. 7.1.

To conserve momentum, the recolling nucleus has momentum
(p; — preosd) in the direction of the incoming proton and ppsind in the
perpendicular direction. Taking all momenta and energies to be non-
relativistic, the difference E between the initial and final kinetic energies
of the system is

2 2 2
_ P pi (B +pi—2pprcost)
~ !

7.1
o (7.1

where 'y 15 the mass of the recoiling target nuecleus. By conservation of
energy £ must be the excitation energy given to the nucleus. In terms of
the nitial and final proton kinetic energies E and Ep, equation (7.1)
becomes

A0y
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Fig. 7.1 Scattering of a proton from 2 nueleus initially at rest.

iy, iy, 2m I
E=FE(l-—L)-E|1+—2)+—L(EEFcoss. (7.2)
HJ'A HJ'.{ .P?J'.{

In equations (7.1) and (7.2), my = m 4+ Efc may be replaced by the
mass miy of the nucleus in its ground state, with little error.

In practice, a mono-energetic beam of protons is directed at a target
containing the nucleus in question. If the target 1s a solid it 15 generally
made so thin that the probability of a proton scattering more than once
off a nucleus is small.

At a fixed scattering angle 8 the emerging protons are no longer
mono-energetic but, apart from a back ground coming from, for example,
the residual multiple scattering, their energies fall into several well-defined
peaks. An example of this i1s shown n Fig. 7.2,

Proton energy £ (MeV)

3 4 5 ] ¥ 8
2 T T T T T
£
g
B
b= |
g
gz
g & x4
5%
5
E 1
— L= t f ot t t
350 3154 3B 4903 6,23 6.61 T.5%3 &.19

Fig. 7.2 The number of protons scattered at 9407 from a siabic target contaming
"B, a5 u function of their final energy & Initially the protons were in a eolli-
mated beam and had energy 10002 MeV. Background scattening has been
removed. (Data from Armitage, B, H. & Meads, B. E. (1962), Nucl. Phys 33,
404.)
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In the experiment from which this data is taken, initial protons of
energy 10.02 MeV were scattered from 'YB, and the graph shows the
number of protons scattered within a small angular range at 8 = 90° as
a function of their final energy E;. The peak of the highest energy at
F = 819 MeV corresponds to elastic scattering, since equation (7.2)
then gives E =0, that is, no excitation. The values of E; for the successive
peaks of lower energy give a sequence of excitation energies E of the 'iB
nucleus (Problem 7.1).

The area under the peak at a particular E; in Fig. 7.2 is proportional
to the probability of producing the corresponding excited state. This
probability depends both on £, and on 8. Information on the spin and
parity of the state can be obtained from measurements of the angular
dependence of the production probability. Further information on spin
and parity is given by the energies and angular distribution of p-rays that
can result as the excited states decay back to the ground state.

The inclastic scattering of protons as in the above example is a tech-
nique which may be used with nuclei which are not radicactive and which
can be safely made into targets. Another technique, which & suitable for
determining the energy levels of some f-unstable nuclei also, is that of
dewteron stripping.

In deuteron stripping, a mono-ener getic beam of deuterons is directed
at a target nuckeus. As well as elastic and inelastic deuteron scattering,
eaving the original, possibly excited, target nucleus, a nuclear reaction
may take place in which the deuteron loses a nucleon into the target
nucleus. Consider for example the reaction represented by

TH+2X— 27X +p, (7.3)

in which only the proton emerges.
Here #X is the target nucleus and $7'X is its isotope (perhaps
unstable) with one more neutron. The * denotes a possible excited state.
If the emerging proton in this reaction is at an angle # with respect to
the beam of incident deuterons and has energy Fy, a caleulation similar to
that for proton scattering vields for the exctation energy of the final
nucleus, 1{_"'])‘[‘, the expression

m m g B E
E=E.-(1‘ 4 )‘Er(1+ 2 ) 4 o Y 64 5,
’”.{1-1 Ry m:! +1

(7.4)
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Table 7.1
Ey (MeV}) 11.42 11.97 12.69 13.50 15.74 16.62
E(MeV) 5.08 456 383 306 (.87 0.0

This shows the mean energies Fr of groups of protons that emerge, from a static
target containing '%0, at an angle of 19” to a 14.95 MeV deuteron beam. Below
are the corresponding excitation energies £ of '"0, as caleulated using equation
(7.4). (Data from Yakgi, K. er al. (1963), Nucl. Phys. 41, 584.)

where now E; is the incident deuteron energy, mig is the deuteron mass
and Ey = (my +mg — Mg — m],.}lr:2 is the difference in rest mass energies
between the initial and final nuclel in their ground states.

Table 7.1 shows the results of a deuteron-stripping experiment,

H + %0 - 10" +p.

in which a deuteron beam with energy E; = 14.95 MeV was directed at a
target containing 'S0 and the energies of protons detected at 8 = 19° were
measured. In this example By = 1.93 MeV. The table shows the six pro-
ton groups with the highest energies and the corresponding 'JO excitation
energies E. The highest-energy proton group with £ = 1662 MeV cor-
responds to the production of 0 in its ground state.

Figure 7.3 shows the excitation energies of 'O up to 6 MeV. In this
energy-level diagram the excited states are denoted by horizontal hnes at a
height above the ground state that is proportional to the excitation
energy. The five lowest excited states are those determined from the
above deuteron-stripping reaction. The experimental information on
the others will be discussed in §8.1. We shall in general restrict our dis-
cussion to energy levels below about 10 MeV, which is the most impor-
tant energy range for the topics we discuss in later chapters.

Also shown on the energy-level diagram are the lowest energies,
called threshold energies, such that excited states above these thresholds
can break up into the smaller nuclei indicated. These energies are com-
puted from the masses of the nuclei involved. The lowest threshold is for
"0 to disintegrate into 'O and a neutron. Below this threshold the
excited states cannot disintegrate into lighter nuclei but they decay elec-
tromagnetically, for example by the emission of a photon, to lower energy
states and, eventually, the ground state.

7.2 Some general features of excited states a3
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Fig. 7.3 The 0 energy-kvel diagram up to an exdtation energy of 5.94 MV,
The first five excited state energies are as determined from deuteron stripping
{Table 7.1). Also shown 1= the threshold energy at 4.15 MeV for break-up into
a neutron and "0 {the ‘neutron separation energy’ of "'03), and the threshold
energy for break-up into " and an e-partice. (For more information sec
Ajzenberg-Selove, F. (1982), Mucl. Phvs. A3T5, 1))

The spins and parities of the excited state, some of which are shown
on the diagram, are deduced from measurements of the angular distribu-
tion of the protons from the nuclear reactions which produce the states,
and also from the angular distributions of the photons resulting from the
subsequent decays of the states.

7.2 Some general features of excited states

In general, the heavier the nucleus the more excited states it has. The
deuteron has no excited states and very light nuclei have only a few
well-defined excited states. However, the number of excited states
mereases rapidly as A mereases. Figure 7.4 gives the energy levels up to
9 MeV of the two light nucle "B and '.C. This pair is an example of so-
called mirror nucles. the number of protons in either one equals the num-
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Fig. 74 Enermy-level diagrams for the mirror nudei B and 'JC. The spins and
parities of the states are also given. Nole the proton separation energy from 'C at
H.69 MeV, and the s-particle separation energies. (Data from Ajzenbere-Selove,
F. & Busch, C. L. (1980), Nucl. Phys. A336, 1)

ber of neutrons in the other. The near equality of their energy levels
illustrates the charge independence of the strong force; for this pair of
Hght nueclei the difference in Coulomb energies is small and the nuclear
physics is almost identical.

A qualitative understanding of the excited states is given by the shell
model. Consider the '!B nudleus. The six neutrons fill the Is; and 1py
shells. There are two protons filling the 15 shell and in the 1p; shell two
protons have their angular momenta coupled to zero while the odd
remainming proton gives the ground-state spin and panty g-_. The first

7.2 Some general features of excited states a5

excited state, spin and panty ;—_ . can be considered within the shell model
to be the state in which the odd proton is taken from the Ipy shell and
placed in the higher energy Ipy shell. Such a state is known as a single-
nucleon excitation,

Many of the higher energy states will correspond to several nucleon
excitations. The fact that there s a large number of excited states is easily
accommodated within the shell model. 1f we consider only the Ipgand Ipg
shells, the four neutrons can be distributed in {ﬂ} ways over the six
available single-particle neutron states, and the three protons in {'?}
ways over the single-particle proton states. Thus we can construct
[’i} b {\g} = 15 x 20 = 300 independent states — more than enough to
account for all of the states of negative parity below the e-decay thresh-
old, even allowing for the fact that levels with spin j have (2/ + 1)
members.

Figure 7.5 shows energy-level diagrams for two heavier nuclei, **Ca
and " Pd. Note in these examples that for a given excitation energy, the
heavier nucleus has a greater density of excited states and, for a given
nucleus, the density of states increases as the excitation energy increases.
These qualitative features are apparent in most nuclei, though near to

gﬁ — 4MeV
i £ 2
—2
—1

“Ca 198 pg

Fig. 75 Energy-level diagrams for **Ca and "®Pd. (Data from Nuclear Daia
Sheets of the Mational Muclear Data Centre for Nudear Data Evalhation, Sheet
3T (1982), 2%0; Sheet 38 [1983), 467 Academic Press.)
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closed-shell nuclei the energy gaps between levels tend to be significantly
greater, especially at low exatation energies. Again, the shell model pro-
vides an explanation. The elementary formula (5.4) for the integrated
density of single-nucleon states gives N(E) ~ E* for neutrons or protons,
g0 that the number of single-nucleon states AN in a small energy range
AFE 15 given by

I, ﬁhlr F|h|'- 3.-"""’
AN 2 (7.5)
AE dFE 2E

Henee, taking AN = 1, the mean spacing between single-particle neutron
levels at the Fermi energy (Ep = 38 MeV, N{Eg) = N; see §5.2) is

l;
AE =——~— MeV, (7.6)

with a similar result for the protons. AE very largely sets the energy scale
for the excited states, so that as N(~ A/2) increases they come closer
together.

In the shell model, the lowest-lying excitations can often be assodated
with single-particle excitations. At higher energies, several nucleons can
be simultaneously excited, and the increasing density of states with energy
reflects the increasing number of possible configurations involving many
excited nucleons.

Often, such complex nuclear states can be quite simply described by
models which naturally incorporate multi-particle motion. For example,
the liquid drop with which we started our discussion of nuclei, and
which we deformed in our discussion of spontaneous fission, can be
envisaged to be in an excited state of vibration or one of overall rota-
tion. Although we will not dwell here on these interesting and useful
madels, many excited states which 1t would be cdlumsy to descrnibe in
terms of the shell model can be justifiably envisaged as vibrational and,
or rotational states.

The excited states of nuclei are not stable. Their energies, being of the
order of MeV for light nuclei and keV for heavy nuclei, are so high they
play an insignificant role in terrestrial thermodynamics. At temperatures
accessible in laboratories they decay to states of lower energy and ulti-
mately to the ground state. We now take up the question of their modes
of instability and their mean lives.

7.3 The decay of excited states: ydacay and internal conversion ar

7.3 The decay of excited states: y-decay and internal conversion

Excited states that have energics below the lowest threshold for break-up
mto lighter nuclel decay almost exclusively electromagnetically. The most
prominent mode & p-decay, in which the nuceus changes to one of its
lower energy states and simultaneously emits a single photon. A nucleus
can also decay by imeernal conversion, which 1s a process whereby electro-
magnetic energy liberated by the nucleus is taken up by an atomic elec-
tron which is ejected. The energy of the emitted particle, be it photon or
electron, is the energy lost by the nucleus, with corrections for small recoil
effects and, in the case of internal conversion, the electron’s atomic bind-
ing energy.

Electromagnetic mean lives can be as long as hundreds of years, or
as short as 107'% 5. The transitions are slow if the change 1n nuckear spin
s large. To understand this great disparity in decay rates it must be
appreciated that photons, like other particles, have angular momentum,
which 1s the sum of their intrinsic and orbital angular momentum. The
mntrinsic photon spin 1% one, 5o that the total angular momentum quan-
tum number j of a photon is integral. The allowed wvalues are
J=1.2.3, .. the value j =0 15 not possible: photons do not exist in
states of zero total angular momentum (Just as classically, since electro-
magnetic waves are transverse, it is impossible to construct wave-like
solutions of Maxwell’s equations with spherical symmetry). If the
nucleus changes its spin from j; to j; in a p-decay, then to conserve
angular momen tum

Jitie =i 24—l

as 15 shown in Appendix C. Thus p-ray transitions between states with
A=0 and jy =0 are absolutely forbidden (but transitions by internal
conversion are possible). It may be shown theoretically that transition
rates are much suppressed as j increases; the theory of p-decay and inter-
nal conversion will be discussed more fully in Chapter 12,

Aswell as angular momentum, party 15 conserved in electromagnetic
transitions. The photon parity must be positive if the initial and final
states have the same parity and negative if they have opposite parities,
A photon has parity (—1)/ when the decay is ‘electric’ with the nucleus
basically coupling to the electric field of the photon, and parity —(—1)¢
when the decay is ‘magnetic” with the nucleus coupling to the magnetic
field of the photon.
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Figure 7.6 shows the results of rough theoretical estimates of p-decay
rates. Precise calculations require a detailed knowledge of the initial and
final nuclear wave-functions, which i1s not generally available. As an
example, consider the decay of the first excited state of 1O (Fig. 7.3).
This can only decay to the ground state and, neglecting internal conver-
sion, will do so by emitting an 0.87 MeV photon. (See Problem 7.3 for
recoil effects.) The nuclear spin changes from § to 3and there is no change
in nuckear parity. Therefore the photon must have positive parity and
i ,ﬂ';%-— 3| =2. The value j = 2 is the most likely photon angular momen-
tum; the value f = 3 is possible but would give a much lower decay rate.
The experimentally observed mean life s (2.58 £ 0.04) = 107" 5, in fair
agreement with the value suggested by Fig. 7.6 for an electric transition
with j = 2.

[ T 100 years
108 i 1 year
I - | day
1o* r = I hour
=1 | min
= 1 = | sec
8 I |
b= |l T
E)
=
1078
10=12 /=1
"]-I:i- + s wanml vl T 1 Loaig
1 10 12 1 1t

Photon energy (keV)

Fig. 7.6 Estimated mean lives for dectric mult-pole radiation of order 2/ as a
function of the energy of the emitted photon, for a nuclens with A4 = 100
Corresponding estimates for other nuclel may be obtaimed by multiplying by
{100/ 47 . Mean lives for magnetic mult-pole radiation are generally longer
than those for electric multi-pole radiation of the same order by a factor
Tou ST =~ W4T,

{The lines are drawn from formulae given, for example, in Jackson, 1. [ {197 35),
Clasgical Elecirodwnamics, 2nd ed., New York: Wiky, p. 760.)

7.4 Partial decay rates and partial widths a9

Measurements of photon energies clearly give information on the
energies of excited states, and such measurements have plaved a large
part in determining these energies. Measurements of decay rates and of
the angular distributions of the intensity and polarisation of the photons
give information on the “multi-pole’ type of the transition. Transitions
with j=1,2,3,...,n, ..., arereferred to as dipole, quadrupole, octapole,

... 2-pole, ..., transitions; each type of transition has its characteristic

lifetime and angular distribution. Unravelling the mult-pole type of a
transition is one of the ways of determining the spins and parities of
the nuclear states involved. Long-lived excited states of nuclel are
known as isomeric stafes.

7.4 Partial decay rates and partial widths

In general, an excted state of a nucleus has the option of decaying in
several ways. There may be several lower energy states to which it can
decay by y-emission, or it may be able to break upinto lighter nucla. For
example, the 4.56 MeV excited state of "o {Fig. 7.3) can decay by neu-
tron emission, or by p-emission to any one of four lower energy levels.
With each mode of decay, or decay channel, say the ith, there will be a
partial decay rate 1/7;, and the total decay rate 177 is simply the sum of
the partial decay rates:

t is the mean Lifetime of the excited state (§2.3).
The partial width of the ith channel is defined to be T'; = k', and the
total wideh T’ = h/t, s0 that

r=§:n_ (7.8)

The Iy and I' have the dimensions of energy. It is shown in Appendix D
that an excited state does not have a definite energy, but a distribution of
energies of width T about a mean energy E. Hence the relation

Fe=*h (7.9%
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can be interpreted as a relation between the uncertainty in energy of a
state and its lifetime, rather like the Heisenberg uncertainty relation
between position and momentum of a particle.

The particle decay rates of nuclei for y-emission are rarely greater
than 10" s'. The corresponding partial widths are thus generally less
than about 5 eV (and the energies of excited states that decay only by p-
emission, expressed in MeV, can be quoted to five decimal places).

7.5 Excited states arising from fS-decay

When a g-unstable nucleus decays, it may be energetically possible for the
transition to be to an excited state of the daughter nucleus. Although the
mmmediate energy release for decay to an excited state is less than that for
decay to the ground state, there are many S-decays in which the selection
rules discussed in §12.2 and §12.6 make decay to an excited state more
likely. The excited state will then itself decay, usually by y-emission.

As an example, Fig. 7.7 shows the decay scheme of 9 Co, which is g-
unstable with a mean life of 7.6 vears. $9Co rarely decays directly to the
ground state of 3Ni, but with 99.9% probability it decays to a state with
an excitation energy of 2.50 MeV. The f-emission is quickly followed by
the emission of two photons with energies of 1.17 MeV and 1.33 MeV,

f9co g
'S

'S .

3,50 MeV
|
2 133 MeV
Y2
.
Sy

Fig. 7.7 The & decay of **Co illustrated with energy-lavel dizgrams. The decay
takes place pradominantly to a state of **Ni with sxcitation energy 2,50 MeV,
sometmes to a state with excitation energy 1.33 MeV, and rarely to the ground
state. The spinz and parities of the states are also given.
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giving a total penergy of 2.50 MeV. In almost all of the remaining 0.1%
of B-decays, the electron emission is followed by a single-photon emission
of energy 1.33 MeV. Thus there must be two excited states of BNi
mvolved in these processes, ordered as shown in the figure.

o has important uses in medicine and technology as a source of -
rays. It is manufactured by the irradiation of natural **Co in a nuclear
reactor.

An extensive and detailed compilation of data on nuclear energy
levels will be found in Firestone, R. B., Shirley, V. 5., editor (1996),
Table of Isotopes, Bth ed., New York: John Wiley.

Froblems

7.1 From the data given in Fig. 7.2 draw an energy-level diagram for the
mucleus ]_E'B.

|
-

Derive equation (7.4).

7.3{g) Using the data of Table 7.1, show that the recoil velocity of a Ty
nucleus produced in its first excited level is

v= 57 % 107¢ {Ep = 1.918 MeY).

(&) If this ""O° nucleus comes to rest before it decays, show that the energy
of the emitted photon is about 24 eV less than the excitation energy of
the nucleus.

(¢} 1f the photon is emitted from the moving nucleus, show that because of
the Doppler effect it will be changed in energy by between —3 keV and
3 keV.

7.4 The binding energies of the mireor nuclei "IB and "1C are 76.205 MeV
and 73.443 MeV respectively. Assutning that the differemce is due
entirely to Coulomb effects, and that the proton charge is uniformly
distributed through a sphere of radius Ro in both nuclei, find Ro.
This was an early way of estimating the size of a nucleus. Compare
R with the value R =1. 124 fm, and comment on the difference.

7.5 The excited state TO* at 4.56 MeV (Fig. 7.3) has a mean life of only
1.6 % 107™ 5. How can this be so short? Estimate the width T of the
state.

7.6 What type of electromapnetic transition do yvou expect betwesn a state at

213 MeV in ’;E {Fig. 7.4) and the pround state? Estimate the mean life
of this state.

7.7 Consider the energy levels of "IB (Problem 7.1). The ground state has
spin and parity 3%, and the excited states in order of increasing excita-
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ton energy are 1%, 0% 1% 2% 3% 27 2% ls there an explanation
within the shell model of why the lowest states all have positive parity?

The first excited energy level is at 0.72 MeV and the second at
1.74 MeV. Given a larpe number of nuclei in the second excited state,
what energies have the y-rays that result from the decays? Estimate the
relative numbers of these p-rays.

Nuclear reactions

In a nuclear reaction two nuclei, or a nucleon and a nuclens, come
together in such close contact that they interact through the strong
force. The deuteron-stripping reaction of equation (7.3) is one example.
A reaction which contributes to energy generation in stars is

160 + 50 — 2§ + o + 9.6 MeV, (8.1)

and a nuclear reaction important in power technology is

U — fission products.

n-+
The latter two are both exothermic reactions in which the kinetic energy
of the final nuelei is greater than that of the initial nucled. In an endother-
miic reaction energy must be supplied before the reaction will take place,
as in the reaction inverse to (8.1) abowe,

81 The Breit-Wigner formula

The concept of cross-section (Appendix A) is important for understanding
and classifying nuclear reactions. Figure 8.1 shows the total cross-section
for neutrons to interact with the 'S0 nudeus as a function of the kinetic
energy £ (in the centre-of-mass system) up to E = 2.3 MeV. The princi-
pal features of the cross-section are the high but narrow resonance pealks,
superposed on a slowly varying background. These peaks are due to the
formation of excited states of 'O from the neutron and "0 at the reso-

173
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Energy above the ground state of "0 (MeV)
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Fig. 8.1 The total cross-section for neutrons interacting with "0 as a function of
centre-of-mass enerpgy, showing resonances that correspond to the formation of
excited states of "0 (top scale: see ako Fig. 7.3). (Data from Garber, D. L &
Kinsey, R. R. (1976), Newron Crogs Sections, vol. IL Upton, New York
Brookhaven Matonal Laboratory.)

nance energies. When the energy of the incident neutron is such that the
total energy of the system matches, to within the width T, one of the
excited states energies of 'O, the neutron is readily accepted into the
target to form that state. Note that the binding energy of the neutron
in the ground state of the so-called compownd nuclens becomes available
as excitation energy. In our example of "0, if excitation energes are
measured from the ground state the neutron binding energy of
4.15 MeV (cf. Table 4.2 and Fig. 7.3) has to be added to the resonance
energies to obtain the "0 excitation energies. This displaced energy scale
i also given in Fig. 8.1, Thus only those excited states above 4.15 MeV
can appear in the data.

The six peaks which appear in Fig. 8.1 correspond to the top six levels
of the energy-level diagram, Fig. 7.3. The two lowest of these six corre-
spond to states found in the deuteron-stripping reaction we discussed
earlier in §7.1.

It is shown in Appendix D that excited states make a contribution to
the total cross-section in the neighbourhood of the resonance energy E,
of approximately the form

8.1 The Brait-Wigner formula 105

_m g
nwl) = Ry T’

(8.2)

where &£ = [k, and k i3 the wave-vector of the incoming neutron in the
centre-of-mass frame, T; s the partial width for decay into the incident
channel O + n, g is a statistical factor (in this case g = (2j + 1)/2 where j
is the spin of the excited state). The expression (8.2) is known as the Breit—
Wigner formula. For T < E; the cross-section is at 8 maximum when
E = E,, and falls to half its maximum value at E=FE, £ T/2. Thus T
s the ‘full width at halfF-maximum’® of the peak. The peak width seen
experimentally depends also on the energy spread of the incident neutron
beam (no particle beam is ever perfectly mono-energetic), on the thermal
motion of the nuclei in the target, and on the characteristics of the detec-
tors, so that a careful analysis may be necessary before a true intrinsic
width can be obtained from the raw experimental data.

Consider the peak at £ =0.41 MeV in Fig. 8.1, The estimated width
of the peak, T' = 0.04 MeV, corresponds to a mean life of = 1.6 x 107" s,
This is short compared with mean lives for y-emission, but stll quite long
on the nuclear time scale (§5.2) of the oxvgen nueleus of ~ 1072 5. Such a
long mean life can be understood as resulting from the nature of the
excited state, which is a compound nuclear state in which many nucleons
participate. The neutron entering the nucleus loses its energy by collisions
with other nucleons, and if it loses more than 041 MeV it can no longer
escape. The nucleus then stays in the excited state until such time as a
single neutron again acquires enough energy to get away, or (in this case
with much lower probability) the nuecleus decays electromagnetically. In
the latter case, if the decay is to the ground state or any other state below
the neutron scparation energy, the neutron is captured; this process is
known as radiative capture.

In between resonance peaks, an analysis of the background cross-
section suggests that the nucleus resists penetration by the incident neu-
tron. The neutron appears to be repelled from the surface of the "0
nucleus at energies off resonance.

Resonance peaks are a feature of all eross-sections for neutron scat-
tering from nuclei with 4 = 4 and neutron energies up to a few MeV. The
‘binding energy of the last neutron’ (or separation energy: see equation
(5.6)) which is available for excitation energy usually hes in the range
5 MeV-15 MeV. As explained in §7.2, the density of excited states at
fixed energy increases rapidly with 4. Thus for neutron scattering from
heavy nuclei the number of resonances per MeV increases rapidly with A.
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Also, as A inereases, the wadth of the states becomes narrower: the states
become more stable since in the compound nucleus the incoming neutron
has more nucleons with which to share its energy, and the probability of
any one of them acquiring enough energy to escape decreases.

All this s illustrated in Fig. .2, which shows the total cross-section at
low energies for neutrons interacting with the heavy nudeus 5 U. Note
that the horizontal energy scale is in electron volts, and the vertical cross-
section scale is logarithmic. The resonance peaks are associated with the
formation of excited states of ** U, and the spacings between the peaks
are only = 20 eV. The resonances are very narrow, with an intrinsic width
of order 107 V. Indeed, the states are here so narrow that p-decay
competes significantly with other decay modes, and roughly half of the
decays of the excited states formed at these resonances are electromag-
netic and result in radiative capture. The other prominent decay mode is
neutron emission. Less-common modes include o-decay and fission.

For neutron energies that are off resonance the cross-section of Fig.
8.2 is dominated by the neutron scattering from the surface of the *U
nucleus. However, other nuclear reactions are energetically possible and
may occur. For example, the neutron could pick up two protons and

another neutron from the “*U surface to form an a-particle:

n + 38U — $He + 55Th.
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Fig. 8.2 The total eross-saction for neutrons interacting with 2° 1, as 2 funcdtion

of centre-of-mass energy. Mote that the vertical scake for the cross-section 1s
logarithmic and the horizontal energy scale & in electron volis, (Data as in Fig.
5.1
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Such a reaction, when the neutron energy i off resonance, does not
proceed through the formation of 33U, and is known as a direct nuclear
reaction.

8.2 Meutron reactions at low energies

Since neutrons are uncharged there is no Coulomb barrier to overcome;
hence neutrons of very low energy easily penetrate matter and interact
with nuclei. In the limit £ — 0, only elastic scattering and exothermic
nuclear reactions can take place. When a nuclear reaction is possible it
can be expected that the reaction rate at sufficiently low energes will be
mndependent of E, and simply proportional to the density of neutrons in
the neighbourhood of the nucleus. The cross-section o, for exothermic
nuclear reactions is gven (Appendix A) by

(neutron flux) = g, = reaction rate per nucleus.

The neutron flux is p,v (where p, 18 the neutron number density in the
beam and v is the velocity of the neutrons relative to the target nucleus).
Since the right-hand side of the equation is also proportional to g, it
follows that

- :{L'mmuml} 8.3)

{4

at sufficiently low energies. This is the behaviour that is seen experimen-
tally.

If the low-energy region lies in the wing of a resonance, the (1/v) law
follows from the Breit-Wigner formula (8.2). In this case, we must take
mto account the energy dependence of the partial width T(E), found in
equation (.9) of Appendix D. T'{ E) contains the factor m(E), which is
proportional to & (from equations (B.6) and (B.8) of Appendix B). For
E == 1), the Breit-Wigner formula then gives

1 (constant)

= i et #.4
kR +T/4 @A)
Since Ak = mw, where m is the reduced mass of the neutron and target
nucleus, we recover the (1/v) law. The combination of the (1/v), or,
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equivalently, {l,fEi'} law with a low-lying resonance s well illustrated in
Fig. 8.3, which shows the low-energy cross-section for cadmium.

In quantum mechanics, non-clastic processes are always accompa-
nied by elastic scattering, just as, in optics, absorption is always accom-
panied by diffraction. The elastic scattering of neutrons by nuclei takes
place through compound nucleus formation and by surface scattering;
the two processes are not independent and must be considered together.
It may be shown that the elastic-scattering cross-section of slow neu-
trons does not follow the (1/0) law bul tends to a constant value as
E — 0. This limiting value depends sensitively on the presence of reso-
nances near threshold. 1f the target nuceus has spin, the cross-section
also depends on the relative orientation of the spins of the neutron and
nucleus.
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Fig. 83 The total ooss-section for neutrons interacting with natural cadmiom.
The open dreles o are experimental points {data as in Fig. £.10. The line is a fit
with

_ {constant)

T l(E — B+ 2]

taking £, = 015 eV oand ' =112 eV, MNote that both the scales are boganthmic.
(n a logarithmic plot the *1 /v form at very low energies gives a straight line with
1 slope of —% (k. equation (E4), v= {Zﬂifﬂ}]. Thiz is evident for £ < 003 eV,
The very large resonance aross-scction is due to "Cd, which constitutes 12.3% of
natural cadmium.

iy
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8.3 Coulomb effects in nuclear reactions

Owr discussion of nudear reactions has so far emphasised reactions invol-
ving neutrons. In a nuclear reaction involving a proton and a nucleus, or
two nuclei, there are seen the same features of resonance scattering with
the formation of a compound nuclear state, and direct nuclear reactions
off resonance.

However, the effect of the Coulomb repulsion between particles in the
initial or final channels of the reaction leads to significant differences in
the reaction cross-sections at low energies below the Coulomb barrier
height, This effect is illustrated in Fig, 8.4, which shows the low-energy
cross-section for the nuclear reaction

u'+j.§1’: — n+12{},

Energy above the ground state of "0

6.5 7.0 7.5 a.0
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=12 centre-of-mass kinetic energy (MeV)

Fig.8.4 The oss-seciion for the reaction & + 2C — n+ 0. The dashed curve
— — — exhibits the large Coulomb suppression at low energies {see text). Mote the
resonances at high excited-state energies of "0 { top scale) which are above those
shown in Fig. 7.3, (Data from Blur, 1. K. & Haas, F. X (1973), Phys. Rev. (7,
1356.)
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as a function of the centre-of-mass kinetic energy E of the incident nuclei.
The reaction is in fact exothermie, with an energy release of 2.2 MeV
(Fig. 7.3) and so0 it can in principle occur at any energy. However, at
low energies the a-particle must tunnel through a Coulomb barrier before
it can interact with the PC nucleus. The barrier is about 4 MeV high. In
classical mechanics a nuclear interaction could not oceur for an e-particle
having lower energy than this. In quantum mechanies the particle can
tunnel through, but the low-energy cross-section 15 much suppressed, as
the figure clearly demonstrates. The tunnelling probability for the a-par-
ticle to penetrate the barrier from the outside 5 the same as the prob-
ability for tunnelling in the other direction, as in o-decay, and this we
estimated in Chapter 6 to be ¢ ™ where G(E) is given by equation
(6.15) (but with  replaced by E).

It is usual to parametrise charged-particle reaction cross-sections at
low enermes by the expression

a(E)y = %S{E}t“qf‘}, (8.5)

and Fig. £4 also shows this curve with S(E) chosen to be a constant (0.3
barn MeV to fit the cross-section at the lowest energies. The background
cross-section below the resonances roughly follows this curve, but large
resonance peaks due to the formation of exated states of 'O are evident.

The precise form of charged-particle nuclear reaction cross-sections
at low energies is of great importance, both in astrophysics and for the
prospect of controlled thermonuclear reactions on Earth, It may be
shown that, as F — 0, the function S(E) in (8.5) tends to a constant
value, which depends on the particular reaction and 15 very sensiive to
the proximity of resonances. We can give a qualitative derivation of this
result for the case when the low-energy region lies in the wing of a nearby
resonance. The Breit-Wigner formula (8.2) may be written

ok gl(Ty )

o) = 2mE(E — By +T2/4°

(8.6)

where mis the reduced mass of the interacting particles and T/ h is the
decay rate into the incident channel. For energes close to threshold it s
again important to include the energy dependence of Ty, Recalling the
discussion of e-decay in Chapter 6, we replace the decay rate (I';/ h) by
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(1 ,frﬂ}t:_{;{h}, where 7 15 4 constant nuclear ime. For E = 0 the expression
(B.6) then reduces to

B i ol o —GLE)
T 2mry E3+T4 E

alE)

This is of the same form as (8.5) with

kgl
SE =2
& 2mm Ey +T/4

a constant.

If the nuclel in a reaction have charges Zye, Zae, the expression (6.15)
for G(E) must of course be generalised shightly: 27Z,¢” is replaced by
4 Zzez, and m becomes the reduced mass of the nuclei involved. At
very low energies r. is large and so %(ry/r.) — 1. Thus

GUE) ~ 1(212282) I."Zmrz

he\ dmey |V OE
[Eg .
= hll E? M{FF
where
7,72\
_E{. — Ir”fz u
: heldmeg)
and

1 P
a(E) x;:ﬂn}e‘*’“‘“". 8.7)

8.4 Doppler broadening of resonance peaks

We mentioned in §8.1 that the thermal motion of the nuclei in the target
affects the width of a resonance as seen experimentally. Neutrons in a
beam inddent on a target, and mono-energetic with respect to that target,
are not mono-energetic with respect to the individual nucled in the target,
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since these will be in random thermal motion. The energy that appears in
the Breit-Wigner formula is the energy in the centre-of-mass frame of the
neutron and the target nucleus. If the neutron has velocity vy and the
nucleus velocity va, the centre-of-mass energy 1s

E :-}m{n —U}z = FE; -I—%E;_ - Ef‘f(%ﬁ'] Ez)i.'l[)&lﬁ',

where M is the mass of the nucleus, m =, M /(m, + M) is the reduced
mass, £ is the centre-of-mass energy when thermal energy is neglected,
E, is the thermal energy of the nucleus and 8 the angle between vy and v,.

The term (m/M)E2 can be neglected if the neutron energy s much
greater than thermal or if the target nucleus s heavy. The thermal energy
E, iz of order of magnitude &y T, where ky 1s Boltamann's constant and T
is the temperature of the target. Since cos # lies between —1 and +1, it can
be seen that, when averaged over many nuclei, £ will have a spread in
energy about E; of magnitude
B

AE = zvf(&; EiksT).

Thus if a cross-section s measured in the laboratory as a function of £,
in the neighbourhood of a resonance at energy E,, the Breit-Wigner form
is modified and, in particular, the width of the resonance peak will be
larger than the natural width by an amount of order

R

AT & zvf(ﬁsﬂku :r).

This is Doppler broadenig. A more detailed analysis shows that the total
area under the resonance peak isindependent of temperature, so that the
height of the peak is reduced as the width increases. This is illustrated in
Fig. 8.5 for a resonance in ~° U, (We shall see in Chapter 9 that Doppler
broadening is of crucial importance for the thermal stability of nuclear
reactors.) In the resonance peak of Fig 8.3, on the other hand, it is easy
to check that the effect of Doppler broadening at room temperature
Tk Tyo= (17400 eV is small.

Data on neutron scattering cross-sections will be found in McLane,
V., Dunford, C. L., and Rose, P. F. (1988), Neutron Cross Sections Vol. 2,
San Diego: Academic Press.
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Fig. 5 The Doppler broadening of the Bret-Wigner aoss-section o, for neo-
tron radiative capture by
(026 eV,

L. The resonance isat 6.67 ¢V and its natural width is

FProblems

Quantum mechanics gives the total cross-section for scattering from an
impenetrable sphere of radius R at low energies (kR < 1) to be
a=4xR". For the cross-section of Fig. 8.2, show that the order of
magnitude of the cross-section between resonances is given by this for-
mula with & the radius of the uranium nucleus, and at a resonance the
order of magnitude is given by {J.,-’E:r}z, where A is the neutron wave-
length (& = 2x/k), as is implied by the Breit-Wigner formula {8.2).
MNeutron detectors register individual neutrons by their production of
charped, ionising particles in a nuclear reaction. One method, appropri-
ate to thermal neutrons (£ < 0.1 eV) uses the reaction

n 4 3He — p 4+ 1H + 0.73 MeV.

The cross-section for this reaction, which dominates at low energies,
follows the (1/¢) law,

a = 0,03%¢ /v) b,

The mean distance a neutron travels through *He gas before it interacts
is { = 1/{puer), where ppe is the number density of helivm atoms
(Appendix A). What detector thickness is needed, using "He gas at a
pressure of 10 bars (which pives gy, = 2.4 = 10 m '3} in order that at
least 90% of incident peutrons with energy 0.1 2V produce ionisation?
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The nuclens iLi is apparent as a resonance in the elastic scattering of
protons from ;He at a proton energy == 2 MeV. The resonance has a
width of 0.5 MeV and spin 2

What is the lifetime of 3Li?

Estimate the cross-section at the resonance ensrgy.

Figure 9.1(#) shows the measured total cross-section for neutrons inci-
dent on *U. What conclusion can you draw from the apparent absence
of (1/v) behaviour at low neutron energies?

The zero-temperature radiative capture cross-section illustrated in Fig.
8.3 is the intrinsic cross-section to which the Breit-Wigner formula is
immediately applicable. The excited state has spin . and there are two
significant decay channels; the dominant one is y-emission and the other
is neutron emission. Estimate the relative probability of neutron radia-
tive capture at resonance, and estimate the elastic neutron scattering
cross-section at resonance. (Hint: use eguation (I2.11).)

9

Power from nuclear fission

We saw in Chapter 4 that nuclei in the neighbourhood of ®Fe have the
greatest binding energy per nucleon (Fig. 4.7). In prinaple therefore,
nuclear potential energy can be released into Kinetic energy and made
available as heat by forming nuclei closer in mass to iron, either from
heavy nuclei by fission or from light nuclei by fusion. This chapter is
devoted to the physics of nuclear fission and its application in power
reactors. There were, world-wide, some 430 nuclear power stations oper-
ating in 1997, and these generated about 17% of the global dectricity
supply. In the UK about 28% of all electricity generated came from
nuclear fission.

9.1 Induced fission

The spontancous fission of nuclei such as 75U was discussed in §6.3; the
Coulomb barriers inhibiting spontancous fission are in the range 5—
6 MeV for nuclel with 4 == 240. If a neutron of zero kinetic energy enters
anucleus to form a compound nucleus, the compound nucleus will have
an excitation energy above its ground state equal to the neutron’s binding
energy in that ground state. For example, a zero-energy neutron entering
U forms a state of U with an exdtation energy of 6.46 MeV. This
energy is above the fission barrier, and the compound nucleus quickly
undergoes fission, with fission products similar to those found in the
spontaneous fission of “*U. To induce fission in *®U, on the other
hand, requires a neutron with a kinetic energy in excess of about
1.4 MeV. The ‘binding energy of the last neutron’ in the nucleus 2*U
s only 4.78 MeV, and an excitation energy of this amount clearly lies
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below the fission threshold of ™ U. The differences in the binding energy
of the last neutron in even-4 and odd-A nuclei are incorporated in the
semi-empirical mass formula in the pairing energy term (equation (4.5))
and are clearly evident in induced fission. The odd- A nuclel

M3 M\E, 21 211
wll. U, “gPu g Pu,

are examples of ‘fissile’ nuclet, 1.e. nuclel whose fission is induced even by
a zero energy neutron, whereas the even-4 nuclei

ith, Bu, Mpe Epru,

require an energetic neutron to induce fission.

9.2 Neutron cross-sections for **U and **U

The princpal isotopes of naturally occurring uranium are 2°U (0.72%)
and ¥ U (99.27%). Figure 9.1 shows the total cross-sections oy and
fission cross-sections oy of U and *® U for incident neutrons of energy
E from 0.01 ¢V to 10 MeV. Note that both scales on the graphs are
logarithmic. It is useful to divide the energy range into three parts and
pick out the features of particular interest. At very low energies, below
0.01 eV, the (1/v) law is clearly seen in the B5U total and fission cross-
sections, and the cross-sections are large, because of an excited state of
B8 lying just below E = 0. The fission fraction oy /o, is = 84%; the
remaining 16% of oy, corresponds mostly to radiative capture (the for-
mation of “¥U with y-ray emission). In contrast, the cross-section for
81 is very much smaller and nearly constant in this region, and is due
almost entirely to elastic scattering.

The second region is that between 1 eV oand 1 keV, where resonances
are prominent in both isotopes. These resonances are very narrow and
radiative capture gives a significant fraction of the total widths. This is
particularly true of the resonances in ~'U, which are below the fission
threshold in this region; for example, y-decays account for 95% of the
width of the resonance at 6.68 eV,

In the third region, between 1 keV and 3 MeV, the resonances are not
resolved in the measured cross-sections. Compound nuclear states at
these energies are more dense and wider. Thus the probability of radiative
capture is, on average, smaller than at lower energies. The fission cross-
BBy appears above 1.4 MeV and the By

section for fission fraction

9.2 Neutron cross-sections for “51) and 238 "7
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Fig. 9.1 Total ooss-section o, and fission aross-secton oy as a function of
energy for neutrons ingdent on {2) *U, {8 ** 1. In the region of the dashed
lines the resonances are too dose together for the experimental daia to be dis-
played on the scale of the figures. Mote that both the honzontal and vertical scales
are logarithmic, {Data from Garber, 1. 1L & Kinsey, B R (1976), NVewrron Cross
Sections, vol. 11, Upton, Mew Y aork: Brookhaven Mational Laboratory.)

ap /o, remains significant. However, in both isotopes at these higher
energies the result of a neutron interaction is predominantly scattering,
either elastic scattering, or at higher energies, inelastic scattering with
neutron energy lost in exciting the nucleus. (The threshold energies for
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melastie scattering in U and **U are 14 keV and 44 keV respectively,
which are the energies of the first excited states in these nuelei.) Figure 9.1
shows that the #°U .’
T barns, at 3 MeV.

and total cross-sections become similar, around

8.3 The fission process

The measured widths of the low-energy resonances in the 33U eross-
section are ~ 0.1 eV. The compound nuclei formed at these resonances
decay predominantly by fission. Thus we can infer that fission takes place
in a time of the order of

h
r=—=10""g
T

after neutron absorption (at least at low energies). On the time scales
relevant to this chapter we can regard this as instantaneous,

As with spontaneous fission, there are generally two highly excited
fission fragments which quickly boil off neutrons. The average number v
of these prompt neutrons produced per fission in 2°U is v=2.5. The
value of v depends somewhat on the energy of the incident neutron. In
addition there are on average vy == 0.02 delayed neutrons produced per
fission, emitted following chains of 87 -decays of the neutron-rich fission
products (§6.5). The mean delay time is about 13 s

The total energy release on the induced fission of a nueleus of *U is,
on average, 205 MeV and is distributed as shown in Table 9.1,

We have divided the energy release into that which becomes available
as heat, and that which is delayed by the long time scale of the g-decay
chains of the fission products. In the nuclear power industry the latter is
to some extent a nuisance. Some of it 15 delayed for decades or more and
presents a biologieal hazard in discarded nuclear waste. That which s
emitted during the lifetime of a fuel-rod is converted into useful heat, but
also presents a problem in reactor safety since there is no way of control-
ling it or turning it off, for example in the case of a breakdown in the heat
transport system. In the steady-state operation of a nuclear reactor we
shall see that (v — 1) of the fission neutrons must be absorbed in a non-
fission process somewhere in the reactor. Their radiative capture will yield
a further 3-12 MeV of useful energy in emitted p-rays, which is not
included in the table. As for the neutrinos, their subsequent interaction
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Table 9.1. Distribution of encrgy release on the mduced fision of a
mucleus of *¥U

MeV
Kinetic energy of fission fragments 167
Kinetic energy of fission neutrons 3
Energy of prompt jp-rays i)
Sub-total of ‘immediate’ energy 178
Electrons from subsequent g-decays G
prays following fdecays 7
Sub-total of ‘delayed” energy 15
MNeutrino energy 2
205

cross-sections are so small that almost all of their 12 MeV escapes unim-
peded mto outer space.

9.4 The chain reaction

Since neutron-induced fission leads to neutron multiplication, in an
assembly of uranium atoms there is clearly the possibility of a chain
reaction, one fission leading to another or perhaps several more.

Let us first consider some of the length and time scales relevant to a
possible chain reaction in uranium metal, which we consider to be a
mixture of “° U and 2*U atoms in the ratio ¢ {1 — ). The nuclear num-
ber density pue of uranium metal is 4.8 = 10 nuelei m—.

The average neutron total cross-section for a mixture of the two
Botopes 1%

= 235 238
Ty = Oy + (1 — choyy

and the mean free path of a neutron in the mixture is

'r — ]'-'lllﬂll.ucﬁiﬁl
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(cf. Appendix A). [ is the mean distance a neutron travels between inter-
actions. For example, the average energy of a prompt neutron from fis-
sion is about 2 MeV, and at this energy we see from Fig. 9.1 that

2 o5 22 7 barns. Thus {/ ~ 3 cm. A 2 MeV neutron travels this dis-
tance in 1.5 % 1077 5.

The conceptually most simple case is that of an ‘atomic bomb’ in
which the explosive is uranium highly enriched in U, For simphaty
we take ¢ =1, corresponding to pure **U. Figure 9.1 shows that a
2 MeV neutron has an 18% chance of inducing fission in an interaction
with a 2*U nucleus. Otherwise, neglecting the small capture probability
at this energy, it will scatter from the nucleus losing some energy in the
process, so that the cross-section for a further reaction may be somewhat
increased. If the neutron is not lost from the surface of the metal, the
probable number of collisions before it induces fission is about six
(Problem 9.4). Assuming the neutron’s path is a ‘random walk’, it will
move a net distance of about /6 = 3 cm = 7 cm from its starting point, in
a mean time ¢, = 107% s, before inducing a further fission and being
replaced by, on average, 2.5 new 2 MeV neutrons.

Not all neutrons will induce fission. Some for example will escape
from the surface and some will undergo radiative capture. If the prob-
ability that a newly created neutron induces fission is g then each neutron
will on average lead to the creation of (vg — 1) additional neutrons in the
time ¢,. (We can neglect delayed neutrons in the present discussion.) If
there are r(f) neutrons present at time ¢, then at time ¢ + 8¢ there will be

n(t + &1) = n(t) + (vg — V)n(s )8/ 1)
In the limit of small 8 this gives

dn_[vq— 1)
de = 1),

P
which has the solution
nit) = (0, (9.1)

The number increases or decreases exponentially, depending on whether

vg=1 or vg=1. For U the number increases exponentially if

g = (1/v) =04
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Clearly, for a small piece of **U with linear dimensions much less
than 7 cm there will be a large chance of escape, g will be small, and the
chain reaction will damp out exponentially. However, a sufficiently large
mass of uranium brought together at ¢ = 0 will have g = 0.4, There will
be neutrons present at ¢ = 0 arising from spontaneous fission and, since
= 107 s, a devastating amount of energy will be released even in a
microsecond, before the material has time to disperse. For a bare sphere
of *¥U the critical radius at which vg = 1lisabout 8.7 cm and the critical
mass 15 52 kg, (See Problem 9.6.)

8.5 Muclear fission reactors

We now consider the fate of a 2 MeV neutron in a mass of natural
uranium (¢ = 0.0072). It is possible for a 2 MeV neutron to induce fission
in either of the two isotopes, but since ooy’ and o are nearly equal at
this energy, the neutron is much more likely to interact with ** U since
this makes up more than 9% of natural uranium. In an interaction with
B8, the probability of fission is only about 5% of that of scattering,
which is the predominant interaction in this energy range. Because the
uranivm nucleus 18 much more massive than a nedtron, the neutron
would lose only a small proportion of its energy if it were to scatter
elastically (Problem 9.5(a)). However, a 2 MeV neutron is likely to scatter
inelastically, leaving the ®*U
two such scatterings the neutron’s energy will lie below the threshold for
inducing fission in U

nucleus in an excited state, and after one or

2381 J fission threshold, the neutron has

Once its energy lies below the
to collide with a U nucleus if it is to induce fission. Its chances of doing
this are small unless and until it has ‘cooled down’ to the very low ener-
gies, below 0.1 eV, where the ®°U
of ¥ U (Fig. 9.1). In fact, before the neutron has lost so much energy it is
likely to have been captured into one of the “*U resonances, and to have
formed the nucleus = U with the emission of y-rays. In natural uramum

cross-section s much larger than that

the proportion of fission neutrons which induce further fission is far too
small ever to sustain a chain reaction.

Basically, two routes have been followed to arcumvent these difficul-
ties in producing a controlled chain reaction in uranium. The most highly
developed technology is that of thermal reactors, some of which are
fuelled by natural uranium. In a thermal reactor, uranium metal, or
more usually the cerasmic uranium dioxide, is contained in an array of
fuel elements which are in the form of thin rods. Fission neutrons, while
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still energetic, can escape from the rods into a surrounding large volume
filled with material of low mass number and low neutron-absorption
cross-section, called the moderator. In the moderator the neutrons lose
their energy principally by elastic collisions (Problem 9.5(6)) and the
volume of the moderator 1s made sufficiently large for a high proportion
of the neutrons to reach thermal energies corresponding to the ambient
temperature of the reactor (0.1 eV = 1160 K). These thermal neutrons, if
captured in the fuel rods, are predominantly captured by **U nuclei, the
large cross-section of “-U at thermal energies compensating for its low
number-density. Since the neutrons slow down to thermal energies prin-
cipally in the moderator rather than in the fuel rods, capture into the 2*U
resonances is largely avoided. The captures into * U lead to fission with a
probability of o~ fo 22 84% at thermal energies, and a chain reaction
may be sustained in the reactor in this way. The moderator used in
reactors fuelled by natural uranium is '*C in the form of graphite, or
‘heavy water’, D20,

The design criteria of thermal reactors are less stringent if the fuel is
artificially enriched with * U the reactor can be made much smaller and
it becomes possible to use ordinary water rather than D20 as a modera-
tor, despite the relatively high neutron-absorption cross-section of hydro-
gen  through the reaction n+p— H+ ¥+ 233 MeV. Typical
enrichment in commercial reactors is 2%—3%.

The alternative to the thermal reactor is the fast reactor. In a fast
reactor & moderator is not required, and no large density of thermal
neutrons s established. Fission is induced by fast neutrons — hence the
name. A fast reactor works because the fission probabilities within the
fuel are increased over those of natural uranium by increasing the pro-
portion of fissile nuclei to = 20%. The fissile fuel used is ***Pu rather than

35U, for reasons we shall discuss in §9.7.

8.6 Reactor control and delayed neutrons

In a nuclear explosion the delayed neutrons are of no consequence: they
appear after the event. In a power reactor they must be considered, since
fuel rods can remain in the reactor for three or four years. Thus in a
reactor each fission leads to [(v+ vy)g — 1] additional neutrons, where vy
i the number of delayed neutrons per fission.

In the steady operation of a reactor, with a constant rate of energy
production, the neutron density must remain constant so that the reaction
rate remains constant. Thus g must be such that the critical condition
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(v+ugdg—1=0

15 satisfied.

Reactors are controlled by manipulating g mechanically, using adjus-
table control rods inserted in the reactor. The control rods contain mate-
rials such as boron or cadmium, which have a large neutron-absorption
cross-section in the thermal energy range (Fig 8.3). Inserting or with-
drawing the control rods decreases or increases g. It s important in the
design of reactors that the critical condition cannot be met by the prompt
neutrons alone, so that

vg—1 =1

always. Although the hfetime of a prompt neutron in a thermal reactor
may be as long as 107 s, rather than 107 s which we estimated in pure
B30, this gves an uncomfortably short time scale in which to change g
mechanically and so avoid an accidental catastrophic exponential rise in
neutron density, as given by equation (9.1). However, since the reactor
can only become critical for

(v+wlg—1=0

the time scale for a response to small variations in the population of
prompt neutrons is actually determined by the time scale of the delayved
neutrons, and becomes adequate for mechanical control. Problem 9.7
exemplifies this.

A reactor is brought into operation by slowly increasing g and allow-
ing the neutron density to increase until the required power production
and operating temperature 15 reached. The heat produced, to be used in
the more traditional technology of raising steam and driving turbines, is
carried away by a coolant circulating through tubes which permeate the
core of the reactor, to a heat exchanger outside the reactor. Thus the
coolant is, necessarily, also a moderator, and its nuclear properties as
well as its thermal properties have to be considered. Gas-cooled thermal
reactors have commonly used carbon dioxide under pressure (typically 40
bar). Ordinary water can be used as coolant in reactors using enriched
uranium, such as pressurised-water reactors, in which the water is kept
under high pressure to prevent it boiling. In the case of a fast reactor, the
absence of moderator necessitates a highly compact core which demands
a coolant of high thermal conductivity and high thermal capacity; liquid
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sodium appears to be most suitable and has been used in prototype
reactors.

For thermal stability, it i very important that g, the proportion of
neutrons inducing fission, satisfies the inequality

E <=

dr 7

s0 that an increase in temperature T leads to a fall in g, and hence a fall in
the reaction rate and vice-versa. There are many factors affecting dg/dT,
arising from the thermal expansion of the various components of the
reactor, changes in the velocity distribution of the thermal neutrons
with temperature, and the effect of Doppler broadening of resonances.
In thermal reactors, Doppler broadening leads to an increase in the neu-
tron absorption in “U resonances in the fuel rods and gves a significant
negative contribution to dg/dT. Since the resomant cross-sections are
large, neutrons which impinge upon fuel rods and whose energies lie
near to resonances are absorbed close to the surface of the rod. The
broadening of the resonance increases the energy band absorbed and
hence inereases the neutron absorption rate

Parts of the No. 4 RBMEK reactor at Chernobyl had dg/d T = O under
low power operation. This ‘design flaw’ contributed to the catastrophic
accident in 1986, (All other RBMEK type reactors have subsequently been
corrected. )

In a fast reactor the effects of Doppler broadening are more compli-
cated since the fission rate in = Pu resonances is also increased by broad-
ening. It is important for the safety of fast reactors that the net effect on
dg/dT should be negative.

8.7 Preoduction and use of plutonium

So far we have considered only U as a nuclear fuel and regarded **U

with its high radiative-capture cross-section as something of a drawback.
However, the nucleus *“U formed in radiative capture is odd and §-
decays to the fissile nucleus **Pu:
WU T 7 WNp+e + D
{3 min)
L(3.36 days)

BPu+e +0.
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The nuclear properties of 9Py are very simmilar to 50 and, in particular,
it 15 suitable as a fuel in a nuclear reactor. In a thermal reactor, some of
the “*Pu produced will be burnt up in the lifetime of the fuel rods, and
the remainder may be extracted chemically from the spent fuel later.

Because of the relatively short mean life of plutonium isotopes (5'Pu
has a mean life for a-decay of 3.5 x 10* years) virtually all plutonium on
Earth 15 man-made. Large quantities have been produced as a by-product
of the nuclear power industry (and wilfully for the nuclear weapons pro-
ErAmImE).

The value of v for 2"Pu is 2.96 for fast neutrons, compared with 2.5
for U, so that it is a very suitable fuel for fast reactors. Such reactors

32U than is consumed,

cin be designed to breed more fissile *™ Pu from
using ‘spare’ neutrons. In a fast reactor the central core is, typically,
loaded with 20% of 2*Pu and 80% of P*U (‘depleted’ uranium recovered
from the operation of thermal reactors.) The core is enveloped in a
‘blanket’ of **U, and in this blanket more plutonium is made. A fast-
breeder reactor programme can, in principle, be designed to utilise all the
energy content of natural uranium, rather than the 1% orso exploited in
thermal reactors.

Such schemes for burning plutonium in fast reactors have for the
most part been abandoned (§9.9), but “¥py can be burnt in thermal
reactors in the form of ‘MOX’, a fuel of suitably mixed uranium and
plutonium oxides. Existing power plants designed for enriched uranium
fuel rods may need modification before they can burn MOX: ¥ Pu differs
from **U in having a lower fraction of delayed neutrons and a higher
neutron absorption cross-section, so that the use of MOX places more
stringent requirements on the control rods of the reactor.

0.8 Radicactive waste

The operation of a nucear power programme generates radioactive
waste. After uranium and plutonium have been separated chemically
from the spent fuel, the remaining material, the ‘waste’, consists mainly
of fission products along with some higher actinides which have been
built up from uranium by successive neutron captures. The immediate
products of fission are neutron rich, and hence g-emitters. The daughter
nucleus from the f-decay is often formed in an excited state, which then
decays to its ground state by y-emission. f-decay will then take place
again until the f-stability valley is reached.
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A complete description of the decay chains is well documented but
complex. Overall, for each fission it is found that on average the rate of
release of ionising energy from the decay products at time ¢ is given, to
within a factor of 2, for times between 15 and 100 years by the formula

dE 1sy!2
— =266 —] Mevs. 2
= __.456( :) MeV s 9.2)

Ower this period the energy release is divided roughly equally between
electrons and p-rays. Energy lost to neutrinos is not included. Problem
9.8 indicates how such a simple empirical formula can be used to estimate
properties such as heat output and radioactivity of the waste.

The highly radicactive waste which remains after chemical processing
s kept in acid solution. The generally preferred option for the long-term
storage of this ‘high level’ waste 15 vitrification, followed by deep burial.
Borosilicate glass, which readily dissolves large quantities of fission pro-
ducts and actinides, has been used successfully for vitrification. Sites for
deep burial must have stable and suitable geological characteristies for at
least 10000 years. In the UK, no site for deep burial has yet been found
acceptable to all the parties concerned, and liquid high level waste con-
tinues to be stored above ground in stainless steel tanks,

8.9 The future of nuclear power

The nuclear power scenario sketched out in §9.7 has not actually evolved.
Early economic forecasts of the cost of nuclear power were over-optimis-
tic, and did not take properly into account the cost of decommissioning
power stations at the end of their working life, or the capital cost of
meeting increasingly stringent safety requirements. The nuclear explosion
at the Chernobyl power station in 1986 and its aftermath did nothing to
assuage an already existing pubhic unease about nuclear power.

With fast reactors, there have been difficult engineering problems,
associated mostly with the hazardous use of liquid sodium as coolant.
All of the prototype fast reactors in the West have now been decommis-
sioned. In fact, enough high-grade uranium ores have been discovered to
eliminate the need for expensive fast reactors for several decades. It is also
questionable if there is any need for spent fuel to be reprocessed, rather
than simply stored. However, fossil fuels and uranium ores will eventually
run out, and in a century or so fast reactors may be needed.
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Except for France, in the West public hostility to nuclear power and
doubts about its economic viability have made the construction of new
nuclear power stations unlikely in the near future. Investment in nuclear
power continues in France and Japan, both countries having low reserves
of fossil fuels. China has ambitious plans for reactor building (despite
having an abundance of coal).

It is a great merit of nuclear power peneration that it does not con-
tribute to ‘greenhouse gases’. (See Problem 9.2.) This feature may well
become of compelling importance if global warming continues, and no
significant progress is made in the use of non-fossil energy resources such
as hydroelectricity, wind power, and solar power, or in reducing the
energy demand in highly developed countries.

Problems

9.1 The combustion of methane

CH, + 20, — CO, + 2H,0,

releases an energy of about 9 eV (methane molecule). Estimate the rela-
tive energy release per unit tass for nuclear (fission) as apainst chemical
fusls.

9.2 Show that a nuclear power plant producing 1000 MW of heat consumes
about 1 kg of ?*U (or other fissionable fuel) per day. Show that a power
station burning natural pas and producing 1000 MW of heat will dis-
charge about 400 tonnes of the greenhouse pas carbon dioxide into the
atmosphere every day.

9.3 Show that the semi-empirical mass formula predicts that for a heavy
nucleus the neutron separation energy (or ‘binding energy of the last
neutron’) is approximately 2= (11.2/47) MeV preater for an even Z
even N nucleus such as U than it is for a nearby even Z odd N nucleus
such as U

9.4 Suppose that a neutron induces fission in a nucleus with probability p,
and that otherwise the collision is elastic. Show that the mean number of
collisions it undergoes is 1/p.

9.5(a) A neutron with kinetic energy T, (non-relativistic) collides elastically
with a stationary nucleus of mass M. In the centre-of-mass svstem the
scattering is isotropic. Show that on average the neutron energy after the
collision is

M2 mi

1=——=1qg
(M A ity )
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9.6

9.7

]
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Consider the nuclei of a graphite moderator to be pure “C, with a
number density of 0.9 = 10® nuclei/m’. For neutron energies less than
2 MeV the scattering is elastic, with a cross-section approximately con-
stant ~ 4.5 b,

Estimate {g) the number of collisions required to reduce the energy of
a 2 MeV fission neutron to a thermal energy of 0.1 eV, and (#) the time
it takes.

If the neutron density or, ¢ in a material is slowly varving over dis-
tances long compared with the neutron mean free path [, or, f approxi-
mately satisfies the ‘diffusion equation with multiplication’,

_(v-1)

ey 0+ Dv? il

P

The coefficient of diffusion is given in simple transport theory by
D =ly/3, where v is the neutron velocity (assumed constant). At a
free surface, the effective boundary condition, again obtained from
transport theory, is

a
ﬂ.?lf% At

where 3/8n denotes differentiation along the outward normal to the
surface.

Using the data given in $9.4, estimate the critical radius of a bare
sphere of 2*U. Look for spherically symmetric solutions of the equation
of the form pir, 1) = f{r)e", and replace the boundary condition at the
surface r = R by the approximation o R +0.71L 0= 0.

In a simplified model, the number of neutrons #ir)in a reactor at time ris
given by

d_n_? {1g - I}H.F,ﬂ nii')e -{f=i")1y dr
- {!1 —aa Tﬁ '

dr fo

where i, is the mean life of the prompt neutrons and tg is the mean life of
those fission fragments which produce delayed neutrons.

Show how this equation mav be derived, assuming that only one type of
fission fragment produces delaved neutrons.

Show that solutions are of the form

n(ry = nget,

and pive the squation for A
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Show that if , = 10 *35, vg—1 =10"* and there are no delayed neu-
trons (vg = 0), then n(r) increases exponentially with a time scale of 1 5.
Show that if 75 = 105, (v+ wlg—1= 107 and vy — 1 = —0.0078 {cor-
responding to v= 2.5, vy =0.02), n{¢) increases exponentially with a
time scale of about 13 minutes,

Show that the mean thermal power from a fuel rod of a reactor that has
been shut down for time #> 1 8), after burning with steady power out-
put P for a time T, is approximately

TR 1g 02
iner_fﬂ.ﬂ?ﬁ[(T) . (T : .r) :

Before its catastrophic shut-down, the No. 4 Chernobyl reactor had been
producing about 3 GW of heat. Taking the mean age of its fuel rods o
be T'= 1 vear, estimate the power outputs from the core at one week,
one month, and one vear after the accident. 97% of the radioactive
material remained in the core.

The critical mass of a bare sphere of puat atmospheric pressure is M,
say. By what factor must a bare sphere of mass 0.8M be compressed, for
it to become critical? (Assume that the critical radivs of a sphere of
plutonium is proportional to the mean free path of a fission peutron.)




Nuclear fusion

In this chapter we describe the nuclear reactions that power the Sun and
thus make possible life on Earth. In contrast to the power from fission
discussed in the preceding chapter, the radiance of the Sun comes from
the fusion of the ightest element, hydrogen, into helivm. We then exam-
ine the possibility of controlled nudear fusion for power production on
Eurth.

10.1 The Sun

In stars, the gravitational, the weak, the electromagnetic, and the strong
interactions all play an active and essential role. Our Sun and its planets
are thought to have condensed out of a diffuse mass of material, mostly
hydrogen and helium atoms, some 5 = 10 years ago. Table 10.1 gives the
estimated proportions of the ten most abundant nuclei in that mass of
material.

The major attributes of the Sun, determined from a wide variety of
observations, are as follows:

Mass My =199 x 10 kg

Radius Ry =696 % 10 m

Luminosity — L; =3.86 % 10% W.
(The luminosity of a star is the total rate of emission of electromagnetic
energy. )

Because of the long range and universally attractive nature of gravity,

a homogeneous mass of gas at sufficiently low temperature is unstable to
contraction into objects like stars. During contraction of a mass of gas,

{3
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Table 10.1. The proportion by menber, relative to carbon, of the ten niost
abundant atoms i the Solar System at itz hirth

H He C N 18] Me Mg Si 5 Fe

2400 162 1.0 0.21 166 023 010 009 003 .08

Data from Cameron, A. G. W, (1992}, in Esays in Nuclear Aserophysics, ed. C. AL
Barnes, D. D. Clayton & D. N. Schramm. Cambridge University Press, p. 23.

gravitational potential energy is converted into Kinetic energy and radia-
tion energy, and the temperature of the gas rises. The rate of collapse is
determined by the extent to which the build-up of pressure in the hot,
dense interior can balance the incessant pressure of gravitational contrac-
tion. In a star like the Sun, as the temperature and density increased, its
rate of contraction was essentially stopped when the interior became hot
enough to ignite the hydrogen-burning reaction that we shall discuss in
detail presently. At this stage in the Sun’s evolution, the generated nuclear
power keeps the interior hot enough to sustain the pressure that balances
gravity, and a quasi-static condition is established, a condition that exists
today. This condition is not one of thermod ynamic equilibrium, since the
mterior is hotter than the outside and the nuclear energy liberated at the
centre is transferred, radiatively and by conduction and convection, to the
surface, where it is radiated out into space, to our benefit, and gives the
Sun its luminosity.

The principal reactions that power the Sun begin with the conversion
of hydrogen into deuterium:

p+p— H+ e +v,+ 042 MeV, (10.1)

This reaction involves the weak interaction (a proton changes to a neu-
tron), and so occurs very rarely. It is the weak interaction that sets the
long time scale of the quasi-static state of the Sun.

The positron produced in the reaction quickly annihilates with an
electron to release a further 1.02 MeV of energy. The deuterium is con-
verted to "He:

p+1H — IHe 4+ p + 549 MeV, (10.2)

which in turn fuses to *He:
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iHe+ JHe — fHe 4+ p+p + 12,86 MeV. (10.3)

Thus the net result of these reactions, which are called the ‘PP1 chain’, is
the conversion of hydrogen to helium with an energy release of
26,73 MeV per helium nucleus formed. The neutrinos emitted in the
pp reactions take an average 0.26 MeV of energy cach, This energy is
lostinto outer space, but is not included in the observed luminosity. Thus
each hydrogen atom consumed in this process leads to the emission of
6.55 MeV of electromagnetic energy from the Sun.

The observed solar luminosity implies that L, /(655 MeV) =137 x
10* hydrogen atoms are converted into helium per second. This rate of
conversion, over the lifetime of the Sun, gives a total of 54 = 10™ con-
versions. The Sun’s mass and composition show that it started with about
8.9 % 10°® hydrogen atoms. We can condude that less than 10% of the
hydrogen of the Sun has so far been consumed, and appreciate the long
time scale of this stage of stellar evolution.

Figure 10.1 shows the density, temperature and thermonuclear-power
density from a model calculation of the Sun asitis now. It it interesting to
note that 50% of the mass is within a distance of R /4 from the centre,
and 95% of the luminosity is produced in the central region within a
distance of Rg/5, where the temperature is such that kyT = | keV. (ky
15 Boltzmann’s constant and AgT = 1 keV when T =116 = 0 E.)

A simple order-of-magnitude calculation shows that the gravitational
energy released in contraction, before the quasi-static period began, is
sufficient to produce such temperatures:

2
GM3

gravitational energy ~ =38 = 101,

where the gravitational constant &= 6.67 = 107" m? kg™ s, This
energy would give ~ 1 keV of kinetic energy on average to every particle,
nucle and electrons. At these temperatures the hydrogen and helium
atoms will be completely ionised; material in this condition s known as
Plasma.

10.2 Cross-sections for hydrogen burming

We turn now to a more-detailed exsmination of the nuclear physics
involved in hydrogen burning. Reactions involving charged particles
were discussed in §8.3, where the role of the Coulomb barrier was empha-
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Fig. 10.1  {z) Mass densities and (&) the thermonuclear power density = and the
temperature T, in the modern Sun as a function of distance r from the centre.
{Taken From model calculatons by Baheall, 1. M. er 2l {(1982), Rev. Maod Phys.
54, THT.)

sised. For energies in the range of keV we shall use the low-energy expres-
sion for charged-particle reactions given by equation (8.7):

a(E) :]ES{{J}u‘v’“‘?M (10.4)

where
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; 2
P TE L™
i he(dmeg) | 7

A more accurate expression may be necessary 1f there is a resonance in the
keV energy range.

Direct measurements of the cross-sections of reactions (10.2) and
(10.3) at energies of 1 keV have not been made since they are so small,

but values of S(0) are known by extrapolation from measurements at
higher energies. The p—d reaction (10.2) has been measured down to
15 keV and S4(0)=2.5x% 107" MeV b, The helium—helium reaction
(10.3) has been measured down to 33 keV, giving S,,(0) &= 4.7 MeV b,
The p—d cross-section is small because it necessarily involves a p-transi-
tion to satisly both energy and momentum conservation. The p—p reac-
tion (10,1}, the first stage of hydrogen burning, has a cross-section which
is lower by many orders of magnitude beecause it involves the weak inter-
action. Although the reaction is crucial, the cross-section is so small that
it has not been directly measured in a laboratory at any energy.
Fortunately we have such a precise theory of the weak interaction that
the cross-section, and S,,(0), can be calculated with some confidence; it is
found that

Sp(0) 2 3.88 x 107 MeV b. (10.5)

This order of magnitude is not too difficult to understand. As is explained
in Chapter 3, the proton—proton nuclear potential has been determined
from scattering experiments. From the potential, the low-energy proton-
proton nuclear-scattering cross-section can be caleulated. Although there
is no resonance, the nuclear attraction makes the cross-section quite large,
36 barns, at energies = 1 MeV which are low but are above the Coulomb
barrier. Reaction (10.1) involves the protons coming together within the
range of the nuclear force (Fig. 3.2) and, while they are together, a f-
decay taking place. We can estimate the probability of this f-decay by

i a typical nuclear time
probability = 2L i

a f-decay time

Consider the cross-section at 1 MeV. Since the energy released in the
reaction is comparable with the energy released in the S-decay of a free
neutron, it s reasonable to take the A-decay time to be the neutron life-
time, 887 s, and the nuclear time is ~ 107 s (§5.2). The cross-section for
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the proton—proton to deuteron reaction at 1 MeV should thus be of the
order

23

HETs

1072
o ~ (36 b}x( “):m 1075 b,

Since the energy of 1 MeV is above the Coulomb barrier, we can infer
that S,, ~4 x 107 MeV b, This excellent agreement with equation
(10.5) is fortuitous, but the argument does make intelligible the order

of magnitude of this key quantity.

10.3 Muclear reaction rates in a plasma

During the early cold stages of stellar contraction, nuclel do not have
kinetic energes high enough, compared with the Coulomb barriers
between them, for the barrier penetration probability to be significant.
To obtain the reaction rate for a process in the interior of a star and see
how it depends on temperature, we must average suitably over the ener-
mes of the partides involved. The caleulation s an important one so we
shall set it out here.

Consider the nuclel in a volume of plasma small enough for the
temperature and number densities to be considered uniform. We shall
assume that the veloaties of the nucle are given by the Maxwell-
Boltzmann distribution, so that the probability of two nuclei having a
relative velocity v in the range, v, v 4+ duv is given by

INEL gy NE
Aida = [ — MY e 2k T '2 >
P()d (E) (kBT) [~ 1= du,

where m is the reduced mass of the pair. (The centre-of-mass motion has
been factored out.)

If the nuclei are labelled by a, b, with number densities p,, o, the
number of reactions per unit time per unit volume is

reaction rate per unit volume = KpppTogs), (10.6)

where o4 1% the cross-section for the reaction, and the bar denotes the
average over the veloaty distribution. Equation (10.6) follows from the
discussion of reaction rates in Appendix A. The factor K = 1 if the nuclei
are different and K =3 if the nuclei are the same.
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We have

m:rqnﬂj’{ﬂ.@d:!_
il

Changing variables to E=nn/2, and using the low-energy formula
(10.4) for the cross-section, this becomes

| i
8AT 1T
—— ; —HE G |
o (m) (kﬁr) (0 _,‘ﬂ e HEE, (10.7)

where ¢(E) = E/kaT + /(Ec/E).

The function ¢ ** is sharply peaked. It falls off rapidly at high
energies because of the Boltzmann factor, and at low energies because
of the barrier-penetration factor. The peak lies at £ = E, where ¢p(E) is a
minimum, i.e. where d¢/dE = 0, which gives

Ey = {E{;}%{ku T/2)h

Figure 102 is a graph of ¢ *¥

centre of the Sun,

appropriate to the p—p reaction at the

=
T

10% % exp(—#(E))

05+

Eg = 6.07 keV

4 B 12 16
E (keV)

Fip. 10.2 The function exp{ —¢£)) appearing in equation {10.7), plotted for the
proton-proton reaction at kT =134 ke,
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As it stands, the integral cannot be performed analytically, but the
main contribution comes from the peak. It is possible to replace ¢(E) in
the neighbourhood of Ey by a simpler expression, leading to an analytic
result for the integral (which is also a good approximation). The Taylor
expansion of ¢(E) about F; gives

PE) = $(Eq) +HE — EgF " (Ey).

where

P Eq) = 3{%}%{5{:.""‘:&?}%-
@"(Eq). = 3FES (kg T)

The linear term does not appear, since ¢'(Ey) = 0. With this approxima-
tion, the integrand is replaced by a Gaussian peak and the integration
range can be extended down to £ = —oo with negligible error. We have
then, remembering the result fﬂu t_‘“zdx = (mw/af, the fairly simple
CXPression

1
i ) I
- [

with

| 3
2 k] ™I
me RE e
v = 3N E kg I =3 (Eka T) ( ﬁc{miﬂ}) ; (10.8)

For practical calculations, taking the masses of nucled to be A x {one
atomic mass unit) gmves

UGgy =

T.21 %= 1{]_22 '[-"I.'.r"' A’J}( h _._,E.I:{]} )TZL'_I 1'.[!3 ‘_’_]
La L Agdy 1 MeV b o

and

1
72724 AN keV\T
r=188[Zablal ( “")_
."iu."l'.‘ij, .I:'.'H;T
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Note that the temperature dependence of T lies entirely in the factor
e
The temperature dependence is dramatic, as also is the dependence on
the nuclear species involved. Both are illustrated in Fig. 10.3, which
shows plots of re™"
physical interest. Note that the vertical scale extends over a range of 10%!
For a given set of nuclear reactions, we can write down equations

against temperature for several reactions of astro-

gving the rate of change of the number densities p of the nuclei partici-
pating, in a region of given temperature. For example, considering the
PPI reactions and writing A = Vo, we have, from reactions (10.1) and
(10.2) and equation (10.6),

dog 3
= = Pepfs — Apdfpha-

Because of the long time scale of hydrogen burn-up, p, may be regarded
as constant in this equation, giving the solution

2d) = (Bip/hpdoy(1+ Ce'mi),

Iu.—l-l)

Iu—!l]

=

T expi—7)

g~

150

[V -
| 10 1P 10°
kT (keV)

Fig. 10.3 The fimction £ exp{—1) appearing in equation {10.%), for some nudear
reactions.
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where O 15 a constant.

Using the numerical values for 5,(0) given in §10.2, and a tempera-
ture and density appropriate to the centre of the Sun, from Fig. 10.1, we
find that the time constant for establishing equilibrium is {J.r,&p],}_]
= 3.3s Thus our assumption that p, could be treated as a constant
was valid. In equilibrium, the ratio pdy'ppz%.l],j,;'lpd =1.5% 1075, The
low density of deuterium accounts for our neglect of d—d reactions (which
are considered in §10.6).

10.4 Other solar reactions

Our account above of hydrogen burning in the Sun is not complete. There
are other ways of consuming the 'He formed i reaction (10.2). The
presence of *He in a star leads to the formation of "Be:

IHe+ fHe — [Be + p+ 1.9 MeV. (10.9)

"Be is unstable to the capture of a free electron from the plasma to form

4 £

iBe+ e — ILi+u, +0.86 MeV, (10.10a)
or, with 10.3% probability, to form an excited state Li*:

iBe+ e — 3Li* + v, +0.38 MeV, (10.10h)
which then decays:

JLi* = ILi+ p+ 0.48 MeV.
iLi is quickly broken up by a proton into twe helium nuclei:

1Li+p — $He+ 3He +17.35 MeV. (10.11)

These reactions form the ‘PP chain’.
Alternatively, the ;Be may interact with a proton to form iB:

IBet+p—IB+y+014Mev. (10.12)

B is unstable to f-decay,
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B iBe' +em 4+ u + 1402 MeV, (10.13)
and ﬁBc' breaks up into two helium nuclei:
iBe' — He + He + 3.03 MeV; (10.14)

this is the ‘PPIII chain’. The positron annihilates with an electron to
release a further 1.02 MeV.

The relative importance of the PPIL and PPI chaing, compared with
the PPI chain, can be calculated from the appropriate set of rate equa-
tions; in the standard model of the Sun, the PPI chain is the main process,

Another interesting set of reactions resulting in the burning of hydro-
gen to helium is the *CNO’ cycle. The presence of any of the nuckei '3C,
T;C, N or 13]‘“»1 catalyses the burning by the set of reactions

2C4p— UN+y, UNoBCiet 4o,
Hc_'_p_} HN""V

14 15 15 15 (10,15
N+p—="0+y. "O0—="N+e +1,

By4+ P— 26 +%He.

The weak interactions in the cycle are not compelled to occur in a fleeting
107 5, as in the pp reaction, but can proceed at thar leisure in the usoal
P-decay times. Carbon and nitrogen nuclei are known to be present in the
Sun (Table 10.1), but at the temperatures of the Sun the reaction rates are
greatly suppressed by the Coulomb barrier (Fig. 10.3), and the CNO cycle
probably accounts for only about 3% of stellar hydrogen burning. In
hotter stars the CNO eyele may dominate over the PP chains, since the
CNO cycle reaction rates increase more rapidly with temperature (Fig.
10.3 again).

10.5 Solar neutrinos

The solar reactions described in §10.1 and §10.4 lead to a considerable flux
of neutrinos through the Earth. The flux spectra predicted by the stan-
dard solar model are shown in Fig. 10.4. The band spectra result when the
neutring 15 produced with an accompanying positron. For example, pp
refers to the process described by equation (10.1). Line spectra result
when there 15 no accompanying positron to share the energy release.
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Fig. 14 The solar neotring spectra predicted by the standard solar model.
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The line spectra marked "Be come from the processes (10010a) and
{10.10b}). The pep line is from the three-body reaction

p+e +p— TH+v.+ 1.44 MeV, (10.16)

This is a very rare alternative to the process (10.1). Almost all of the
1.44 MeV released is taken by the neutrino and so does not serve to
heat the plasma. The hep spectrum comes from another very rare reac-
tion, converting 1He into He:

p+3H1: —}jHl: +et 4 + 1877 MeV. (1017

This is an alternative to the main mechanism given by equation (10.3).

The cross-sections for neutrine interactions are so small that solar
neutrinos arrive at the Earth more or less directly from the thermonuclear
furnace at the Sun’s core. Measurements of the solar neutrino spectrum
provide a valuable check on our understanding of the Sun, and in fact the
measurements have also provided valuable information on the nature of
neutrinos themselves.
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Two basic techniques have been employed, that cover different
regions of the spectrum. The lowest energies are probed through the
neutrino reaction

v+ 3 Ga+0.23 MeV — 1Ge 4™ (10.18)

As can be seen from Fig. 10.4, over 99% of all the solar neutrinos in the
energy range from the threshold energy for the reaction, .23 MeV, upto
a maximum energy of 0.42 MeV, come from the basic pp reaction (10.1).
Only the gallium experiments cover this low-energy region.

Although low-energy solar neutrinos are copious, their interaction
cross-section s particularly small (see §13.1). At the GALLEX experi-
mentin Ltaly, 30 tons of gallium in a GaCl-HCI solution serves as target.
The germanium produced binds chemically to form the volatile molecule
GeCly, which is collected in the vapour above the liquid. The production
rate of germanium (a few molecules per day) is determined by observing
the characteristic Auger clectrons and X-rays emitted in the K-capture
decays of "'Ge:

HG\L +e — -_%}G.'i + U

At the Homestake Mine experiment in the USA, the neutrino flux is
measured through the reaction

Vet DCIL4 081 MeV — ¢ + A= (10.19)

The detector in this experiment consists of 615 tons of liquid perchlor-
oethylene, CaCly. (The natural abundance of Yl is 24%.) The argon
produced in the experiment is extracted, and measured by monitoring
its decay by K-capture, in a similar way to the gallium experiment. The
threshold energy of 0.81 MeV makes the 7Cl detector blind to the neu-
trinos from the pp reaction. The detector is particularly sensitive to high-
energy neutrinos from the "B decay of equation (10.13).

An entirely different technigue is used at the SuperKamiokande
detector in Japan. This looks for elastic scattering of solar neutrinos
from electrons in the target:

¢

Ve =l e
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The target is ~ 20 kilotonnes of very pure water, HoO. In many materials,
the atomic nuclei have large cross-sections for electron production
through reactions like (10.18) or (10.19). However, in the case of H.0O
there % no such reaction for a proton, and the threshold energy for
electron production from 'S0 (the principal 99.7% stable isotope of oxy-
gen) is 149 MeV — too high for all but a few solar neatrinos. Elastic
scattering from the electrons is thus the dominant reaction of solar neu-
trinos 1n water.

The water acts not only as target but also as detector. The scattered
electrons emit Cerenkov light, which s registered by photomultipliers. To
reduce background, counting s restricted to electrons with a recoil energy
greater than about 7 MeV. Hence the detector is sensitive only to *B and
hep neutrinos,

The Cerenkov radiation gives information on the scattered electron’s
direetion, which is close to that of the incident neutrine. This directional
capacity makes water detectors more discriminating instruments than
gallium or chlorine detectors. Water detectors can also time individual
events, We shall see significant applications of timing in §11.4.

For all neutrinos, event rates are necessarily very low, of the order of
one per day, and much patience is required to build up a significant data
set. However, after several years accumulating data, all detectors tell a
consistent and significant story: over the whole spectrum the event rate is
about one-half the expected rate. It is not thought that this discrepancy is
the result of our misunderstanding of the Sun, but that it is due to the
nature of neutrinos themselves. We reserve until Chapter 13 the explana-
tons and implications of these observations.

10.6 Fusion reactors

For the generation of nuclear fusion power on Earth the immeasurably
slow p—p reaction is useless, However, Coulomb barriers for the deuteron,
TH. are the same as for the proton, and the exothermic reactions

1H +7H — IHe+ n+ 327 MeV,

Sng . {10.20)
TH+7H — TH 4+ p+ 403 MeV,

suggest deuterium to be a suitable fuel for a fusion power station. The
natural abundance of deuterium is large, 0.015% of all hydrogen, and
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supplies of deuterium, in sea water for example, are effectively unlimited.
The mass ratio of 2:1 makes isotope separation relatively easy.

Current research is more concerned with deuterium—tritium mixtures
as fuel, using the reaction

TH +1H — 3He +n + 17.62 MeV. (10.21)

This has two advantages over the reactions (10.20). First, the heat of
reaction is greater. Second, and more important, the cross-section is con-
siderably larger (Fig. 10.5), because of an excited state of 3He which gives
a resonance in the cross-section. The principal disadvantage is that tri-
tium, ?H must be manufactured; it has no natural abundance since it
undergoes S-decay with a mean life of 17.7 yvears. As Fig 10.5 shows, the
peak of 77 is at kg T = 60 keV, and a temperature of 20 keV is regarded
as a practical working temperature by fusion researchers.

A plasma at a temperature of 20 keV will vaporise any material con-
tainer with which it comes into contact; current projects generally involve
pulsed devices which contain and heat the plasma for short bursts of time
only. For example, the moving electrically charged particles of the plasma
may be confined for short times, and even compressed, by magnetic fields,
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Fig. 10.5 Values of (37) (=0 equation { H.7) for the combined dewtenum-den-
ternium reactions ( 10200 and the deuterium—tritium reacton (10.21). (Data from
Keefe, I, (1982), Ann. Rev. Nucl. Pare. Sci 32, 391))
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and heated by electromagnetic fields. Instruments such as the Joint
European Torus (JET) at Culbam are investigating these possibilities.

Inertial confinement, by the implosion of small pellets containing the
deuterium—tritinm fuel mixture, with the energy for mplosion provided
by pulsed laser beams, is another active area of research. A continuing
series of ‘mini-explosions” of such pellets, each containing a few milli-
grams of fuel, is envisaged. The scenario for such a reactor usually
mcludes lithium in the heat-exchange blanket, since this provides a way
of breeding tritium through the reactions

"Li+n+246MeV - ‘H+a+n,
“Li+n— 'H+a+48 MeV.

(The natural abundances of ®Li and "Li are 74% and 92.6% respec-
tively.) The endothermic first reaction can be brought about by the fast
neutrons produced in the dewterium—tritium reaction, and it is clear that
in principle a breeding ratio of greater than one is possible.

To achieve a temperature T in a deuterium—tritivm plasma there must
be an energy input to the plasma of 4p4( 3y T/2) per unit volume, where
pg 15 the number density of deuterium ions and of triium ions (ie.
oy = g, and the electron density is 2py, gmving 4py particles per unit
volume). The reaction rate in the plasma is piav. If the plasma is confined
for a time ¢. then, per unit volume of plasma,

fusion energy output pﬁﬁ!,:{]?_ﬁ MeV)

energy intput B Bpghg T (10.22)
~ (107" m® s Y pute,

evaluating the right-hand side at kgT = 20 keV with the help of Fig 10.5.

The plasma heating is certainly inefficient, so that a substantial frac-
ton of useful energy is lost in this process, and the conversion of fusion
energy to electricity is also (necessarily) inefficient. Hence a requirement
for a useful device is that (fusion energy output)(energy input) = 1, say.
From equation (10.22), this is equivalent to the criterion
Pl = 10™ m~* s. This is known as the Lawson criterion. More stringent
formulations can be constructed for particular devices.

It should be appreciated that the engineering problems assoaated
with either magnetic or inertial confinement as a basis for a working
power station are immense and have not so far been solved in practice.
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The Lawson eriterion provides an estimate of how close a particular
design is to achieving practical results.

10.7 Mucn-catalysed fusion

To end this chapter, we shall describe muon-catalysed fusion. This process
is experimentally well established, and quite well understood theoreti-
cally. The most interesting case, with power production in mind, 15 that
of muons incident on a dense mixture of deuterium D, and totium Ta
moelecules.

Muons result from the predominant mode of decay of negative pions
{sec Fig 3.5)

T — +ﬂp.

The mean life of a charged pion is 2.60 x 107" 5. The muon also decays
through the weak interaction (see §2.5):

jp— v, et

but it has a much longer mean life of 2.2 x 107%s. Thus a beam of
negative pions s rapidly converted into a beam made up almost entirely
of muons. Pions are produced in nuclear reactions when particles accel-
erated to high energy interact with target nuclei. The energy cost of
producing muons by this route is estimated to be ~ 5 GeV per muon
(very much greater than the rest mass energy of the muon ~ 106 MeV).

The atomic and molecular physics of nuclei and muons is very similar
to that of nuclei and electrons, except for differences in scale. To a first
approximation, binding energies scale by the mass ratio (m,/m,) = 207,
and distances scale by (m/m,) = 1/207. The characteristic energy unit of
atomic and molecular physics, 1 Rydberg = m (e /4mey)* /2% = 13.6 ¢V,
s replaced by its muonic equivalent,

m (e fdmeg)? /2 = 2.81 keV.

The Bohr radius, g, = (4meg) A% /m,e® = 0.529 A is replaced by the muo-
nic Bohr radius,

a, = (dmsy) hz;'mﬂcz = 256 fm.
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In particular it is energetically highly favourable for muons to displace
electrons in atoms.

A muon incident on the DT> mixture will lose energy mainly by
collisions with the electrons binding the D and Ta molecules (see Chapter
14), and when it has slowed sufficiently it will break up a molecule and
take the place of an electron in either a deuterium or tritium atom.
Initially it is likely to be a highly excited state of this muonic atom, but
it will quickly cascade down to its ground state. Furthermore, muons
initially bound to deuterons in a (dp) atom will transfer to tritons in
subsequent collisions, since they are more tightly bound in the ground
state of a () atom by 48 ¢V (Problem 2.9). The details of these processes
are complicated, but they are rapid, and happen in < 107% s at liquid
hydrogen density.

The neutral (tp) atom is very small on the scale of a Ds molecule. It
can therefore move almost freely through the electronic cloud of a Dy
molecule to join with a deuteron to form a (dupt)™ ion. This ion is a
muonic analogue of the hydrogen molecular ion (Ha)". The process of
formation is very rapid compared with other possible competing pro-
cesses, occurring in ~ 5 % 107 s. The reason for this is the existence of
a loosely bound (highly excited) state of the (dut)™ ion which, by hap-
penstance, is almost in resonance with an excited vibrational state of the
composite (dut)™ ee d molecule. Thus the energy released by the forma-
tion of the (dpt)" ion can be transferred and dissipated.

The (dpty” ion will fall to its ground state, losing energy to electrons,
In this ground state the distance between the d and t nuclei is reduced by a
factor ~200, compared with the distance ~1 A between the hydrogen
nuclei of a HJ ion, and hence is ~ 500 fm. Quantum tunnélling through
the Coulomb barrier allows the deuterion and triton to interact in
~107" s (see Problem 10.6):

d 4+t — SHe+4 n+17.62 MeV,

as (1021}

The nuclear energy released is taken up by the high recoil energies of
the e-particle and neutron. The muon is usually freed, to repeat the cyele
(Fig. 10.6). However there is a small ‘sticking probability” a, that the
muon is captured by the positively charged o-particle, and may remain
bound unnl it decays. Theoretical estimates gve ay, ~ 0.8%. Though
small, this probability (rather than the mean life of the muon) is the
himiting factor in the number of fusions a muon can on average catalyse.
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Muonic atom [oration
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Fig. 10.6  The muon-catalyvsed fusion cvele: tme scales and energies. { Rutherford
Appleton Laboratory, 1515 Facility Annual Report 1997-98.)

Experimental figures of up to 200 fusions by a single muon have been
reported.

The prospects of muon-catalysed fusion becoming a useful source of
power are slight: even 200 fusions yield only 3.5 GeV of fusion energy,
which is very much less than the present energy cost of producing the
mwon.

Froblems

10.1{a)  Assuming that the entire energy output from the Sun is derived from the
PPl chain, estimate the flux of neutrinos at the Earth. {Dismnce of Earth
from Sun ~ 1.5 = 10° km.)

{#) The cross-section for a solar neutrino to interact with a nucleus is
~107* b {cf. Problem 13.3). Show that such a neutrino incident on
the Earth is very likely to pass through it unimpeded.

Probl e 149

10.3

10.4

{a}

(&)

(a)

()

(e}

10.6

(a)

(b)

Why is the hydrogen content of the Earth 3o much less than that indi-
cated in Table 10.17

In the p-decay of *B, the neutrino takes on average about half of the
energy released. Estimate the contribution to the Sun’'s luminosity per
hyvdrogen atom consumed in the PPIII chain.

From Fig. 10.1, at the centre of the Sun k57 = 1.35 keV and the mass
density of hydrogen is 5.6 = 10° kg m™.

Using equations (10.5), {10.6) and (10.8) estimate the contribution to the
power density & from the PPl chain. Compare vour result with Fig.
10.1(h).

For the '*C-p reaction of the CNO cycle, S(0) = 1.4 keV b. Estimate
the mean time it takes for a '3C nucleus at the centre of the Sun to be
converted to '*N.

A deuterium-tritium plasma contains gy deuterium and py tritiem neclei
per unit volume.

Show that to a pood approximation gy(/) varies with time as
dpgide = -pﬁﬁ, wheare o is the cross-section for the reaction

d-t=+ He+n-+ 1762 MeV.

If the plasma is brought together at time ¢ = 0 with gy = gy, and con-
fined for a time ¢, at constant temperature, show that the proportion of
the plasma ‘burnt up’ is

o palc)
1+ o mr)

AthkgT =20 keV, 55 = 35 = 1072 m” 5™, What Lawson number (i)
would be required to burn 3% of the fuel?

Take the Schrodinger equation for the relative motion of a deuteron and
triton bound by a muon to be

— (R [ 2MYV 4 4 Ve = Exf

F RO M =—T9T 1135 MeV/ i M s the
drregr (rrry - bn, )

where Fir) =

reduced mass of the system. The term ezf“{ting.;,r} gives the Coulomb
repulsion berween the nuclei and the term Kr” models the muon binding.

Sketch V(r), and show that it has a minimum at r=r; where
ry = (" fdmeg ) 2K

Show that classically the system can make small oscillations aboutr = ry
with frequency e, where
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o = 3 fdrmeq) | Mr3.

{¢) What is the guantum energy of the system in its ground state, if
rg = 500 fm?

{d) Using the formula (6.15), suitably modified, estimate the probabhility of
tunnelling through the Coulomb barrier at this energy.

{¢) Hence esumate the mean life of the system.

1

Nucleosynthesis in stars

In the preceding chapter we explained how in a star like the Sun helium is
steadily formed from the fusion of hydrogen. In this chapter we sketch
some of the basic ideas of ‘nuclear astrophysics’, a subject which seeks to
understand all the nuclear processes leading to energy generation in stars
in the various stages of stellar evolution, and to account for the observed
relative abundances of the elements in the Solar System in terms of these
Processes.

The accepted theory of the Universe is that it is expanding, and began
with an intensely hot and dense ‘big bang® between 10 = 10” and 20 = 10°
vears ago. A few hundred thousand years after the big bang, the expand-
ing material had cooled sufficiently for it to condense into a gas made up
of hydrogen and helium atoms in a ratio of about 100:7 by number,
together with photons and neutrinos. Apart from a small amount of
lithium, it is thought that the proportion of heavier elements produced
m this first explosion was insignificant (essentially because there are no
stable nuclel with 4 = 5 or 4 = 8. If this 15 so, we must conclude that all
the heavier nuclei in the Solar System have been produced in previous
generations of stars and then thrown out into space again, perhaps in the
explosion of supernovae.

11.1  Stellar evolution

Consider a star which has condensed from the primordial hydrogen—
hehum muxture, and in which hydrogen burming has set in at the core.
As the hydrogen in the core is consumed, the reaction rate eventually

becomes insufficient to sustain the temperature, and hence the pressure,

159
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that prevents further gravitational contraction. Thus more material falls
into the core region. If the star is massive enough, the gravitational energy
released raises the temperature of the core sufficently for helium to begin
burning at a significant rate. As the helium in turn s consumed, further
stages of nuclear burning set in until the most tightly bound elements,
iron and nickel, are formed. At each stage a higher temperature is needed
to overcome a higher Coulomb barrier; the energy for thisis provided by
gravitational contraction.

Before considering these later stages of nuclear burning in more
detail, it s important to appreciate that there are conditions under
which the central pressure can permanently balance the pressure exerted
by gravity. Then contraction will cease and the temperatures for further
steps in nucleosynthesis will not be reached. After completing as much
burning as it can, the star will simply cool. The first contribution to the
pressure that may stop contraction is the ‘electron-degeneracy pressure’.
Since electrons are fermions, it follows from the Pauli principle that, even
in a cold star with T ~ 0 K, electron states are occupied up to an energy
£p = (1 /2m. )kt where (Appendix B, equation (B.5)) kf = 37" ., and p,
i the number density of electrons. Thus in matter at high density there
exist electrons with high ke and hence high kinetic energy, which neces-
sarily exert a high pressure. To obtain a simple order-of-magnitude esti-
mate of this effect, we set the density of matter in a star of mass M, radius
R, to be constant. Then the number of electrons in the star s
N, = (M), where o is the stellar mass per electron. For material with
Z=N, we have p=2amu, to a good approximation. The electron
number density 8 p, = [M;'_JL},"{-‘iJ’er /3), giving

3 _ _2m\ (MY 1
A-_Jn'zpt._(d)(:f)‘qj. (11.1)

Assuming that the electrons can be treated non-relativistically, the total
kinetic energy of N, electrons at T = 0 18 (3/5)Neeg (cf. Problem 5.2). At
T~ 0K, the sum of the electron kinetic energies and the gravitational
potential energy is therefore

2
I/MY R 9rMYTL 3GM?
E:—(—)—(H )_- o I (112
S\p/2m \ d4u J R2 5 R

The star begins its life with R large, and the electron energy is then
much smaller than the gravitational energy. As the star evolves it con-
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tracts, so that our ‘'model” R decreases and £ becomes more negative. The
energy released goes into heating the interior of the star and into radia-
tion. However, no more energy can be released by contraction when E
reaches its mimmum value where dE/dR =10, at

Rein

() G
47 Gm, MY gﬁ

(11.3)
Mo\' o
?_2(?‘3‘) » 107 km, taking g =2 amu.

4

(A caleulation which does not make our assumption of constant density,
but determines the density self-consistently, gives a numerical coefficient
of 8.8 instead of 7.2.)

The corresponding mass density in our model at this minimum radius

is
M 4M2r."'rjmzu!'
Prrags = 3 - 16
ArR . 13 ¥
(nRou/3) ~ 27 iid
Jlf'f i) 3
There are many stars with masses similar to, but generally smaller than,

the Sun which are close to this inert condition. They have high density
and small radii, and are called white dwarfs. It may be noted that the
mimmum radins decreases as the mass inereases.

The maximum electron momentum in our modd when R = R, is,

using equation (11.1),

Pr = Pkp = (30 (Pas /1 h = {1_44( 1? )T MeV /e,

e

Since the rest mass of an electron is 0.511 M!:VI."CE, the assumption in our
calculation above that the electron can be treated non-relativistically, ie.
that pg <€ m,c, is clearly suspect for stars with M = M and is certainly
wrong for stars of large M. In the imit when A is large, we take

£ = (p*ct +mf.:“'}£' = pr = hek,
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for all the electrons, so that the total energy of N, electrons at T =10
becomes (3/4IN( hokg) (Problem 11.1). Hence, using equation (11.1)
again, the expression (11.2) for the energy is replaced by

1 4
3 O\ T AT 3 a1
== = N — iy o 5
E {4ﬁf(4)(1’*) S{IMj|R. (11.5)

If M is sufficiently large the coefficient of (1/R) is negative and there
% no minimum energy: electron degeneracy alone cannot prevent the
collapse of the star. Our extreme relativistic approximation becomes

increasingly valid as R decreases. Equation (11.5) suggests that the critical
value of M is

15 (57t fhey?
M= (?) = 1.74 M.
A more careful calculation takes proper account of relativistic ener-
ges and determines the density distribution self-consistently. It is then
found that the electron-degenceracy pressure cannot stop the gravitational
collapse of a star of mass M if M > 1.44 M. This result, due to
Chandrasekhar, is known as the Chandrasekhar fimit.

At very high densities of matter it becomes energetically favourable
for electrons to be captured by protons, and a Fermi gas of neutrons is
formed. Thus final collapse may be prevented by neutron-degeneracy
pressure. The number of neutrons in such a rewtron star s approximately
(M1 amu). Putting p =1 amu and replacing m, by #1, 0 (11.3) and
{11.4) suggests a neutron star has a radius of

R =1.26(M5/ M) % 10 km, (11.6)

and a corresponding mass density 2.37 [JH,"MG}Z % 10" kg m . Such a
mass density is comparable with the mass density of nuclear matter, so
that our simple expressions, which neglect nuclear interactions, are at best
only order of magnitude estimates. Nevertheless, we expect there to be a
mass hmit, analogous to the Chandrasekhar limit, beyond which neutron-
degeneracy pressure cannot stop further gravitational collapse. Putting
p=1amu in (11.6) suggests this limit is about four times the
Chandrasekhar limit. More realistic caleulations, taking into account
the compressibility of nuclear matter, give the maximum possible mass
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of a neutron star to be ~ 3M,. Neutron stars having a greater mass than
this will collapse. Newtoman gravitahion theory becomes inadequate to
describe what will happen at very high mass density. According to the
general theory of relativity, the star will collapse into a black hole, man-
ifested only by its intense gravitational field,

11.2  From helium to silicon

We return now to the problem of nudeosynthesis beyond helium. It is
clear that the fusion of hydrogen to helium already converts most of the
available nuclear potential energy into heat and radiation. The binding
energy per nucleon in *He is 7.1 MeV_ and there is only a further 1.7 MeV
per nucleon to be released in complete burning to iron. Also, as can be
seen from Fig. 10.3, as the elements involved become heavier and more
charged, higher and higher temperatures are required for there to be
significant tunnelling through the Coulomb barriers. In fact, as we shall
see, the simple fusion process is superseded by another when elements
around ‘;ﬁSi have been produced.

A few of the important reactions assodated with helium burning to
oxygen, and oxygen to silicon, are lsted below, along with typical tem-
peratures and mass densities at which in a sufficiently massive star they
are caleulated to ocour:

‘He + *He — *Be

‘He +*Be — "2C+ p+ 12 x (0.61 MeV)

‘He + 2C — 0 4 p + 16 » (0.45 MeV)

B0+ %0 — fSi+ ‘He+ 32 x (0.30 MeV) kg T ~ (100-200) keV
p~ 10" kgm™.

kgT ~ (10-20 keV)
p~ (10°-10%) kg m~>

The initial stage of helium burning needs some explanation. As Table
4.2 indicated, *He has the largest binding energy per nucleon of any
nucleus less massive than “C. The most stable form of nuclear material
with 4 < 12 is therefore *He, and in particular $Be does not exist as a
stable nucleus. Nevertheless iBt exists as a resonant state that is seen in
the laboratory in o—o scattering at an energy of 94 keV, in the centre-of-
mass frame, with a narrow width (due to the Coulomb barner) of 2.5 eV,
In a *He plasma this state is established with an equilibrium density such
that the rate of production equals the rate of decay. Thus the ‘mass gaps’
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at 4 =5 and 4 =8 can be bndged. The next step in the cham,
®Be + @ — "2C 4y, is in fact enhanced because it is a resonant reaction.
There is an excited state of C at 0.29 MeV above the *Be + e threshold.

In the final stages of oxygen burning, core temperatures in the star are
caleulated to reach 300400 keV, with mass densities in excess of
10° kg m™>.

11.3  Silicon burming

In all the preceding stages of stellar evolution, photons have always been
present in thermal equilibrivm with the plasma. They have played an
mmportant role in radiative heat transfer, but have been unimportant
for initiating the nuclear processes we have discussed. However, a photon
couples electromagnetically to a nucleus and can be readily absorbed by a
nucleus to form an excited state. If the photon has an energy above the
threshold for nuclear break-up of that nuceus, break-up can occur. This
process s called photodisintegration.

As the temperature in the core of a star approaches kg T = 1 MeV,
the increasing number of photons in the high-energy tail of the thermal
distribution makes photodisintegration an important process. In particu-
lar, protons, neutrons and e-particles are knocked out of nuclei
Although this effectively undoes some of the nuclear binding that has
gone on before, protons and o-particles, as well as neutrons, are at
these temperatures readily accepted into any nucleus present, and a situa-
tion approaching thermal equilibrium 1s guickly established with the most
tightly bound elements, iron and nickel, copiously produced.

At this stage the core of 8 massive star is in an unstable condition.
There is no more nuclear fuel to burn to delay further gravitational con-
traction, so even higher densities and temperatures oceur. It then becomes
energetically advantageous for electrons at the top of the Fermi distribu-
tion to undergo electron capture to form neutron-rich nuclei, which on
Earth would be f -unstable. This process removes heat from the core by
producing neutrinos which escape, as well as removing electrons. Thus
the pressure falls, hastening contraction and leading to the removal of
even more electrons, Eventually there will be a catastrophic collapse of
the core, an implosion which can only be stopped by nucleon pressure
and the nuclkeon—nucleon short-range repulsion.

The cooler regions of the star outside the core will contain unburned
or only partially burned material. As the core implodes, these regions will
quickly fall inwards and rise in temperature so that the remaining fuel
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burns explosively, blowing the stellar outer mantle into space. This s the
scenario for neutron star formation accompanied by a supernova explo-
g,

11.4 Supemovae

In a supernova, it s only the core of the star that collapses to form a
neutron star or a black hole. An mportant feature of core collapse is the
large gravitational energy release. We may understand the order of mag-
nitude of the energies involved using the simple model desceribed in §11.1,
adapted to neutron degeneracy. If the core has collapsed to radius R, and
radiated all of the heat generated, its energy in the model is

4 B

ER)=———.
(R} =R
3 9_ 23 h_’ M !l_.'3 3 ;
where A :—(—v) (— L B= —(iﬂrfz, and M s the mass of the
5% 4 2, \ Ry 5

core.
In equilibrium, the core will adopt the radius R, = 24/ B, which
minimises this energy. The energy taken in compressing the neutrons is

AR, Since

A B B
R2. 44 2Rua’

i

this energy is only half the gravitational energy released. (Note that the
nitial energies are negligible.) Almost all of the other half of the energy
goes into heating the core.

As an example, we shall consider a core with a mass of 2M,. This
core mass 18 above the Chandrasekhar limit, The core will contan N =
(2M/m,) =2.4 % 107 neutrons, and R, = 10.0 km, using equation
(11.6). The heat energy per neutron is

B

———= 33 MeV.
2R u N

Such an energy release is almost 10% of the rest-mass energy of a

nucleon, and about ten times the energy per nucleon released in the

whole of the star’s previous history (sec §11.2)
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After silicon burning, and at the start of collapse, about one-half of
the nucleons in the core are protons. The reaction

e +p—>n+u,

which takes place during collapse, will therefore produce ~N/2 =12 x
107" electron neutrinos. Detailed caleulations show that collapse takes
place in ~107% 5, and the average neutrino energy 15 about 10 MeV.
Thus these neutrinos carry away about 6% of the gravitational energy
released: the rest is left as heat in the collapsed core.

With heat energies of ~ 80 MeV per neutron, and densities approach-
ing that of nuclear matter, a transient state of thermal equilibrium will
exist, containing not only neutrons, protons, and electrons, but also elec-
tron—paositron pairs, photons, nentrinos and anti-neutrines coupled in by
reactions such as

et +nepti, ¢ +pen+u,.

Muon and tau neutrinos and anti-neutrinos will also be present, nduced
by reactions such as

et +e v, +uy, e e e+,

which proceed through the intermediary of the neutral Z boson.

For thermal equilibrium to be established, the mean free path of the
particles participating in equilibrium must be less than the size of the
system. Cross-sections for neutrino scattering will be discussed in
Chapter 13. At the density of nuclear matter this condition is easily
satisfied (Problem 13.3), s0 that neutrinos and anti-neutrinos take part
in thermal equilibrium. On the other hand, their mean free path is very
large compared with that of photons or electrons, so that neutrinos and
anti-neutrinos take the place of photons in transferring heat from the
interior to the surface of the core, and radiating it away.

The time scale for this neutrino cooling of the core is of the greatest
interest. Detailed calculations suggest a neutrino will diffuse from the
core to the surface in ~1 s (Problem 13.3), and that appreciable cooling
will take place in ~ 10 5. A supernova is an impressive event: the star
emits ten times as much energy in ~10 5 as it has previously emitted in
hillions of years of stellar evolution. Assuming an average energy of
10 MeV for neutrinos and anti-neutrinos, the total number of all types
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emitted must be ~80N MeV /10 MeV = 2 x 10™, This number greatly
exceeds the number of electron neutrinos squeezed out in the initial col-
lapse of the core.

Strong support for the supernova scenario we have outlined, and in
particular the role played by neutrinos, was provided by the observations
of a burst of neutrinos accompanying the 1987 supernova explosion in the
Large Magellanic Cloud. The LMC is a nearby galaxy at a distance D of
about 1.5 x 10% m from the Solar System. This was the first, and so far is
the only, local supernova explosion to have oceurred while neutrino
detectors have been in place. If in total Ny neutrinos and anti-neutrinos
were emitted, we should expect N, /4nD* = (N, /107135 « 10" m™ 1o
arrive at Earth over a few seconds. OfF the instrument types described
i §10.5, the water detector is most appropriate, since it gives the vital
mformation on the arrival times of those neutrinos and anti-neutrinos it
detects.

Mote also that water detectors are sensitive to energetic electron anti-
peutrings 1, through the reaction

le+p—n+e’,

on the protons in the water. The cross-section for this reaction is of
similar size to the cross-sections of neutrines in the gallium and chlorine
detectors, about two orders of magnitude greater than the cross-section
for neutrino—electron scattering.

Taking N, ~ 10°%, gives an expected integrated flux of ~10" m™
supernova neutrinos and anti-neutrinos over a few seconds. For compar-
ison, the flux of *B and hep neutrinos calculated using the standard solar
model is ~6 x 10 m™ s7'. These are the neutrinos to which the
Kamiokande 11 detector was sensitive, and in the typical working condi-
tions of the detector gave an event rate of about one per day.

An observed burst of twelve events within 13 s, and with energies
between 6 and 36 MeV, was clearly high above any background of
solar neutrino events, and correlated with the optically observed super-
nova explosion. The IMB detector in the USA, which 15 another water
detector, also observed six events within 6 s, with energies between
20 MeV (the detector threshold) and 40 MeV.

Analysis of the data from the two detectors suggests that the surface
temperature T of the source was of the form

T =Tye "
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with T, =4.2 MeV and r = 4.6 5, and the integrated flux of anti-neutri-
nos was 1.3 = 10" m™2. These measurements are entirely consistent with
the picture of stellar collapse we have outlined, and we can have some
confidence in identifying the source as a supernova.

11.5 MNucleosynthesis of heavy elements

The most likely process for the formation of elements heavier than those
grouped around iron, produced in the silicon burning described above, is
neutron capture. If a supply of free neutrons is available, they can accrete
on an iron-group seed nucleus by radiative capture, umimpeded by
Coulomb barriers, to build up a neutron-rich isotope. As the neutron
number in the nucleus increases it will become unstable to § -decay,
thus forming a new element of atomic number Z+ 1 from an clement
of atomic number Z. Successive neutron captures, interspersed with g -
decays, can eventually build up many, but not all, of the heavy stable
nucle. Since the build-up follows the neutron-rich side of the '8 stability
valley” (§4.6), some of the proton-rich stable isotopes are inaccessible in
this process. It is an interesting fact that such isotopes have a much
smaller natural abundance than their neutron-rich neighbours,

There are two basic time scales in this scenario of heavy element
synthesis by neutron aceretion: the f-decay lifetimes and the time inter-
vals between successive neutron captures (which are inversely propor-
tional to the capture cross-sections and the neutron flux). If the rate of
neutron capture is slow compared with the relevant S-decay rates (the s-
process) the nuclei that are built up will follow the bottom of the g
stability valley very closely. If the rate of neutron capture is rapid (the
r-process) highly unstable neutron-rich isotopes will be formed which
cascade down to stable nuclei, some of which are inaccessible by the s-
process; thorium and uranium must have been formed in this way. The
observed nuclear abundances, especially m the regions of closed-shell
nuclel, suggest that both the r- and the s-processes have played a part
in the synthesis of nuelel found in the Solar System and, in particular, the
heavy elements found on Earth.

The site of the r-process is believed to be in supernovae explosions
close to the region of neutron star formation, where over a short period of
time large neutron fluxes can be expected. The s-process probably ocours
during helium burning in massive stars, where a low neutron flux can be
provided by a number of reactions, for example (Fig. §.4),
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For nudeosynthesis of the heavy elements by the s-process there must be
iron present, derived from nucleosynthesis in previous generations of
stars and forming part of the gas from which the star in question con-
densed.

In this chapter we have attempted to provide no more than a quali-
tative sketch of a theory which is still being developed. Many of the basic
components of the theory are probably in place but important aspects are
still being investigated through laboratory measurements and theoretical
estimates of reaction rates, and computer studies of reaction networks,
combined with stellar models. A rich variety of facts and phenomena
remains to be explained.,

Problems

11.1 In a plasma with high electron number density g, using the extreme
relativistic approximation in which energy and momentum are related by
E = jpe, show that the average energy of an electron is (3/4) hekp, where
kp is given by .kf'—. = S:rz,r.r,.

11.2 The plaret Jupiter is composed mostly of hydrogen. It has mass
1.9 107 kg and mean radius = 7= 10" m. Show that if it were uni-
formly dense its gravitational energy per particle would be only 7 eV,
too small to ignite nuclear reactions.

11.3 Estimate the mass density of (metallic) hvdrogen at 0 K at which it is
energetically favourable to subtract electrons from the electron gas and
form neutrons by the inverse g-decay

p+e = n+w

11.4 Estimate the ratio of the number of protons and electrons to the number
of neutrons in a neutron star at the density of nuclear matter, in thermal
equilibrium at low temperature.

11.5 The Planck radiation law states that the number of photons per unit
volume in an energy range dF is

1 ENE

aXheyetsT 17
At a temperature kg T = 500 keV, estithate the number of photons per
unit volume with an energy greater than § MeV.

11.6 The cross-section for *Be production in e« scattering at energy £ in the
centre-of-mass frame is given by the Breit-Wigner formula
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la)

(#)

le)

- 2
oL :
o E(E — g +T/4

with £y =94 keV, '= 2.5 e¥. (MNote the additional factor of 2 in the
Breit- Wigner formula for identical particles: see Problem D.1) In a
plasma at temperatures kg7 = I, the thermal energy & is dominated
by energies in the neighbourhood of £;.

Show that

Hence show that the density pg, of *Be in equilibrium with e-particles of
number density g, is in the ratio

247
FBe B i)ﬁ = P 4o -] & EajkaT
Py 2\r e T

Calculate this ratio for &g T =15 keV and a helium mass density of
[ 3
10" kgm ~.

Beta decay and gamma decay

In this chapter we present some of the theory of f-decay and y-decay. In
both cases, a fuller treatment requires more quantum mechanics than is
usually contained in an undergraduate course, but we shall see that much
of the experimental phenomena can be understood qualitatively without
the complete relativistic theory.

121 What must a theory of g-decay explain?

In f-decay, introduced in §3.5, the charge of a nucleus changes while A
remains fixed. This occurs either by the simultancous emission of an
electron and an anti-neutrino, or a positron and a neutrino, or by the
capture of an atomic electron with the emission of a neutrino. The appro-
priate stability conditions were discussed in §4.6. Several nuelei, for exam-
ple ¥Cu, can decay by any of these processes (Fig. 4.5). In electron
capture, the neutrinoe energy and the recoil energy of the nucleus are
sharply defined. In the other processes, the electron (or positron) can
take any energy between zero and the maximum allowed by energy con-
servation. Figure 12.1 shows the experimentally determined energy spec-
tra for electron emission and for positron emission from 5Cu. It was the
observation of continuous energy distributions such as these that led
Pauli to infer the existence of the neutrino in 1931 given that the energy
levels of a nucleus are discrete, the electron and nuclear recoil energics in
the centre-of-mass frame would by energy and momentum conservation
be likewise discrete, unless some third particle (the neutrino ) were present
to share energy and momentum. The neutrino mass can be deduced to be
small since, when the electron takes its maximum energy, the energy

189
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Fig. 121 Eleciron and positron energy specira from the fdecay of ®Cu, giving
the probabiity distributions in energy (both normabized to unity) from a large
sample of decays. The experimental points are from Langer, L. M. ei af {1949),
Fhys. Rev. To, 1725 The curves are fits to the data using equations {12.5) and
(1261,

balance to within the accuracy of present experiments is complete.
Maximum electron energy corresponds to the neutrino carrying no
momentum, so that the neutrino energy then would be its rest-mass
energy mc’. We consider recent experimental limits on mr, in §13.2.
Because the neutrino interacts so weakly with other particles, it was not
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until 1959 that its existence was more directly confirmed by the observa-
tion of the reaction

le+p—n+e’,

using the high anti-neutrino flux associated with a nuclear reactor (which
arises from f-decays of the neutron-rich fission fragments),

Asin the case of p-decay mean lives, f-decay mean lives span many
orders of magnitude. For example, the most common isotope of indium,
12In, is f-unstable, but its mean life is ~ 10" years, whereas f-decay mean
ives of the order of seconds or minutes are common. As with y-decay,
mean lives depend strongly on the nuclear-spin change in the decay.

The first experimental evidence for the violation of mirror symmetry
at the subatomic level was found in g-decay by Wu in 1957, following a
suggestion by Lee and Yang. The experiment measured the angular dis-
tributions of electrons from the decay of ®Co:

80Co — 8UNi +¢ +1.

The *Co nucleus, of spin Sh, has a large magnetic moment, and the
nuclei in the sample were polarised by a magnetic field. The electrons
from the decays were observed to be preferentially emitted in the opposite
direction to the nuclear spins. Such a correlation violates the principle of
mirror symmetry, since in the mirror image of this experiment, more
electrons appear to be emitted in the same direction as the nuclear spin.
An examination of Fig. 12.2 will make this clear. (Any mirror plane may

Mirror

"

Emitted
——— —_—
electrons

/ Solenoid
current
()

Fig. 122 A schematic representation of the 50 decay experiment in real space
{a). and the mirror mage of the experiment {4). In both (2) and () the =pin of the
cobalt nuclens is pointing to the right; the spin is a pseudo-vector which does not
change direction under this reflection. The sample & polarsed by the magnetic
field produced by a current flowing in the direction indicated.

ib)
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be chosen, and will lead to the same conclusion.) Since the description of
the experiment and of its mirror image differ, it follows that parity cannot
be a symmetry of the weak interaction (§2.6). The breakdown of parity
conservation in the decay of the muon, described in §2.6, was discovered
shortly afterwards.

12.2 The Fermi theory of f-decay

A simple theory of f-decay was suggested by Fermi in 1934, Although
this theory is incomplete (it does not allow for parity violation, for exam-
ple), it is able to describe the spectra of Fig. 12,1, and gives a qualitative
understanding of the range of f-decay mean lives,

To be speafic, we consider in the shell model a decay in which a
proton outside a doubly closed shell changes to a neutron:

UE 5 N0+et 41,

A proton in the closed shell cannot change into a neutron since the
neutron shell is also full and the Pauli principle forbids the transition.
Thus the nucleons in the closed shells play no part in the decay and we
can take the initial state of the system to be simply

Wy = \'!:r]:u{r p}~

where yr, is the state of the single proton in the dy shell. The final state of
the system consists of a neutron in the same shell, a positron ¢, and a

neutring vy,
Wy =l lr, N (r b (b,

(in an obvious notation). Note that we are ignoring the spins of the
particles involved and neglecting the recoil of the nucleus.
The transition rate from ¥y to ¥ is given in perturbation theory by:

i 2m o
transitton rate = T:ng mel £y, (12.1)

where Hpg i the matrix element linking the initial and final states, and
mp(Egh is the density of (specified) states U; at the energy E; released in the
decay. This result is obtained in Appendix D (equation (D.6)) and is often
called ‘Fermi’s golden rule’ in texts on quantum mechanics.
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We saw in Chapter 2 that the weak interaction responsible for 8-
decay, mediated by the heavy bosons WE, is of very short range
=~ 2 % 107 fm. This fact was anticipated by Fermi, who suggested that
at the moment of interaction all particles were at the same point in space,
so that the interaction matrix element

Hpy = f111-'?H"l-"ﬂnr.‘ljr,ln'.‘ler,.nri"'r,enri?'r.F
could be of the form

Hyy = Gy, [ WO, (e,

where the constant G, is a measure of the strength of the weak interac-
tion.
We may take for the neutrino a plane wave state

]' ik, ¥
Ar) = —p LF
=
with the wave-function normalised in an arbitrarily large volume F for

mathematical convenience. We take the positron wave-function to be also
a plane wave

| E——
i

V)=

a

though this is only a first approximation; since a positron (or electron) is
charged, its wave-function will be modified by the Coulomb field of the
daughter nucleus. The matrix element Hy, becomes in this approximation

G

H_m — ? ['Hﬂr;{rhﬁ-p{r}u_i.k: ﬂa}l-rd."lr_

The energies involved in f-decay are generally at most a few MeV,
and the corresponding momenta hk,, fik, a few MeV/c. Hence the wave-
vectors ke, k, are ~MeV/ fic ~ 107 fm™", and the exponent of the expo-
nential in the ntegral is small over the range of the nuclear wave-fune-
tons. It is therefore an excellent approximation to expand the
exponential to give
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)

¥ f n )y (nd’s
i

1'[_;“ {.k-.‘ +k|.,.} g [\l&fﬂ{.f}l’]l{fp{r}djr + e,

Hy =

and keep only the first non-vanishing term. This argument is clearly also
valid when the nuclear wave-functions involved are more complicated
than in our simple example.

A decay is gaid to be allowed if the first term is finite. It is said to be
first forbidden if the first term is zero as happens for example if the initial
and final nuclear states are of opposite parity, but not the second, and so
on. The diversity of f-decay rates is largely accounted for by the degree of
forbiddenness of the transition and this in turn by the change in nuclear
spin (as in p-decay). In the case of indium, previously cited, the first term
in the expansion not to vanish s found to be the fifth and the decay is
fourfold forbidden.

We shall concentrate our discussion on allowed transitions, in which
case the matrix element is

Hyg = (G /V) M, (122)

where Mg is the appropriate nuclear matrix element. In our example of
the decay of "*F, the spatial shell model wave-functions of the proton and
neutron are the same apart from Coulomb effects, and hence in this
simplified theory

Mg = f Y (r(rdr = 1.

12.3 Electron and positron energy spectra

Consider an allowed f-decay in which the electron is emitted in a parti-
cular state of (relativistic) energy E. For simplicity we neglect the recoil
energy of the daughter nucleus, which is in any case always a small
correction. Then the relativistic neutrino energy E, is given by
Fy = E, + E,, where Eﬂ,-'c‘z is the nuclear mass difference. The density
of final states factor in the formula (12.1) is thus the density of neutrino
states, n (E, — E.), at energy (E; — E). There are nfE)dE, electron
states with energies between E,, E,+ dE,, where n, 15 the density of
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electron states. Thus the total transition rate dR for decays to electron
states with energies in the range E,, E, + dE,, is

2w

dR === Hyy *n(Eg — En(EME,. (12.3)

We need expressions for the densities of states n,, 7. As is explained in
Appendix B, neglecting spin there are [V/(27) Brk®dk plane wave states
with |k| in the range &, k + dk. For the relation between E and & we must
use for both dectrons and neutrinos the relativistic formula

E? :sz‘z +nrct = i hk})rz +mict,

so that EAE = itk dk, k= {E‘z - m‘?c"“}lf," fic. Thus the relativistic den-
sity of states formula for a particle of mass m is

Foodx

@ﬁ{ﬁé — iV EdE. (12.4)

A(EME =

Note that E is here the total energy, which includes the rest-mass energy.
Substituting in equation (12.3) and using (12.2) for the matnx element of
an allowed transition gives

G| Mgl

T L

S EJE, (12.5)

where
I [}
So(Ee) = [(Eg — E.Y — myc* F(EBy — ENE; — niec')IE,,

The arbitrary normalisation volume ¥ cancels out from the final result
(12.5), as we should expect. We have allowed the neutrino mass to be
finite in order to discuss the direct experimental evidence for its small or
zero value.

The electron (positron) energy dependence in the transition rate
(12.5) comes entirely from the lepton density-of-state factors included
in Sy(E) the other factors are independent of electron energy. The for-
mula can be improved by allowing for the interaction between the elec-
tron and the Coulomb field of the daughter nucleus of charge Z,;. Since
only the electron wave-function at the nucleus is mportant, SyE,) is

modified to
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SAE) = F(Zy E)SyE,). (12.6)

where

m{zd,mr

F{Z4, E) = ;

|: ds ¢} ]ﬂre{ﬂ, {!}

and 1 Zg, r) s the electron wave-function at energy £, in the Coulomb

potential :I:Zd.ezf-'lrﬁﬁr. Extensive tables of F(Z, ¢) are available for pre-
ase caleulations, but a simple approximation is the non-relativistic for-

mula

2wy
1 —e2m

F(Z.E)=

5

where i = = Ze” /(47s, hv); the positive sign holds for eectrons, the nega-
tive for positrons, and v is the electron (positron) final velocity.

As v— 0, FIZ, E)— 2mn for electrons. The (1/v) factor makes
SA E) non-vanishing at the origin, where E, — m,afz +%—m,£1.'2; the
decay rate is enhanced at low energies since the Coulomb field for elec-
trons is attractive.

For positrons at low energies F(Z, E.) — 2] niu_z“'“'. The Coulomb
field is repulsive for positrons and we can recognise the exponential as the
tunnelling factor through the Coulomb barrier, which suppresses positron
emission at low energies.

Figure 12.1 shows fits to the experimental statistical spectra for elec-
tron and positron emission from **Cu. The Coulomb-<corrected S.(E,)
give excellent agreement with the shapes of the experimental curves.
The more detailed theory of f-theory retains this factor.

The total transition rate for a particular allowed decay is obtained by
integrating the partial rate (12.5) over all electron energies, to give for the
mean lifetime t the formula

1 GoM -é"'m:f" :
g Wffzm Ey),

where
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5 F _
1 [-2) f F(Z. ENEy — EV(E: — micEAE,.
2

m

flZ, By = (
i,

e

(12.7)

To obtain (12.7) we have set my, = 0. f(Z, E) 15 a dimensionless function
for which again there are extensive tables. Some representative graphs are
mven in Fig. 123

12.4 Electron capture

In an atomic environment, f-decay by ¢lectron capture always competes
with positron emission, and is sometimes the only energetically allowed 8-
decay. To take our previous example, 'oF can also decay by electron
capture:

1;§F +e — 1:&'0 + V.

The electron and proton wave-functions now constitute the initial state,

& T
4
[ e decay

- = -
: ol g .
Mook &
5
E - —_
2 ) =90 " decay |

i | _

—& 1 |

0.5 1.0
logq (Eg/m,c?)

Fig. 123 The funcbon f{Z, £,). The sequence of curves 1s for 2 = 90, &0, 30 and
(1 for & decay and continuing with 2 = 3, 60, 90 for ¢ decay. (Formulae can be
found in Feenberg, E. & Troge, G. (1950), Rev. Mod Phys, 22, 359
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Wy = w]a{rp Wre(r),

and the electron is most likely to be a K-shell electron, since K-shell wave-
functions have the greatest overlap with the nucleus. To a good approx-
imation, these wave-functions are hydrogen-like, hittle influenced by the
outer shell atomic electrons, so we can take

win) = ,F:"m,tc*3 d Zmefz r
dr=n? ——=] exp| ———=).
¢ dmegh F dmeg h

where Z is the atomic number of the parent nucleus. The final state is
.I'rf = w-ll.[rll.}.llﬂrl.:[rl.:.}'

=, . = ,_I ik. . v
For the neatrino we agan take a plane wave state P 2% normalised in a
volume V.

In the simple Fermi theory, we now have

S f AW,
Assuming that the transition is allowed, this reduces to

G 6. zme\!
Hiy = —2¥(0) f Y (dr = — (ﬁ) My,

Vit sy i

singe the electron and neutrine wave-functions can be treated as constant
over the nuclear volume.

Neglecting the nuclear recoil, the emitted neutrino has energy E,,
where E,/c is the atomic mass difference ¥{E“,.-’f‘3 + i) (el (4.13).
The appropriate density of states in the formula for the transition rate
is the neutrino density of states at this energy, given by equation (12.4).
Setting mi, =10,

Voodm

T oRe

nJE)

and we obtain
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I o
decay rate for electron capture =T.Hm: nAE)

3
_ GuIMEE; [ Zmee’
S e dweg bt )

Consistently with our neglect of electron spin, only one K electron is
mecluded in the caleulation. The ratio of the electron capture rate Ry to
the positron emission rate R, is independent of G, and the nuclear

matrix element, and 1s

Rg_?T(Eu)z(z)i 1
R+ T Am 137) f(Z4, Eg)

Mote that E, = Ey + mecz, and .'.’2,."41!'&;] e = 1,. For low values of Z this
ratio is usually small, but at high Z the Z7 factor, and the increasing
Coulomb barrier for positron emission which reduces f(Z4, E;), make
electron capture the dominant process,

12.5 The Fermi and Gamow—Teller interactions

In the simple Fermi theory of f-decay, the interaction matrix element was
written as a ‘contact’ interaction. For our example of 'F decay,

Hy = [‘-I-?H'-I-",-d{::tmrdinuiu&}
= Gy f YO nP D nd ',

which we might represent diagrammatically as in Fig. 12.4. Reference to
spin has been suppressed, though we know that the particles involved are
all fermions with intrinsic spin quantum number 5 = 1.

In the full theory of g-decay, the interaction is mediated by the
charged W bosons, so that the process above 1s represented by Fig,
12.5. At a more fundamental level, the mteraction is with a quark rather
than a nucleon, as in Fig. 3.3, but phenomenologically the principal
missing feature of the simple Fermi theory is the description of spin
effects. We shall now describe how the results of the previous section
are modified when spin is taken into account. The nucleon states in our
example can still be described non-relativistically, but in general include
‘spin-up” and ‘spin-down’ contributions (sce Appendin C, §C.2)
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Fig. 124 pf-decay of a proton in a nueens as a ‘contact’ interaction.

Vi) = u‘w{r}({l,) +\'-"-“}({1]) E (ET )

and hence are two-component wave-functions. The complex conjugate
wave-function generalises to the adjoint row matrix ' (r) = (ol ¥ ).
However, both the positron and neutrine mowve atl relativistic speeds
and for these the relativistic wave-functions must be used. Except in
terms of the Dirac wave-functions, there is no simple form for the lepton
part of the matrix element.

The contribution to the interaction from the Coulomb-like part of the
W-field 15 most like the simple Fermi theory discussed in the previous
sections and it is called the Fermi interaction. This part does not change
the nucleon spins, and for allowed transitions the positron and neutrino
angular momenta must combine to @ve a total lepton angular momen-
tum of zero.

The contribution of the Fermi interaction to the interaction matrix
clement is

H}:} =Ty fwi{rhﬂr]_,{r}dir = (lepton part).

The subtlety of the weak interaction is contained in the bracketed

lepton part. This involves the neutrino and positron wave-functions eval-

v

Fip. 125 @-decay of a protonin a nucleus mediated by the exchange of a virtual
W boson.
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uated at the nucleon coordinate r, as in the simple Fermi theory, but also
describes the alignment of the neutrine and positron spins and the angu-
lar correlation between their directions. (The neutrino direction can be
nferred by measuring the small nuclear recoil.) The lepton part is given
very precisely by the Standard Model of particle physics and books on
this subject should be consulted for detailed caleulations. However, an
experiment which only measures the electron energy spectrum and does
not distinguish these correlations corresponds to an averaging over diree-
tions and sping, and then the spectrum is given exactly as in the simple
theory. If only the Fermi interaction contributes to the decay, the energy
spectra, decay rates, mean hves and electron capture rates are given by the
previous formulae, but with the nuclear matrix element given by

My = [ wiiny,(nd'r.

The constant Gy 5 gven in terms of more fundamental constants of
particle physics by

G, = GgV .

Here Gy 15 the Fermii constant and ¥4 is an element of the “Kobayashi—
Maskawa matrix®, which appears in the Standard Model theory of the
weak interaction between leptons and quarks. G may be determined
experimentally from the decay rate of the muon and has the value

Gg = 1.16639(2) x 107" (he)* MeV ™2, (12.8)
From a range of nuclear data, it is found that
¥, = 0.9744(10).

But this is not the whole story, even for allowed transitions. The
magnetic-like part of the W-field leads to a term in the transition matrix
element, known as the Gamow-Teller interaction, in which the total
lepton angular momentum J has quantum number j = 1, and the nuclear
part of the interaction (again treated non-relativistically) contains the
Paul operator o (see Appendix C). There isa term o - J in the interaction
Hamiltonian. The Gamow-Teller matrix element for our "F example is
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Hi' = gaG, [ Y (o, (r)d’r - (lepton part),

where (lepton part) is now a vector and - denotes a scalar produet.

If we define
Mgr =8 [}5‘1{!}“\5‘]:{ r}d3; = (Mg, ME'I" Mgr).

and sum over all allowed decays to the j = 0 and the three j = 1 states, the
total decay rate to electrons with energies in the range E., E. +dE,; is
gven by

2
Gi Vs

dRE) =2 sp

and the mean life is mven by

1 G’il”fdﬂl'ifd 2 X g2 ¥ 2 . 12149
;=Wl!ﬂ’f[—.; +'M(,--|-r +!Mﬁ-|-'-+:M{i'l" F{Zd.’ Eﬂ}'

(12.9)

An allowed decay may be pure Fermi, pure Gamow—Teller, or a
mixture of both, depending on the details of the nuclear matrix elements.
Note that the electron energy spectrum is independent of these details. In
general, of course, the initial and final nuclear states which enter into My
and Mgy are more complhicated than those of our ''F example. Mg and
My always vanish if the initial and final nuclear states are of opposite
parity, since & is an axial vector. Thus there can be no parity change in the
nuclear states in an allowed transition.

The axial coupling constant ga which appears in the expressions above
it a parameter of the theory. It s not a fundamental particle physics
parameter. We shall see in §12.6 that g, == 1.26.

For a Fermi transition, the change Ajin nuclear spin must be zero.
For a Gamow-Teller transition, Af = 0 or 1, by the rules for addition of
angular momentum, except that 0 — 0 transitions are forbidden since the
matrix element of ¢ vanishes between two spherically symmetrical states,

OMel + IMErl + | ME L + IMaPIS(EME,
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In the decay
HOo - 4UN* et +u,

the transition occurs, with 99.7% probability, to the first excited state of
the danghter nucleus, which has spin and parity 07, The even—even
nucleus 1;0 also has spin and parity 07, so that from the selection rules
above the transition is allowed, and pure Fermi. Also, in the nuclear shell
model, the nuclei differ only in that "0 has two protons in Ip, states
outside a %L’ core, and "N* has one proton and one neatron. Thus,
because of the charge independence of the strong nuclear force and the
smallness of the Coulomb effects in these light nucle, the wave-functions
of the initial and final nuelear states are very similar, and _Ml_-ﬁz =2 2 (sinoe
either of the two protons in lpy states can decay). The energy
Ey =232 MeV, Z; =T and f(7,2.32) =42 8. The measured mean life
% 102 s, Thus from the formula (12.9) for the mean life we can caleulate

GgVya/(heY = 1.16 x 107" MeV 2,

From (12.8) we see immediately that F 4 is close to unity. This mean life
measurement gave one of the first estimates of the particle physics para-
meter Fug.

The constant g, is most directly determined from the lifetime of a free
neutron, since there are then no uncertainities in the computation of
nuclear wave-functions. Indeed, if we neglect recoil, the spatial parts of
the initial neutron and final proton wave-functions are the same. Suppose
the spin state of the neutron s | +;—f| . If the proton spin state is | + %j then,
using the properties of the o matrices (Appendix C), Mep=1 and
Mg = (galiy 0, 0, 1) 1f the proton spin state is | —%], Mg =10 and
Mgr = (gaGy 1, i,0). The neutron—proton mass difference gives
Ey, =1.29 MeV and f(1, 1.29) = 1.6. The total decay rate to all possible
spin states is therefore, from equations (12.6) and (12.8), given by

I L6[1 + 3ga)GE Vg
s 2 i '

The measured mean life of the neutron is 887 s, which vyields
gy = 1.3, using this formula. However, there are ‘radiative corrections’
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to our simple expression and the present accepted value of gy is a little
lower

a5

ga = 1.26.

12.7 Electron polarisation

The lepton part of the interaction matrix element leads to angular corre-
lations between the various spins and momenta of the four particles
involved in a A-decay. These correlations can be detected in suitable
experiments, as for example the spin-polarised *Co experiment discussed
in §12.1; the observed angular distribution of electrons in this experiment
is in accord with the theory.

The non-parity conserving nature of the weak interaction is most
clearly seen in the lepton states. All neutrinos are ‘left-handed” and all
anti-neutrinos ‘right-handed’. The theory also predicts that in f-decay
left-handed electrons are produced more copiously than right-handed
electrons, whercas positrons produced in S-decay are predominantly
right-handed. More precisely, the probability of an electron emitted
with velocity v being in a left-handed state (with intrinsic spin s anti-

parallel to momentum p) is
Pyt (1 +1'r}
L=3 o |
and the probability of its being emitted in a right-handed state (with s
parallel te phis

Henoe

_PR_PL_ v
_PR'FPL_ i

(and for positrons P = +u/e).

Figure 12.6 shows experimental measurements of P, the longitudinal
polarisation’, plotted against v/c for a variety of f-decays. The complete
polarisation of the neutrino and anti-neutrino can be regarded as a gen-
eralisation of this result, since v = ¢ for massless particles.
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Fig. 126 Measured degree of longitudinal polanization P for allowed ¢ decays.
{Data from Koks, F.'W. ], & van Khinken, 1. {1976), Nucl. Phys. AZT2 61.)

12.8 Theory of y-decay

In p-decay, a nucleus in an excited state falls to a lower state with the
emission of a photon (§7.3). The electromagnetic interaction which gov-
erns this process is very well understood theoretically, but a full discus-
sion requires the quantised equations of the electromagnetic field, rather
than the classical Maxwell equations, and is beyond the scope of this
book. However, we can understand the mam features of p-decay, and
in particular the great range of p-decay lifetimes described in §7.3, using
sermi-classical arguments to write down an approximate expression for the
mieraction energy between a nucleus and a photon.

We again enclose our system in a large volume V. Consider the plane

electromagnetic wave
E=Egcosk -r—wt), B=Bycosk r— wi).
The standard M axwell theory tells us that in such a wave [B] = [E|/c, and

the energy is divided equally between the electric and magnetic fields and
s gmiven in total by
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& [ Eir) - E(nd’r =L B3V,

since the cosine squared averages to L over the volume V. If we identify
this wave with a single photon of wave-vector k and energy ho we must
therefore set

LBV =hw, or Byl =Q2ha/eV P

In a typical p-decay, ho is at most a few MeV, so that
k| = hayf hie ~ (1 MeV)/(197 MeV fm) ~ 1077 fm™". Hence to a good
approximation we can neglect the change in (K - r) over the dimensions
of the nucleus (~fm), which we can take to be centred at r =10. The
electric field over the nucleus is then

E=FE cosa¢ = -}En{i:m +e 1,

and the potential energy of the nucleus in such a field is given classically
by

g Z E-r, :_é Z E¢|-I],{ti”:+4:_i“"}_

ji R ~ prdbons

In a y-decay, we start with a state in which there s no photon present,
and end with a state in which there 15 one photon present and the nucleus
is in a lower energy state. As in our discussion of S-decay, we shall neglect
the small nuclear recoil energy. It is clear from the derivation of the result
(D.6) in Appendix D> that only the term with ¢ in the interaction can
contribute to this transition, so that the matrix element to be employed in
the formula for the decay rate is

e

b E['-I"?( Z E, -r].,) Iydicoordinates) = _%ll:'ﬂ - Ry,
i

3 Lo s

where W, Wy are the initial and final nuclear states and

Ry = f ,;r;.( > rp)'liad{uuordinulus}. (12.10)

JLITHTiT

If Ry 18 non-vanishing the transition s said o be eleciric dipole (E1).
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Let us assume Ry is non-vanishing and real. The treatment is easily
extended to the case when Ry 15 a complex vector R, + 1R, since

[Eg - (R, + iR = |Eg - Ry + [Eq - Ra1

For a given direction of photon emission, there are two independent
photon states with polarisations which we can take asin the plane defined
by Ry and Kk, and perpendicular to this plane (Fig. 12.7). For the latter
E; Ry = 0, 50 that the transition probability to this state vanishes.

If 8 is the angle between the direction k and Ry, for the state with
polarisation in the plane we have

[Eq - Ryl = |EylIRpyl sinéd

since Ey is perpendicular to k. The density of states at energy E, = ho,
for photons emitted in a solid angle d2 = sing d9dg, is
Voo, dk Voo

' di = sin #d9 de,
(2m’ dE, (2m)’ b’

since £, = hew = hek. Hence the *Fermi golden rule’ formula gives the
transition rate

l"!'rl.'z 3 a ¥ -Cr.i"z « 3
. I 1 : 4
ﬁ _i"_.:'“ .Rm_ {_"_I }3_P]|:"3M.n Sdﬂ. {-1_.11}

There is a characteristic sin®8 angular distribution of the emitted
phetons. Such angular distributions can be observed experimentally, if

for example the nuclei in a sample are oriented in the same direction by a
strong magnetic field.

Eq
R

P

Fig. 127 Direction of emission k and polarisation vector Ey for an allowed
electric dipole transition.
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The mean life is obtained by integrating the expression (12.11) over
Lt ; ! ;
all directions m space. Using |Ey) = (2 fhar/s, 1) we obtam

1 4 e m'%_R A
tei 3 \dms, | A Lk

E, - | R | 2
- Y — ] 038 x10"¥s?
(1mv) (lf'm) s

where the last form indicates the order of magnitude to be expected for
the mean hves.

From equation (12.10), we see that ¥y and ¥ must be of opposite
parity for an electric dipole transition to take place, since if they have the
same parity the integral vanishes. It can also be shown from the angular
part of the integration, using the properties of spherical harmonics, that
the change Ajin the nuclear spin quantum number for an electric dipole
transitton must be Aj =0 or Aj= £1, except that 0 — 0 transiions are
forbidden (see §7.3). An estimate of the magnitude of [Ry| requires a
knowledge of the nuclear wave-functions. Even in the simple shell
model such calculations are not easy.

The nucleus also couples to the magnetic field of the photon, and at a
similar level of approximation the interaction with the magnetic field B is
mven classically by —p - Bycos e, where pis the total magnetic moment
of the nucleus. The magnetic moment operator is given in the simple shell
model by equation (5.24),

p= Y pnlgl+gslih,

nuckons
where p1yy = e h/2m, is the nuclear magneton. The transition rate induced

by this interaction will be of the same form as (2.11), with eEy - Ry,
replaced by By - My, where

My = ['—I-'?p'l-ﬁ;.d[ut:-urdi.ﬂalm}_ (12.13)

If My, 15 non-vanishing, the transition is said to be magnetic dipole (M 1),
Since |By| = |Egl/c, the mean life is given by

1 4f 1Y 4
o e Bl S AT | 'Y o o 12.14
Thi 3 (-‘-1-111;,;,) Tk £l { )
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From (12.13), My, is non-vanishing only iff ¥ and ¥; have the same
parity, since p is a pseudo-vector (§2.6). Electric and magnetic dipoles
transitions are therefore mutually exclusive. The angular momentum
selection rules, Aj =0, £1(0 — 0 forbidden) are the same as for electric
dipole transitions.

The ratio of mean lives for magnetic and electric dipole transitions at
the same energy is

M e R

wm  MP
¥ B i I "
If we take [R] ~ nuclear radius ~ A7 fm, and M ~ e fi/m,, we obtain

TMi {m],c"!}z{.»i% sz}

e L0,
{ fic)

Tk

Thus the mean lives for magnetic dipole transitions are generally longer
than those of electric dipole transitions at the same energy by a consider-
able factor, though this estimate is of course very crude,

If both Rpg and My vanish, as is not uncommon, then we can no
longer neglect the variation in the photon field over the dimensions of
the nucleus. The expansion of cos(k -r — a) in powers of (k- r) gives
matrix elements for higher-order electric and magnetic transitions.
Each power of (k-r) introduces an additional factor of —1 in the
parity selection rule, and an additonal unit of orbital angular momen-
tum in the Aj selection rule so that, for example, for electric quadru-
pole transitions there is no change in parity and Aj==+2, £1, 0,
except that 0 — 0 and 1 — L transitions are both forbidden, by con-
servation of angular momentum. To each type of tranmsition there cor-
responds a characteristic angular dependence and  polarisation of
emitted p-rays.

Each power of (k- r) reduces the order of magnitude of the matrix
element by a factor ~ (kR), where R is the nuclear radius, and hence
increases the lifetime by a factor of (kR)y™>. For a 1 MeV photon and
A~ 50, (kRY 2 =0.24 % 10*. The curves of Fig. 7.6 have been drawn
using only a more sophisticated version of this argument, but they are
nevertheless a useful guide to the interpretation of experimental
lifetimes.
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12.9 Internal conversion

A nucleus in an excited state can also decay electromagnetically by ‘inter-

nal conversion”. In this process, an atomic electron in a state gy(r.) takes

up the energy released in the decay and is excited to a state ¢;(r,) which

must be initially empty. If the energy release is greater than the binding

energy of the electron, as is usually the case, the electron is gjected from

the atom and the state ¢rlr,) may be approximated by a plane wave.
Thus the initial state is of the form

W =g du(r.)

and the final state of the form

= Y dilre).

The main contribution to the interaction energy between the electron and
the nucleus is the Coulomb energy
——
pmlﬁmammmr]:' ol

and the corresponding matrix element for the transition is

Hm—f‘.IEH e

pmm 4Tn-'ﬂ brp — 1l

i pod r dinuclear coordinates).

We shall not pursue the evaluation of this matrix element, but note that it
can be non-vanishing for 00 — 0 transitions between nuclear states of the
same parity.

The process of internal conversion always competes with p-decay
with similar nuclear matrix dements appearing. As in the case of K-
capture in f-decay, there is a factor Z° in the transition rate arising
from the normalisation of the initial state electron wave-function. Thus
internal conversion becomes increasingly significant in the electromag-
netic decays of the heavier elements. The internal conversion coefficient
i defined as the ratio of the rate of internal conversion to the rate of -
emission, for a given type of electromagnetic transition. Extensive tables
of these coefficients can be found in the hterature.
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12.4

Problems

The product of a f-decay half life Ti{§3.4} and the number (£, Fa) 18
the fj‘T%' value. From equations (12.7) and (12.9) the fT% value pives a
direct empirical determination of the nuclear matrix element
[Me + |Mar |2. Caleulate the T, value for the decay
Hg wlpgpetpn, for which n =260s, Fp=494MeV and

J(15,494) = 1830. In the simple ahell model, this decay involves a 23

proton changing to a 25, neutron. Compare this fTL value with Lhatnf‘a
free neutron. Why do the two values differ?

The cross-section for the reaction
Lo +
Vot p—+rn+e

is given in perturbation theory by

| H P nl E,),

2w 1
o= —
f

{neutrino flux)

where n{£,) is the relativistic density of states (equation {12.4)). Show
that

Kep. )E..

Calculate this cross-section for a 2 MeV anti-neutrino.

If an electric dipole (E1} decay mean life is known, then equation (12.12)
can be used to calculate the corresponding dipole matrix element |Ryg|.
The first excited state of ' 'Be decays to the ground state through an E1
transition. The mean life is 1.79 = 107" 5 and the photon energy is
0.32 MeV. Calculate |Ryy).

An example of an electric dipole transition in atomic physics is the
decay of the 2p excited state of the hydrogen atom, for which the mean
life is 1.6 = 10~ 5 and the photon energy is 10.2 eV, Calculate |R;,| and
compare it with the nuclear matrix element.

The nucleus 'S Ag, which has spin and parity 1%, is f-unstable with a
mean life of 3.4 minutes. 1t has an excited state at 109 keV excitation
energy, spin and parity 6, which is an isomeric state with a mean life of
180 vears. Explain how an excited state of a nucleus can be more stable
than the ground state.




Neutrinos

Meutrinos are elusive particles: for many years their very existence was
only inferred from the part that they play in S-decay. However, we have
seen in Chapter 10 and Chapter 11 that they are of great importance in
astrophysics, and in the forging of the nudei of the heavy elements in
supernovae. Apart from f-decay, other experimental results on neutrinos
are accumulating, In this chapter we describe some of these results, and
their possible interpretation,

13.1  Meutrino cross-sections

To design neutrino detectors, for example to measure the flux of neutri-
nos striking the Earth, it is important to know their interaction cross-
sections with atomic nuclei and electrons. Unless the neutrino energy is so
high that its de Broglic wavelength & = (2w h/p) is comparable with or
less than the nuclear radius, the nuclear cross-sections for processes which
convert a neutrine to its charged lepton partner will involve matrix ele-
ments of the same form as those which appear in the theory of g-decay.
For example the total cross-section for the reaction

i,+p—n+e’,

with unpolarised protons, at a neutrine energy above the threshold
energy for the reaction, is (Problem 12.4)

_

— 1 + 3¢5 E.. 13.1
o X fw}"{ + 3gallep ) E, (13.1)
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In this expression p, and E, are the dectron momentum and electron
energy in the centre-of-mass system. ( Mote that the energy of the electron
s determined by the energy of the neutrino.)

More generally, the total cross-section for the reaction

v, +A—+B+e,

when the nuclear matrix dements correspond to an allowed transition,
and the neutrine energy is above threshold, is given by

G,
= 4

iy MMM+ Men Jepo B2 B,

(132)

where Z 15 the atomic number of the final nuclear state, and F(Z, E) 15 the
Coulomb correction factor introduced in equation (12.6).
The same formula holds for the anti-neutrine reaction,

ve+ B— A +em.

The reactions described above involve the exchange of a virtual W*
boson. By the exchange of a virtual neutral Z boson, a neutrine can
scatter elastically from a nucleus. However for neutrino detection the
mmportant elastic scattering is that from electrons (see §10.5). The pro-
cesses involved in electron neutring scattering from electrons are repre-
sented diagrammatically in Fig. 13.1. At low enermes the W boson
contribution to the scattering comes from matrix elements of the form

Hiy = Gy f Fi(Wpeo (DB o (DT, (13.3)

Reference to spin has been suppressed. The form echoes the Fermi nter-
action in S-decay, but since only leptons are involved it is the Fermi
constant Gp which appears. The contribution from the interaction with
the Z boson involves a new parameter of the Standard Model: the
Weinberg angle . For neutrino energies E, }‘}mdr‘z (but less than
My) in the centre-of-mass system, the total cross-section o, for scattering
from unpolarised electrons is caleulated to be
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() (&)

Fig. 131 Processes contnbuoting to the elastic scattering of electron neutrinos by
electrons: {a) exchange of a virtual charged W boson; (B exchange of a neutral £
boson.

Gr

— mp + 12sin? 8y + 16sin® A l(cpo) Eo. (13.4a)
ST R

oy

The corresponding cross-section for anti-neutrinos is

G : :
= ———[1 +4sin® y + 16sin’ 6y](cp,)E,. (13.4b)
Im he)
In these expressions pe and E, are the electron momentum and energy in
the centre-of-mass system. The accepted value of sin” 8y from experiment
is

sin® By = 0.231 24(24).

13.2 The mass of the electron neutrino

In standard unified theories the neutrino masses are assumed to be zero.
It is clearly important to test this assumption experimentally. A finite
neutrine mass of even a few t\f.."c‘z would have significant consequences
in, for example, cosmology. The signature of a finite neutrine mass would
in f-decay appear in the shape of the electron energy spectrum near
maximum energy. From expression (12.5), this shape depends sensitively
on whether m, = 0 or m, 2 0. The difference is clearer in a Kurie plot of
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dR/dE, :
F(Z4, E)E(E2 — m2c'f

against electron energy since from equation (12.5)

dR/dE, ?
F(Za, E)E(EE — mic)t
= (constant)( £y — E,_,}*[{Eﬂ - E,:}) - mf.r‘]j“'.

If m, =0, this plot gives a straight line (£, — E,) passing through E; if
s 2= 0 the line 15 curved and the tangent at maximum energy 15 vertical.
A much-studied decay in this context is that of tritium

1H— JHe4e +74186keV.

The low electron kinetic energies in this decay are experimentally advan-
tageous. Figure 13.2 shows experimental data and there is remarkable
overall agreement between the data and the fitted theoretical spectrum.
A Kurie plot of data near E, = Ey 15 also shown. The difficulty of the
experiment 15 evident: the conclusion 15 that m, < &) eV/c*. More recent
tritium experiments (Belesev, A. L er al. (1995), Phys. Lett. B 350, 263)
suggest that

my, = 435 ¢V

with high probability.

We conclude there is not yet direct evidence that the electron neutrino
has mass, and there 15 no direct evidence of mass for the muon neutrino
or the tau neutrino. However, there is a growing body of experimental
results which suggest that neutrines do have mass, but on a much smaller
scale than that probed by direct experiments.

In §2.4 and §3.6 we introduced all of the elementary fermions: the
leptons and the quarks. The three charged leptons and the six charged
quarks all have mass. Are the neutrines the exception?

13.3  Meutrino mixing and neutrino oscillations

Let us assume there are three basic neutrino types, which we denote by
[vgd, [wd, lg), having definite masses my, o, My respectively. These states
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Fip. 132 The electron energy spectrum from the decay of tritium. The experi-
mental poinis give the number of ekctrons M{ E.) observed in small energy “bins
from a very large number of decays. (Taken from Lewis, V. E. (1970), Nud. Phys.
AlS1. 120.) The spectrum is well fitted using equations (12.5) and {12.6). Ako
shown for comparizon is the curve without the Coulomb correction. The inset
shows a Kurie plot of the spectrum near the electron end pomt. (For this data see
Berglanst, K. E. (1972), Nucd, Phys. B39, 317.) The theoretical curves in the inset
include the effect of the finite size of the energy “hins'.

are eipenstates of the mass operator, and may be taken to be orthogonal
and normalised. The mass operator acts on internal degrees of freedom of
the neutrino, and the mass eipenstates may be represented by 3 ¢ 1 col-
umn matrices. The formalism is somewhat similar to that of intrinsic
electron spin, in which ‘spin-up’ and “spin-down’ states are eigenstates
of the operator s,

13.3 Neutring mixing and neuting oscillations 1

Mixing means that the electron neutrino state |u,) produced in a 8-
decay 1s not a basic neutrino, but a linear combination of the three mass
cigenstates. Similarly the muon neutrino and the tau neutring are linear
combinations of the mass eigenstates, orthogonal to each other and to the
electron neatrino.

For mathematical simplicity we shall take a two-component model
and suppose that jug) is well represented by

lu,) = cos8lyy) + sin S, (13.5)
Orthogonal to |v) 1s the state
v = —siné@y) 4+ cosdjia g, (13.6)

as the reader may readily verify. |v.) might be a muon neutrine or a tau
neutrino. & is known as the miving angle.
If the electron neutrinoe was created at ¢ = 0 with momentum pin the
plane wave state ¢¥*" then at time ¢ the state will have evolved to
), = e B sosdlu ) 4 e B Gngju), (13.7)
Fera o Koy g
where ) = v’p‘!cz +mict, By = \I."p'\r’z + mic®.
We can solve equations (13.5) and (13.6) for jvy) and jvs) in terms of
v} and |u.):

vy} = cosflu,) —sinflv, ),

frat = smBju, ) + cosdlu),
and then substitute in (13.7) to obtain

e, = ¢ B[ (cos” @ 4 eltFi—Eh

— sinfeosd(1 — EEI 1, 4,

sin” @)jue)

If after time ¢ the neutrino is detected, the probability of it being an
electron neutrine is, by the usual rules of quantum mechanics,
PiOH= f'[L'U'SEE + el —E R g2 gy

e (138)
=1 —sin” 2 sin~{(E: — E /2 h},

and the probability of it being an x neutrino i3
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Po(f) = sin® Boos” B](1 — - Eaiiy2 4
= sin® 29sin*{(E, — E|)t/2 h}. e
Unless my = ma, so that E; = E, it is evident that P, = 1 if there is
mixing.

A neutrino may be detected and identified by its conversion into its
charged leptonic partner (§10.5). In the case of neutrinos produced from
nuclear B-decay, or from thermonuchkear reactions in the Sun, the neutrino
energmes are too small to produce a muon or tau lepton. Thus the x
neutrino will not be detected. If there is neutrine mixing, it will be seen
as a reduction by a factor P, in the anticipated flux of electron neutrinos.
Note that dectron lepton number is no longer conserved (see §2.5): we are
straying outside the Standard Model of particle physics.

To analyse P, further, we assume that the neutrinos are highly rela-
tivistic. We can then take the first term in the Taylor expansion and write

| im‘j'}f"‘
e

B — B = JpPd + et — va},z(z +myct = (13.10)

where Am® = m}! — J'?ﬁz.
A relativistic neutring wave packet will travel with velocity = ¢ so
that, at a distance z from the source,
P(z)= Pt =z/c)= 1 —sin® 29 sin*{(E, — E,)z/2hc}.  (13.11)
Using (13.10) this becomes
P,(z) =1 —sin® 29 sin’(nz/ L), (13.12)

where the ascillation fength L is given by

o dmipedi he)

113
[ﬂm“’!}f" Li2:13)
which can be written as
L—ma( v ) Lev? m (13.14)
T UM MeV  (Amet ] o

134 Solar neutnings 193

Table 13.1. The ratio of measured neutrine flux to newtrine flux predicied
by the standard solar model, in five mdependent experiments

Experiment Type of detector Result/ Theory
Homestake {LUSA) o) 0.33 £ 0.029
Kamiokande (Japan) Hald 054 £ .07
GALLEX (ltaly) "Ga 0.60 + 0.06
SAGE (Russia) 1 Ga 0.52 £ 0.06
Superkamiokande (Japan) Hald 0.474 £ 0.020

(See Baheall, 1. N. er al. (1998), Phys, Rev. D 58, 096016.)

It is the sinusoidal nature of P, as a function of z which gives rise to
the name neutrine oscillations for this phenomenon.

13.4 Sclar neutrinos

Table 13.1 shows the results of five independent measurements of the
ratio of the solar neutrine detection rate, to the expected rate caleulated
from the standard solar model and the Standard Model of particle phy-
sics. Within the context of neutnine oscillations, this can be taken as a
measure of P,. P, is consistently less than one. Also, the measurements
are sensitive to different neutrino energy bands (§10.5), and P, appears to
be energy dependent.

Can these results be explained by neutrino oscillatons? Within our
two-neutrino model, if (Anr ) ~ 1 eV? we see from equation (13.14) that
the oscillation length L is then very much smaller than the size of the
Sun’s thermonuclear core, where solar neutninos are created. (For solar
neutrinos, pe = 10 Mev.) Averaging over the core,

P, =1-1sin’26.

This is independent of neutrino energy, and the maximum possible sup-
pression is P, = L Thus (Ant et ~ 1 eV would appear to be inconsistent
with the experimental data.

An alternative relevant length scale is the mean Earth—Sun distance of
= 1.496 = 10''m = 1 astronomical unit. We can rewrite (13.12) as
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f ; b4 1 MeV oo Ay d
P,(z) =1 — sin® 24 sin’ 1_9( )( ¢ ) ([ Am }c'z
1 AU Pe 1(]—11 eV

(13.15)

and O = pc = 10 MeV, z=1 AU (ignoring the diurnal and annual var-
tons of z). Unless {.imz}rd ~ 107" V2, the range of neutrino
momentum values will lead to an averaging of the sine-squared term,
and again we shall have a factor of . However, a detailed analysis
suggests that the experimental data can be fitted by this model if
(Anf)e* ~ 6.5 % 1071 V2, and sin® 26 ~ 0.75.

Another interesting possible mechanism for explaining the solar neu-
trine deficit arises from the interaction of neutrinos with matter. As
neutrinos pass through matter they acquire an effective mass. An electron
neutrino can interact with electrons in matter through the exchange of a
virtual W boson, as in Fig. 13.1{a). At low energies this gives the Fermi
mteraction matrx elements (13.3). These can be interpreted as ansing
from a neutrino effective mass Gen/c*, where n, is the number density
operator for electrons. Taking spin into account gives a factor +/2. The
effective mass from the Fermi interaction is thus given by

a3
m o = 2n,Gg = 1271 A'n) x 1077 V. (13.16)

The Gamow—Teller interaction contributes only in ferromagnetic materi-
als. This effective mass term is unique to the electron neutrino, because
matter has zero muon density and zero tau density. The neutrino inter-
action with electrons through the neutral Z boson (Fig. 13.1(#)) contri-
butes to the effective mass for all neutrino types, but does not induce mass
differences. It is therefore of little interest in the context of neutrino
oscillations,

These effective masses are caleulated in the Standard Model of par-
ticle physics. They are small, both in terrestrial materials and in the Sun,
as equation (13.16) indicates. However, if we postulate the existence of
intrinsic neutrino masses and neutrine mixing, new resonance phenomena
appear. In passing through matter of varying electron number density, as
happens to a neutrino created in the core of the Sun (Fig. 10.1), the
matter modification to the mass of the electron neutrine can cause a
large neutrino oscllation, even though the vacuum mixing angle is very
small. As the neutrino leaves the Sun, the oscillation is then effectively
frozen, since further oscillations have a small amplitude. 1t is found that,
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if these effects are to account for the solar neutnno deficit,
(Anf)e ~ 1075 eV?, sin® 26 ~ 1072,

13.5 Atmospheric neutrinos

A quite different scale on which to search for neutrino oscillations is given
by atmospheric newtrinos. The Earth is continually bombarded by cosmic
rays, which consist for the most part of high-energy protons and elec-
trons. The protons, in their collision with nuclei in the upper atmosphere,
produce m-mesons. The m-mesons while still in the upper atmosphere
decay by the chains

at —uﬂ' + Uy

W =
e v+,

R O AT

€ +ugt+ 1y

The neatrinos and antineutrines are produced at a mean height
H ~ 20 km, with energes extending to the multi-GeV region.

From the expressions in §13.1 the cross-sections for neutrino and
anti-neutrino scattering increase with energy, so that the detection of
these uncharged leptons becomes easier at higher energy. In water detec-
tors such as SuperKamiokande charged leptons are produced through
reactions essentially of the form

v4+n—=e¢ +p, D tp—>e+n;
V40— pg +p, Uu+p—pu’ +n

which take place within 22.5 kilotonnes of water.

The charged leptons give Cerenkov radiation which provides infor-
mation on the energy, direction, and identity of the incddent uncharged
kepton. At high energy, the direction of the charged lkepton is closely
correlated with that of the incident neutrine or anti-neutrino. Electrons
and muons may be distinguished by characteristics of their Cerenkov
signals, (Electrons are scattered more than muons in their passage
through the water. See §14.2.)




196 Neurings

Since neutrinos traverse the Earth almost unimpeded, the angle @, of
a neutring’s direction with the local vertical at the detector (the zenmith
angle) determines its distance z from its point of production in the upper
atmosphere. To a good approximation z s given (using elementary geo-
metry) by

2
z={RLcos 8,4+ 2R, H + H*) "= Ry cosd,,

where Ry = 6380 km s the Earth™s mean radios, and H ~ 20 km; = vanes
between z = H when 8. =0, and z =2Rg + H when 8, = .

In Fig. 13.3, the ratio of observed to expected events is plotted as a
function of coséd, for electron-like events and for muon-like events, Data
from SuperKamiokande and Kamiokande has been combined.

In the electron data there is no sign of an oscillation. This is consis-
tent with both of the scenarios we have sketched for solar neutrinos. If
ather {i'.mz }.:‘" ~ 107" eV? or -[ﬁ.m2 }I:"ﬂ ~ 1073 1:";"2, no oscillation would
be expected over a distance of ~ Rg.

The muon data is quite different. There is a clear suppression for
cosd, = —0.2, which suggests an oscillation length for the muon neutrino
comparable to Ry, In a two-neutrine model we can write

- z \(1Ge Ant)e?
P, =1 —sin®28, sin’ 51(_)( VL r';u}fj _
Rp/\ pe J\1073 eV

i"..mf,_ might be the difference in the squared masses of the tau neutrino

and the muon neutrino. There is no sign in the data of the muon neutrino
oscillating into an electron neutrino. Detailed fits to the data suggest
{imi}c" ~ 1073 l:\"z, and a large value for sin” 24,.

In neutrine physics, we see that nuclear physics, astrophysics, particle
physics, and indeed cosmology, come together, and present challenging
experimental and theoretical problems.

Froblems

13.1 Consider allowed fdecays which have a large energy release £y (e.g. the
decay of RE, §10.4). In such decays, the effects of Coulomb corrections
and finite lepton masses are small. Show that, peglecting these effects,

{#) the mean life depends on E, as £;°,

() the mean electron energy is £;/2.

Problems
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Fig. 133 The ratio of observed to expected events plotted as a function of cos &,
for muon-like and electron-like events, (See Harrison, P F. er af (1999, Phys.
Lett. B4S8 79

To examine the effect of a finite neutrino mass on the energy spec-

I the K-capture

;Be{nmm}- » iLl{nmm} o U]

trum, only decays with energy in a small range AE, ~ m ¢’ at the end-
point £, == F; are significant. Show that the proportion of such decays is
very small, of order AL/ Fo).

with the beryllium source at rest, the recoil energy of the lithium atoms

(mass 6336 Me"l.-’.."cz} was measured to be (3594 1.0) eV (Davis, R.
(1952}, Phys. Rev. B6, 976). The mass difference between the two
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atoms is 0.862 MeV/c". Show that this experiment implied the neutrino
mass to be less than 160 ke"'.-’_."fz.

The cross-sections for neutrino interactions are typically of order

Frd A
~ 'Ezw[—" )m"t‘z_
T ey 1 MeV m

where £ is the neutrino enerpy in the centre-of-mass frame.

In the core of a supernova, a neutrino will scatter mostly from neutrons.
Show that, ina core of radius 10 km and nucleon number 2.4 x 107, the
mean free path of a reutrino is

2
I MeV

{~ 175 m.
(E ) Jm

&

Consider scatterings in which a neutrino stavs a neutrino {as will usually
be the case for muon and taw neutrinos). Show that the time taken for a
neutrino to diffuse from the centre to the surface of this core is of order

£, : 3
9 2
(I _ v) 2% 107 s,

{Assume the neutrino path is a random walk, so that {R,.’f}}' steps are
needed to diffuse a distance R.)

For neutrinos in thepmal equilibrivm, the power emitted per unit area at
a surface is given approximately by a formuola similar to the Stefan
Boltzmann law for photons:

power per unit area = a,T*,

* ky

60 2 pt

{The factor 3 comes from the three neutrino types, and the factor (7/8)
from the Fermi-Dirac statistics.) Show that the core of a star with radius
10 km and surface temperature 7° given by

T = Te'fr,

where a, =3 x (T/8) % g0, 80d &y, =

where kpTp =4.2 MeV, t = 4.6 5, will radiate a total of 3 = 107 MeV
by neutrino emission.

14

The passage of energetic particles through
matter

In this chapter we consider the passage of energetic particles through
matter. Muclear reactions usually result in the production of such parti-
cles: g-particles, electrons, photons, nucleons, fission fragments, or what-
ever. In passing through matter, an energetic particle loses its energy,
ultimately largely into ionisation. The instruments of nuclear physics
are designed to detect and measure this deposited energy, and so it is
upon these processes that our knowledge of nuclear physics rests,

The subject is also basic to an understanding of the biological effects
of energetic particles, since a living cell can be damaged by the ionisation.
This can be of positive benefit, as in the destruction of malignant tissue in
cancer treatment, or a danger from which, for example, workers in the
nuclear power industry must be shiclded. Shiclding calculations also
depend on the physical principles set out in this chapter.

We limit the discussion to particles with kinetic energies up to around
10 MeV, in line with the nuclear physics described in Chapters 4-12. It is
mtended to give the reader a qualitative comprehension, rather than a
compendium of the most accurate formulae and data available for quan-
titative work.

14.1 Charged particles

We consider first the passage of charged particles, such as protons and o-
particles, through gases. For charged particles of energy < 10 MeV, the
dominant mechanism for energy loss is the exeitation or ionisation of the
atoms (or molecules) of the gas: electrons being excited to higher bound
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energy levels in the atom, or detached completely. The essential physics of
the process may be understood using dassical mechanics,

We consider a ‘fast’ particle, charge ze, velocity v, energy E, passing a
particle of charge ='e, mass my , initially at rest. We suppose that the fast
particle deviates a negligible amount from its initial straight-line path
along the x-axis (Fig. 14.1), and the rest particle at the point (0,5, 0)
moves only a negligible distance during the encounter. The distance b is
called the impact parameter.

The equation of motion of the fast particle is

where p is its momentum and E is the electric field due to the ‘rest’
particle. The magnetic field due to the ‘rest” particle will be negligible.
This equation remains valid for relativistic momenta.

The field E has components

1 (e P 1 (Z'ab
Todmeg (24 x2F T dmeg (B2 4 X2

Thus the change in momentum of the fast particle along its direction of
motion is small, for if we approximate its motion by x =,

zz'e? i di
M I:zr.‘[m Exd!¥ fm =ﬂ,
Fr=8 (mﬂ) (B + PR

whereas the particle acquires transverse momentum pp = Ap, given by

Fast particle | 8

trajectory —r E

Fig. 14.1 The approximate trajectory of a “fast’ particle passing a ‘rest’ parbcle.

14.1 Charged particles pLy

L r 2
: bds ZZ p
Pr =z F E}.d! = — itk r o= = — s
P dneg | Joo (B2 + 2 £2F dmeg [ b

(14.1)

{The integral is easily evaluated by the substitution v = htang.)

Since momentum is conserved overall, the ‘rest’ particle acquires
momentum (—pp) and, assuming that 1t does not attain a relativistie
velocity, gains kinetic energy {_;:I-‘i-,."'_’mh}. This energy must be lost by the
fast particle:

D dmeg | Blmy

- 22’ i 1
P e o, S _2( ) (14.2)

Note that AE does not depend on the mass of the fast particke, and that
the calculation is valid for relativistic velocities of the fast particle.

In applying this result, the ‘rest” particles are the atomic nuclel and
atomic electrons of the gas. For an atomic nucleus of atomic number Z,
' = Z, and (except for hydrogen) my = 2Zm,. For an eectron z'=—1
and mig = m,. Using the formula (14.2), when a fast charged particle
passes through a gas the ratio of the energy lost to the atomic electrons,
to the energy lost to the atomic nuclei, is = 2Zm, /m, = 4 x 10 (since each
nucleus has Z electrons). Thus the energy lost to the nuclei is negligible
compared with that lost to the electrons, and we shall only take the latter
into account. (We are implicitly assuming that the veloaty of the fast
particle is large compared with the velodties of the atomic electrons in
their orbits.)

If the gas is of mass density p, and consists of atoms of atomic
number Z, atomic mass mr,, the number of electrons per unit volume is
(p/m)Z. When the fast particle moves through a distance dx in the gas it
passes, on average, (p/p)Z 2rh db dx dectrons with impact parameter
between b and b+ db, and the energy lost to these electrons is

2
d‘*E:—am(z"z) pE. L e

dnsy] myv'm, b

Integrating this expression over all mpact parameters between by, and

Bass the total rate of energy loss along the path, or stopping power, s
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2 2
_d_E=4_rr(i) s lzf_, (14.3)

dx dmey | mm, v

where L =Inlb,., /b

AL min}'
Since ma = A atomic mass units, where 4 15 the mass number of the
atoms, we write this as

—jI—E=D(§)pc—f)EL, (14.4)

where

2 2
e 1 R
D=4 — 0.307 MeV ¢ _
T(ﬂ,m;ﬂ) ML931.5 MeV) M

and the mass density p of the material is expressed in g em™. (Note the
units. )

We have introduced parameters b, and by, Our formula (14.2)
clearly breaks down for small b, since the energy transfer cannot be
indefinitely large; it also breaks down at large b, since to ionise the
atom the energy transfer cannot be indefinitely small. A gquantum
mechanical calculation by Bethe which holds for charged particles
other than electrons and positrons gives equation (14.4) with

2?,2”&1_,2 "

where {I) is a suitably defined average ionisation energy over atomic
electrons.

The form of (14.5) can be understood qualitatively from the following
considerations. In quantum mechanics a particle is represented by a
wave-packet, and for the cdassical treatment to be a good approximation
the dimensions of the wave-packet Ax must surely be less than the impact
parameter b. By the uncertainty prindple, the minimum size of a wave-
packetis h/p = h/(pon). (For a particle of mass m moving relativistically
we must include y =11 —1.'2,-'f2}'£'.} In the centre-of-mass frame of the
two particles, the uncertainty in position is the same for both. If the fast
particle is massive compared with an electron, then in the centre-of-
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momentum frame it is nearly at rest and the electron has velocity = v and
hence momentum p = oy This suggests we should in this case take

h
yrigU

]

l|l.':I:u.'l:iﬂ.

At large mpact parameters the energy transfer 1s small, and we must
recognise that the electrons are bound in atoms and have discrete energy
levels, so that there will be a minimum energy of excitation, of the order
of the ionisation energy [ of the dectron. In a ‘collision time” 7, the energy
of a particle can be uncertain by AE = h/t,, so that to transfer energy [
requires 7. = /7. In our case the collision time w ~ b/, where the
factor y comes from relativistic considerations, so we take

hre

max — .r

b

We have then

o (Bmaxy e

This expression is very similar to (14.5). {7} is vsually treated as a para-

meter and determined by fitting the formula to expernimental data,
Though the formula is derived for gases, it 15 used for liquids and crystals
by adjusting {7). For compounds ‘Bragg’s additivity rule’ is found to hold
quite well: the energy losses computed for each constituent separately
may simply be added.

The energy loss increases as the particle slows down, due to the ]I."ﬂ":"
factor. (The logarithm is only a slowly varying function of its argument.)
Hence the heaviest ionisation is found towards the end of the track. This
s indeed the case, but the formula was derived for fast particles. At low
velocities, of the order of the atomic electron velocities, 1t becomes inva-
hd, and (—d E/dx) decreases to zere as the particle comes to rest. Figure
14.2 plots the stopping power for protons in copper from experimentally
determined data, together with the Bethe formula (14.5) with a fitted
value of {1

The energy-loss equation is of the form
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Deuteron energy T (Me¥)
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Proton energy T (MeV)

Fig. 142 The stopping power For protons and denterons in copper. The theore-
tical curve is from equation { 14.5) with {f} =0.37% keV. The experimental points
are from Andersen, H. H. o al. (1966), Phys. Rev. 153, 335

s aE = — d—T — . (function of v/c),

dx dx

where T is the kinetic energy of the fast particle. In relativistic mechanics,
T is given by

Mc?
T = M,

50 that we can express (v/c) as a function ﬂf'{]"'l."Mcz}, and write also

dr
—— —ZF(T/M), i14.6)
dx

where M 1s the mass of the fast particle. We can use this result to scale the
data for, say, protons, to apply to other particles. For example, the
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stopping power of copper for a 2.5 MeV proton is = that for a 5§ MeV
deuteron, since my = 2m, and z = 1 for both. The validity of this scaling
s exemplified by the experimental data also shown in Fig. 14.2.

The result (14.5) holds for particles massive compared with an elec-
tron, and must be modified for fast eectrons or positrons passing
through matter. In particular, the momentum of either electron in the
centre-of-mass  system  is ymeq.l,a'v“r[Z{}z + 1)), so that by, becomes
Ay [2(y + D]/ym,v. There are other quantum corrections, and the
expressions for electrons and positrons differ slightly. However, another
energy-loss mechanism becomes significant for electrons and positrons
at the higher energies in our range. This 15 Bremsstrahfung or, in
English, ‘braking radiation’, which is the energy loss by emission of
electromagnetic radiation when a charged particle accelerates and
decderates during its collisions with the constituent atoms of the matter
it i passing through. We shall not treat this in detail. Bremsstrahlung is
most significant in heavy elements, in which the Coulomb fields of the
nuclei are strongest. For electrons and positrons, the ratio of energy loss

rates is given approximately by

Bremsstrahlung energy loss  T(Z + 1.2)

ionisation energy loss 700

where T is the kinetic energy in MeV, and Z the atomic number of the
material.

The range R(Ty) of a fast particle of initial kinetic energy Ty, mass M,
is the mean distance it travels before it stops. Using the energy-loss equa-
tion in the form (14.6),

R(Ty) = f ar 1 f& AT MJ [TME gy
T lpdTidx T 2 )y ATIMA) T 2 g Flu)’

Another useful scaling law follows from this equation (Problem 14.1).
Given the expression for F(T/(Mc)) the integral can be performed
numerically. If 4 constant ‘mean’ I is used in the formula for dT/dx
we obtain the approximate result (Problem 14.2)

Lz T .
ROV ot (Mcz+r)' G
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MNote the mass M appearing in the denominator. If Bremsstrahlung is
negligible, a similar result holds for electrons, with L of the same order
of magnitude for the same material. Thus it 18 clear that in a given
material electrons and positrons travel a much greater distance on aver-
age than protons or other charged particles of the same kinetic energy. A
positron may annihilate with an electron whilst still in motion, but evenin
lead, where electrons are abundant, the probability that it comes to rest
before it annihilates is greater than 80%.

In connection with energy loss, itis often of interest to know the total
amount of ionisation caused by the deposition of energy. The primary
electrons knocked out of atoms may have sufficient energy to ionise
further atoms. It is found experimentally that the total number of elec-
tron—ion pairs produced is closely proportional to the energy deposited,
independently of the charge and velocity of the fast particle. The average
energy deposited per electron—ion pair formed is, typically, 30-40 ¢V for
gases, and 34 eV for semiconductors.

14.2  Multiple scattering of charged particles

We have assumed that the ‘fast’ particle travels along an approximately
straight path, but it is of course deflected in collisions. The angle of
deflection A8 in a single collision is given by

2
apnPio () 2
P dmey | bpu

using equation (14.1). This result agrees with the small-angle limit of the
well-known Rutherford scattering formula.

If the deflections occur randomly, as in a gas, the mean square trans-
verse momentum after several collisions (i) is given by

P = ()%

treating the vectors p} as a random walk.

Since for the atomic nuclei z' = Z, and for the atomic electrons
z" = —1, it is the nuclei rather than the electrons which are responsible
for scattering the fast particle (except in hydrogen) and we can regard the
electrons as simply screening the Coulomb field of the atomic nucleus at
large impact parameters.

14.3 Energetic pholns 07

In a distance Ax, the fast particle passes (p/pi,) 2mb db Ax nuclei
with impact parameters between b and b+ db, so that

2
— 2o fzZ\ 4 [db
.2. = —.n'i"a.l'.
P1 My (4.1?5;]) Ffb

Again, we have to impose a maximum and minimum b We should here

take bpey & an atomic dimension, beyvond which the electrons screen out
the field of the nucleus, and by, &~ a nuclear dimension, since for an
energetic particle it s only when the impact parameter becomes compar-
able with the nuclear size that the Rutherford formula gives large-angle
scattering, and our approximate expression breaks down. Such large-
angle scatterings, though historically important (§4.1), are rare. At even
smaller distances the Coulomb field of the nucleus is modified and nuclear
mteractions might occur.

Hence we have, roughly, [db/b = In(A /fm) = 10, and the mean
squared deflection in a path length Ax is given by

]
a- =

Ax 727
{;.}ET' (14.8)

=

2 (3 em® & MEV‘Z}

Thus the effect of multiple scattering increases rapidly with the atomic
number Z of the material. For heavy particles, py = mn? = 2T, and for
energetic electrons, pv == pe= T. Hence the mean square deflection per
unit kength is not very sensitive to the mass of the particle, at given kinetic
energy. However, the effects of multiple scattering become more evident
for electrons and positrons because of their longer path length, and the
concept of a well-defined linear range is not applicable to these particles.

14.3 Energetic photons

An energetic charged particle loses its energy in small fractions as it
passes through matter, and for a mven initial energy it travels a fairly
well-defined distance before it comes to rest. When an energetic photon
mteracts with an atom, it is totally absorbed or scattered. The intensity of
an initially collimated beam of photons is thereby attenuated, while the
individual photons keft in the beam are unscathed. It is useful to define an
attenuation coefficient, in terms of the total cross-section, oy, (E), for a
photon of energy E = ho to interact with an atom. We consider a thin
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section of the matenal, of area S, thickness dx, normal to the direction of
the photons. If the material is of density p and made up of atoms of mass
mig, the section will contain (p/my)Sdx atoms. For sufficiently small dx,
multiple scatterings can be neglected. If 7 incdent photons impinge at
random on the slab, then from the definition of cross-section (Appendix
A) the number of photons dn lost from the beam is given by (Fig. 14.3):

dn area covered by cross-sections
no total area
_(p/m)Sdxoy

=mE g o —lpimy)ay dx.

Integrating this equation yields
alx) = a(0pe™",

where jt = poy /s 15 called the hnear attenuation coefficient. It 15 usual
to mve data in terms of the masy attenuation cogfficient (w/p) = oy, /M.,
as a function of photon energy. The attenuation coefficient for com-
pounds can be caleulated to within a few per cent by assuming

w= Y pilohfml)
J_

where 7 labels the ith constituent.

In the range of photon energies from 1 keV to 10 MeV there are three
main contributions to o, photo-clectric absorption in atoms, the
Compton effect, and pair production. The relative importance of these

Incident
photons

Fip. 143 Effective total cross-section presented to photons inddent normally on
a slab of area &, thickness dx
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contributions varies with energy (Fig. 14.4). These processes do not inter-
fere with each other and we can take

Oy = 03 +Zag + ;.

Al low energies the photo-electric effect s dominant. In this process
the photon is absorbed completely by the atom, and an atomic electron is
raised to a higher unoccupied bound state or an unbound state. In Fig.
14.4 it will be seen that the cross-section for photo-clectric absorption o,
rises sharply at the energies corresponding to the onset of ionisation of
the L and K shell electrons. These energies are higher in heavier elements
in which the core electrons are more tightly bound (Fig. 14.5),

Al energies above the K shell absorption edge, the photo-electnc
absorption falls off and the scattering of photons by electrons takes over
as the maincontribution to the attenuation. This is Compéon scat tering, and
some of the photon energy goes into the recoil energy of the electron. At

I‘}.Iillr T T T l'|'1"|1'r L T T.1°¢ ]
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Fig. 14.4 Coniributions to the mass attenuation coefficient for photons in lead.
{Data for this figure and Fig. 14.5 from Review of Particle Properties (1983), Hev.
Maod. Phvs. 56, 51.)
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Fip. 145 'The mass attenuation coefficient for photons in some elements span-
ning the periodic tablke. Mote that both the horizontal and vertical scales are
loganthmic.

these energies the atomic binding of the electrons may be neglected and they
may be treated as free. The momentum-energy conservation caleulation is
elementary and well known. The caleulation of the Compton scattering
cross-section ag, like those of o, and o, is a well-understood caleulation
in quantum electrod ynamics, but the order of magnitude of o can be found
from a simple classical caleulation which is valid for low energies (ho <
m, " ) at which the electron recoil is negligible.

In a classical picture, the electron vibrates with the frequency of the
meident electromagnetic wave and emits a secondary wave at the same
frequency. The result of the classical caleulation (Problem 14.7) is an
effective cross-section op where
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2
aop = ETTF ("j—fﬂ) (#)2

—0.665 x 107 m* = .665 b.

This limiting value, which does not depend on frequency, is known as the
Thomson scattering cross-section. At higher energies (o = mec‘z} quan-
tum effects become important, and the Compton scattering cross-section
falls below this value. The corresponding Compton scattering from the
atomic nuclei is reduced by many orders of magnitude because of the
(massy factor in the denominator.

Since there are Z electrons for each atom, the attenuation due to
Compton scattering s given by

P (£
po = (pimg)fop = T (d)m;_

For elements other than hydrogen (£/ A) = i— so that their plots of (1/ p)
approximately coincde in the energy range where Compton scattering
dominates, as Fig. 14.5 shows. In this figure the value of (u/p) for hydro-
gen at low energies is close to (op/my) = 0397 em® g,

At photon energies ha > 2moc” = 1.02 MeV pair-production becomes
possible (§2.3). This is the process

v+ (nucleus) — e 4+ &7 + (nucleus),

which can occur most readily in the Coulomb field of a heavy nucleus.
The cross-section o, ncreases with energy, and eventually pair-produc-
tion dominates over other processes. It can be regarded as the inverse
process to Bremsstrahlung, and the cross-section o, increases with Z
similarly. This is why the turp-up in the curves of Fig. 14.5 is most
pronounced in the case of lead.

14.4 The relative penetrating power of energetic particles

Table 14.1 sets out the ranges of o-particles and electrons of 1 MeV
energy, and the attenuation length, p~', of photens of 1 MeV energy,
in air and in soft tssue.

The high penetrating power of energetic photons (called X-rays or y-
rays, depending on whether they come [Tom atomic or nuclear processes!)
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Table 14.1. fonising path lengths for 1 MeV clectrons and | Mel
a-particles, and 1 MeV photon attenuation lengths, in air and in soft
tissne
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Adr {cm) Soft tissue (cm)
Electron B0 .43
Alpha particle 0.52 7= 1074
Photon 1.1 = 104 14

{Data from American Instiiure of Physics Handbook, 3rd ed. 1972, New York:
Mo Graw-Hill.)

s used in medical diagnosis, and in industry, for imaging, The familiar
‘X-ray photograph’ depends on differences in X-ray absorption in differ-
ent materials.

The short range of electrons in matter is also exploited. A source of 8-
activity of appropriate energy, provided that it is not a significant source
of secondary p emission (see §7.5), may be implanted in diseased tissue to
give a localised source of radiation, so that diseased tissue is destroyed
whilst neighbouring healthy tissue is unaffected. P is an example of such
A clean f source.

In cases of accidental exposure to radiation, sources of g-radiation
and f-radiation are usually only harmful if taken into the body: because
of the short ranges involved, external sources are effectively shielded from
the body by any intervening material.

The analysis of the effect of external X-rays or y-rays is more com-
plex. The attenuation length for a photon is the mean distance it travels
before depositing any ionising energy. In the 1 MeV region, where
Compton scattering predominates, the recoil electron from the scattering
produces ionisation, but the scattered photon can still have sufficient
energy to undergo further scattering and produce more ionisations until
its energy becomes so low that photo-electric absorption takes place. The
situation is best analysed by computer simulations, using so-called
Monte-Carlo technigues.

Problems

141 Show that if R (T)is the range of a proton of kinetic energy T', the range
Ryi(Tyy) of acharged particle of mass M, kinetic energy Ty, and charge
ze is given by

14.4

14.6

M

Ru(Tye) = 5 Ry(mp Tag/ M).
=M

If L in equation {14.4) is replaced by a constant L, show that the integral

for the range of an ionising particle can be evaluated to give the approx-

imate result {14.7).

For ‘back-of-envelope” calculations, a useful estimate of the mean ioni-
sation energy (I} for an atom of atomic number Z is {f) = 122 eV,
Show that for e-particles of kinetic energy 2 MeV in aluminium the L
of equation (14.5) == 2; for electrons of kinetic energy 2 MeV in alumi-
nium, L == 10. Use these values to estimate the range of 5 MeV a-par-
ticles and of 5 MeV electrons in aluminium (mass density 2.7 g cm 5,
Show that for a non-relativistic particle of mass M, velocity o,
(dfdx) = Midu/de). Replacing L by a constant Lin equation {14.4),
show that the time for a non-relativistic particle with initial velocity v to
come to rest is (4/3) (range)/vg.

Estimate the time taken by the e-particle of Problem 14.3 to come to
rest.

In a neutron detector of the type described in Problem 8.2, estimate
roughly the number of ion pairs produced in the helium gas per neutron
interaction and the distance over which the ionisation is deposited.

50 keV Xerayvs are in common use in dentistry. Estimate the thickness of
lead sheet (density 11.4 gom ¥} that will absorb 99.9% of such radiation
at normal incidence.

Larmaor's formula for the power P radiated from a non-relativistic par-
ticle of charge ¢ and acceleration o is

e\

Show that classically an electron in an electric field E = Eqcos e will
radiate energy at a mean rate

. 1A [ &
T3 mlet \dmg

The incident energy flux in a plane electromagnetic wave is rs.;.lliglz,fz
icf. §12.8). Hence obtain the Thomson scattering formula.

P=

i 1
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Radiation and life

Life on Earth has evolved and is sustained by the light and heat of the
Sun. In addition to this essential and almost entirely benign flux of elec-
tromagnetic energy, living organisms have always been subject to the
hazards of natural ionising radiation. In the twenticth century man's
activities added somewhat to these hazards. On the other hand, ionising
radiation is used to great advantage in industry and for diagnostic and
therapeutic purposes in medicing, and nuclear power is not without its
benefits. The interaction between ionising radiation and hiving tissue is
therefore a matter of great interest and importance.

15.1 lonising radiation and biclogical damage

The basic unit of living tissue & the cell. Cells are complex structures
enclosed by a surface membrane. A cell has a central nucleus. This con-
tains DNA (deoxyribonucleic acid) molecules, which code the structure,
function, and replication of the cell. The famous ‘double helix’ of the
DMA molecule has a diameter of about 2 nm. About 80% of a cell
consists of water.

The induction of cancer or of hereditary disease by low levels of
ionising radiation is believed to be related to damage to the DNA mole-
cules. This can happen by direct ionisation of the molecule, or indirectly
through ionisation of the water molecules in the cell. The break-up of a
water molecule may produce a hydroxyl (OH)™ ion that is highly reactive
chemically and may attack the DNA molecule.

A single broken strand of DNA is rapidly repaired (within hours) by
cellular enzyme systems, the unbroken strand of the DNA acting as
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template. However, if there is at the same time adjacent damage to the
other strand, neither can be repaired in this way. There may then be
errors in the repair processes, and consequent abnormalities in cell beha-
viour. The cell may, for example, die, which at low levels of radiation is
usually a matter of little consequence. Damage to a cell which causes later
uncontrolled cell division may lead ultimately to a tumour developing,
albeit usually after a long period of latency. A cell involved in reproduc-
tion which 15 damaged but survives may transmit genetic defects to sub-
sequent generations,

The relative biological damage caused by different types of radiation
can be understood in terms of their effectiveness in causing a double
break in DNA strands. For example, we saw in Chapter 14 that electrons
and positrons travel a much greater distance in a given material than o-
particles of the same energy, and produce roughly the same number of
electron—ion pairs. Thus the e-particle ionisations are more closely
spaced, and it is more likely that an e-particle will damage both strands
of a DNA molecule, compared with a S-particle of the same energy.

15.2 Becguerels (and curies)

It will be helpful at this peint to introduce some specialised units into our
vocabulary.

Radioactive nuclei may emit o-particles, electrons, positrons,
photons, or fission products. The aceivity of a given nuclear species in a
given sample is the average number of decays per second of that species,
and is measured in becguerels: 1 Bg corresponds to an average of one
decay per second.

The total activity of a newly prepared sample may initially increase
with time, since the daughter products of a radioactive nucleus may also
be radioactive (Problem 15.2), though ultimately the total activity must
decay to z2ero.

The beequerd is the S1 unit which has replaced the cwrie:
1 Ci=3.7 = 10" Bg. The curie was defined originally as the **Ra activ-
ity of a source containing 1 g of “Ra. Since the mean life of 7*Ra is
7.28 = 10" 5, it is easy to check that the definition above is approximately
consistent with the older definition.
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15.3 Grays and sieverts (and rads and rems)

The absolute ghsorbed dose of radiarion at any point in a material is
defined as the energy per unit volume that has been absorbed by the
material, divided by the mass density at the point. The SI unit for
absorbed dose is the gray, corresponding to one joule of absorbed energy
per kilogram of material. (1 Gy = 6.24 x 10'* MeV kg™'.) An older unit
15 the rad: 1 Gy = 10° rad. In practice, a quoted absorbed dose will be an
average over some region, for example a whole body average or an aver-
age over some particular organ of the body.

It has been found that radiation damage to living tissue is not simply
proportional to the absolute absorbed dose, but depends on several other
factors, of which one is the type of radiation. For example, for the same
number of grays, e-particles are more damaging than p-radiation. From
medical experience, different types of radiation have been given radiation
weighting factors wyg. The wy factors are dimensionless numbers. For
many purposes it is conventional to take these factors to be

1 for X-rays, y-rays, f-particles and muons,
5 for protons =2 MeV,
20 for g-particles.

MNeutrons are uncharged and hence are not directly ionising.
However, in elastic collisions of neutrons with nuclei, the nuclel are set
in motion and become ionising, Neutron capture with p-ray cmission,
and nuclear fission, are other possible processes which lead to ionisation.
The radiation weighting factor for neutrons has been found to be strongly
energy dependent and 1s taken to be

5 for < 10 keV,

10 for 10-100 keV,
20 for 100 keV to 2 MeV,
10 for 2-20 MeV,

5 for = 20 MeV.

The stevert (Sv) is a unit combining the wg factor with the absorbed
dose: the eguivalent dose in Sv equals the absorbed dose in Gy, multiplied
by the wy factor for the radiation involved. The equivalent dose in Sv is
an indicator of the potential harm to living tissue of a given dose of
radiation. In practice equivalent doses are usually quoted in millisieverts.
The rem is related to the rad in the same way that the sievert is related to
the gray, so that 1 Sv= 107 rem.

15.4 Matural levels of radiation 7

As an example, the equivalent dose delivered by a 5 MeV a-decay in
the body 15 20 = 5 = 100 times the equivalent dose delivered by a 1 MeV
f-decay in the body.

Different organs and tissues of the human body (liver, bone marrow,
skin, ete.) have different sensitivities to ionising radiation. An effective
dose may be defined, weighting the equivalent dose received by the var-
ious major organs and tissues by an empirical factor related to the sus-
ceptibility to biclogeal damage of these organs and tissues, and summing
over the whole body. This gives a crude but useful “single number” mea-
sure of radiation damage. In the rest of this chapter, effective dose is
abbreviated to dose.

15.4 Matural levels of radiation

There are three principal natural sources of onising radiation: cosmic
rays, radicactive nuclei which participate in the chemistry of the body,
and radicactive elements present in rocks and soil.

Cosmue rays are very high energy particles which permeate the
Galaxy. Those which strike the Earth's atmosphere cause showers of
secondary particles; at sea level these secondaries deliver a dose of
about 0.25 mSv per year to the human body (Problem 15.3). The precise
dose depends on latitude and increases with altitude. At a height of
4000 m the dose would be about 2 mSv per year. Air travel adds an
average of 0L01 mSv per year to the UK cosmie ray dose.

The most significant radicactive nucleus that is found in the body is
WK, Potassium enters the body with a normal diet, and accounts for
about 0.2% of total body weight. The isotope joK., which has spin and
parity 47, has a long mean life of 1.85 x 10" years, and that which
remains since the Earth’s formation constitutes 0.0117% of natural potas-
sium. It s an odd-odd nucleus and can undergo all three types of §-
decay, but the most common mode (89%) is electron emission with a
kinetic energy release of 1.32 MeV, the remaining 11% of decays are
mostly by electron capture to an exdted state of **Ar, which then itself
decays by emitting a 1.46 MeV peray. From these decays the body
receives a dose of 0.17 mSv per year. Other radioactive nucle in the
body give in total a contribution of similar magnitude. (This is excluding
the contribution from inhaled radon described below.)

The dose of y-radiation arising from the decay products of radio-
active elements in the ground, principally from uranium and thorium,
depends on the local geology and is far more variable. Typically the p-
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radiation dose is between (.2 mSv and 0.4 mSv per person per year, but
in areas of granite rock may be several times higher. A greater hazard can
arise from the inhalation of the isotopes ““Rn and ™ Rn of the inert gas
radon. These are decay products of uranium and thorium and being
gaseous can diffuse out into the air. In particular they may emanate
from some building materials, and accumulate in ill-ventilated rooms.
““Rn decays to a sequence of a-emitters (Table 6.1) which are solids
and remain deposited in the lungs. “"Rn, arising from the 2“Th chain,
is similarly damaging. The dose received depends on building materials
and construction, subsoil, and ventilation, and obviously varies widely; it
has been estimated that the dose averaged over the UK is about 1.0 mSv
PEr person per year.

The average natural background radiation thus totals around
2.2 mSv per person per year.

18.5 Man-made sources of radiation

To the natural background radiation dose we must add the dose resulting
from man's activities since the carly twentieth century. The most signifi-
cant contribution to this comes from the medical applications of ionising
radiation in diagnostic radiology and radiotherapy. There are, of course,
very wide variations in the dose an individual receives. The dose from a
chest Xeray 15 about 0.2 mSv, while someone given a computed tomogra-
phy scan might receive 10 mSv. Averaged over the UK, the dose per
person from medical applications is about 0.37 mSv per year.

The average dose due to the radicactive fallout from nuclear weapons
testing in the atmosphere in 1999 was 0.004 mSy per year in the UK,
compared with a peak of 0.014 mSv per year in 1963, The average dose
due to the Chernobyl reactor accident i 1986 has dechined to 0.001 mSv
per year averaged over the UK, though there are considerable regional
variations. In normal operation the nuclear power industry does not add
appreciably to the average dose. The average dose from all stages of the
nuclear fuel cyele averages to 0.0002 mSv per year. Again there are wide
variations: it has been estimated that people living near some nuclear
facilities receive annual doses of 0.5 mSv.

Many individuals, through their work in medicing or in nuclear-
related (and other) industries, are habitually exposed to higher levels of
radiation than the average. It is necessary to monitor and protect these
people in so far as knowledge will allow. The National Radiation
Protection Board in the UK recommends a maximum exposure of
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15 m8v per year for such workers, Averaged over the entire population,
the average dose arising from occupational exposure 15 0.007 mSvy,

Thus the average dose per person from artificial sources of ionising
radiation is around 0.4 mSv per year in the UK. This is to be compared
with a natural background of 2.2 mSv per year.

15.6 Bisk assessment

The gray and sievert are large units in terms of biological damage: whole
body doses of p-radiation between 2.5 Gy and 3.0 Gy given over a short
period are likely to result in a 50% mortality rate within 30 days, in the
absence of medical intervention. At very low levels it is not yet established
with certainty whether or not a threshold for biological damage exists.
There 1s no way of identifving a cancer induced by tonising radiation from
other cancers of the same type which have appeared spontaneously. At a
low dose rate the number of radiation induced cancers i not statistically
significant, so that estrapolation from data at high doses, where the
effects are evident, is the only way to make an estimate. Risks are usually
assessed on the assumpton of a proportionality between dose and effects,
but the extrapolation from high doses is not straightforward. At low
doses, a double break in DNA strands is likely to come from two distinet
tracks independently causing breaks in the two DNA strands at nearly the
same place in the molecule, with the second break occurring before the
first break has been repaired. Such a process may be expected to happen
with a probability proportional to the square of the dose.

Data for whole body exposure to p-radiation come mainly from
studies of survivors of the atomic bombs dropped on Hiroshima and
MNagasaki in 1945, who were exposed to high and uncontrolled doses
for a short period. Information on the hazards of radon and its decay
products comes from studies of miners exposed to high concentrations of
radon. Other information comes from patients who have undergone
radiation treatment for medical reasons.

The International Commission on Radiological Protection has con-
cluded from these studies that, averaged over a ‘representative’ popula-
tion, the lifetime risk of contracting fatal cancer from unit cumulative
dose of radiation is about 5 x 1072 v, and averaged over the working
population 15 somewhat lower: 4 x 1072 Sy (since this latter average
excludes younger people, who have more vears at risk). The emphasis
on fatal cancers allows comparisons to be made with other fatality rates.
For example, a radiation worker occupationally exposed to 1.5 mSv per
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year has an addidonal annual risk of death from radiation induced cancer
of ~4 x 1072 x 1.5 x 107 = 6.x 107, or 1 in 17000, which is about the
same as the fatality rate from accidents to workers in the UK construc-
tion industry. The annual risk of contracting fatal cancer induced by
natural radiation is ~ 5% 1072 %22 %1077 = 1.1 = 1(]_‘, or 1 m 9000,

Risk assessment is important as a guide to action. For example, about
half of the average natural radiation dose comes from radon in buildings.
It is clearly desirable to reduce the risk of those exposed to very much
higher than average radon concentration in their homes or workplaces, as
a consequence of local geology. Quite simple measures (fans, sealing) can
reduce the low of radon gas released from the soil and from construction
materials,

{The numerical data quoted in this chapter have been taken from
Living with Radiation, National Radiation Protection Board, 1998.)

Problems

151 5.9% of all #°U fissions produce a “'Cs nucleus within about 5 min-

utes, The mean life of ' Cs is 44 vears. It is a particularly dangerous
radioactive isotope if released in the atmosphere.
Estimate the activity of *'Csin a reactor that has been running at 3 GW
thermal power for one vear. In the Chernobyl accident 13% of this
isotope was released. Estimate its mean activity per square metre if it
was spread over a million square kilometres.

15.2 The mean life of "S5 Ra (2300 vears) is so long that the radium activity of
a newly prepared one curie source will be essentially constant. The mean
life of its daughter nucleus = Rn is r = 5.52 days, Show that the radon
activity approaches the radium activity according to

Rn activity = {1 —e™"") Ci.

The subsequent decays in the chain (see Tahle 6.1) down to 29Pb all
have mean lives of less than an hour, but 212Pb is relatively stable with a
mean life of 30 vears. Estimate the total activity of the source one month
after preparation.

15.3 At sea level most of the flux of ionising particles induced by cosmic rays
consists of muons, and over all angles the total flux is about 170 particles
m ™" 57 The mean muon energy is about 2 x 10° MeV. In the body the
muons will lose energy predominantly by ionisation. Hstimate the
annual body dose due to this source, mking the mean L of equation

(14.4) o be 14.

Problems 2

Lh
A

15.4 The body contains about 18% by weight of carbon, of which a small

proportion is the A-unstable isotope '§C. About one-third of the decay
energy of 0.156 MeV is taken by the electron, and there are no asso-
ciated y-rays. The activity of 1 g of natral carbon is 15.3 decays per
minute. Estimate the annual whole body dose of radiation from this
source.

Check that the quoted value of 0.17 m3v per vear body dose from YK is
consistent with the information given. (Assume that abowt half of the
1.32 MeV energy release in e emission is taken by the anti-neutrino,
and take the attenuation length of a 1.45 MeV y-ray in the body to be
17 cm.)




Appendix A
Cross-sections

We begin this appendix by considering neutron cross-sections. There is
some simplification in the case of neutrons, since they are electrically
neutral and do not interact through the long-range Coulomb force. To
a good approxmation they can be considered to interact only through the
short-range nuclear force. The concepts developed for neutrons may be
applied almost immediately to other electrical neutral particles, such as
photons. We then turn to the case of charged particles.

A1 Meutron and photon cross-sections

We consider a neutron approaching from a distance a nucleus which is at
rest. (Any interactions between the neutron and the atomic electrons will
be neglected. ) We suppose that, if the nucleus were not present, the prob-
ability of the neutron passing anywhere through a circde of radius a,
centred on the nucleus and perpendicular to the direction of the neutron’s
motion, would be uniform (Fig. A1), ie. the probability of it passing
through an area 44 would be 5.4,.-’{.1?&2}. We can think of the neutron as a
classical particle, or better, as a quantum-mechanical wave-packet. The
radius @ must be large compared with both the size of the wave-packet
and the size of the nucleus. With the nucleus present, an nteraction can
take place, for example scattering, induced fission, or radiative capture. It
is found that, provided a is large enough, the probability of an interaction
is inversely proportional to the area wd, e

i i . Tyt
bability of interact = — Al
pro 1Ly ol interachion = (A1)

-
-4
(]
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Incident
neutron

Fig. A1 MNeutron inadent on area centred on nocleus at rest.

The constant of proportionality introduced here, oy, i called the toral
crosg-section. Clearly oy, has the dimensions of area. It can be regarded as
the effective area presented to the neutron by the nucleus, but it must be
realised that the cross-section is a joint property of the neutron and
nucleus, and for a given nucleus it is a sensitive function of neutron
energy. The probability of interaction is a quantum-mechanical property:
T can be very much larger than the geometrical cross-section of the
nucleus.

The system of a moving particle inddent on a nucleus at rest is called
the laboratory system. With fixed targets, it is the situation most easy to
simulate in the laboratory. It is also useful to consider interactions in the
frame of reference in which the nucleus has momentum equal in magni-
tude but opposite in direction to the neutron. It is clear from the defini-
tion that the total cross-section is the same viewed in this ‘centre-of-mass’
system as in the laboratory system.

There will usually be several possible reaction channels, ie. types of
interaction that can occur. Examples are:

Flastic scattering: the mecoming neutron changes direction but, in the
centre-of-mass system, loses no energy.

Inefastic scartering: the incoming neutron changes direction and, even in
the centre-of-mass system, loses energy in excting the nucleus.

Radiative capture: the incoming neutron is captured by the nucleus. The
resulting nueleus is formed in an excited state, which eventually decays

by photon emission.

Given that a reaction occurs, cach reaction channel i has a defimte
probability p;, where

ZP": 1.

i




224 Appandix A

The partial cross-section, o; for the ith channel, is defined to be
a; = PO, and may be regarded as the effective area presented by the
target nucleus to the neutron for that particular reaction. We hawve

T = E T
:

Photon cross-sections can be defined in direct analogy with neutron
cross-sections, but since photons interact with atomic electrons as well as
with nuclei it is more appropriate to consider the target to be an atom.
Various contributions to the total cross-section for a photon to interact
with an atom are discussed in Chapter 14,

A2 Differential cross-sections

In considering a particular reaction channel it is often useful to subdivide
it further. For example, in the elastic scattering of neutrons it can be of
interest to know the probability distribution of the angle at which the
neutron emerges from the interaction. Given that an elastic scattering
ocours, if pg(d, ¢)d2 is the probability that the neutron is scattered into
a small solid angle d2 = sin#dfdg, at a polar angle 8 and ammuthal
angle ¢ with respect to its incident direction, we write (Fig. A2)

| /da,
(6, $)dR = H—(d’f’;) aa. (A2)
[

Incident beam
it waksbre!

Fig. A2 Geometry of elastic scattering from a fined targel mto a small sohd
angle d = =sin #d# d about a polar angle @ and azimuothal angle @
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This defines the elastic differential cross-section dog /d82, and

L

dﬂds‘z = Cas (A3)

Differential cross-sections are usually measured in the laboratory with
respect to a fixed target. In the centre-of-mass frame the direction of a
scattered neutron, and hence the angular dependence of the cross-section,
will be different. The kinematic transformation between the frames is
straightforward, and experimental data is often presented in the centre-
of-mass frame to facilitate comparison with theory.

A3  Reaction rates

Consider a broad collimated beam of mono-energetic neutrons. Let g, be
the number density of neutrons in the beam, and v the neutron velocity.
The newtron flux, 1e. the number of neutrons crossing a unit area normal
to the beam per unit time, 5 p,v. Hence in time d¢, the number of
neutrons passing through a circle of radivs a centred on a nucleus is
pardi . ma”. From (A1), the probability of a reaction with the nudeus
taking place in the time interval ¢, ¢ + dt, given the nucleus is in its ground
state at time f, is py v, df Thus the reaction rate per nucleus is p,ve, or

reaction rate = flux = cross-section.

We may also consider a single neutron, moving with velodty v in a
random array of nuclei of number density p,,.. By the same argument (in
the frame in which the neutron is at rest and the nuclei are regarded as a
beam) the reaction rate 15 pruetoe. Given that the neutron exists at ¢ = 0,
the mean time v before an interaction takes place is, therefore,
T =(0,,.10,,) ', and the mean free path I, the distance it travels in this
time, 1%

[ =11 = 1 /{ PoueOtat)- (Ad)

(We have assumed that tis very much shorter than the quarter of an hour
mirinsic mean life of the neutron.)
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A4  Charged particle cross-sections: Rutherford scattering

The difficulties that arise in charged particle scattering stem from the long
range of the Coulomb foree. In §14.2 1t s shown that a charged particle,
say a proton, passing a fixed target, say a nucleus of charge Ze, is
deflected through an angle 8 given approximately by

Zet\ 2
p=] )2 (A5)
dmey | bpu

where p is the momentum and o the veloaty of the proton, and b 15 the
tmpact parameter, the distance at which the proton would pass the
nucleus if there were no mteraction (Fig. 14.1).

Impact parameters between b and b+ db correspond to scattering
angles between & and 8 — df where

o] 2
L L
b2 \dmsypu

The effective area presented to the proton which corresponds to this

range db of impact parameters s 2rhdb, and we can interpret this as a
contribution to the elastic scattering cross-section,

do, = Zmbdb
27e* \do
27 .
=2.11:(—) —, using ALS).
dmegpu] &

The differential scattering cross-section for small angles is therefore

do, 1 deo,

3 g {2z Y1
d2  2msind 49 \dmeggpu) &

where we have replaced sin® by 8. This is the small-angle limit of the
famous Rutherford scattering formula. The same expression is obtained
from a quantum-mechanical caleulation.

The differential cross-section becomes very large when &8 is very small,
and the total elastic cross-section, defined by the integral (A.3), and hence
the total cross-section, 15 infinite. Physically this is because the Coulomb
force is still felt by the proton no matter how large the impact parameter.
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In practice this formally infinite result 5 not a serious difficulty, since
there is always a limit to the experimentalist’s ability to measure small-
angle scattering, and if one is interested only in elastic scattering through
angles greater than some minimum angle the cross-section is finite.

At large impact parameters the Coulomb foree is weak, and can only
give rise to small-angle elastic scattering. The cross-sections for other
possible processes are all finite.

Appendix B
Density of states

Consider a particle moving freely inside a cubic box of side L, volume
V = L} We take the potential to be zero inside the box, and represent the
walls by infinite potential barriers. The Schridinger equation for the
particle,

ﬁz

2

Vi = Ey, (B.1)

is separable in (x, y. z) coordinates, and the solutions must vanish at the
walls which we can take to be the planes x =0 and x =L, y =0 and
y=UL, z=10 and z = L. These solutions are easily seen to be standing
waves of the form

wix, ¥, z) = (constant) sin(k,x) sin(k,v) sin(k-2), (B.2)

provided that we choose k = (k.. &, k.) from the values

2] nT
.L-A.:%, m=123%..; k=" m=123
I
.= — c=1.2:3
- L na.

to satisfy the boundary conditions. Negative integer values of n,, n,. n. do
not give new states, since they merely change the sign of the wave-func-
tion, and such a phase factor has no physical significance.

Thus the allowed values of k form a cubic lattice of points in the (+,
+.+) quadrant of ‘k-space’. Each eigenstate (B.2) corresponds to one
point of the lattice, and counting states is equivalent to counting lattice
points. The spacing between these lattice points is (/L) so that the
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number of points per unit ‘volume® in k-space is (L/7). The number of
lattice points with k(= [k[) less than some fixed value &y is the number
enclosed within the quadrant of the sphere centred at the origin and of
radius &y This number must of course be an integer, but for large values
of Ky it will be approximately given by:

(volume of quadrant of sphere) = (density of lattice points)
_ 14mkg (L)’_ Vo ok
T ® 3 N

X
(B.3)

The number of points with & lying in the range ky = k = kg +dky is the
differential of (B.3):

-

J
it Ak dky. (B4)

We will consider the case of a spin 3 fermion (for example, an electron
or a nucleon). Then two states (‘spin-up” and ‘spin-down’) can be assigned
to cach k value, from (B.3) the number of states Ay with & < & i3

. vV 4nk 4 N
Ny ZEQT‘ or k; =3f?_ (B.5)
For the non-relativistic Schrodinger equation (B.1), the energy E of a
particle in a state of specified {n,, n,, n.) and either spin, is related to £ by

i
E=—(k; +k; + k) = —Kk. (B.6)
M

2m

The tnregrated density of stares NUE) 15 defined as the number of states
1

with energy less than E. From (B.6) & = (ZmE/ PIZF; hence using (B.5) we

have

; -
S Vo 2mE
N(E) =ﬁ(%) : (B.7)

The density of states nlE) = dN /dE, so that a(E)dE 15 the number of
states with energy between £ and E +dE:
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r ; 3
dN S - I

If the spin factor is omitted,

3

Foof ey

n(E) =—(—) E. (B9

4 \ i )

In scattering problems, it is convenient to consider a large volume 1
and impose ‘periodic boundary conditions’ on the wave-functions:

Ylx + L,y.z) = ¥(x. y.2).
Plx, ¥y + L, z) = ¥(x, v, z)
Wx, v,z 4+ L) =(x, y.2).

Instead of the standing waves (B.2), the solutions of the wave-equation
consistent with the boundary conditions are the travelling waves

ks ke ik w

el _ ghereibpreits

where, to satisfy the periodicity conditions, we must now take

ke="T7 me=0,£L42,..., e

The density of points in k-space becomes (L/27). However, permuta-
tions of sign (+k,, £k, £k.) now correspond to different states (travel-
ing waves in different directions), and the lattice points corresponding to
distinet states with [k| < kg fill the whole sphere of radius &y in k-space.
We thus arrive again at the results (B.3) and (B.5); (B.7) and (B.8), which
hold for non-relativistic spin ¥ fermions, are also still valid.

In fact, in the limit when the linear dimensions of the box become
large compared with the de Broglie wavelength of the particle at energy E,
the result for the density of states at energy E becomes independent both
of the boundary conditions imposed and of the shape of the box, pro-
vided this remains simple. The integrated density of states in a sphere s
illustrated in Fig. 5.2,
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Problems
B.1{a) For a single particle in a large volume V), show that the number of
allowed k-values in a small volume d*k = di, di, dk. of k-space is
v

d'k
2q)

() Show that, for two particles (1) and (2), the wave-vector associated with
the centre-of-mass motion s K = k; + k; and with the relative motion is
k = (myky — maky )/ (s -+ m2). Hence show

d*Kd'k = d’k, d'k,

and that the number of (K, k) values with K in the range K, K + d& and
ke in the range k. k 4+ dk is (V20 4n*)K2 d K k2 die if the particles are dis-
tinguishable, but {1282 K2 dK &7 dk if the particles are identical.

Appendix C
Angular momentum

Students are referred to texts on quantum mechanics for the derivations
of the results summarised in this appendix, which is mtended as no more
than an aide-mémoire.

C.1 Orbital angular momentum

In the shell model of both atomic and nuclear physics the single-particle
Schrédinger equation, neglecting effects of the intrinsic spin of the parti-
cle, 158 of the form

h.!
Hifr = (_ Wv’* + L’{r})u&{r} — Eidr), (C.1)
where the potential energy ¥ir) is spherically symmetric, a function of the
radial coordinate r only. Because of spherical symmetry, the operator V-
s most useful in spherical polar coordinates (r, 8, ¢), in which the
Schrédinger equation takes the form

W e ;
7 EFF{H{’} + (W—i— ¥ {f'})lf‘ = Ey, .2)
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where L* = f_i + Ei + Lf and L is the orbital angular momentum opera-
tor,

L=rxp=rx=(—ihV)

L acts only on the angular coordinates (9, ¢). For example,

From the defimtion of L, it 15 not difficult to obtan the commutation
relations

[Ly.L)= ihL., [L,L]=ihL, [L.LJ=ihL;
A d {C.3)
L2 L)=[1% L) =L L.]=0.

Because L, L,, L, do not commute, it i not generally possible for a
wave-function to be simultaneously an eigenstate of any two of them, but
it is always possible to construct simultaneous eigenstates of L and any
one of L,, L, L. Itis conventional to choose LYand L_.

The simultaneous eigenstates of L and L, are denoted by ¥,,.(8, ¢).,
where

LY, =+ DY,
i = 11, | Eiagt 7 (C.4)
Lth! = ”rh]’.irm'

The allowed values of { are the integers { =0, 1, 2, 3, ... and, for a given /,
mi takes one of the (2/ + 1) values =/, =/ +1,...,{— 1,/ The functions
YiwlB, ) are well-known spherical harmonics, and are normalised so that

f Y i Vi A2 = f désing fj dp Y7, (6. ) V1. (6. )
i 1
= Bt B«

For example, ¥Fgy = 1/+/4m; a state of zero orbital angular momentum is
spherically symmetric. Also
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[3 x+iy

fii=—)———=— '— i
11 1||'IEJT e 1\'& '11!1 L
."Tz '3
¥ig =+ — =,/ —cas8
M Viarr Viarn
i
'3 x—iy /

Yij= 1'|" = 1I|"I_Jrl'mSL
MNote that these states with { = 1 can be formed from the components of
the umt vector (x/r, y/r, zfr).

These examples illustrate a general rule; the parity of a state of given {
is (—1).

From (C.2), the eigenfunctions of the Schridinger equation are of the
form

Vot = Ui F) V[ B, ) (C.5)

where n,; satisfies the ordinary differential equation

2 2
gt () + (% - Vm) ) = Exit(r).
There are several examples of potentials Fir) for which the radial func-
tions wy(r) are elementary, and many others for which the numerical
solutions are easy to program on computers.

Note that the energy eigenstates (C.5) are also eigenstates of L and
L. This is only possible because of the spherical symmetry of Fir), which
allows L and L. (which acton # and ¢ only) to commute with the energy
operator.

C.2 Intrinsic angular momentum

A particle may have an intrinsic angular momentum or spin s, satisfying
the same commutation relations as (C.3). The eigenvalues of s are
sy + l}hz and my, can take (25 + 1) values from —s to +s. In the case
of orbital angular momentum treated above, { must be a positive integer.
This condition stems from the single-valuedness of the wave-function in
space. The quantum number s is not subject to this restriction, since the
coordinates on which s acts are internal to the particle, and we require
only that (25 + 1) should be an mteger. Thus we may have s =%, as 1s the
case with leptons and nucleons. For s = § there are two eigenstates, cor-
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responding to m, = +%,nrﬁ. = —%. We may denote these by | +%f| and
— L. A general wave-function for the spin 1 fermion is a superposition
of ‘spin-up’ and ‘spin-down’ states of the form

Wir, my) = Y (O] + 3 + () - 3.

The two independent spin states | +3), | — i—j may be represented by
column vectors

. 1 , 0
= (3) 8-(2)

Sys 8y, 5, are then represented by 2 x 2 matrices. It is convenient to take
out a factor (#/2) and write s=( i/2)e = ( #i/ 2o, 5., 02). It is easy to

verify that the commutation relations are satisfied using the Pauli

matrices:
_f1 0
A0 =1 )

a0y (0
*={t o) *TLi o)

|+4) and | — 3 are eigenvalues of o, with eigenvalues +1 and —1.

C.3 Addition of angular momenta

The total angular momentum of a spin 3 fermion is the sum of its orbital
and intrinsic angular momenta:

J=L+s.

Itiseasy to see that Jsatisfies commutation relations similar to (C.3), and
also [J,L*]=0, [J.5°] =0.1tis th'rtFﬂrL possible to find states which are
simultaneous egenstates of L2, s*, J% and j., specified by quantum num-
bers ([, 5.7, ). These states have pdnly -1y

For a given value of / and s :% there are 2 x (21 + 1) = 4/ + 2 inde-
pendent states, ¥, :tg:l We seek the linear combinations of these which
are the eigenstates of J° and J.. Since J, = L, + s,, the maximum value of
J: 18 I +%, corresponding to the state ¥y|+3). Thi:{ must alse be the
maximum value of j, and the state must also be an eigenstate of J°
corresponding to j=1+5 . =1+1

There are two independent states giving j. =1/ — E= ie ¥pp 4l +2f|
Yp1l = 3. From these we must be able to construct the state correspond-
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ing to j =I+3 j.={—3 Another independent state can also be con-
structed; this clearly must correspond toj=/-4 .=1-1

The value j=/+% gives 2(/ +5+1=2{+2 states; the value
Jj=1—3 gives 2(I — ‘1—2} + 1 = 2{ states. Altogether, we have (4/ + 2) inde-
pendent states, corresponding to the values j =/ +%, JF=il= % and there
can be no more allowed values of j. We can think of the intrinsic spin s of
the particle as either aligned or anti-aligned with the orbital angular
momentum vector L, in so far as the uncertainty principle allows.

More generally, for two particles, or two systems, with angular
momenta J; and Ja, we may form

J=J +Ja

By an extension of the argument above, it can be shown that, for given
values of j; and j, the allowed values of j are

i=h+ia+p—1,..4] J1—1al,
50 that

Lii—dal €7 < ji+h.

C.4 The deuteron
The total intrinsic spin 8 of two spiﬂ% fermions is
5 =8+ 8,

where from the rules above the quantum number § can take the values
5 =1and 5 =0. Explicitly, the three § = | states |8, §,,) are found to be

L1 =1+3 1+
L0 =(+ 31 =D+ 1 =1+ Daiv2 (C.6)
=1 =]-5-1

and the § = 0 state 13
10,0y = (| + 311 —F2— | =Bl + 52/ 2. (C.7)

(The factors /2 are for normalsation.)
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The deuteron s a neutron—proton bound pair having total spin
J =L+ 85 with quantum number f = 1 and total intrinsic spin 8 with
quantum number § = 1. Neglecting a small { = 2 wave component, its
spatial wave-function s an / = 0 state. The wave-function of a deuteron
at rest is therefore approximately of the form

wlrl, m, ),

where r 15 the distance between the two nuoele.

From (C.6), it will be seen that this wave-function is symmetric under
the interchange of proton and neutron, Thus such a state is not accessible
to two protons, or o two neutrons, since the wave-functions of two
identical fermions must be anti-symmetric under particle interchange
(§1.1). Although two nucleons with net intrinsic spin zero experience a
strong attraction, this attraction is not sufficient to produce a bound state
and the deuteron is the only bound state of two nucleons.

Problems

C.1  Show that [ = 0 wave-functions {r) (functions only of the radial coor-
dinate r) are also eigenstates of L., L,, L.

.2 Explain why the single particle states specified by ({, 5, /. ;) introduced in
§C.3 have parity | I}I.
C.3(a) Show that the state |0, 0) given by equation (C.7) is an eigenstate of
S=81; +35), 8, and S, and hence that it has total spin zero.

(#) Show that
S 1) = h1 1)
and

S, 1) =281, 1),

Appendix D
Unstable states and resonances

In discussing unstable states, we have in mind a system like an excited
nucleus, or a f~unstable nuceus. An unstable state of a system will decay,
and often there are several alternative modes of decay. For example, an
excited state of a nucleus can have several states of lower energy to which
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it can decay by emitting a photon, and some f-unstable nuclei can decay
by either 87 or g -emission. Such distinct modes of decay are called
decay channels,

An unstable state has certain probabilities per unit time, called partial
decay rates, to decay into any of its channels. We shall denote these
probabilities by 1/t;, where the t; have the dimension of time and 7 labels
the fth decay channel. The total decay rate 1/t is the sum of the partial
decay rates:

1 1
TS JZE (D.1)

We shall also find it useful to define partial widths T; and roral widths
' by I';= kg, I'= h/r. These have the dimensions of energy, and
clearly

r= Z r,. (D.2)

The probability that the unstable state will decay to the ith channe is
the ratio of the partial decay rate into that channel to the total rate, ie.
ry/T.

For many of our applications it will be important that T is a small
energy on the nuclear energy scale of MeV. For example, in p-decay a
mean life ~ 107" g corresponds to '~ 0.1 eV,

We have seen (§2.3) that a decay rate 1/t implies that a state will
decay according to the exponential law

P(t) = P(O)e ",

where P¢) is the probability of the state surviving at tme ¢. Thus we can
identify the total decay rate with the inverse of the mean life.

0.1 Time development of a guantum system

We denote the wave-function of the unstable state by 1y, and the states
mto which it can decay by ¥y, v, ... . ... (For example, the state 1y,
might be that of a nucleus prior to o-decay, and the states (o = 0)
describe the residual nucleus and e-particle in their ground states, and the
energy and direction of their relative motion.) We shall use periodic
boundary conditions, supposing our system enclosed in a large volume
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V, 5o that all the states are discrete and may be normalised to unity. They
can always be chosen to be orthogonal to each other. We may therefore
take

fmmw=%.

where dg = diall relevant coordinates).

¥y 1s not an exact energy eigenstate: if it were, it would not decay.
Thus the state 9 of the system, which 15 iy at =10, develops an
admixture of the final states. We can express Wir) as a superposition of
the states 1, and write

V() =) an(e 5 Ry, (D3)
=il
The phase factors, with

Er = Hyw = [ ViHYm da,

where H is the Hamiltonian of the system, have been inserted for con-
venience. I all the states were exact eigenstates of H, the coefficients ap
would not depend on time. However, we are interested in the case when
the matrix elements H,,, = [ ¥y, Hr, dg are in general non-vanishing for
m # n. Inserting the expansion (D.3) in the Schrodinger equation

ag

th—= HW¥
! it

Y (ihdme 5 N+ ™5 M) = 3 g™ S R,

m

Multiplying by 9% and integrating, the orthogonality relation picks out
the time dependence of a,:

ihid, =) Hye Bk (DA4)
mzn

(noting E, = H,,).
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So far our equations are exact. The initial conditions at ¢ =0 are
=1, a0 =0form = 1.

We now work to first order in the quantities H,,,, supposed small
when n 2= m. Then for n 2= 1 we have approximately

1ha, = Hygle BBy, (D.5)

The state iy 15 unstable. We make the ansatz that ay(f) = e TR g
that |ag()* = ¢ ™", and the probability of finding the system in the state
Yy decays exponentially with tme. The equations (1D.5) can then be inte-
grated to give

¢
ihau(t) = H"ﬂf E_i{"‘h—ﬂn}—il',f'z]t"_r'h de’
i
h t_ﬂf‘;'l—ﬁn}—ii'jl]r’_,-'ﬁ ¥
D\ (E, — Eg)+1T/2

1

—Itf 2

For tmes ¢ = #/T, ¢ — 0 and for such times

Hg
(E, — Ep) +il'/2

agl ) =
Thus the probability of decay to the state yr, is
. 2.1'!'. A
la ()" = ?[H"j.- PE, — E),

where

r 1

PLE, — Eg) = :
C T (B, - E) + T4

The function P(E — Ey) is shown graphically in Fig. D1. The factor I'/2x
has been inserted so that

F P(E — E)dE=1.

An important aspect of our result which is exhibited in this figure is that
the energy of the final state E, 1s notidentically equal to Ey, and indeed is
not absolutely determined. This feature is not to be interpreted as a
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2¢e07!

(= -

L | 1 | 1
Eo—2T' E, E,+ T

Fig. D1 The function P{E — £) = (TImE — £ + 1240

violation of energy conservation, but as a consequence of the fact that the
state 1y does not have a definite energy. The instability of the state
mmplics that it has a small spread of energy of width T' about its mean
energy Ey = [ yiHy,dg. The function P(E — Eg) can be regarded as the
probability distribution in energy of the state .

It is interesting to remark that we can now interpret the relationship

tF'=h

as a relationship between uncertainty in energy and lifetime, somewhat
similar to the Heisenberg uncertainty relation between momentum and
position.

To obtain the probability of decay to a channel §, we must sum over
all the states nin {. For example, consider the a-decay of U nucleus at
rest:

53U — 3 Th + He.
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In this case, { is the e-decay channel. All the nuclel involved have zero
spin, so that the states # in channel § are completely specified by their
energy, and the direction of emission of the e-particle. Since there are no
spin orientations to be considered, the matrix element H,, will not depend
on the direction of emission, and the probability of decay to channel 7 is

i
> la (P = [ 1 *PE — Egn(E)AE,

i g

where s E) is the density of states in channe i at energy E (Appendix B).

For I small, the integral comes almost entirely from around the peak
in P{E— Eg)at By Assuming that a4 E) and H,.ﬂ!z vary slowly with £
over the width of the peak, we may evaluate them at Ej and treat them as
constant in the integration to give

-
Z Laﬂ“};z :%: Hnlilgz‘nf{Eﬂ }

a i i

Since the probability of decay to channel 7 is simply T'/T, it follows
that the partial decay rate, when no spins are involved, is

1 T, 2
_:IJ:%E P Ey). (D.6)

This result 1 known as Fermi's golden rule.

In the more general situation when the decay products have spin, and
the initial unstable state has spin j, we will include in the channel § all the
spin states of the final particles, and consider the case when the spin of the
unstable state is not polarised in any particular direction. We must then
average over all (27 + 1) initial spin states. After averaging, the result does
not depend on direction and the formula (D.6) becomes

1 ]._'J- 11THJ-{.E,:|_} a
TR TR 2ia 1 2w | Hal D.7
1, h h 2;'+1Z e Seddd

where the sum is over all initial spin states and final spin states, and #,(E)
is the density of states neglecting spin.
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0.2 The formation of excited states in scattering: resonances and
the Breit-Wigner tormula

We now consider a channel § which consists of two particles. We take as
an example a neutron interacting with a nucleus 7 at an energy close to an
energy at which the two can combine to form the unstable excited state
X0 created, X will then decay into one of its decay channels, say
channel f. The overall process can be represented by

n+7f— X" — (channel /).

Such scattering processes which proceed through an intermediate
unstable state have important characteristics we wish to discuss. We con-
sider a situation where mitially the amplitude gy of the unstable state is
zero, e apll) =0, and the system is in an initial state, ¥y say, which
belongs to channel £, so that @ (0) = 1. The amplitude ag develops in time
according to the exact equation (D4) with n=10:

i. h(-?ﬂ = Z H,:'hl’_"_!.{&"_&}r';hﬂm.
ml

Apgain working to first order in the small quantities Hy, we have

i.hf-?ﬂ — —i{l",r'?}ﬂﬂ + Hﬂ]t_.‘.ﬁl_f‘:]}f.:';l-
The term involving I' which we have introduced gives the decay of the
unstable state in accordance with our ansarz and takes account, in a
phenomenological way, of the small terms in the exact equation that
have otherwise been neglected.

We can write this equation as

o d g st
lh_[ﬂﬂfi I'_,.zﬁ-} i Hﬂ]f :Il:.f.‘q f&ﬂ'l-:l[_|'.|!::II'_,fl1
de
s0 that
- f 2 = = I P
i hage 2R =f Hyje B hHr2esh g0
i

For times ¢ long compared with #/T we oblain




242 Appandix D

Ha o HE =Bt/ h

=y
W)= —E ir/2

and the probability of finding the state yy is

| 2
[Hy |

i a
| I = a
“it) B - Eu}z + /4

The decay rate into the channel /s therefore

— |Hy | (Ff)
laglt): —= LY. D&
alt) T (E —E) +T%4a\ h L

Suppose, for the moment, that the initial particles and the excited
state have spin zero. Then it is useful to define

T{E) = 2n|Hiol nil E) (DY)

which 15 a generalisation of ([D.6), and, since [Hyl~ = ;Hm'g, W CAn Te-
write the decay rate nto channel [ as

11 T(ETy
2nhndE\)(E, — Eg) +T2/4°

If the relative motion of the interacting particles is given by the wave-
function ¥ %™ (in the centre-of-mass coordinate systemy; see Appendix
A), the flux of particles is given by (particle density) x velocity = ¥ .
The cross-section o1 — f) for scattering into channel f is defined by

(Aux of 1) x a(l — f) = decay rate into channel f.
Henoe

20 Ay

all = fi=— ;
) v 2r hnd E)) (Ey — B + /4

The density of states in the ith channel s given by (Appendix B)

¥ dk
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and dE/dk = #k/m = hv. (m is the reduced mass of the particles.)
Hence, substituting, we oblain

- v

ki (Ey — Eo) +T2/4°

all = F)= (D.10)

This result is the Breit—Wigner fornmda for the special case when the
mcoming particles and the compound nuceus have zero spin. For small
T, the cross-section peaks sharply at E; = Ey. The phenomenon is known
as resonance scattering and is common in nuclear physics; experimental
resonance peaks can often be well fitted by an expression of this form.

The formula for the general spin case is more complicated. Suppose
the initial spins of the particles are 5; and 5. For example, for neutrons
interacting with “U the spin of the neutron is s, = %and the spin of U
i 53 =4 If, as in a nuelear reactor, the neutrons and the uranium nuclei
are not polarised, then we have to average the cross-section over the
(28 + 1) = (25, + 1) initial spin states. Consider also the formation of
an excited state of Z*U with spin j. Any of its (2j + 1) sub-states can
be formed, and they all contribute to the production of the final state,
Equation (D.8) which gives the decay rate into channel £ (a fission chan-
nel, for example) has to be modified to:

Decay rate into channel f

| Iy 1 a
= 1 Hal”.
(2sy + 102, + 1) h (Ey — Ep)* + T4 E

A

This, using (D.7) and (D.9), vields the general Brat—-Wigner formula:

b4 2+ 1) rry

1 Y= 7
U =)= B Gn+ s + (B — EP +T7/4

(D.11)

The total cross-section is obtained by summing over all channels f:

: D.12
1Z 251+ D@s + DI(E; — Egf +T%/4 (D.12)

Tt =

The mechanism of formation of the unstable states, and their subsequent
decay, is discussed in more detail in Chapter 7.

This expression 5 a good approximation when one unstable state
dominates the cross-section, but scattering which proceeds by other




244 Appandix D

mechanisms than the formation of an unstable state is not incuded in our
discussion. For example, direct reactions, mentioned in Chapter 7, are not
included.

Problems

D1 The Breit-Wigner formula of §0.2 was derived for a particle incident
upon a nucleus. It has o be modified if, as in the case of o« scattering,
the ‘particle” and the nucleus are identical. Show that for e« resonant
scattering through the formation of §Be

x r

2
CTRE B+

{Sez Problem B.1.)

Further reading

Texts at a somewhat more advanced level than this one include:
Jelley, N, AL (1990), Fimdamentaly of Nuclear Physics,
Cambridge: Cambridge University Press.,
Krane, K. 5. (1987), Introductory Nuclear Physics, New York:
Wiley.
Wong, 5. 8. M. (1998), Introductory Nuclear Physics (2nd edn.),
MNew York: Wiley.

The student may also find interesting:
Cameron, 1. B, (1982), Nuclear Fission Reactors, New York:
Plenum.
Clayton, . D, (1982), Principles of Stellar Evolution and
Nucleosynthesis, Chicago: University of Chicago Press,
Cottingham, W. N, and Greenwood, D, AL (1998), An
Introduction to the Standard Model of Particle Phyasics,
Cambridge: Cambridge University Press.
Phillips, A. C. (1994), The Physics of Stars, Chichester: Wiley.
Pochin, E. (1983), Nuclear Radiation: Risks and Benefits, Oxford:
Clarendon Press.
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Answers to problems

{Unless otherwise stated, the mass of a nucleus of mass number A s
approximated as 4 amu.)

Chapter 1
1.1 Ratio = Gric(dmeg/e") =24 x 1074,
L2b) (D) +1, (i) =1, (i) =1.

1.3{a) Wavelength
& = 2mejw = 2 o)/ (he) = 20(197 MeV fm)/(1 MeV) = 1240 fm.

Chapter 2

2.1 Group velocity = dey/dk = et = ot i e = :.Ep,." .
For a particle of velocity v, £ = yme® and p = pmw,
Hence group velocity = particle velocity.

I~
I3

From equation (2.8) the electrostatic energy is of order of magnitude
e dmena,.

From equation (2.13) and after, the wenk interaction energy is of order
of magnitude £ !{ hiM zf}gez ,a'e:rﬁ.

Ratio = 4m{ hjagMzc) ~ 107",

2.3 By momentum conservation the momenta of the two photons must be
equal in magnitude (and opposite in direction). They will therefore have
equal energy.

2.4 There i5 a frame of reference (the centre-of-mass frame) in which the
total momentum of the ete” pair is zero. The photon would therefore
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I-d
L

2 6(a)

Tad

have zero momentum and hence zero energy: energy conservation would
be violated.

Since £=1 MeV is much less than the rest energy of the muon
we  mayv  use  nonrerelativistic  mechamics, and  the  velocity
u:rJ{EE,’anz}:d.l «100ms™'. In time r, the muon travels
0Ty, =90 m.

Mot allowed. Such a process need not violate the conservation laws of
energy, momentum, angular momentum or electric charge, but it would
violate the conservation laws of electron number and muon number.
Although searched for, this decay has never been seen. (&) and () can
QOCUr.

Comsider a point charge ¢ at position R; then

= e r—R
Bif)=-—————,
e v — R
Under reflection in the origin, r -+ ' = -5, R =+ R' = —R and
Skt e =R Z
E'(r) = = E(¥).

T dme, - RP T
The magnetic field duee to a current { in a loop is

gl [dR = (r—R)
fe=— —mm—
B =" | — e

Under refiection the vector product does not change sign. Hence
B'(r) = +Bir); Bir) is an axial vector field.

The reduced masses are
a g rg (g )= 100,025 MeV for d-p system,
a gy My, 4 e = 101528 MeV for t-u system.

The difference in binding energies is

1
S(am)c (€ jdneg he) =48 eV.

Chapter 3

The nucleon magnetic dipole moments are vectors alipned with the
nucleon spin. In the deuteron the spins are parallel and the moments
add to give a net magnitude My, = (279284 - I.?I3M}eh,-f2m!1 =
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Answers 1o problems

3.2a)

3.3

3.4a)
()
(c)
)

4.2(a)

0.8798¢ h/2miy (from equation (3.2)).
The measured magnitude is

e = ﬂ.Hdefh,-‘?mm ={1- ﬂ.ﬂz{‘r}{pp + g )
The discrepancy (0.026) could be due to a contribution to the magnetic
moment from the orbital motion of the nucleons, associated with the

small dewave component of the deuteron wave-function. (Appendix C,
8C.4)

The magnetic field at distance r from dipole (1) is

5= ()v(2) = G (- 4+ o),

The energy of dipole (2) at rin this field is

2

gy A
— B = _)_ :
2 4 F3QT‘

Subtracting 1 MeV from the rest energies of the charged particles pives

(dd) 940, (ued) 937; 3 MeV for the extrad quark;,
idds) 1196, {uds) 1192, {uws) 1188; 4 MeV for the extra d quark;
(d3) 498, (5] 493; 5 MeV for the extra d quark.

Interchanging a d quark for a u guark always increases the rest energy,
in this sample by an average of 4 MeV.

Mot allowed. Does not conserve electric charge.

Mot allowed. Does not conserve baryon number or electron number.
Mot allowed. Does not conserve barvon number.

Allowed.

= K+ Strong. Does not require the weak or the electro-
magnetic interaction.

T Ay Electromagnetic.

A" p+e” +7, lavolves an anti-neutrino, therefore weak,

K- —a +1° An s quark changes to a d quark, therefore weak.
syt Electromagnetic (Fig. 3.6).

I T Weak (cf. Fig. 3.5).

o= e+ i+, Weak (Fig. 2.2).

Chapter 4
Since q = ky — k;, where k; and ky; are the initial and final wave vectors,

qzzk? },I‘::E Ek;k,-mﬂﬂ.

Chapter 4 249

44(k)

4.6

47

4.8

Meglecting the electron mass, &; =/ h = £/ he, and in scattering from
a fixed target there is no energy loss. Hence ky = & = £/ he and

g =2E1—cos@)/ ie", g =(2E/he)sin(d/2).

By the uncertainty principle, the mean magnitude of the lepton momen-
tum p~ hfa. But p=me, 0 that {v/c) ~ hjame = ez,.f-hrs.;. he _#
The characteristic time [(=afe=13Tafe=12x10 I 5, and
(1, /1) ~ 2% 10",

This follows from perturbation theory in quantum mechanics. Since the
integral is over nuclear dimensions r = R, it is reasonable to approxi-
mate yrir} by ﬁﬂ}:n'*{zm}%, which with Problem 4.4{a) gives the
result.

The total binding energy of two e-particles is 56.60 MeV, 0.1 MeV
greater than the hinding energy of §Be. §Be decays to two e-particles
and to conserve energy the 0.1 MeV of nuclear energy is converted into
the kinetic energy of their motion. '3C is more strongly bound than three
a-particles by 7.26 MeV. The binding energy of {Li is 31.99 MeV,
1.47 MeV greater than the total binding energy of iH and iHe.
Energy is conserved overall, and the nuclear energy released is taken
by the y-ray and the kinetic energy of the Li.

Treating 4 as a contineous variable, the maximum is where
d(B/A)jdd =0, ie. at

The nearest integer is & = 26, which gives the maximum of {8/ A).
For A = 100, the formula gives Z = 43, '"%Tc is an odd-odd nucleus and

unstable. Both "2Mo and "JSRu are stable. For A = 200, the formula
pives Z = 80, and ) Hg is stable.

Suppose the sample contains N 'C nuclei. Then the mean mumber of
decays per second is N/t = 133/60 5 ! and hence N = 6.7 x 10", The
atomic mass of natural carbon is 1201 amu = 2 x 1077 g. Therefore
1 g of carbon contains 5 = 107 atoms, and the proportion of "C in the
sample is 1.3 = 107",

Assuming (i) that the proportion of “C in the atmosphere remains
constant, (i) that the hut had been built from new timber, and (1) that
the carbon in the timber had all been bound in at the tme of its growth,
the average number of decays per minute would be reduced by a factor
&~Y'", where tisthe mean life of '*C and ¢ the age of the specimen. Thus
the expected rate would be 9.4 decays per minute. Conversely, an aver-
age of 9.4 decays per minute would suggest an age of 4000 vears.
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4.9

5.2(a)

(#)

In practice, carbon dating is far more complicaed than this problem
sugpests. In the past there have been small variations in the proportion
of "“C in the atmosphere, as appears when radiocarbon dating can be
calibrated against dating obtained by other methods, such as dendro-
chronology (counting tree rings). These variations can lead to ambigu-
ities in the inversion of the calibration curve.

The number of atoms of %8¢ in  the sample is
N =(097 x 14 g)/(82 x 1.66 x 107 g) = 1.00 = 107, If t is the mean
life, in a time ¢ < t there will be Ni/t decays, giving

t = Ni/(number of events)
= 107 = 7960 hr/{35/0.062)
=16 10% yr

{The condition ¢ < t is well satisfied!)

In the absence of neutrinos to share the energy released in the decay, the
sum of the energies of the two electrons emitted would be sharply peaked
at the decay energy. (The recoil energy of the nucleus would be small)

As a rough rule, for A odd there is only one S-stable nucleus and for 4
even, two. Up to and including 4 = 209 there are 105 odd-4 nuclei and
104 even-A nuclei, and s0 about 310 A-stable nuclei. All thess have
Z = B3 which implies an average of about 3.7 stable isotopes per ele-
Iment.

Chapter 5

From equations {5.4) and (3.5), for neutrons with kinetic energy E,
N(E)= N(EJET¥.

The density of states is n(E) = dN/dE = INEHED)=
Hence the total neutron kinetic energy is

E . 3 F
En(E)IE = S NET.
1}

A similar result holds for the protons, noting that proton kinetic energies
are given by (&, - [7).

A gain consider the neutrons; since Ey is proportional to NT we can write
Ey = B (N/Noff = ES (1 + AN/N).

The result follows on expansion.
Similarly £ = 0 = EF(1 = AN/ N
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INEE = INEE(1 4 ANNgF

Sagarfiad ﬁ.-'v') 5 M‘)?
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Adding the proton kinetic energy, one obtains the total kinetic energy

. 2
; (N = 2y
TESA 4 }FJT.

1
- (Z-Det fanR f“ .3
o e ( 3 ) s Ty

_6z-1nes 1"

=221.5 MeV  for’SPh.
T 5 dmeR

Since Z = N, the energy due to the strong nucleon nucleon interaction
should be the same for a neutron as for a proton in a similar state; thus
I/ should be given by the Coulomb contribution, O, of Problem 5.3(a).
This vields I = 8.7 MeV. The separation energy is the binding energy at
the Fermi level. Assuming Eh = E5 4+ 0, it follows that
Sp=1{156 —8.7) MeV.

In the simple shell model, (5P has an odd proton; Tnhle 5.1 suggests this
15 in the 'J%L shell, giving nuclear spin and pnrltu = ”

;.;..Z.n has an odd neutron. Sugpested shell t“i,,- —

115

5~
3,
sln has an odd proton. Suggested shell lgg: ; = %‘.

These suggestions are all in agreement with experiment.

The spins and parities of all but 25A1 are in accord with pairing and shell
filling as in Table 5.1. 2Al is odd-odd: the model supgests the odd
neutron and proton both to be in %‘ states. Such a configuration
would have the measured parity of Al and the measured spin of 5
suppgests that the spins are paired pamllel.

For the magnetic moments, equation (3.26) gives:

$Ca, odd neutron, [=3, j=/(+L pu=-192uy

Hmh,ndd proton, (=4, j=I[+} p=680uy
I Ba. odd neutron, [=2 J=1 =115 puy

"“Au odd proton, =2, j=I =012 uy.

== ta =

$9AL The fact that the two angular momenta appear to be aligned
suggests that we can simply add the Schmidt values to obtain the est-
mate u = 2.9 py.

For a proton, § :5,;.: = 2. 80 pryy.

For gf_',n, j= %: jr= =132 py.




252

Answers 1o problems

3.8

6.1

6.2(a)

Taking the nuclear magneton py = 3.15 x 107 MeV T! and using
equation {5.21) gives

v=e2r =43 MHz for protons,
v=wf2r =29 MHz for 2Ca.

The volume of the ellipsoid is {4.1'r,."3]-a2h and hence the charge density is
3Ze/dmah.

0. “%ff (22— — Pdx dy dz,

where the integral is through the elllpsnld
Make a change of scale: x = ax’, y = ay’, z = b2'; then

where the integral is now through the unit sphere. Also

fff.x de'dy'dz’ =< fr Z4mr e’ _%__ elc.,

giving
35 2
= :—{.l’: a’).
Taking the density of nuclear matter to be g, = 0.17 nucleons fm " and

4;
T“T{F]’fﬂﬂ = A,

these equations lead to & = 7.7 fin, a4 = 5.6 fin.

Chapter 6
O =009 MeV, r,o=2x4%11fm = 35 fm,

ro =46 j4ms Q0 =61 fm.
rfre = 0057 and Fipg. 6.3 or equation (6.16) gives & = 0.70.

The reduced mass is m, /2. Hence &= 13.

Taking g == 7= 10 = 3, as in other e-decays, leads to the estimate
t=3% 10" 5, though this excellent agreement is fortuitous.

To apply equations (6.2) and (6.15) to a positron, 273 — Z4 and m
becomes the positron mass.

Thus r_= 112 fin. Values of r, between r, =0 and r, = 1.14% fm =
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(&)

6.3

6.4

6.5

7.3(a)

()

6.37 fim are reasonable, giving ¥=1, 0.70; G =181, 1.27, and a suppres-
sion factor &% in the range 0.16 1o 0.28.

O=18Mev, rn=123fm, r=~81fm, ¥ =068 G=154,
which with =7 = 107 gives a partial mean life for edecay
Ty 10" VEars.

(A pe of Solar System ~ Tig VEars.)

In e-decay in material, the kinetic energy is largely converted into heat
and N aioms of *Pu would on averape produce N{3.49 MeV)/tr of
power.

For 1 kW =6.24 « 10" MeV 3
2Wpy,

! we need N =4.6 x 107, or 1.8 kg of

The decay rate of the by-product **U is so low that the heat from its
decay is negligible.

For the remaining mass of plutonium to be 1.8 kg after 50 vears requires
2.7 kg initially.

Suppose that when the sample of rock was formed, say T vears ago, it
contained no lead but N, atoms of ***U (mean life t;) and N> atoms of
21 {mean life =), Then it would now contain Ve T’ atoms of 2*U
and, since each decaved uranium atom becomes a lead atom,
Nyl =g T )} atoms of Wopp, Setting (1 —e T"r'},.’e T = 0.0797 sug-
gests T =497 x 10¢ vears,  Similarly  for U oanmd b,
(1 =g TmyeT= = 0675 suppests T =531 x Tig vears. (The discre-
pancy could be due to the effect of water on the rock, for example.)
Meglecting the excitation energy, the kinetic energy of the frapments can
be estimated using equation (6.18), which pives AR = 178 MeV. Each
fragment would then have velocity 12 = 10° m s~', In the frame in which
the fragment is at rest, a 2 MeV neutron has velocity 20 108 m 571, In
the laboratory frame, the distribution of emitted neutrons is peaked in
the direction of the moving fragment.

Chapter 7

E; + Ey = Ep+ (excitation energy) + {"0* recoil energy).
Hence the recoil energy is 026 MeV and the recoil velocity is
vje= 5.7 x 107" (approximating the mass of '"0* by 17 amu).

If the photon has energy £, it has momentum £, /c, and 1o conserve
momentum this must be the recoil momentum of the ''0. Hence the '™
recoil energy Ep is Ep = (£,/c) /(34 amu).

To conserve energy, E, + Eg = (087 MeV.

We could solve these equations for £, but clearly Ep is small, and to
two significant figures it is sufficient to take £, = 0.87 MeV in the first
equation to give Fp = 24 V.
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The photon energy will be & maximum if it is emitted parallel 1o the
motion of the '"0*. By a Lorentz transformation to the laboratory
frame

E® = (1 + w/e)E, /(1 - o/
and hence E:;‘h E, =3 keV.

Similarly the photon energy will be a minimum if it is emitted anti-

parallel, in which case E’;“ E, = =5 keV.

1L is less bound than '1B by 2.762 MeV. The difference of Coulomb
energies of uniformly charged spheres of net charge 6e and 3¢ and radius
R=11x11%fmis

1’.’2

6 — ) =4 MeV.
4:15.;,.&‘{ )

3
3

This is a 50% over-estimate of the observed energy difference, and we
would need to take Re = 1.45 R to obtain agreement. The approxima-
tion of a uniform charge distribution is inadequate for precise calcula-
tions, especially for light meclei. In reality some charge is displaced to
larger distances (see Fig. 4.3) thereby reducing the energy. Caleulations
using the more realistic distributions are in better accord with the data.

The decay by neutron emission with a kinetic energy release of 0.41 MeV
need involve only the strong interaction. There is no Coulomb barrier,
and only a small anpular momentum barrier: to conserve angular
momentuim and parity the angular momentum of the "0-n pair must
be f=1.

The mean life is still gquite long on the nuclear time scale of ~ 1072 5,
T = #hefte =004 MeV.

The nuclear transition is £ — 3, so the photon will have positive parity
and angular momentum guantum number 2 2§ = 1. The most likely
transition is with f= 1, which would be magnetic dipole. The photon
energy is about 2.13 MeV. From Fig. 7.6, a rough estimate of the mean
life is =~ 107"7 % (100/ 4) % 204%s~ 4 % 1075 5. (The experimental
mean life is 5.2 » 107 5.) An electric quadrupole transition with j =2
is also possible, but Fig. 7.6 sugpgests its partial decay rate to be much
slower than the magnetic dipole rate.

The lowest six energy levels (comprising 26 states) all have positive
parity. 'IB has three protons in the pe shell and three neutrons in the
pg shell. There are many combinations of the single nucleon p-states and
they all have positive parity, | I}ﬁ. The lowest observed states can he
considered to be constructed from these.

The 1.74 MeV level can decay to the 0.72 MeV level by a magnetic
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8.3(a)
5

.4

dipole (07 — 1%) transition with E, = 1.02 MeV. This level can in turn
decay to ground by an electric guadrupole (11 — 3%) transition with
E, = 0.72 MeV. Neglecting internal comversion the ratio of photons
emitted is clearly one-to-one.

The 1.74 MeV lewel can also decay directly to pround with
E, = 1.74 MeV but this (0" — 3*) transition is magnetic octapole and
very slow. Using Fig. 7.6 the number of photons emitted with energies
1.02 MeV, 0.72 MeV and 1,74 MeV should be in proportion 1:1;107%,

Chapter 8

A neutron with kinetic energy 0.1 eV has vfe =1.46 % 107° giving
a=2670h, = 1.56 cm. The probability of a neutron penetrating a
distance ¥ into the gas without interaction is ¢ ™', For this probability
to be 0.1, we require x = 3.6 cm. The active region of the detector
should be at least of this thickness.

t=h=he/Te=13x10""s

In this example the elastic width equals the total width to a good approx-
imation, since there is not enough energy to induce other nuclear reac-
tions. The spin of the neutron is 5 = % and the spin of iH is & = 0.
Hence the suatistical factor in the Breit Wigner formula is
(27 + 125y + 1252 + 1) = 2, and the cross-section at energy £ is

2T =

;
AE) K E - Ey)* + T4

(equation (D.11)).

At energy E = E,;, o = Bx/k> = 4 b /mE,, where m is the reduced
mass. Hence o= 3.2 b,

The coefficient of the (1/v) term is large if the incident neutron can easily
induce a nuclear reaction (as in the case of U fission), or if there is an
excited state close to zero incident neutron energy. MNeither of these
conditions is apparently satisfied in the case of **1U. However, one
would expect to see a small (1) contribution at even lower neutron
energies due for example to residual radiative capture.

The total width T' is given approximately by T =T, + 'y, and the rela-
tive probability of neutron radiative capture is

F/T =1/(1 4 To/T,).

In this application of the Breit-Wigner formula the neutron spin 5 =1
and the spin of the even-even nucleus **U is 5, = 0. Also j = % Hence at
FESONANCE
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9.1

9.3

9.4

9_5{a)

_4x Tl
o ] PR
(Ta +T)
where i% = Emﬁ;.,-“hg.
From Fig. 8.5, £y = 6.7 eV and g, = 2 x 10* b. Hence
g i Cu/Ty

5 = 7 =0.032.
(T, +T,F (14T,

Since we are told that T./T, is small, we take the solution
Ta/T, = 0.058. Hence capture is 93% probable.

Chapter 9

The molecules CHy <+ 20; have a mass = 50 amu and release 9 ¥ in
chemical reaction, i.e. 0.11 eV per amu. °U has a mass = 235 amu and
releases about 200 x 10° eV on fission {Table 9.1 and discussion), giving
0.85 x 10% eV per amu,

Ratio == # = 1(P.

S5,=BIN.Z)= B[N =1, Z). The quoted difference comes from the
pairing energy terms. All other terms in the mass formula give contribu-
tions to 5, which for a heavy nucleus vary only slowly with 4.

The probability of the neutron inducing fission at the ath collision is
1 =py,
By definition the mean number of collisions is

o]

d 3
E;Enp{l = ‘"d_pE“ e
1

Summing the peometric series

d 11
Gl --pr' =2,

A==p
If v is the neutron velocity in the laboratory frame, its velocity in the
centre-of-mass frame is

Fig v Muv

o e

MAm, M4m

In the centre-of-mass frame it loses no energy on scattering, but suppose
it is deflected through an angle 8. In the laboratory frame it will then
have a component of velocity w(p, -+ M cos @)/(M -+ b)) in the original
direction and a perpendicular component Mesind /(M + m, ). The result
follows on averaging over all angles @,
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()

9.6

9.7(a)

On averape, afler ¥ collisions a peutron with initial energy £y will have
energy Ey :uNE.;., where
M* | .m-i

o ;—2:1].H-ﬁ.
(M = )

For Ey=2MeV, Ey =01 eV, the number of collisions required is
N o~ 11

The mean time between collisions for a neutron of energy £ is
Af = Vjopr = 1{ap(2E {m,), and it loses energy AE = (1 — a)E.
Approximating the mean rate of change of energy by

dE _ AE

T = = =(1 —a)op(2/m £

gives the time to ‘cool’ to Ey =01 eV:

L

i LA

, 1 { (m,, :2) “dE 1 2t 5

time = — &= =8 = 10 "5
(-alope\\ 2 Mg B (1 —adope\ Ey

From the text { =3 cm, {jo=13x 10 S5, v="25and p=9x10 g
Substituting the form or, .r}:.,*"{r}-.e”'r into the equation vields

{(v=1) D&
Af(r) =2 )+ ),

which has solutions of the form f{r) = {1/r)sin(kr) provided

‘;_:u .Dkz_

Ip

To satisfy the boundary condition,

KR+0T=nr, n=12,...
To avoid an exponential increase in density & = 0 for all # and therefore

[
(R+ 071 < —2—_Dn®,
{v=1)

i.e.

I T ] _onli
<1 * |- "

and the eritical radius in this approximation is 8.8 cm.

Suppose that the probability of a neutron induced fission to result ina
fragment which produces a delaved neutron is vy, and that the number
of such fragments at any time is N{/7), then
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(#)

le)
{d}

9 8{a)

{b)
9.9

¥ _ _NO, avi
dr — g ' In 1).

This equation has the solution
N{;};ﬂf e = Wan(r"ydr’,
fp Ssa
Including delaved neutrons in equation (9.1) gives

Gy X0,

dr o Tg

which is the eguation guoted.

g tw—1), vy
' fp tpll + Atg)

or
{-‘-I',f.:}2 b (hrg 1 — (vg — Drg/ip] — (rg/il(v + vydg — 1] = 0.

Clearly & = {ug = 1)/, =1 3 when vy = 0.

Substituting the given values in the quadratic equation gives

(gl + 781(Ar5) — 10 = 0.

The positive solution for (A1) corresponds 1o an exponentially increas-

ing m{r), with time scale 1/4 = 13 min.

Take the energy release per fission to be (178 + 15) MeV (Table 9.1).
The number of fissions in time di’ is then Pdr' /(193 MeV). For steady
power output, the rate of release of ionising energy at time ¢ after shut-
down at time ¢ = 0 is, from equation (9.2),

dF P bR .
o[ 266{—2) drMeve
& (193 mv}f_nr (f- r) b

~onn (5" (25)"]

Tob MW, 4.5 MW, 0L MW,

The mean free path { of a fission neutron is given by { = 1/ pqo. where
O 18 the mumber density of iy nuclei, and o is the total newtron
cross-zection. 1f R, is the radius of the critical mass M at atmospheric
pressure,

Proe = (M fm_ )/ (4R
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10.1(a)
(&)

10.2

10.3

10.4(a)

(&)

10.5(a)

(#

Hence if R, = K, where K is a constant,

R, = (4 3) KRt fr M

A mass m and its critical radius r, are related by a similar equation, so
that

(7)-G"

If r is the radius of m at atmospheric pressure,
RN (My'7
(T “\m)
Eliminating R_,
Fey iy e
(7)=Ga "

If ie =08 M, rfr= 096

Chapter 10

% 4 =2 =l
63x10 " m "5 .

Meutrino mean free path f= 1/on,. and g < (1 ;k]- = 10¥ m™.
Hence [~ 10" km ~ 10" Earth diameters.

Thermal velocities in the gaseous state of hydrogen exceed the escape
velocity in the Earth's gravitational field. Only hydrogen that is chemi-

cally bound remains.

4. 56 MeV.

pp=34x10"m™, e =25x10,

o =Ty = 14 % 1079 m? 5™,

The p-p reaction rate ;%.'-_mp% =81x10%m~3s",

Each p-p reacton produces 131 MeV and hence the contribution to
e=170Wm™,

The p-'*C reaction rate = pyihge, and hence the mean time for one
carbon nucleus to react is 1/ ppig. = Tig VEATS,

The reaction rate per unit volume is pﬁﬁ and each reaction reduces gy
by one. Since this is the dominant reaction (Fig. 10.4)

dpy

o= Pt

This equation can be integrated to give
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()
10.6{a)

i)

le)

()

(e)

I 1
Oyl = ———

P

and hence the proportion ‘burned’ is

e D
4 1+ pgt 55

lﬂzﬂm 15.

dv . {ei,f-mpu}

=0atr=r, where ry = —5E

A Taylor expansion of Fir) about r = rg gives
1
¥ir) = Firg) + ;_-'rfcuz-[r o),

where Ma® = 3%/ dmeg)/ri.
Classically a particle of mass M in this potential underpgoes simple har-
monic motion about r = 5y at anpular frequency .

The lowest guantum state in this potential has angular momentum
L =0 and energy

: 1
Eg = V(ry) + 5 b
Taking r, = 500 fin pives
w=1.66 % 10" 37 F =4.87 keV.

Neglecting the Kr® term in the potential, we may estimate the tunnelling
probability to be expl— G{Ey)] where

e .'2 'pffz
GlEy) = hrd:v:p \' Ky Uit

(se2 equation (6.13)).

Since r, ~ 3 fm and r. ~ 300 fm, G /r) 5= 1 and G Ey) == 15.6.
Tunnelling probability = exp[=G{£y)] = 1.68 = 10 :

In a semi-classical picture, the deuteron and triton approach each other
at intervals of 2m/m = 3.8 » 107 15,

The mean number of approaches i bethre tmnelling {and presumably
fusion) takes place is (cf. §2.3)

i = exp|GE)].

The corresponding time is (27/e)i = 2.3 < 10 LS
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Chapter 11

All states are occupied up to k = kg {eguation (B.5)). Using equation
{B.4) the mean value of k is

E= T dky [ R dk = (3 4k

For extreme relativistic electrons, E == pe = hek; hence the mean energy
15 hok = (3/4) hekp.

The reaction is endothermic and reguires an energy input of 0.78 MeV
= (). The reaction will procesd if &5 = ¢ (At T'=0 K the proton
Fermi energy is less than the electron Fermi energy EF by a factor
~ m, () Using the non-relativistic formula e = WkL/2m, for a
rough estimate, and eguation (B.5), the number density of electrons g,
st satisfy

z
1 f2m.20 2
2 3 ( Chel ) % 107° fm ™

The corresponding hyvdrogen density is ~ 5 % 10° kg m ™.

At low temperature, only particles at the top of the Fermi distributions
can take part in the reactions

n=+pte +i, pote =+ nt i,
In thermal equilibriwm
ep(n) = eplp) + £ple),

where

hi
ep(n) = m o + ﬁkr.{ﬂ}z.-

gplp) == iy ot

and gple) #= hekgle), since we expect the electrons to be highly relative
istic.

For electrical neutrality, the number density of electrons must equal
the number density of protons. Hence

ke(el = kp(p) = 377 p,. kein) =37 a,.

The equilibrium condition becomes

{hf {hr

4:2 [3.1'r2.|r1,1I2"rJ ;.r:n]., fz [3 p:ﬂ}z” f he 3:#211115”3

Migc®

%‘
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Taking g, =017 nucleons fm Y oand solving for g, gives
Pp=p=B844% 107" fm™, and p,/p. =5.0x 107>,
1.5 IfE > Ey =8 MeV, kgT = 0.5 MeV, then E/kgT > 16. Hence

1 =2 =EfkgT 1 2 g T
.-m:—ri Ela~EaTgp e 2 T~ BifaT
72 he)* Je, 2hep 00 '

giving 5= 5 x 107 m~F

11.6(a) From§10.3,

1 3
AT T
w= (i) (%) f v~ EMa Ty gy,

where E = }im, [0, Le.
- Efkg T
I ke
b T (E— Eg) +T%4

Integrating over the narrow resonance peak pives the result.

{#) 1n the plasma, the rate of production of *Be is ;—,}_?E{equntion {100.6)).
The rate of decay per unit volume is ppe/t = pI/h. In equilibrium
these rates are equal.

(e} 23x107W

Chapter 12

12.1 I,i"Té_ = 4760 5. For a free mutrnn,f’i‘"}. = 1013 5, from §12.5. In the simple
shell model the Is neutron and proton spatial wave-functions would be
the same if Coulomb distortions were neglected, and the spin states
similar to those of a free peutron and free proton. Thus the predicted
I,i"Té_ value would be the same. However, since & = 13, Coulomb distor-
tions are not insignificant. Also shell model predictions for the Gamow
Teller matrix elements, like those for the similar magnetic moment
matrix elements (§5.6), are not accurate.

12.2 Mote there is no Coulomb factor in the matrix element.

E=0TIMe¥: o=33x10"21.

12.3 ""Be decay: [Rp| =0.7fm,  a nuclear size.
Atomic decay: [Rp| =04 J:l, an atomic size.
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13.3(a)
(&)

| 1y
T(Za Ea) {ﬁ)

Chapter 13

Replacing Sp(£,) in equation (12.5) by { £ - EJPEL the mean elecron
energy is clearly £q/2 by symmetry. The mean life is inversely propor-
tonal to

) o 157 & 22 1 £i 3
(24, Ey) = (F)J; (o= &) L‘df"_ﬁ(mec*’-) '

The proportion of decays within AF of the end-point is

(B — E.Y EdE, =

fﬁl | EIAE?
5 -AE ..?"3{1'1?.,1‘2}5'

Substituting for [, the result follows.
By momentum conservation

P =piat =2 %6536 MeV x (559 £ 1.0) eV
= {0.7307 £ 0.0131) MeV?,

and by energy conservation

mic = [(0.862)7 = 0.7307 £ 0.0131] MeV,

aiving 0 =m, < 160 keV.
From equation (A.4), { = 1 /{ pueo)

Number of steps = {RH}?
Time for each step = [fe.
Total time = R2/{fe).

Measuring &g T in MeV,

__3:(]' e

— = l6x 10% MeV™= g~ m™2.
B 6l he)

v

Since [;Te "Tdr =1, the total energy loss is

~ ay ke To P4 B = 3 % 1075 MeV,
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14.1

14.3

14.4

14.5

14.6

Chapter 14

i

et
R(T) = m,* duy Fiu).

Ty /M
Ryl Ty) = (M) f dui/F(u)
il

Ty FMEE

= (M/Zm)mc du/ F{u)
i}

= (M} mg)Rylemy Tae/ M),

T =M (1 = F13)) — Me?
gives
ot 1

=]

A len where w= T/ Mc>
] (1 4u

Taking a constant £, the integration is straightforward,

a-particle range == 20 pm; electron range ~ 1 cm, a much preater dis-
Lance.

d dw dr dw dw
d—{%_-m?} = Mua'z Y ekl ¥ o
i 5 f

From equation (14.4), in the approximation £ = [,

dv  constant dv constant
= and —=—m—

E = |:-‘3 dy .:."2

Hence
Ui
{time to stop)/{range) = fw o d.::/'f o do = 4/ 3.
0 (]

For the a-particle of question (13.3), time = 1.7 x 1072 5.

The kinetic energy of ionising particles is 0.76 MeV. From the end of
£13.1, the number of ion pairs produced is

~ 0.7 MeV/35eV ~ 2 = 10°,

The proton will have the longest range. The proton enerzy is

(g f(prig -+ piy)) = 0.76 MeV = 0.57 MeV.

To estimate its range take [ =24 eV (Problem 13.3) and estimate
F{~ 2.5), which gives a range ~ 0.5 cm.

From Fig. 13.4, at 50 keV the photon cross-section for lead is predomi-
nantly due to absorption and the linear attenuation coefficient
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For the thickness x to be such that ™ =10
x =076 mm.
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Since the mean life "' Cs is 44 yr, we may neglect its radioactive deple-
ton over 1 yr, and estimate the activity as
0,059 3 (3 % 10° W) = (1 vr)

137 o 17
Cs activity = 1.3 % 107 Bq.
SRR 1200 MeV) = (34 v1) ELa L

If 13% of this activity were spread over 10% km?®, the activity per square
metre = 2 % 10° Bg. (Each 23U fission releases ~ 200 MeV energy. See
§9.3.)

Radon will be produced from the radium decay at arate R =1 Ci, but
itself decays. Suppose a{r) is the number of radon nuclel after time r.
Then

i

dr T

With the initial condition s{0) = 0, the solution of this equation is

ﬂ:x{l e™7) = (1 -e"") Ci.
T

But s/t is the radon activity at time &,

After one month, the radon activity will be approximately constant at
R =1 Ci. Similarly the other decay products up to *"Ph with their even
shorter decay times will be in guasi-eguilibrium, each with activity R,
and the total activity will be & Ci.

4 GeV muons are highly relativistic. Hence in eguation {14.4) we take
w~c. Ao (Z/A)=035L=14, p=1gcm™ =10 kg m™. Then

df

<= 0.307 0.5 x 14 MeV em ! 2MeV om™!

Thus a muon passing through the body loses only a small fraction of its
energy to ionisation, and

dE dEdx dE ot
W deds By e

The number density n of muons in the body is
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B.1(k)

flux 150 a -7 o
~—— ~ 5% 10 .
e axiee " e o

Hence in 1 5, the received dose is

5% 1077 x 1072 :
w22 I XA 5 510 sw,
107 kg

This suggests an annual dose of ~ 0.16 mSv from this process.

Taking a total body weight of 70 kg, the activity due to 'C is
~ 3200 Bg. Assuming all the electron energy is deposited in the body
{cf. Tahle 14.1), the dose per second is

3200 2 0052 x 1.6 x 1072 J/70 kg = 3.8 = 1072 Sy,

The annual dose is 12 pSv.

From the given data, a 70 kg body contains 2.47 x 10%° 'K nucled,
which will vield 1.33 x 10" decays per vear. If we assume that all an
electron energy, and 10% of a photon energy, is deposited in the body,
the average energy per decay is

~ [(0.89 = 0.66) + (0.11 x 0.145)] MeV
~ 0.6 MeV.

Anmnual dose ~ 1.33x 10" % 0.6 x 1.6 = 107" /{70 kg)
=~ (1L18 mSv.

Appendices

The centre-of-mass coordinate R = (s r -+ bonk)/(m -+ 6n), and
the relative coordinate r=r —r. The two particle wave-functions
explik, - rylexplik; - ) and explik - R)explik - r) must be identical. The
result follows on equating coefficients for rp and rs. The Jacobian of the
transformation is unity. If the particles are identical, only one hemi-
sphere of the angular integration of the k-vector gives distinct states,
since k and —k are equivalent.

The wave-functions of the state are linear combinations of spatial func-
tions of fixed /, each of which has parity (—1). The effect of the parity
operator on the internal states | + 1), | — & of spin § fermions {e.g. elec-
trons, protons) is in fact a matter of convention, and thev are taken to
have positive parity. It is usually the relative parity of two states which is
significant.
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activity, 215
allowed transitions, 168, 174-6
alpha decay, 302, 74-82
mean life, 80
series, B2
alpha particles, 33, 40
angular momentum, 16, 230-5
addition of, 233-4
conservation of, 4, 77, 97
intrinsic, 2, 16, 232-3
nuclear, 40, 36, 63
orhital, 230--2
photon, 97
anti-particle, 13, 26
atom, 1
Aromic
mass unit, 40
mumber, 1
attenuation coefficients, 207-8
axial coupling constant, 176
axial vector, 16

harn, definition of, 4
haryon, 29

mumber, conservation of, 30
becquerel, 215

beta decay, 12, 15, 28, 44-50, 163
allowed transitions in, 168, 176
electron capture in, 171
energy spectra, 163, 168-71
Fermi theory, 166-8
mean life, 163, 176
muon, 13
parity violation in, 16, 165, 178
stability conditions, 448
stability valley, 48, 49

Bathe formula, 202

‘big bang” 151

binding energy, 39-41
of atomic electrons, 39
of last nucleon, 40, see also

separation energy
of light nuclei, 40-1
per nucleon, 48-9
hoson, 2
Breit-Wigner formula, 103-6, 107,
110, 241-4
Bremsstrahlung, 205

carbon dating, 55(P)
centre-of-mass system, 223, 2300P)
chain reaction, 119
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Chandrasekhar limit, 154
channel, 949, 223
CHNO eyele, 140
compound nucleus, 104
conservation laws
barvon mumber, 30
charm, 29
electric charge, 15
lepton number, 16
linear and angular momentum, 3
parity, 4, 16
strangeness, 29
symmetry and, 3
cosmic rays, 217
Coulomb barrier
in alpha decay, 76
in nuclear reactions, 10911, 140
it positron decay, 87{P), 170
critical mass, 121
critical radius, 121, 128(P)
cross-section, 103, 2227
charped particle, 226
Compton, 209
Coulomb harrier in, 108-11
differential, 34, 224
elastic, 223
fission, 116
inelastic, 89, 117, 223
partial, 224
radiative capture, 117, 223
resonant, 103-6, 241-4
Thomson, 211
total, 105, 222
curie, 215

de Broglie relation, 8, 10
decay

channel, 99, 236, 240

rate, 13, 99, 236, 240

rate, partial, 99
delaved neutrons, 86, 118, 122
density of states, 227-30

in beta decay, 169

in gamma decay, 172
integrated, 58, 61, 228
shell model, 58. 61
deuterium, 131, 143
deuteron, 21, 23, 234
gquadrupole moment, 23, 25
stripping, 91
dipole, see magnetic dipole moment:
transitions
Dirac equation, 13, 34, 174
direct nuclear reaction, 107, 244
DMNA, 214-15
Doppler broadening, 111-12, 124

Einstein mass-energy relation, §, 10, 39
electric quadrupole moment, 68-72,
T3P}
of deuteron, 23
electromagnetic
field, 3.7
interaction, 8, 12, 179-84
electron, 1, 13
hinding energy in atom, 39
capture, 45, 156, 171-3
depeneracy pressure, 152
scattering by nuclei, 34
spin in beta decay, 173-9
electro-weak theory, 9-12, 173
endothermic reaction, 103
energy level diagram, 92
excitation energy, 89
excited states
decay of, 97-9, 236-40
density of, 95
experimental determination, 89-93,
90 104
mean life, 12, 99
exclusion principle, 2, 43, 58, 152
exothermic reaction, 103
exponential decay law, 12, 236, 238

fermi, definition of, 4
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Fermi
constant, 175
enargy, 38, T2(P), 152
golden rule, 240
interaction, 173
theory of beta decay, 166-8
fermion, 2, 13, 19, 21
Feynman diagram, 9
fissile nucleus, 116
fission, 52
energy release in, 83, 118
induced, 115, 119
mean life, 86, 118
spontansous, 837
flavour, 29
flux, 107, 225
forbidden transitions, 168

[Ty value, 185(P)

fusion, 130-3
muon catalysed, 146-8

gamima decay, 97
mean life, 98, 182
theory, 17983
Gamow-Teller interaction, 1736
gluon, 3, 22, 26
gravitation, 3, 130, 152-5
gray, 216

hadron, 3, 19-31
half life, 13
hyperfine structure, 56

impact parameter, 200, 226

internal conversion, 184

ionisation, 199, 206, 208
energy, 203, 213(F)

isobar, 33

isomeric state, 99, 183(P)

isatope, 33, 55(P)

sotopic spin, 22

K-capture, s¢ electron capture
k-space, 227

Kurie plot, 18849

Lawson criterion, 145
lepton, 3, 10, 13-17
liguid drop model, 42, 83, 96

magic number, 62, 63
magnetic dipole moment, 13, 66-8
of nucleon, 20
operator, 67
mass number, 33
mean free path, 119, 225
mean life, 12, 236, we also alpha
decay; beta decay; gamma decay
meson, 26
T meson, 26
o meson, 27
mirror nuclei, 93, 101(P)
moment, see electric, magnetic
multiple scattering, 206
multi-pole, ¢ transitions
muon, 14, 36
catalysed fusion, 146-8
muonium, 18(P)

neutrino, 14-17, 132, 163
atmospheric, 195-6
burat, 139
cross-sections, 186-8
detector, 142-3, 159, 193
mass, 143, 163, 185-9
mixing, 189-93
oscillations, 1923
solar, 140-3, 193-3
spin, 16, 188

neutron, 1
cross-sections, 11618, 222-4
detector, 113(P)
magnetic moment, 20
mass, 19
mean life, 28, 177
radius, 19
star, 154, 157
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nuclear
anpular momentum, 41, 36, 63
hinding energy, 39-43
charge distribution, 33-36
electric quadrupole moment, 68-72
fission, see fission
fusion, see fusion
magnretic dipole moment, 66-68
magnetic resonance, 67
magneton, 67
mass, 39-43
matter density, 38
parity, 41, 63
potential, 56-8
power, 121-3, 143-6
radius, 39
reaction, 91, 103-13
spin, &e¢ angular momentum
time scale, 59
nuclzon, 19
nucleon interaction, 22-8, 32
nucleosvnthesis, 135-7, 1601

pair-production, 14, 208, 211
pairing energy, 40, 43, 65, 116
Paris potential, 24-6, 52
parity, 4, 5, 77, 97, 232, 233
non-conservation of, 16, 163, 1758-9
partial decay rate, 99
partial width, 99
Pauli matrices, 233
photodisintegration, 156
photo-electric effect, 209
photon, 3, 8
angular momentum, 97
crosssections, 207-11, 24
parity, 97
spin, 3, 97
plasma, 132, 133, 144
plutonium, 87(P), 124-5, 129(F)
positronr, 13, 45
positromium, 18(P), 30
PP chains, 132, 139-40

prompt neutrons, 83, 118, 123
proton, 1

magretic moment, 20

mass, 19

radius, 19
preudo vector, see axial vector

quantum electrodynamics, 14, 210
quark, 3, 21-2, 26-31, 173

rad, 216
radiation
absorbed dose, 216
equivalent dose, 216
man-made sources, 218-19
natural background, 217-18
weighting factor, 216
radiative capture, 103, 116, 160, 223
radon, hazard of, 218
ranpe, 203, 212(P)
reaction rates, 135-9, 223
reactor
control of, 122-4
fast, 122, 125
fusion, 143-6
thermal, 121
thermal stability of, 124
rem, 216
resonant reactions, see Breit- Wigner
formula
risk assessment, 219-20
rprocess, 160
Rutherford scattering, 33, 206, 228

scalar potental, 7-8, 10
scattering, see alse Cross-section
elastic, 223
inelastic, 89, 117, 223
Schmidt values, 68
selection rules
in allowed beta decay, 176
in gamma decay, 1§2-3
semi-empirical mass formula, 41-3, 83
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separation energy, 39, 93, 127(P)
shell model, 41, 48, 56-72, 94
sievert, 216
silicon burning, 156-7
spherical harmonics, 60, 231
spin, see anpular momentum
spin-orbit coupling, 63-3
sprocess, 160
Standard Model, 31, 175, 192
stopping power, 2001-6
strong interaction, 3, 19-28
Sun, 1303
supernova, 157-60

neutring burst, 159
SYINIMELTY

and comservation laws, 3

enargy, 43, 38, T2(P)

tau lepton, 14

tensor potential, 24-3

Thomson scattering, 211, 213(P)

threshold energy, 92

transitions, 97104, see afso decay
electric dipole, 180-2
magnetic dipole, 182-3
multipols, 99, 183

tritium, 144, 146, 1589
tunnelling, 77-82, 110-11, 155, 170

uranium, 106, 115-27

{1/¥) law, 107-4
vector potential, 7.9
virtual process, 9, 15

waste, radioactive, 125
wave-equation, 7, 10, 27
W boson, 3, 9, 15, 28, 167, 174
weak charge, 10
weak interaction, 3, 4, 9-12, 28, 44-8,
131, 134, 163-79
weapons testing, 218
Weinberg angle, 187
white dwarf, 133
width
excited state, 99
partial, 99, 236
resonance, 105, 110-12
total, 236

£ boson, 3,9, 13
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