#### INTEGERS

#### Definition:

Integers are numbers that can be positive, negative or zero, but cannot be a fraction.

1, 2, 5,8, -9, -12, 0, 123 etc. The symbol of integers is "I" or "Z".

# Common Number Sets

```
N = Natural Numbers = {1, 2, 3, ...}
```

W or 
$$\mathbb{N}_0$$
 = Whole Numbers = {0, 1, 2, 3, ...}

Q = Rational Numbers = {p/q ; p and q are integers}

T = Irrational Numbers = {non-rational number}

Real Numbers = {All of the above number sets}

Imaginary Numbers = {Numbers containing  $i = \sqrt{-1}$  }

 $\mathbb{C}$  = Complex Numbers =  $\{a + bi ; a \text{ and } b \text{ are real}, i = \sqrt{-1} \}$ 



 $\star$  Value of Integers: Increases to the right and decreases to the left.

1. Arrange in ascending order: a) -4, 12, 32, -59, 0, 18, -1





NOTE: For Ascending order arrange numbers from \_\_\_\_\_\_ to \_\_\_\_\_ on the Number Line.

2. Arrange in Descending order a) +124, -1, -14, 0, 123, -123



Example: The absolute value of -125 is 125 and this is expressed as:  $|-125| = \underline{\hspace{1cm}}$ 



Absolute value refers to the distance of the integer from zero. Distance is a positive quantity.

#### Evaluate:

a) 
$$|16-5| = |11| = 11$$

#### On a number line when we:

- (i) Add a positive integer, we move to the right.  $\sqrt{-2+2}=0$
- (ii) Add a negative integer, we move to the left. +1+(-3) = -1+(-3) = -1
- (iii) Subtract a positive integer, we move to the left.
- (iv) Subtract a negative integer, we move to the right.

# Integers on a Number Line



# Addition & Subtraction of Integers

Example: 25 + (-25) + (-20) - (+17) + (-1)Sign of the Number

Step 1: Open the brackets and follow the rule given.

Step 2: Add the + numbers & the - numbers seperately

Step 3: Find the difference and apply sign of larger number.

Rules:
+ x + = +
+ x - = - x + = - x - = +

3. a) Add 25 to 13

b) Add -13 to 25

c) Add 22 to -3 d) Subtract 3 from 5 e) Subtract -3 from 5 f) Subtract 12 from 9 g) Subtract -8 from -9 4. Simplify the following:

a) 
$$(-10) + (-12) + 8 + 4$$

## Multiplication of Integers

Positive Integer x Positive Integer = Positive Integer

$$(6) \times (8) = +48$$

Positive Integer x Negative Integer = Negative Integer

$$Rules:$$
+ x + = +
+ x - = -
- x - = +

$$(6) \times (-8) = -48$$

Negative Integer x Positive Integer = Negative Integer

$$(-6) \times (8) = -48$$

Negative Integer x Negative Integer = Positive Integer

$$(-6) \times (-8) = +48$$

a) 
$$(-9) \times 8 =$$

- c) Find the product of 81 by (-2)
- d) Find the product of (-2)  $\times$  (-4)  $\times$  (-6)  $\times$  (+10) =

#### NOTE:

If the number of negative integers multiplied is odd, then the product will be a negative integer.

Example:  $(-1) \times (-1) \times (-1) \times (-1) =$ 

If the number of negative integers multiplied is even, then the product will be a positive integer.

Example:  $(-1) \times (-1) \times (-1) =$ 

#### Multiplication by Zero

In general, for any integer a,:  $a \times 0 = 0 \times a = 0$ 

#### Multiplicative Identity

In general, for any integer a,:  $a \times 1 = 1 \times a = a$ 

Therefore 1 is called the Multiplicative Identity for Integers (also for Whole numbers and Natural Numbers)

# Division of Integers

Division of a Positive & a Negative Integer results in a Negative Integer.

$$(14) - (-2) = -7$$
  
 $(-14) - (2) = -7$ 

Division of two Negative Integers, results in a Positive Integer

$$(-14) \div (-2) = 7$$

- 6. Divide the following:
- a) 424 by 8
- b) (-192) by 6
- c) (-891) by (-11)



# Properties of Integers:

- 1. Closure Property
- 2. Commutative Property
- 3. Associative Property
- 4. Distributive property of Multiplication over addition and subtraction

1a. Closure Property under Addition

$$17 + 23 =$$

$$(-10) + 3 =$$

$$(-35) + (-10) =$$

Since addition of Integers gives Integers, we say: INTEGERS ARE CLOSED UNDER ADDITION.

In general, for any two integers, a and b, (a +b) is an Integer

## 16. Closure Property under Subtraction

$$(-10) - 3 =$$

$$(-35) - (-10) =$$

Since Subtraction of Integers gives Integers, we say:

INTEGERS ARE CLOSED UNDER SUBTRACTION

In general, for any two integers, a and b, (a -b) is an Integer

1c. Closure Property under Multiplication

$$17 \times 20 =$$

Since Multiplication of Integers gives Integers, we say:
INTEGERS ARE CLOSED UNDER MULTIPLICATION
In general, for any two integers, a and b, (a x b) is an Integer

#### 1d. Closure Property under Division

$$(-10) \div 2 =$$

$$(-35) \div (-6) =$$

Since Division of Integers DOES NOT ALWAYS give Integers

INTEGERS ARE NOT CLOSED UNDER DIVISION

In general, for any two integers, a and b,  $(a \div b)$  Need not be an Integer

# 2a Commutative Property under Addition

#### Addition is Commutative for Integers

In general, for any two integers a & b, (a+b) = (b+a)

# 26 Commutative Property under Subtraction

Subtraction is NOT Commutative for Integers

In general, for any two integers a & b,  $(a-b) \neq (b-a)$ 

# 2c Commutative Property under Multiplication

$$+5 \times (-8) = ____ ; (-8) \times 5 = ____$$

$$-5 \times (-8) = ____ ; (-8) \times (-5) = ____$$

Multiplication is Commutative for Integers
In general, for any two integers a & b, (axb) = (bxa)

## 2d Commutative Property under Division

Division is NOT Commutative for Integers In general, for any two integers a & b,  $(a \div b) \neq (b \div a)$ 

# 3a. Associative property under Addition

$$(-3) + [(-2) + (-5)] =$$
 $[(-3) + (-2)] + (-5) =$ 

# Addition of Integers is Associative

In general, for any integers a, b & c, we can say a+[b+c] = [a+b]+c

## 3b. Associative property under Subtraction

$$(-3) - [(-2) - (-5)] =$$

$$[(-3) - (-2)] - (-5) =$$

## Subtraction of Integers is NOT Associative

In general, for any integers a, b & c, we can say  $a-[b-c] \neq [a-b]-c$ 

# 3c. Associative Property under Multiplication

$$7 \times [(-10) \times (-6)] =$$

$$[7 \times (-10)] \times (-6) =$$

# Multiplication of Integers is Associative

In general, for any three integers, a, b & c; a x [b x c] = [a x b] x c

# 3d. Associative Property under Division

$$[18 \div 9] \div 3 =$$

## Division of Integers is NOT Associative

In general, for any three integers, a, b & c;  $a \div [b \div c] \neq [a \div b] \div c$ 

|                | Closure | Commutative | Associative |
|----------------|---------|-------------|-------------|
| Addition       |         |             |             |
| Subtraction    |         | X           | X           |
| Multiplication |         |             |             |
| Division       | X       | X           | X           |

## Special Properties of Zero and 1

#### I) Under Addition

1. Addition of 1 to any integer gives its Successor

Example: 
$$5+1=6$$
;  $-7+1=-6$ 

#### 2. Additive Identity (Zero)

It is that number, which when added to any integer, gives the same integer. D is the Additive Identity.

#### 3. Additive Inverse

It is that number, which when added to an integer, gives the result as Zero

$$17 + _{---} = 0$$

$$-17 + _{---} = 0$$

#### II) Under Subtraction

# 1. Subtraction of 1 from any integer gives its Predecessor

Example: 
$$5-1=4$$
;  $-7-1=-8$ 

#### 2. Property of Zero

It is that number, which when subtracted from any integer, gives the same integer.

## III) Under Multiplication

#### 1. Property of Zero

The product of any integer with zero is zero

In general, for any integer a;  $a \times O = O \times a = O$ 

# 2. Multiplicative Identity (1)

The product of any integer with 1, equals the integer.

Therefore, the Multiplicative Identity for integers is 1

In general, for any integer a;  $a \times 1 = 1 \times a = a$ 

#### III) Under Division

#### 1. Property of 1

When any integer is divided by 1, the quotient is the same integer. In general, for any integer a;  $a \div 1 = a$ 

#### 2. Property of Zero

When zero is divided by any non-zero integer, the result is zero In general, for any integer  $a : 0 \div a = 0$ 

NOTE: Any integer divided by zero is UNDEFINED