
International Journal of Electrical & Electronics Research (IJEER)
Volume 4, Issue 1, Pages 27-30, March 2016, ISSN: 2347-470X

Vehicle Simulator: Virtual Trip Runner (VTR)/ Real

Time Recorder (RTR)

Aatray Kumar Singh Ashish Nanaware Satyajit Pangaonkar
Dept. of Electronics

MITAOE, Alandi
Dept. of Electronics

MITAOE, Alandi
Dept. of Electronics

 MITAOE, Alandi

University of Pune, Pune, India University of Pune, Pune, India University of Pune, Pune, India
aatraysingh85@gmail.com ashishnanaware310@rediffmail.com sapangaonkar@entc.maepune.ac.in

ABSTRACT

This topic is an attempt to develop an open source

vehicle simulator for use by anyone needing realistic

vehicle data delivered as it would be in a real vehicle.

As you probably know, most vehicles nowadays have

an On-Board Diagnostic (OBD) connector which is

wired up to the car’s internal computer. It is used in

many garages where the mechanic can probe the car

through the OBD connector and read out parameters

onto a display. In an Internet of Things (IoT) world

where the car can be easily connected to the Internet

(perhaps via Bluetooth to a smart phone), it could

automatically search an online knowledge base and not

only report a fault code but also let you know the most

likely cause either based on the car’s personal history

or on the environment (an expert system could

conclude “it is minus 15 degrees Celsius outside, and

there is a water leak, and it is likely to be a cracked

hose due to the cold temperature – and there was a

manufacturer recall notice concerning this hose”).

There will be whole sectors of applications such as,

safer driver operation of the vehicle, fewer distractions,

more automation, safer mechanical performance, better

& more timely maintenance warnings, lower cost

operation and lower maintenance costs.

Keywords: On board diagnostics, Raspberry Pi Kit,

CAN Protocol, Real trip recorder, Virtual trip runner.

1. INTRODUCTION

This topic is to help explain a new project which could be

extremely useful for the community. If you’ve ever been

stuck in a traffic jam, or broken down, or wanted to know

the health of your car, and wanted to do something about

it, then this open source project will resonate with you.

When thinking about how the internet-of-things will

evolve, it is easy to predict vehicles will be a significant

focal point for consumer applications, since vehicles

currently represent by far the biggest technology

expenditure/investment by the average consumer.

Vehicles are very complex machines incorporating

multiple Microcontrollers communicating via on-board

busses. The level of electronic technology in vehicles has

exploded and there is a large amount of

vehicle data readily available on the diagnostic bus

which is used locally, but not yet used for the vast

number of potential external applications.
There will be whole sectors of applications such as

safer driver operation of the vehicle, fewer distractions,
more automation, safer mechanical performance, better

& more timely maintenance warnings, lower cost

operation and lower maintenance costs, better and

more timely driver information, better advanced traffic

warnings and route planning. The paper is organized as

follows: section 2 provides reader with a initial

simulator concept of the project. Then section 3 is

dedicated to the objectives of this project. Then section

4 is dedicated to the architecture of the vehicle
simulator. Then in section 5 performance of this project

is explain in details. Then section 6 provides the results

of this project. . Eventually in section 7 conclusions is

drawn and also future research are discussed.

2. INITIAL SIMULATOR CONCEPT

Initially the system will need to be able to provide

OBD2 data just as a real vehicle would in response to

queries on a CAN bus or K-Line interface. To ensure

realistic data, trip data will be collected from real

vehicles the project will include a data collection

system (Real Trip Recorder - RTR) as well as a

playback / simulation system (Virtual Trip Runner -

VTR). During a simulated trip, previously recorded

data can be interpolated to provide appropriate data to

any bus queries.
Fault code simulation will be initially implemented

on a best guess basis as we will not be able to create

and monitor real faults in real vehicles. An attempt will

be made to keep the software modular enough that it

won't be difficult to replace fault code simulations with

better simulations when more is understood about their

behavior and also to replace recorded trip scenarios

with computed simulations, if and when they get

developed.
In order to make a compact open system that can be

easily setup for testing or demonstration at any location

the Raspberry Pi has been chosen as the platform. This

will allow a data collection system (RTR) to collect trip

data from a real vehicle, then a simulator system (VTR)

27

International Journal of Electrical & Electronics Research (IJEER)

Volume 4, Issue 1, Pages 27-30, March 2016, ISSN: 2347-470X

can simulate this trip for the same data collection unit to

see if it collects the same data from the simulation as it did

from the real trip. This dual system provides an easy way

to validate the system. A single system will be able to

function as either a trip recorder or a simulator.

4. ARCHITECTURE

The architecture of our system is discussed below in

a more physical level.

Fig.1 Block diagram of Initial simulator concept

3. OBJECTIVES

There are mainly four objectives that we are

concluding for this project which are as follows:-

1. The primary objective for this project is to

provide a vehicle simulator system that provides

realistic enough data, primarily in electronic form, to

allow developers to test their OBD2 reader prototypes

& data applications in a lab instead of needing to test in

a vehicle. The VTR system should provide some ability

to generate fault codes.
2. To perform real-time vehicle status

surveillance, i.e. to monitor engine rpm, vehicle speed,

coolant temperature, fault codes, and other vehicle

dynamics information
3. A secondary objective is to make the vehicle

simulator such that it can be used to demonstrate new

products and applications indoors at trade shows or

sales presentations.

4. A third objective is to make the vehicle

simulation system a modular platform that can be
extended and upgraded to become a more accurate

simulation for more vehicle.

5. To transmit vehicle information to the user

GSM wireless network for fault analysis as well as to

alert user.
6. To decode OBD system installed on the

vehicles.

4.1 System Design

OBD2 data provides a lot of information about what is

occurring inside vehicle systems, but it does not

necessarily provide everything desired in a simulation,

such as location and orientation of the vehicle, distance

travelled, and time stamps on all data.
The Raspberry Pi has a CAN bus capability, but a

custom cape will be needed to translate this to OBD2

signals and add in a K-Line interface. This cape will

also include a GPS module and a 10channel sensor

suite - 3 orthogonal linear accelerometers, 3 orthogonal

angular rate sensors, 3 orthogonal magnetometers and
an absolute pressure sensor. These sensors are not

needed in the simulator system (VTR), but will allow

more sophisticated sensor data to be collected when the

device is used for recording real trips (RTR) and this

data can later be presented by the simulator (VTR).

The VTR/RTR cape will also include a Bluetooth

module - when in VTR mode it will allow generation

of fault codes and control of the VTR from a smart

phone, when in RTR mode it will allow connection to a

Bluetooth OBD2 interface or possibly a smart phone.
Since the RTR will have a full OBD2 interface,

either wired or wireless, there is no reason it couldn't

be used to reset fault codes, however this feature will

likely not be included in the first software release.

4.2 Real Trip Recorder (RTR)

Real trip recorder is a data collection system which is

used to collect the trip data from real vehicles. It is an

automotive engineering device which is used to record

the status of the vehicles running speed, distance

travelled. It is also indicates the mileage covered

during a particular journey either mechanically or

electronically, it can be reset to zero by turning or

pushing the button.

Fig.2 shows the architecture of the system that we are

going to implement in this project. The vehicle is

directly connected to the OBD 2 Interface, the OBD2

connector is directly connected to OBD2 CAN

connector, and then the CAN connector is connected

with Microcontroller via CAN protocol bus or K-line

interface. Then a GSM-Module and a display is

connected with the Raspberry Pi kit. The display shows

the results of the faults and a mobile is connected with

the GSM module which receives the alert of that fault.

28

International Journal of Electrical & Electronics Research (IJEER)

Volume 4, Issue 1, Pages 27-30, March 2016, ISSN: 2347-470X

Fig.2 System architecture including Raspberry Pi Kit.

4.3 Virtual Trip Runner (VTR)

Virtual trip runner (VTR) is a data collection system

which is used to store trip data as well as playback and

simulation system. During a simulated trip, previously

recorded data can be interpolated to provide

appropriate data to any bus queries. The data that is

collected by the real trip recorder (RTR) system is then

by using a simulator system virtual trip runner (VTR)

can simulate this trip for the same data collection unit

to see if it collects the same data from the simulation as

it did from the real trip.
This dual system provides an easy way to validate

the system. A single system will be function as either

real trip recorder (RTR) or virtual trip runner (VTR)

means either a trip recorder or a simulator.

In this topic we are going to use Broadcom BCM2835

SoC Multimedia processor in Raspberry Pi Kit.
 CPU

1. ARM 1176JZF-S (armv6k) 700Mhz.

2. RISC Architecture and low power
draw.

3. Not compatible with traditional PC

software.

 GPU

1. Broadcom Video IV
2. Specialized graphical instruction sets.

 RAM

1. 512MB (Model B rev.2)

2. 256MB (Model A rev.1)

 HDMI
1. Digital signal
2. Video and audio signal

3. DVI cannot carry audio signal
4. Up to 1900x1200 resolution

 IEEE 802.11 Wi-fi, frequency band of 2.4Ghz and

5Ghz and Ethernet (IEEE 802.3)
 General purpose Input/Output (GPIO), micro-USB

power connector, powered USB hub.

Configuration of Raspberry Pi includes RPi doesn’t

have a BIOS menu. It relies on text files containing

configuration strings that are loaded by the chip when

powers on.
 Hardware settings: config.txt

 Memory partitioning :start.elf

 Software settings: smdline.txt

4.4 Trip Video

Initially it should be easy to record video of a trip while

electronic data is being collected using a separate video

camcorder. Having the simulator play it back in proper

sync is a bit of an unknown right now, but obviously it

could be played on a separate player while the

simulation is running. Ultimately it may be possible to

record and playback video on the same Raspberry Pi

platform, but this functionality is not a target for the

first release.

4.5 Raspberry Pi Kit
5.

PROJECT PLAN

1. Study how OBD works and get the OBD connector.
2. Analyze output of the OBD via CAN analyzer.
3. Interface CAN base micro controller to OBD.

4. Send decoded data to Raspberry Pi for

further processing & monitoring.
5. Interface GSM modem to the Raspberry Pi.

6. Write the RTR data collection firmware.

7. Write VTR simulation firmware.

8. Test and validate system.

To achieve this project plan both vehicle simulator and

vehicle recorder systems have to built and they

communicate with each other fine over the CAN bus.
The car cape that we are displaying in the block

diagram of both the trip recorder system and simulator

system is need to running on Raspberry Pi. In order to

implement this project plan we have to make sure that

the CAN based Microcontroller and Raspberry Pi Kit

communicate with each other. They can communicate

fine with the USB-CAN module above. The

commercial reader can also communicate fine with the

USB-CAN module. In this project we are using two

29

International Journal of Electrical & Electronics Research (IJEER)

Volume 4, Issue 1, Pages 27-30, March 2016, ISSN: 2347-470X

types of OBD2 connectors which are OBD2 (male) and

OBD2 (female). The OBD2 male is connected with the

vehicle and OBD2 female is connected with OBD2

reader, and these two connecters are directly connected

with a 5v power supply.

6. RESULTS

This simulator looks like an operating vehicle to any

instrumentation or application that can interface to a

normal vehicle via its OBD2 connector. The data

supplied by the simulator is real trip data collected by

the Trip Recorder function of the system. There is

additional sensor data available that is collected

directly from the Car
Cape sensor suite during the same reference trips, such

as GPS position, compass heading, accelerations,

angular rates, barometric pressure, temperature and

ambient light.
The system is built around a Raspberry Pi Kit with

a "Car Cape" mounted on it to provide an OBD2

interface, a sensor suite, a user interface and a wireless

communications interface. The system may be used as

either a simulator or as a stand-alone trip recorder.
Since the introductory blog, we have been busy

designing hardware, ordering parts and building

hardware. We have also been setting up a Raspberry Pi

Board development environment and configuring an
operating system build and experimenting with CAN

bus communications.
We have built 3 capes with CAN bus capability and

a suite of functionality appropriate for our vehicle

applications. The various features are outlined in

bullets around the Car Cape image below. The software

and hardware are currently functional enough for

Raspberry Pi Kit, with installed capes, to communicate
over the CAN bus. Not shown are a separate keypad

card and a separate OBDII connector card which also

has a DC-DC converter to supply 5 volts to the

Raspberry Pi. These cards are built, but not fully tested

yet. All those peripherals required most of the available

pins on the Raspberry Pi, although I refrained from

using the pins allocated to the Raspberry Pi internal

HDMI cape - so HDMI should still be functional.

data from the vehicles and simulate them using a

platform that is Raspberry Pi board. In this project we

are using two types of OBD2 connectors which are

OBD2 (male) and OBD2 (female). The OBD2 male is

connected with the vehicle and OBD2 female is

connected with OBD2 reader, and these two connecters

are directly connected with a 5v power supply. After

doing these things correctly we should able to get the

results such as version of the CAR-CAPE 2,

Temperature of the engine and pressure of tires.

8. REFERENCES

[1] D.Nandhini, G.Nandhini, M.Nandhini, R.Vidhya, “ON-BOARD

DIAGNOSTIC SYSTEM FOR VEHICLES”, IEEE March 2014.
[2] LiShiwu, Coll.ofTransp,JilinUniv.,Changchun “Research on

method for real-time monitoringvehicle based on multi_sensors”

china, 2011.

[3] Umit Ozguner, Christoph Stiller, Keith Redmill,” System for

safety and autonomous behavior in cars” IEEE Feb 2007.

[4] Website. http://www.element14.com/
[5] James William Topliss, Victor Zappi, Andrew Mcpherson,

“Latency performance for real time audio on Beaglebone black,

England 2013.
[6] Jorge Zaldivar, Carlos T.Calafate, Juan Carlos Cano, Pietro

Manzoni,” Providing accident detection in vehicular networks through

OBD2 devices android based smart phones. IEEE 2011.
[7] International Organization for Standardization, “ISO 15765: Road

vehicles, Diagnostics on Controller Area Networks (CAN),” 2004.

7. CONCLUSION AND FUTURE

RESEARCH

This topic is to help explain a new project which could be

extremely useful for the community. In future there will

whole sectors of application such as accident response

application, ways to save fuel, vehicles better designed to

address owner needs and habits. The list goes far beyond

the few obvious sectors listed here, but clearly there will

be an enormous number of vehicle-related internet-of-

things applications. The RTR and VTR are two devices

that we are used for collecting real

30

