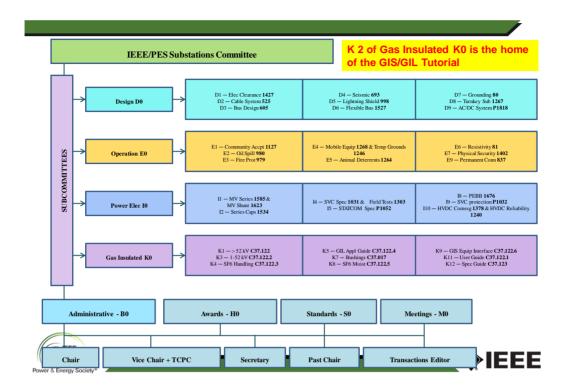


Jornada técnica en subestaciones


Gas Insulated Switchgear & Transmission Lines

Hermann Koch IEEE Fellow – Siemens

Febrero 20 HMV Ingenieros, Medellin, 8 am - 5pm

	2	
	Agenda	
Part 1		
08:30	Introduction & Theory	
08:45	Design& Manufacturing	
09:00	Testing, Operation & Maintenance	
09:15	Interface to GIS	
09:30	Control and Monitoring	
09:45	Installation & Commissioning	
10:15	Coffee Break	
Part 2		
13:00	GIS Applications	
13:20	Life Cycle Cost	
13:40	Compare AIS and GIS	
14:00	Mobile GIS	
14:20	GIS Specification	
14:40	GIL	
15:00	Future Development of HV GIS	
15:45	Coffee Break	
TIEEE		
PES		
ver & Energy Society*	IEEE/PES Substation Committee- GIS Subcommittee	

K2 Gas Insulated Technology Tutorial / Panel **Active Members**

Name	Affiliation	Time .
George Becker	POWER Engineers	since 2002
Arnaud Ficheux	GE Grid Solutions	since 2008
John Brunke	POWER Engineers	since 2005
Mark Etter	ABB	since 2002
Pat Fitzgerald	AZZ CGIT	since 2006
Hermann Koch	Siemens	since 2002
Ryan Stone	Mitsubishi	since 2006
Peter Grossmann	Siemens	since 2008
Dave Solhtalab	PG&E	since 2010
Richard Jones	EnEngineering/SES	since 2002
Pravakar Samanta	ABB	since 2014
Sean Parsi	kinectrics	since 2014
Dave Mitchell	Dominion	since 2014
Michael Novev	Burns & McDonnell	since 2014

K2 Gas Insulated Technology Tutorial / Panel Past Members

Name	Affiliation	Date .
Arun Arora	Consultant	2002 to 2014
Lutz Boettger	ABB	2002 to 2006
Hugues Bosia	AREVA	2002 to 2007
Wolfgang Degen	Consultant	2002 to 2008
Mel Hopkins	CGIT	2002 to 2005
Deborah Ottinger	EPA	2005 to 2007
Venkatesh Minisandram	National Grid	2002 to 2010
Joseph Pannunzio	AREVA	2009 to 2010
Charles Hand	SCE	2010 to 2015
Phil Bolin	Mitsubishi	2002 to 2015

IEEE/PES Substation Committee- GIS Subcommittee

5

Wiley offers 20% discount to all conference attendees and 35% discount to IEEE members on proof of membership.

IEEE GIS-GIL References Standards

C37.122	Standard for High Voltage Gas-Insulated Substations, rated above 52 kV
C37.122.1	GIS User Guide
C37.122.2	Guide for Application of Gas-Insulated Substations (GIS) 1 kV up to 52 kV
C37.122.3	SF6-Handling
C37.122.4	Application and User Guide for Gas-Insulated Transmission Lines (GIL), Rated 72.5 kV and Above
C37.122.5	SF6 Moisture Guide
C37.122.6	GIS Equipment Interfaces
C37.017	Revision of Standard for Bushing for High Voltage (over 1000 V AC) Circuit Breakers and Gas Insulated Switchgear
C37.123	Guide to Specification for GIS Electric Power Substation Equipment

IEC GIS-GIL References Standards

IEEE

IEC 62271-3:2015	High-voltage switchgear and controlgear - Part 3: Digital interfaces based on IEC 61850
IEC 62271-200:2011	High-voltage switchgear and controlgear - Part 200: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV
IEC 62271-201:2014	High-voltage switchgear and controlgear - Part 201: AC solid-insulation enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV
IEC 62271-202:2014	High-voltage switchgear and controlgear - Part 202: High-voltage/ low-voltage prefabricated substation
IEC 62271-203:2011	High-voltage switchgear and controlgear - Part 203: Gas-insulated metal- enclosed switchgear for rated voltages above 52 kV
IEC 62271-204:2011	High-voltage switchgear and controlgear - Part 204: Rigid gas-insulated transmission lines for rated voltage above 52 kV
IEC 62271-205:2008	High-voltage switchgear and controlgear - Part 205: Compact switchgear assemblies for rated voltages above 52 kV
IEC 62271-206:2011	High-voltage switchgear and controlgear - Part 206: Voltage presence indicating systems for rated voltages above 1 kV and up to and including 52 kV

IEC 62271-207:2012	High-voltage switchgear and controlgear - Part 207: Seismic qualification for gas-insulated switchgear assemblies for rated voltages above 52 kV
IEC TR 62271-208:2009	High-voltage switchgear and controlgear - Part 208: Methods to quantify the steady state, power-frequency electromagnetic fields generated by HV switchgear assemblies and HV/LV prefabricated substations
IEC 62271-209:2007	High-voltage switchgear and controlgear - Part 209: Cable connections for gas-insulated metal-enclosed switchgear for rated voltages above 52 kV - Fluid-filled and extruded insulation cables - Fluid-filled and dry-type cable-terminations
IEC TS 62271-210:2013	High-voltage switchgear and controlgear - Part 210: Seismic qualification for metal enclosed and solid-insulation enclosed switchgear and controlgear assemblies for rated voltages above 1 kV and up to and including 52 kV
IEC 62271-211:2014	High-voltage switchgear and controlgear - Part 211: Direct connection between power transformers and gas-insulated metal-enclosed switchgear for rated voltages above 52 kV
IEC TS 62271-304:2008	High-voltage switchgear and controlgear - Part 304: Design classes fo indoor enclosed switchgear and controlgear for rated voltages above 1 kV up to and includuing 52 kV to be used in severe climatic conditions

10

9

GIS Basic Ratings of GIS

according to IEEE C37.122 and IEC 62271-203

kV 66-72,5-100-123-145-170-245 300-362-420-550-800-1100 kV 140-185-230-325-375-425 460-500-650-740-900-1200 kV 325-450-550-650-750-1050-1 1425-1550-2100 up to 170 kV: 1250 A-3150 A	
460-500-650-740-900-1200 XV] 325-450-550-650-750-1050-1 1425-1550-2100 up to 170 kV: 1250 A-3150 A	175-
1425-1550-2100] up to 170 kV: 1250 A-3150 A	175-
above 170 kV: 3150 A-8000 A	
	L.
DC: 48 V, 110 V, 125 V AC: 208/130 V, 400/230 V, 23	0/115 V
	above 170 kV: 31,5 kA-100 kA

Content Part 1

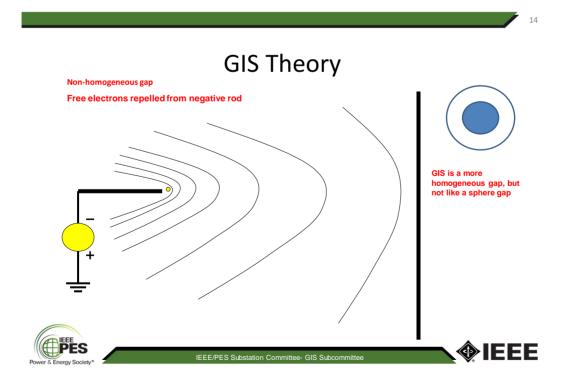
11

•Theory

•SF₆ Insulating Gas

12 Sulfur Hexafluoride SF₆ • A man-made colorless, odorless, stable gas • A large octahedral non-polar molecule • Collision Diameter $-N_2$ 16.1 A $-SF_6$ 36.5 A • Molecular weight 146.05 (about 5 times the weight of air) • SF₆ is broken down by heat and arcs - SF₆ bi-products largely reform into SF₆ Ionization potential of Nitrogen 15.6 eV Ionization potential of SF₆ 15.6 eV • Pictured: SF₆ and N₂ PES IEEE IEEE/PES Substation Committee- GIS Subcommittee

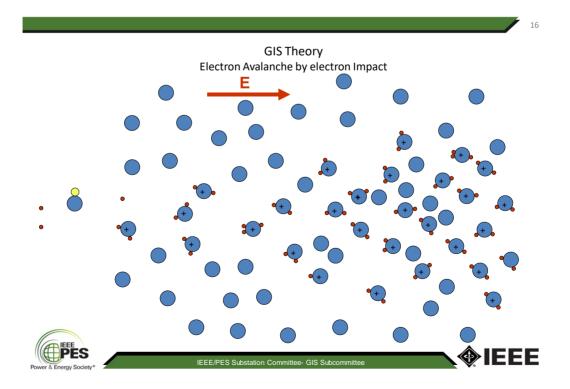
Physics Review


- Ionization, the process of removing an electron from an atom or molecule
- Excitation, the condition in which an electron moves to a higher, unstable energy level. Relaxation results in the electron returning to a stable energy level, releasing the excess energy as a photon

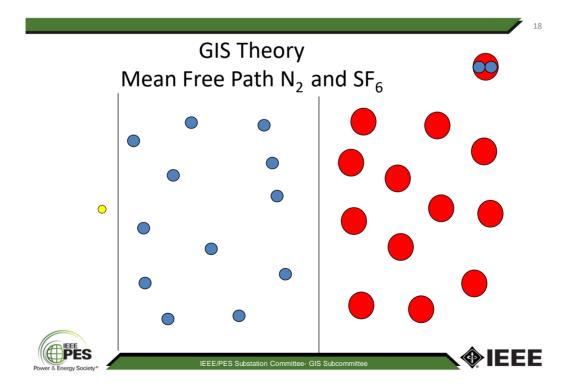
IEEE/PES Substation Committee- GIS Subcommittee

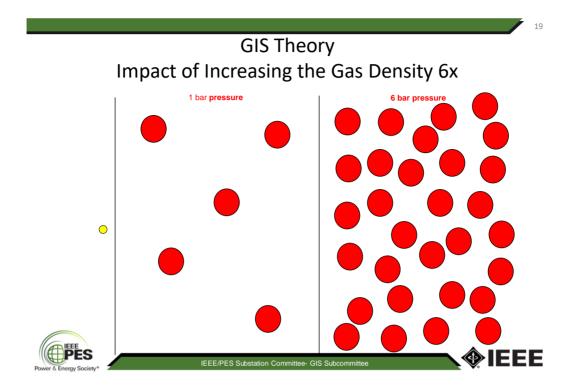
- Free electrons
 - From ionization by cosmic rays, photons, friction, chemical reactions, thermal, etc.
- Mean free path
 - Mean distance before a molecule or electron will impact another molecule
- Mean Free Path
 - $\begin{array}{ll} & N_2 & 6 \times 10^{-8} \text{ m} \\ & SF_6 & 2.5 \times 10^{-8} \text{ m} \end{array}$

13


IEEE


Ions Vs Electrons Ion Mobility


15


• Mass ratio of an electron vs. mass of SF_6 1 to 125,000 (1500 lbs. vs 95,000 tons)

GIS Theory Electron Affinity

- Electro-negative
 - Electron Affinity (strong affinity for electron attachment)
 - Free electrons are often captured

• Mechanisms

Resonance capture

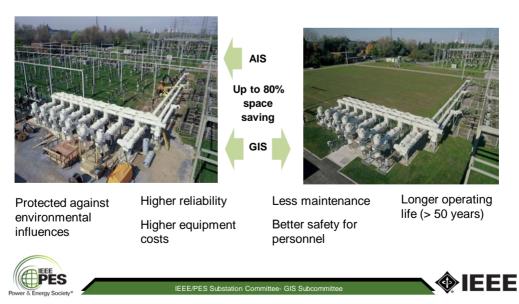
$$e + SF_6 \rightarrow SF_6^-$$

- Dissociative attachment

$$e + SF_6 \rightarrow SF_5^- + F$$

- Energy requirements are low (0.1 eV or less)

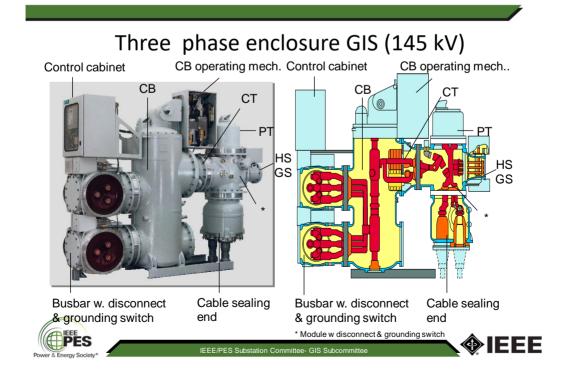
IEEE/PES Substation Committee- GIS Subcom


GIS Theory Summary, why is SF6 a Good Insulating Gas?

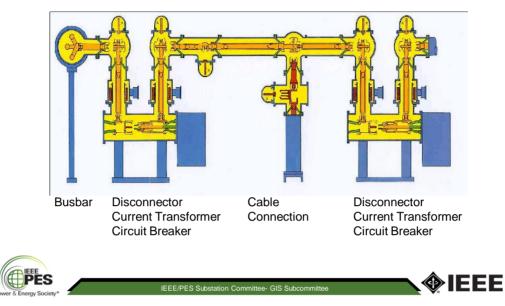
- Molecule is large
- Electron Affinity
- Fairly high ionization potential

•The breakdown strength of air is dramatically increased by the addition of small quantities of SF_6 . In contrast, air has only a limited influence on the breakdown strength of sulfur hexafluoride. The addition of 10 % of air by volume reduces the breakdown voltage of SF6 by about 3 %, the addition of 30 % air by about 10 %.

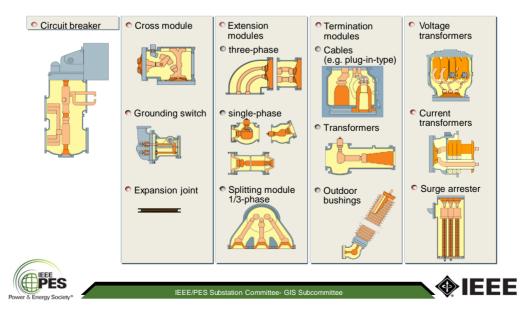
Introducing Gas Insulated Substation



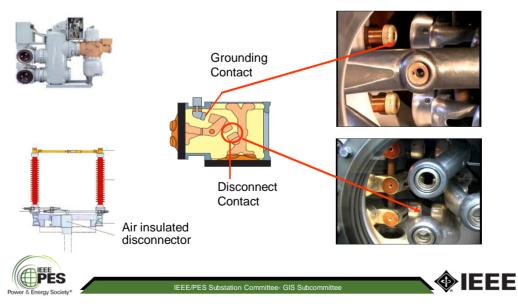
Content Part 1


23

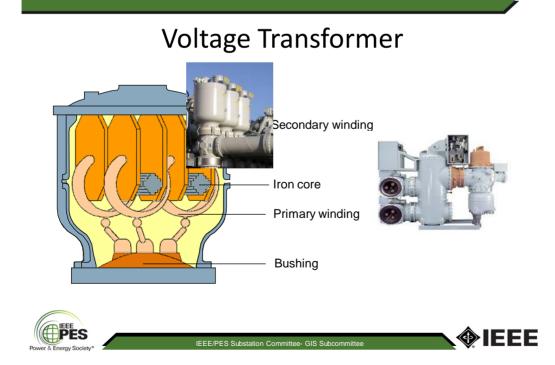
•Design •Modular Structure



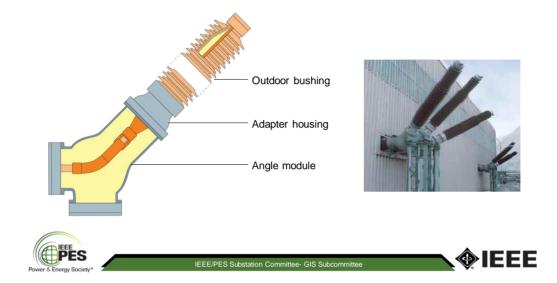
Single phase enclosure (>245 kV)

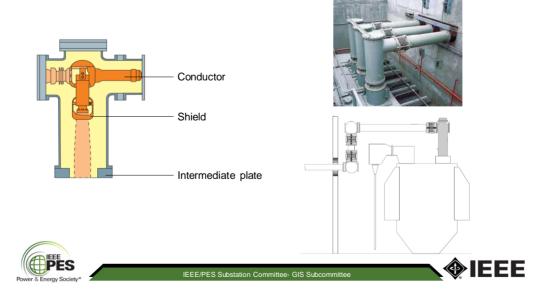


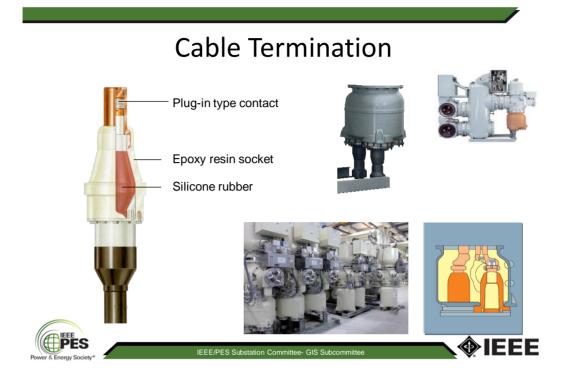
Modular Structure (schematic)



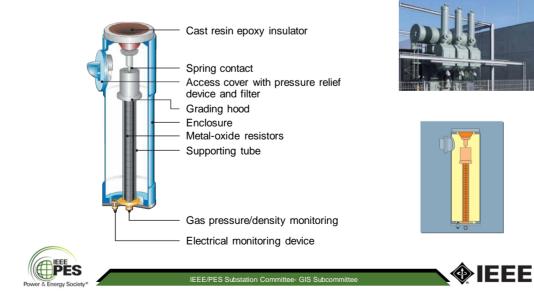
<section-header><complex-block>

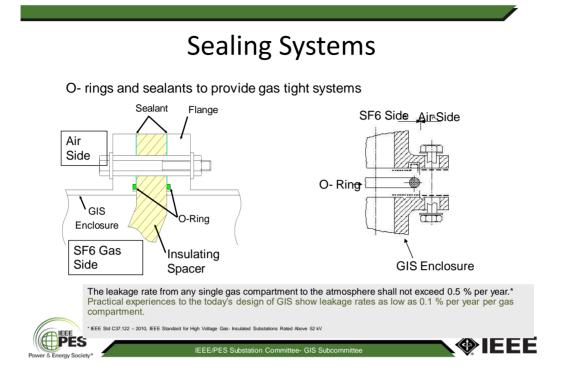

Disconnector/ Ground Switch Module

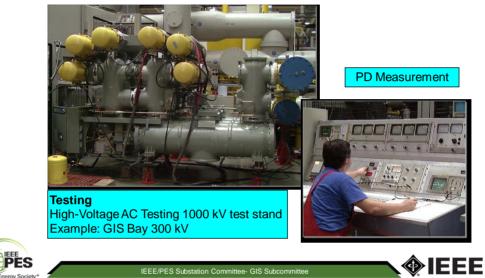

<section-header><section-header><text>



Outdoor Termination

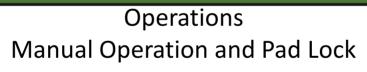



Transformer Termination


Surge Arrestor

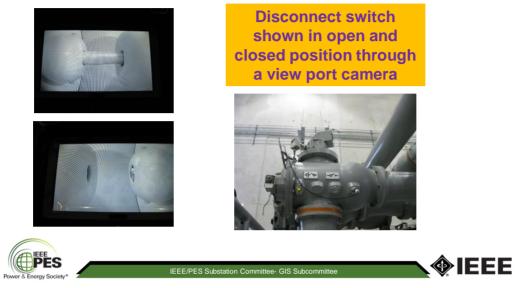
Production (Routine) Tests Pressure, Mechanical, Dielectric, Resistance, Thightness

Operations


- Equipment thermal loading
- Reclosing philosophy
- Disconnect and ground switch position (viewports)
- Interlocking
- Remote/local operations (control/marshalling cabinet)
- Alarms

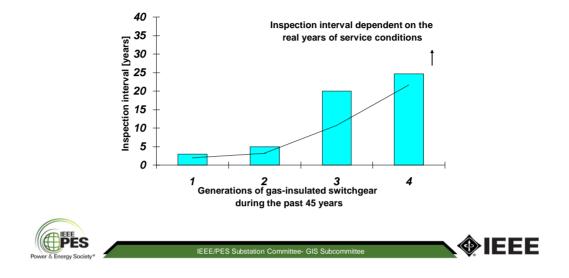
Operations Disconnect Switch Position Indicator

39



Operations View Port with Endoscope/Video Camera

41



Maintenance/Inspections

- Time Based Intervals
- Load Depended Intervals
- Condition Monitoring Based Intervals

Maintenance Progress of Maintenance/Inspection Activities

Condition-Based Maintenance

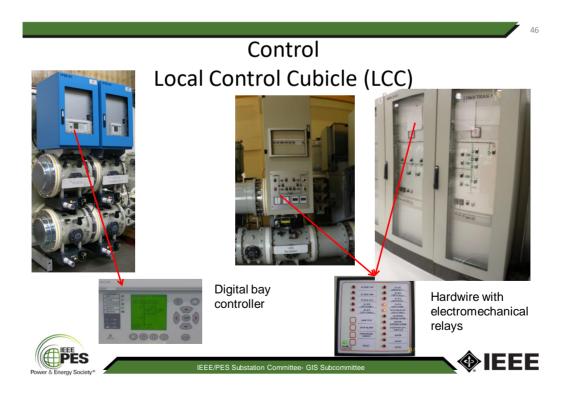
- Routine Inspection
 - External visual inspection of the GIS installation
 - Status of gas density monitors
 - · Condition of gas seals and operating mechanisms
 - · Integrity of ground and other connections
 - Number of operations

In intervals of two to five times a month, depending on operating conditions.

- · Condition-Based Maintenance
 - Only required after an internal fault or if maximum number of operations has been exceeded.

IEEE/PES Substation Committee- GIS Subcomm

Both are extremely rare!



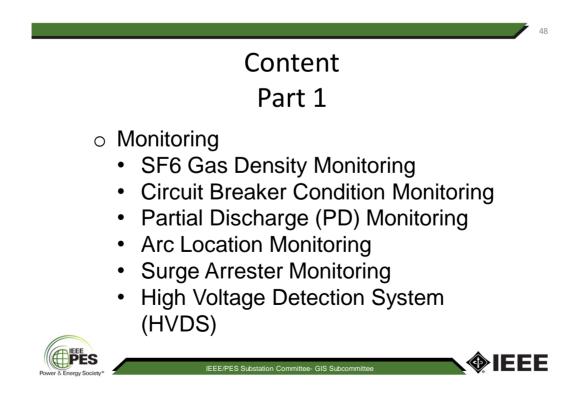
43

Content Part 1

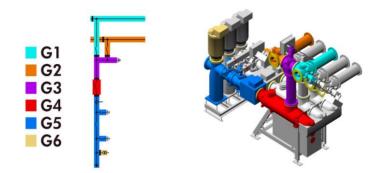
- o Control
 - Indications
 - Alarms
 - Operating controls
 - Interlocking/ Blocking

Control - Alarms

Typical alarms:


- o Supply power CB open
- $\circ~$ CB spring charge time exceeded
- o CB spring discharged
- $\circ~$ CB trip coil failed
- $\circ~$ Operating time of switch exceeded
- Switch not in end position(abnormal position alarm)

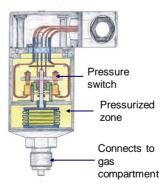
- Voltage Transformer secondary fuse or CB open
- $\circ~$ Gas under/over ~ pressure alarms ~
- $\circ~$ Gas monitoring plug disconnected
- Bay controller status(healthy, out of service, in programming mode, etc.)



47

IEEE

SF6 Gas Density Monitoring



A typical GIS bay's gas zones are shown. Some gas zones are more critical than others; for instance a certain gas pressure/ density is critical for correct operation of the circuit breaker.

SF6 Gas Monitoring – Pressure Monitoring

	0.13
2.0	0.12
24	
22	0.11
	0.10
20	0.09
18	0.08
16	0.07
14	
12	0.08
	0.05
10	0.04
08	
0.0	0.03
84	0.02
02	0.01
•	
-50 -30 -10 +10 +30 +50 +70 +1 Temperature in "C	0 +110 +130
Tomperature in 10	

<u>1</u>9

The simplest way to monitor density is to measure pressure with a simple pressure switch and make a conversion using a chart. Inherent issue with this method is that pressure changes with temperature and for environments where there are large fulgurations in temperature, the measurements can be inaccurate. Pressure monitoring in these cases may also lead to false alarms and incorrect interlocking functions. The newer versions of the pressure monitors have a temperature compensation function eliminate some of these issues.

Content Part 1

Installation and Commissioning

- **A Preparation**
- **B** Installation steps
- C Commissioning and on-site testing

Preparation

Requirements:

EHS instructions

Qualified people

Clean environment

Drawings and diagrams

Tools and materials on-site

IEEE/PES Substation Committee- GIS Sub

Installation steps - aligning the GIS

Check for clean floor and that components are damage free

Determine longitudinal and lateral axes

Mark GIS set up points

Assemble GIS bay by bay

IEEE

Installation steps - flange treatment

ittee- GIS Subc

Insulators are not damaged Flanges are scratch free Cleanliness matters!

Commissioning and on-site testing High voltage impulse testing

IFEE/PES Substation Com

Voltage divider

Impulse generator

Lightning impulse test additional to power frequency test for > 245 kV GIS Alternative if no partial discharge measurement possible

Detects peaks on conductors and loose particles

IEEE

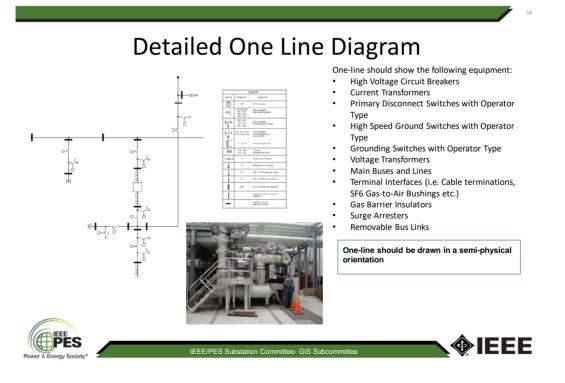
56

Content Part 2

ittee- GIS Subcom

SpecificationDocumentation

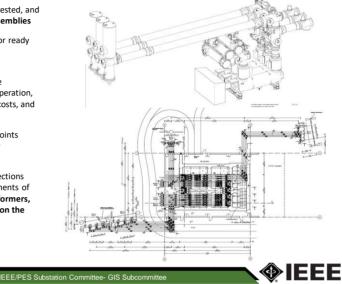
IEEE/PES Substation Committee- GIS Subcor



Major Specification Content Areas

- Detailed One-Line Diagram
- General Arrangement of Equipment
- Primary Equipment Data and Ratings
- Gas Zone Configuration
- Secondary Equipment Data
- Engineering Studies
- Logistics Studies
- Test and Inspections
- Standards and Regulations
- Project Deliverables
- Other Project Specific Requirements to Consider

Detailed information and check lists for the specification of GIS can be found in IEEE C37.123 Annex A



General Arrangement of Equipment

- Prefabricated, factory assembled, tested, and shipped in the largest practical assemblies
- Sufficient space and access areas for ready removal and reinstallation of each component
- Optimized arrangements to reduce installation time, provide ease of operation, minimize maintenance and repair costs, and facilitate future additions
- All gauges, viewports, and gas fill points readily accessible and viewable by maintenance personnel
- Give special attention to the connections between the GIS and other components of the network overhead lines, transformers, cables etc. can have major impact on the overall layout and cost

Primary Equipment Data and Ratings

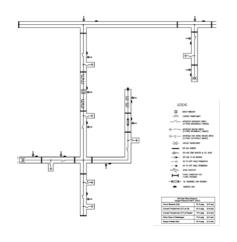
Circuit Breakers	
Rated maximum voltage	XXXX kV for circuit breakers defined as 'definite purpose for fast transient recovery voltage rise times' per ANSI/IEEE C37.06.1; OR XXX kV for 'general purpose' per ANSI/IEEE C37.06
Rated maximum Interrupting time	X cycles on a 60 Hz basis
Rated minimum current, all breakers	X XXXX A
Rated short-circuit breaking current	XX KA COS.
Rated closing and latching current	XXX kA peak
Rated operating sequence	Duty Cycle: O-t1-CO-t2-CO where t1 = 0.3 second, and t2 = 3 minutes
Rated capacitive switching currents	IEC 60056 Table 5
Number of mechanical operations	10,000 (minimum)
Number of trip colls	х
TRV, and time to peak @T100	XXX KV; XXX microseconds
TRV, and time to peak @T60	XXX KV; XXX microseconds
TRV, and time to peak @T30	XXX KV; XXX microseconds
TRV, and time to peak @T10	XXX KV; XXX microseconds
Closing resistor (If required), resistance and insertion time	X ohm; XX microseconds
Disconnect Switches	
Rated minimum current, all disconnect switches	A XXXX.X
Rated short-time withstand current	XX kA
Rated peak withstand current	XXXX KA
Rated duration of short circuit	1 second
Mechanical endurance	1,000 cycles (minimum)
Grounding Switches	
Rated minimum current, all grounding switches	AXXXX
Rated short-time withstand current	XX kA
Rated peak withstand current	XXXX KA

- General Criteria
- GIS Equipment Ratings and Service Conditions
- Enclosure Design Single Phase or Three
 Phase
- Specific Equipment Requirements
- Circuit Breakers
- Disconnect Switches, Grounding Switches
 and Operators
- Gas System and Gas Zone Configurations
- Current Transformers
- Inductive Voltage Transformers
- Metal-Enclosed Surge Arresters
- SF6 Gas-to-Air Bushings
- GIS to Cable Connections
- GIS to GIB/GIL Connections
- Power Transformer Bushing Connections
 Local Control Cabinets and Marshaling
- Cabinets
- Ladders, Platforms, Stairs, and Walkways

IEEE/PES Substation Committee- GIS Subcomm

Primary Equipment Data and Ratings

- The manufacturer should provide a breakdown of the primary equipment specifications in the preliminary engineering budgetary proposal and the final proposal
- The manufacturer should provide a full set of ratings for the primary equipment
- The manufacturer should provide complete fill-in data on all specified components
- The user and manufacturer should meet to reconcile all user requirements with the manufacture's proposed design


Disconnect Switch Example

	User Requirements	Supplier Proposal
Rated full-wave impulse withstand voltage		
Across the open gap (kV Peak)		
Power frequency - one (1) minute withstand voltage:		
Across the open gap (kV (005)		
Number of open-close operations before inspection or servicing		
Maximum control voltage (VDC)		
Minimum control voltage (VDC)		
Motor Current, start/run (A)		
Rated peak withstand current (kA (005)		
Short term withstand current (kA (004)		
Maximum opening current (A) at rated voltage		
Maximum dosing current (A)		
Heater power per three (3) pole switch (W)		
Main current carrying contact material		
Base material and specification		
Contact insert material		
Plating material		
Control data for operating mechanism		
Operating time (s)		

IEEE/PES Substation Committee- GIS Subcommittee

Gas Zone Configuration

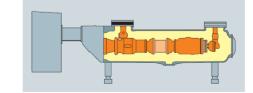
- Ability to calibrate density monitors without deenergizing the equipment
- 3-in-1 enclosure = three-phase gas pressure and density monitoring; single-phase enclosure = single-phase gas pressure and density monitoring
- Leakage rate of SF6 gas from any individual gas compartment and total leakage from GIS system not to exceed 0.1 percent per year
- Connections for a gas density relay/monitoring system, gas handling equipment, moisture detection instrumentation and fittings to permit the addition of
- SF6 gas while GIS components are in service (energized)
- Each gas zone with a switching should be furnished with a gas density monitoring device
 - First alarm Low gas density (nominally 5-10 percent below nominal fill density) to local annunciator and to user's SCADA RTU
 - Second alarm Trip circuit breakers associated with the affected gas zone before minimum gas density to achieve equipment ratings is reached and block closing of circuit breakers associated with the affected gas zone



IEEE/PES Substation Committee- GIS Subcommittee

IEEF

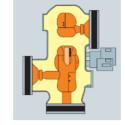
Gas Zone Configuration



Circuit Breakers

- Designed in the same manner as . dead tank SF6 puffer and arc assist circuit breakers that are used in air insulated substations
- All gauges, counters, and position indicators should be readable by an operator standing near the equipment at floor level
- Provide for onboard condition . monitoring systems and transducers to monitor:
 - Timing _ Travel
 - _
 - _
 - _

 - Travel Mechanism pressure Trip and close currents Auxiliary DC supply voltage AC phase currents and voltages Auxiliary switch positions Circuit breaker bay temperature
 - SF6 gas density and pressure Cumulative I2t calculation
- Mechanism charging motor to be a universal AC/DC motor, field selectable



Disconnect Switches, Grounding Switches and Operators

- Disconnect switches and grounding switches, gang and motoroperated, non-load break, with one operating mechanism per threepole switch
- Provisions for bypassing electrical interlocking scheme between the disconnect switch and the grounding switch to facilitate voltage and current testing of the internal parts of the GIS without removing SF6 gas or opening the enclosure
- Viewports accessible from the floor by personnel
- If not then dedicated optical cameras at each viewport with viewing monitor and cabling system
- Furnish maintenance platforms, ladders, and/or stairs to access all of the viewports

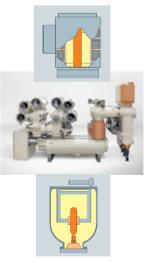
IEEE/PES Substation Committee- GIS Subco

IEEE

Current/Voltage Transformers

Inductive Current Transformers

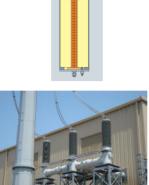
- Current transformer secondaries terminated to six-point shorting terminal blocks in the Local Control Cabinets
- Each current transformer able to be tested without the removal of gas


Inductive Voltage Transformers

- Inductive voltage transformers to have an electric field shield between the primary and secondary windings to prevent capacitive coupling of any transient voltages
- Voltage transformers fabricated to mitigate the possibility of ferroresonance during operation, with provisions for damping equipment

IEEE/PES Substation Committee- GIS Subcommittee

Metal Enclosed Surge Arrester / Bushings


SF6 Gas to Air Bushings

- Provide surge arresters to protect underground cables connected to the GIS from impulse surges
- Arresters connected to the SF6 cable sealing end at the junction of the cable connection
- Insulation coordination studies to ensure proper surge arrester application

SF6 Gas to Air Bushings

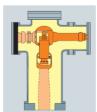
- Internal metal shields installed in the bushing cylinder to control electric field distribution
- Each gas-to-air bushing to have its own gas zone and gas density monitoring transducers, transducers accessible from the ground using a step ladder or improvised platform

IEEE/PES Substation Committee- GIS Subcommittee

IEEE

Cable Sealing End Terminations / Transformer Terminations

Cable Sealing End Terminations


- Removable link or plug in connector that allows current transfer from the cable conductor to the GIS conductor, so that it can be disconnected from the GIS when testing is performed on either the GIS or the cable
- MOV arresters across cable to sealing end interface

Transformer Terminations

- Appropriate grounding connections across the flanges of the transformer termination module
- module **Expansion joints** to compensate for
 - the following:
 - design tolerances of the facility, the building and the transformer
 one-off movements caused by differences
 - in the settling of the transformer and facility foundations thermal expansion of component
 - thermal expansion of component enclosures.

IEEE/PES Substation Committee- GIS Subcommitt

Gas Insulated Bus / Walkways, Ladders and Platforms

Gas Insulated Bus

- Expansion joints between individual bays
- Proper grounding across flange
 and expansion joint connections

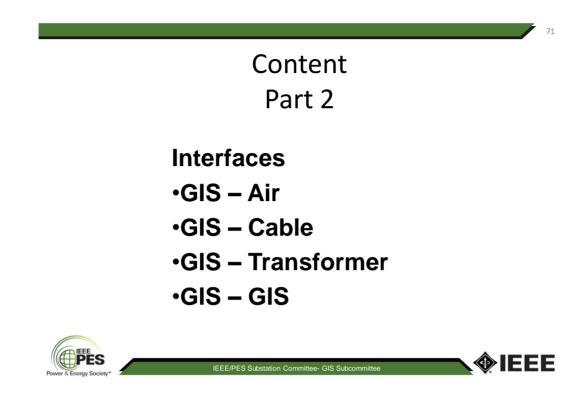
Walkways, Ladders and Platforms

 Provide detailed drawings for platforms, stairs, walkways and ladders for safe, efficient access to all viewports, actuator mechanisms, switch operators, gas density monitoring equipment, etc., for maintenance and operations personnel

Local Control (LCC) (Marshalling) Cabinets and Secondary Equipment

EEE/PES Substation Committee- GIS Subcomm

IEEE/PES Substation Committee- GIS Subo


- One local LCC for each circuit breaker bay
- Marshaling cabinets may also be required as intermediate termination locations between the GIS and LCC and LCC and the substation control room
- Rear access door all external cabling terminated in the rear of the cabinet
- Protection/Control and Monitoring Requirements
- Logic Diagrams for Numerical Relays
- SCADA Interface Points
- Wiring Connections and
 Interconnections Requirements
- Annunciation and AlarmsAC Station Service
- Mimic Bus Diagram

IEEE

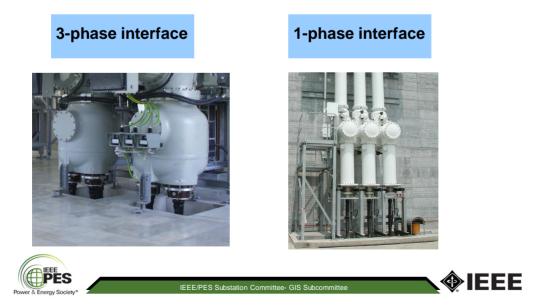
GIS Interfaces

- GIS Interfaces are used to connect the GIS to other components in the substation and the connecting network. The following interfaces are available:
 - GIS to air by bushings
 - GIS to cable
 - GIS to transformer
 - Connecting new GIS to existing GIS

Standards concerning GIS Interfaces

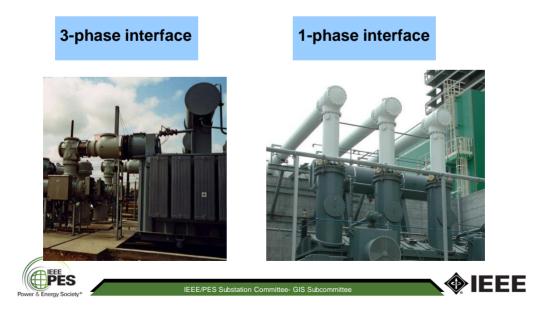
- IEEE C37.017 GIS Bushing to air
- IEC 62271-209 Direct connection of GIS to fluid filled or dry type cables
- IEC 62271-211 Direct connection of GIS to transformers
- IEEE C37.122.6 Interface of existing GIS to new GIS
- CIGRE TB 605 Recommendations for plug-in, dry type cable connection to GIS

GIS to air bushing interfaces

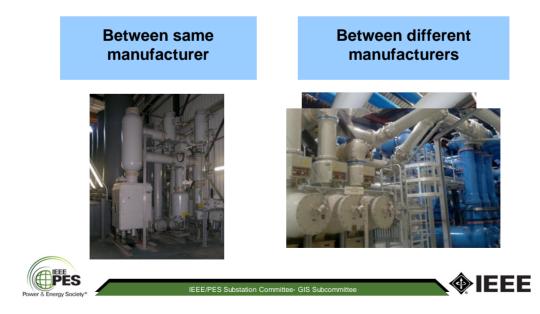


SF6 to air bushing

... or on supporting frame and GIB trunking

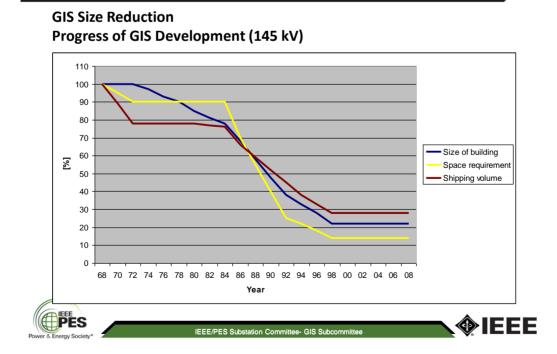

GIS to cable interfaces

GIS cable connection


GIS to transformer interfaces

GIS transformer connection SF6 to oil bushing interface

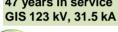
GIS to GIS interfaces


Content Part 2

81

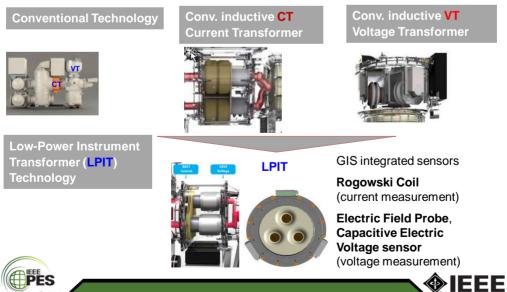
GIS Evolution & Future Development

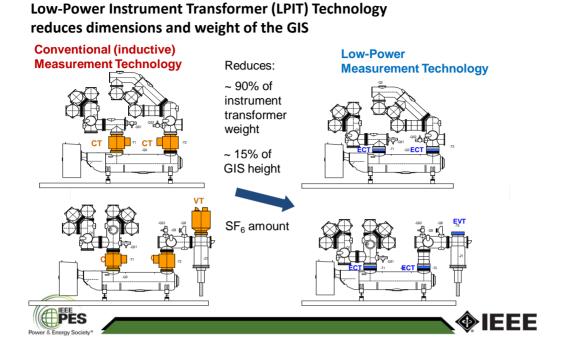
- -GIS Futher Seize Reduction
- -GIS Low Power Instrument Transformers
- -GIS Alternative Insulating Gases



GIS size reduction over a 47 year period

Amount of SF₆ has been reduced by about 70%



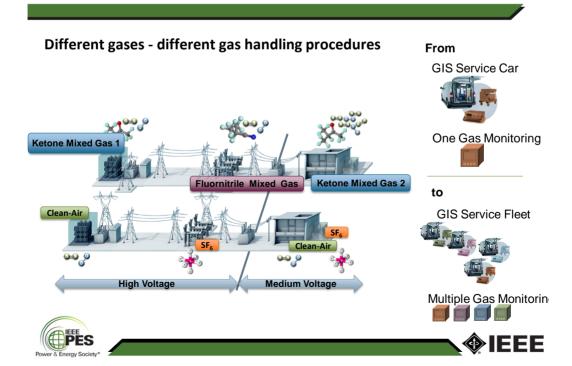


IEEE

State of the art GIS 145 kV, 40 kA

Conventional and Low-Power Instrument Transformers for High Voltage GIS

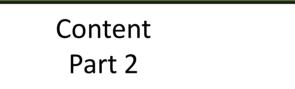
There are no restrictions so far on the application of SF₆ in HV → Included on the list of the fluorinated substances in the Kyoto protocol and the EU-F-Gas-regulation 517/2014


Responsible gas-handling only with state-of-the-art equipment → Less preventive actions of gas handling preferable

Status today

		e provincia de la companya de la company		-	××
		Sulfur-hexafluoride	Clean-Air	Fluoronitrile	C5-Fluoroketon
	Chem. formula	SF_6	N ₂ + O ₂ (80% / 20%)	(CF ₃) ₂ CFCN	(CF ₃) ₂ CFC(O)CF ₃
se	CO ₂ -equivalent (GWP)	22.800	0	2.210	1
Pure Gas	Boiling point	-64°C	< -183°C	-5°C	+27°C
Pur	Dielectrical strength	1*	0.43	2.2	1.7
Gas mixture	Background gas(es)	pure or in combination with N_2 , CF_4	N ₂ + O ₂ (80% / 20%)	~ 90% CO ₂	~ 90% O ₂ with N ₂ or CO ₂
, m	CO ₂ -equivalent (GWP)	< 22.800	0	~ 380	<1
Gas	Lowest operation temp.	- 30°C	- 30°C	~ - 25°C	0°C to +5°C
n arc	Decomposition products	Hydrogen fluoride, sulfur dioxide, sulfur compounds	If applicable: Ozone and nitric oxide	Amongstothers: carbon monoxide, carbor dioxide, hydrogen fluoride	
Reaction during internal a	Toxicity of decomposition products	Hazardous when inhaled, causes skin, and eye irritation ¹⁾	No decomposition products	Hazardous when inhaled, causes skin and eye irritation	

Further steps to establish alternatives to SF₆


Users and manufactures need to be aligned on a ${\sf SF}_6$ alternative solution considering also gas handling procedures

Further elaborations on technical parameters within working groups such as

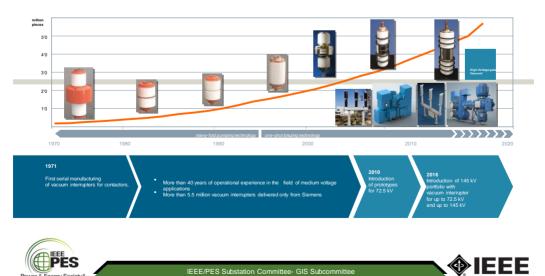
Experiences with pilot projects to be evaluated

GIS Next Step

- •GIS Clean Air Insulated
- •GIS Vaccuum Switch Technology

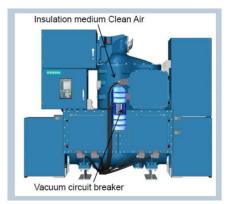


SF₆ Alternatives – Key Advantages Vacuum Switching


- \checkmark Short circuit breaking performance equivalent to SF₆
- ✓ High mechanical (M2) endurance (less drive energy required)
- Enhanced electrical endurance because of lower contact wear
 -> arc voltage & arcing times of Vaccuum Circuit Breaker (VCB) are significantly lower

-> number of possible VCB switching operations is significantly higher

Vacuum interrupter – Development of product / production technology


Vacuum interrupter technology – Operational and environmental value

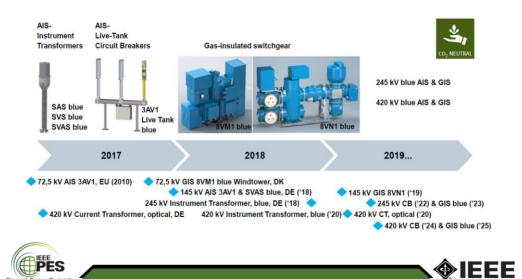
GIS up to 72.5 kV / 25 kA

Technical data

Switchgear type		
Rated voltage	up to	72.5 kV
Rated frequency		50 Hz
Rated short-duration power-frequency withstand voltage (1 min)	up to	140 kV
Rated lightning impulse withstand voltage (1.2 / 50 µs)	up to	325 kV
Rated normal current	up to	1250 A
Rated short-circuit breaking current	up to	25 kA
Rated peak withstand current	up to	68 kA
Rated short-time withstand current (up to 1 s)	up to	25 kA
Leakage rate per year and gas compartment (type-tested)		< 0.1 %
Driving mechanism of circuit-breaker		stored-energy spring
		0-0.3 s-CO-3 min-CO
Rated operating sequence		CO-15 s-CO
Interrupter technology		Vacuum
Insulation medium		Clean air
Weight of SF6 or other flourinated greenhouse gases		0 kg
GWP Global Warming Potential	2	0
CO ₂ equivalent		0 kg
Rated filing pressure		0,56 MPa abs
Bay width common pole drive		1050 mm
Bay hight, depth (depending on bay arrangement)		2330 mm x 2500 mm
Bay weight (depending on bay arrangement)		1,6 t
Ambient temperature range		-30 °C up to +45 °C
Installation		indoor
First major inspection		> 25 years
Expected lifetime		> 50 years
Standards		IEC
Other values on request		

Blue GIS 145 kV /-**Example with Low-Power Instrument Transformer**

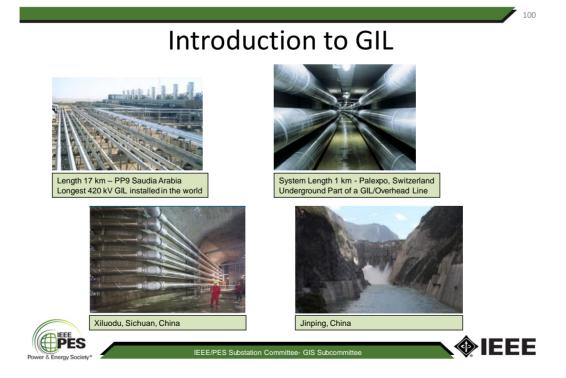
References Blue Products 15 bays in operation, 284 bays ordered


IFFF/PFS Subs

Next steps of Blue Products and Vacuum Switching Technology

Next steps - Blue Products Roadmap

Content Part 2


99

Gas Insulated transmission Lines (GIL)

A Intro

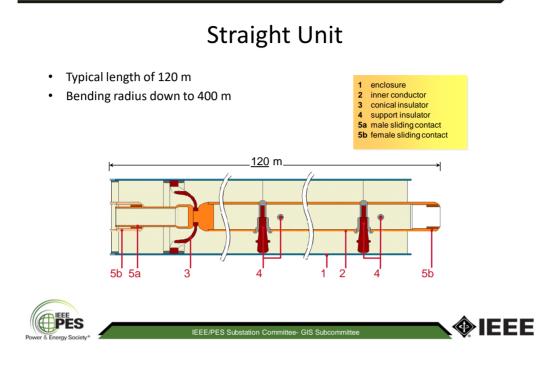
- A Introduction
- B Design Features
- C Development and Manufacturing
- D Typical GIL Layout
- E Installation and Commissioning
- F Monitoring

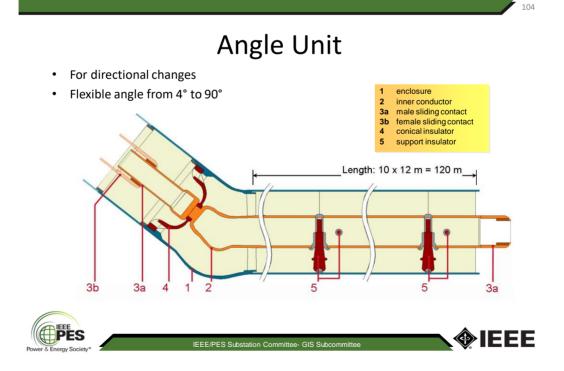
Technical Data GIL

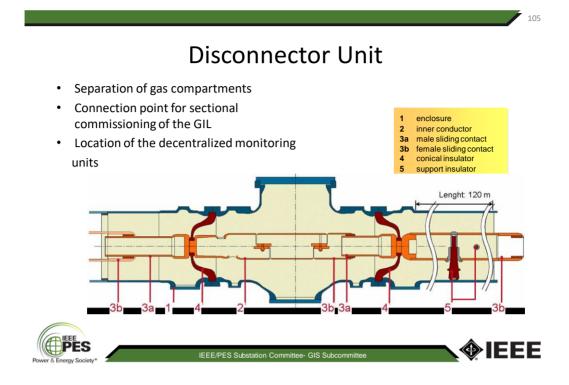
Rated voltage	245 kV 550 kV
Impulse voltage	1.675 kV
Rated current	2.000 5.000 A
Rated short time current	62 kA / 3 s
Rated Power	up to 4.700 MVA
Capacitance per length	55 nF/km
Overload capability	100 %
Insulating gas	0-80 % N ₂ / 100-20 % SF ₆

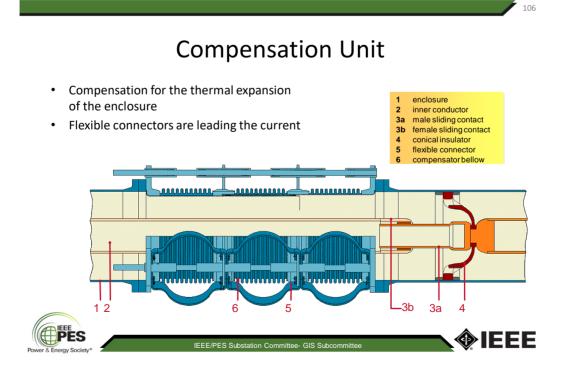
IEC 62271-204 High-voltage switchgear and controlgear -

Part 204: Rigid gas-insulated transmission lines for rated voltage above 52 kV IEEE C37.122.4 Application and User Guide for Gas-insulated Transmission Lines (GIL), Rated 72.5 kV and Above

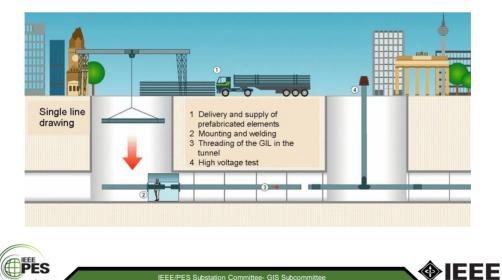



IEEE/PES Substation Committee- GIS Subcommittee


GIL Principle Structure



IEEE


High Quality Automated Arc Welding

107


108

Tunnel Laying Process

Directly Buried Laying Process

Shipping and Transportation

Delivery Transport Units

109

Installation and Commissioning

111

112

Shaft Welding Tent in the Tunnel

Application of GIL in a Cavern

- Schluchsee, Germany
- Ratings

U _r	420 kV
l,	2500 A
U _{BIL}	1640 kV
l _s	53 kA

Single line, physical arrangement
 GIL laid in a tunnel through a mountain
 Connection of cavern power plant to the overhead line

Application of N_2/SF_6 Gasmixture GIL in a Tunnel

PALEXPO, Swiss

Commisioned: 2001

The GIL is laid in a tunnel of 500m lenght using 700 m bending radius. It is part of overhead line at the airport of Geneva.

U _r	300 kV
l _r	2000 A
U _{BIL}	850 kV
I _s	50 ka

113

114

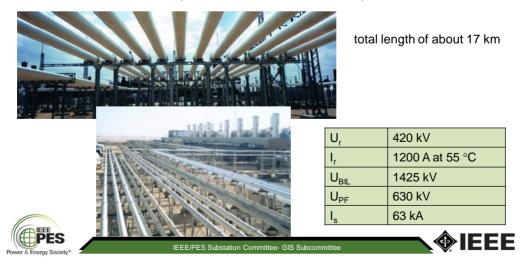
IEEE

Applications of Direct Buried GIL

Joshua Falls

installed in 1978 Length 1640m

U _r	145 kV
l,	2000 A
U _{BIL}	650 kV
I _s	63 kA/3 s



To minimize the overall visual impact of a new station, GIS was chosen for the switchgear and two GIL line exits were direct buried to overhead line access points away from the main GIS equipment.

Application of GIL Above Ground

PP9 1200 MW Combined Cycle Plant in Saudi Arabia, near Riyadh

Applications of GIL in Hydropower Station

Huanghe Laxiwa

U _r	800 kV
l _r	4000 A
U _{BIL}	2100 kV
U _{SIL}	1550 kV
I _s	63 kA

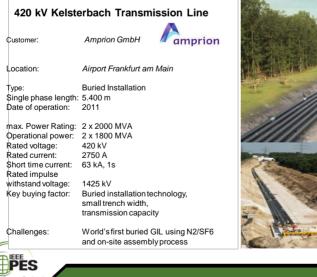
Application of GIL in a Hydro Dam

Xiluodu GIL In operation since 2013

Rated Voltage Rated Impulsewithstand Voltage Single phase length

1675 kV app. 12.750m;

550 kV


Rated Current 4500 A Rated Short-Timewithstand Current 63 kA, 3 s 480m vertical shaft in each circuit

Application of GIL in a double Tunnel

Application of GIL Direct Burid with Gasmixture

Hermann Koch **IEEE Fellow**

Dr. Koch's first professional association was with research on particle discharge measurement methods for non-destructive testing at Technical University Darmstadt, Germany which he concluded with his Ph.D. degree in 1990. In 1991 he joined Siemens Germany, as high voltage switchgear engineer for gas-insulated substations (GIS). In 1994 he became the responsibility to design and develop the gas-insulated transmission technology (GIL) at Siemens. In 2001 he was responsible for the installation of the world wide first GIL with N2/SF6 gas-mixture at PALEXPO in Geneva, Swiss. Since 2001 Dr. Koch has managed several GIL project installations worldwide and is now engaged in developing the next step of this transmission technology for DC voltages. In 2010 Dr. Koch received his IEEE Fellow in this technical field.

Dr. Koch is active in international standardization since 1992 in IEC as SC 17C Secretary , in IEEE various chairmen in K0 GIS Subcommittee, Substations chairman and member of the IEEE-SA Board, in CIGRE member of B3 Substations and in Germany DKE related national committees

Dr. Koch has contributed with more than 30 patents and over 130 publications in the technical field of gas-insulated technology. He has published IEEE books on GIL, GIS and soon on International Standardization published by www.wiely.com

Dr. Koch's research has opened new technical solutions for the applications worldwide of long distance bulk power underground transmission.

Conference	Location	Year	Attend
Substations Committee Meeting	Sun Valley, USA	April 2003	20
T&D Conference and Exhibition	Dallas, USA	Sept. 2003	50
Substations Committee Meeting	New Orleans, USA	April 2004	20
PES General Meeting	Denver, USA	July 2004	10
Switchgear Committee Meeting	Tucson, USA	Sept. 2004	40
Substations Committee Meeting	Tampa, uSA	April 2005	20
PES General Meeting	San Francisco (Panel), USA	June 2005	30
EEE Distinguished Lecturer Program	Dehli, Kolkata, Cheney, India	August 2005	50
Substations Committee Meeting	Scottsdale, USA	April 2006	15
PES General Meeting	Montreal, Canada (Panel), USA	June 2006	20
Substations Committee Meeting	Bellevue, USA	April 2007	15
PES General Meeting	Tampa (Panel), USA	June 2007	15
Substations Committee Meeting	San Francisco, USA	April 2008	20
F&D Conference and Exhibition	Chicago (Panel), USA	April 2008	100
PES General Meeting	Pittsburgh (Panel), USA	July 2008	20
EEE DLP	Lima, Peru and La Paz, Bolivia	August 2008	50
EEE DLP	Pune, Kolkata and Kanpur, India	Sept. 2008	70
Substations Committee Meeting	Kansas City, USA	May 2009	15
PES General Meeting	Calgary, Canada	July 2009	10
JHV Test Base State Grid	Beijing, China	March 2010	40
F&D Conference and Exhibition	New Orleans, USA	April 2010	30
PES General Meeting	Detroit, USA	July 2011	10
&D Conference and Exhibition	Chicago, USA	July 2012	50
SGT Conference	Berlin, Germany	August 2012	15
EEE PES ICPEN	Arunachal Pradesh, India	December 2012	45
EEE PES Austrian Chapter	Graz, Austria	March 2013	45
EEE PES Costa Rica Chapter	San Jose, Costa Rica	June 2013	55
EEE PES El Salvador Chapter	San Salvador, El Salvador	June 2013	65
EEE PES GM	Vancouver, Canada	July 2013	10
EEE PES CATON	Kolkata, India	December 2013	75
F&D Conference and Exhibition	Chicago	April 2014	65
		Total	1095

IEEE

122

Attendees on the tutorial until today

IEEE/PES Substation Committee- GIS Subcommittee

FEE

Conference	Location	Year	Attend
Takeover			1095
T&D Conference and Exhibition	Dallas, Tx, USA	April, 2016	50
			<u> </u>
			+
			+
			+ 1
	1		1
			+
			+
			+
	1		1
		Total	1145

Thank you for your attention!

Thank you for your attention, are there any questions?

