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Preface

This book is designed for use either as a supplement to all current standard textbooks
or as a textbook for a formal course in abstract algebra. It aims, above all, at an organic unity
of the axiomatic structure of elementary abstract algebra at the sophomore, junior and pos-
sibly senior level, which will lead toward more advanced studies in this and related fields. It
treats, therefore, only ‘‘basic concepts” of abstract algebra such that some, but certainly not
all, fundamental results in classic and modern algebras will find their due place here. Matrices,
for instance, makes only a brief appearance here as a fundamental concept, viz. as an example
of noncommutative rings, and its further development is left to an independent work, Linear
Algebra, which will be published as a sequence to the present volume.

Some early authors in this field attempted, perhaps not always successfuily, to illustrate
new abstract concepts in terms of as many familiar examples as possible from the classic the-
ory of numbers and equations. Given a limited space, however, they could not but be circum-
spect in the choice of the most fitting topics. For, after all, abstract algebra is no substitute for
the theory of numbers and equations in entirety, a full treatment of which should be carried
out separately. However, some substantial parts of these topics do appear in this text.

A renewed emphasis should be put on the self-evident, but often neglected, dictum that
the abstract is vacuous without the concrete. “But abstract theorems are empty words”, wrote
Professor C. C. MacDuffee two decades ago, “to those who are not familiar with the concrete
facts which they generalize. One of the major problems in teaching abstract algebra is to give to
the student a selected body of facts from number theory, group theory, etc., so that he will have
the background to understand and appreciate the generalized results. Without this background,
the game of playing with postulates becomes absurd.” This is even more true today, especially
at the sophomore and junior levels. The beginner should be properly warned against “biting off
more than he can chew”.

In this spirit the present book does try to bring in as many small but “chewy” topics as
possible within the scope of its self-imposed limitation. As such, it is divided into five parts:
Algebra of Logic, Algebra of Sets, Algebra of Groups, Algebra of Rings, Algebra of Fields.
Each part may be studied independently, although the parts are all interdependent as an organic
whole; this latter feature is manifest in an almost excessive use of cross-reference throughout
the work.

Logical sequence is the guiding principle in every part of this book. Integers, for instance,
get proper attention at a later stage, contrary to the traditional works, because they are consid-
ered here within the frame of integral domains, which in turn appear only after the introduction
of commutative rings. Since the improving freshman courses in the last decade have absorbed
much material once taught at the start of abstract algebra, a certain amount of knowledge on
the domain of integers and the familiar number fields in terms of algebraic systems is taken for
granted from the very beginning. This book certainly does not pretend to build up the whole
structure of modern algebra from the most primitive concepts — a task comparable to that of
creating something out of nothing.



Not, however, that this book is not “self-contained”. As a matter of fact, every theorem
within its reach is introduced here, at times with secondary proofs, except for a few rather
difficult theorems which need elaborate lemmata and unproportionately many pages, such as
an essentially algebraic proof of the so-called fundamental theorem of algebra and Abel’s proof
on the algebraic insolubility of quintic equations. The student who uses this book will seldom
be in need of consulting other sources for basic theorems.

Every problem, except supplementary problems, is proved or solved on the strength of the
theorems which are proved here. The student who consults this book only to find proofs or
solutions for his specific problems is warned at the start that he should be quite clearly aware
of the pitfalls he may encounter. For, first of all, symbols may represent different algebraic
concepts, and the context in which the proofs or solutions are carrried out here may be differ-
ent from that of the textbook he uses in class. In such cases some modifications will be called
for, which will be left to the student. The task of modifications, or acclimatization in general,
should be well within the student’s scope, since he is assumed here, as a sophomore at least,
to have mastered College Algebra and some earlier parts of elementary Calculus with Analytic
Geometry. The Table of Symbols, which follows the Introduction, will be of some help to the
student, particularly in the period of initiation.

Thanks are due my teachers and friends for their generous interest in my work: Mr. H.
Simpson, formerly Dean of Yale University Graduate School; Professor W. Kalinowski of
St. John’s University; Professors T. Chorbajian, J. O. Distad, F. D. Parker, D. R. Simpson, and
D. Coonfield of University of Alaska; and Professor E. W. Hellmich of Northern Illinois Uni-
versity. Particular thanks are extended to the staff of the Schaum Publishing Company for their
valuable suggestions and most helpful cooperation.

J. FANG

Northern Illinois University
March, 1963
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Introduction

The student is advised to make use of the cross-references in every part of the book, and
of the Table of Symbols following this Introduction and of the Index at the end of the book.
The cross-references are usually given in the form “cf. Th.2.2.2.16”, for example, meaning
“refer to the theorem, numbered 16, in Part 2, Chapter 2, Section 2”. “Df.”, “Prob.”, and “MTh.”
denote a “definition”, a “solved problem”, and a “metatheorem” (i.e. theorem of theorems,
which is not to be proved in terms of ordinary definitions and theorems) respectively. Such
cross-references shoud be consulted as often and carefully as possible, since they indicate the
reasoning or justification behind the steps of proofs or solutions.

Starred definitions, theorems and problems are optional; they may be skipped in the first
reading, although they may still be referred to in the subsequent sections. All metatheorems are
starred in principle, since they cannot be proved properly within the frame of the main text,
although they are quite freely adapted here.

Boldface letters and Greek letters are used very sparingly, indeed only when absolutely
necessary. Script letters and Hebrew letters are not employed in the text for an elementary rea-
son: there are too few letters, in whichever form or language, to permit every algebraic concept
or system monopolize a certain type of letters. There are, and will be, too many novel ideas in
mathematics to be exhaustively and mutually exclusively classified by a few types of letters.

The student, then, must learn as early as possible to decipher the meaning of what few
letters he has within a certain context. The context, and not merely the type of letters, is to
yield a coherent and consistent meaning of the text. “R”, for instance, may designate “a ring”
here and “the rational number field” there, but it will not at all confuse the student if he thinks
of the context before everything else.

In the same spirit such terms as “module” or “complex” are used quite freely, taking the
risk of incurring the purist’s wrath. The liberalism with respect to symbols and terms may be
considered a part of mathematical training, however, since the student must face similar situa-
tions sooner or later. The student at the sophomore or junior level may be, or rather should
be, expected to be able to distinguish the “I” representing “an identity mapping” from the “I”
denoting “the domain of integers” in two different contexts. Such a training may be considered
quite pertinent or even essential, in abtsract algebra in particular. For, after all, abstract algebra
was born through the awareness of a unifying theory under the existence of parallel theories
in many branches of classic algebra. The student should be encouraged to learn such charac-
teristics in mathematical reasoning as soon as he is ready to pursue the fascinating enterprise.

Reasoning in general may transcend a certain logic, but mathematical reasoning cannot;
it is, in its written form at least, confined within the frame of mathematical logic. Hence the
study begins with Algebra of Logic. Because of the severely limited scope of the book, however,
it barely scratches the surface of the profound subject, allowing the student only a bird’s-eye
view. The interested student may pursue the subject in the following readily available book:

Langer, S. K., An Introduction to Symbolic Logic, 2nd Ed., Dover, 1953



Algebra of Logic is followed by Part 2, Algebra of Sets, without which no modern mathe-
matics can begin. Again, because of the limited scope and space, only an elementary theory of
sets is presented, leaving a supplementary and more advanced study to the following books:

Birkhoff, G., Lattice Theory, 2nd Ed., AM.S. Colloquium, vol. 25, 1948
Chevalley, C., Fundamental Concepts of Algebra, Academic, 1957

Dieudonné, J., Foundations of Modern Analysis, esp. Chap. 1, Academic, 1960
Hamilton, N. T., and Landon, J., Set Theory, Allyn and Bacon, 1961

Hohn, F., Applied Boolean Algebra, Macmillan, 1960

Kamke, E., Theory of Sets, Dover, 1950

[t must be noted that the new terms “injective”, “surjective”, and “bijective” with respect to
mappings in §2.2.2 closely follow Dieudonné’s work.

Part 3, Algebra of Groups, is an elementary presentation of the theory of finite groups.
This is a well-explored field, which as such is abundant in literature. The following list, then,
is merely a representative one for the beginner:

Alexandroff, P. S., An Introduction to the Theory of Groups, Hafner, 1959
Hall, M., The Theory of Groups, Macmillan, 1959

Kurosh, A., Theory of Groups, 2 vols., Chelsea

Ledermann, W., The Theory of Finite Groups, Interscience, 1953
Zassenhaus, H., The Theory of Groups, 2nd Ed., Chelsea, 1956

Part 4, Algebra of Rings, and Part 5, Algebra of Fields, are so closely related at this
elementary level that they may share the following bibliography in common:

Albert, A. A., Fundamental Concepts of Higher Algebra, U. of Chicago, 1956
Borofsky, S., Elementary Theory of Equations, Macmillan, 1950

Jacobson, N., Structure of Rings, AM.JS., 1956

McCoy, N. H., Rings and Ideals, M.A.A., 1948

Pollard, H., The Theory of Algebraic Numbers, M.A.A., 1950

Uspensky, J. V., Theory of Equations, McGraw-Hill, 1948

Van der Waerden, B., Modern Algebra, 2 vols., Unger, 1949-50

Weisner, L., Introduction to the Theory of Equations, Macmillan, 1938

Weyl, H., Algebraic Theory of Numbers, Princeton, 1940

At the end of each part there appears a collection of supplementary problems, most of
which are to sharpen the student’s skill in solving problems, possibly providing additional detail
about the material covered in the main text. The student who wishes to master the subject
should solve a good many of these by his own efforts, although he should not be disheartened
if he cannot solve all of them by himself. Some of these, the starred ones in particular, are
rather difficult, and the student should better leave them alone, for the time being at least,
until he masters the ways of reasoning in the solved problems. For the ambitious, however,
“the sky is the limit,” and the student is invited to be as ambitious as possible.



Df.
Th.
MTh.
Prob.

Hyp.

ie.

viz.

iff

=p

P

peq (or pg, pArgq)

pvaq

pYq

»lg

pla

pq

p<q (or p=gq)

(Ex)(...)

(x)(...) or {z|...}
or {x:...}

o (or %)

A,B,C, etc.

G1, G2, ete.

P1,P2,...,P5

L1,L2,...,L4

01,02, ...,04

B1,B2,...,B6

R1,R2,...,R8

B1,B2,...,BY

D1,D2,...,Di1
N1,N2,...,N4
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Table of Symbols

Definition.

Theorem.

Metatheorem.

Problem (solved).
Hypothesis.

Hence.

Since.

That is.

Namely.

If and only if.

Yields p (assertion).

Not ».

p and q.

p or q.

p or g but not both.

Not p or not ¢ (or: not both p and g).
Neither p nor q.

If p, then q (or, p implies g; or, p only if q).
p iff q.

There exists x such that ...
For all # such that ...

An operator in a postulational algebraic system, with zoy (or x *y) as an element of
the system.

The boldface italic capital letters denote classes, i.e. collections of sets, which should
be distinguished from the sets in themselves.

The boldface Roman capital letters with numbers are to number the postulates for a
certain algebraic system; G1, then, denotes the first postulate to characterize the
concept of groups, and G2’, for instance, designates the second postulate of the second
alternative set of postulates for groups. Likewise, G4’ denotes the fourth postulate
of the third alternative set of axioms for groups. Further examples are:

Five tautologies of the Principia Mathematica.
Four axioms which characterize a lattice.

Four axioms of ordering.

Six postulates for a Boolean algebra.

Eight postulates for a ring.

Nine postulates for a Boolean ring.

Eleven postulates for an integral domain.
Four axioms for the set N of natural numbers.
Eleven postulates for a field.

Eight postulates for a vector space.



TABLE OF SYMBOLS

A,B,C,...,X,Y,Z Light faced italic capital letters denote sets in most cases; otherwise, specifications will
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acl

agA
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A—B

AXxB

be explicitly given in the context. Of these capital letters, some will almost always
designate certain sets in particular, although they are by no means monopolized by
some specific sets on all occasions (cf. Introduction). Typical cases are:

A total matric algebra.

A Boolean algebra.

The complex number field.
An integral domain.

A complex (non-empty subset) of D containing only positive, or more generally, non-
negative elements.

An ordered integral domain.

A complex of F' containing only non-negative elements.
An ordered field.

A sfield (or division ring).

A group.

The field of all Gaussian numbers.

The algebraic number field of all Gaussian integers.
The integral domain of integers (or rational integers).
A complex of I containing only non-negative elements.
I regarded as a group under addition.

The integral domain of all algebraic integers.
The residue classes of integers modulo m.

The same as I, replacing I now and then, when I denotes an identity mapping, and in
particular when the feature of Df.4.1.2.3.5 with respect to I is stressed.

A lattice.

The set of natural numbers.

The null (or vacuous or empty) set.

A permutation group of order n.

A quotient field.

The sfield of quaternions.

The rational number field (or a ring in general),

A complex of R containing only non-negative elements.
The real number field.

A complex of R containing only non-negative elements.
A symmetric group of order n.

A vector space (over R, etc.).

Klein’s (or “four”) group, i.e. the so-called “Vierergruppe”.

Vectors.

Small letters generally denote the elements of a set.
a,b,... as listed elements.

The element a belonging to the set 4.

The element @ not belonging to the set A.

The complement of A.

The complement of B in A.

The Cartesian (or direct) product of 4 and B.



x =a (mod m)
g.cd.

lem.

(a, b)

[a, B]

a|b

a)fb

a(x), b(x), ...,

f@), gla), ...

R[]

deg f(x)

|aii|

(i) (or [ay])
AT

A %

Ay

Ay

Re (?)

Im (2)

\

Fla]
Fla,b,...]
N(g)
T(9)

TABLE OF SYMBOLS

X is a (proper) subset of Y.

X is a subset of Y.

The join (or logical sum or union) of X and Y.

The meet (or logical product or intersection) of X and Y.

The set of all elements which belong to S for some a of A.

The set of all elements which belong to S for any a of A.

The join (meet) of the sets X;, 1=1,2,...mn, where each X:CC for a class C.
2 is less than y.

x is greater than y.

Greatest lower bound.

Least upper bound.

Sum of n terms, one for each positive integer from 1 to n.

Product of n terms, one for each positive integer from 1 to n.

x is congruent to a modulo m.
Great common divisor,

Least common multiple,

The g.c.d. of @ and b.

The l.e.m. of a and b.

a divides b.

a does not divide b.

Polynomials in x.

A set of polynomials in x with coefficients in a ring (as in §4.1.2.5, or the rational
number field as in §5.2.1-3) B. R may be replaced by C,D, F, 1, R, ete.: viz. Cl«], D[w_],
Flx], I{x], R[x], denoting the set of polynomials in « with coefficients in C,D,F,I, R,
respectively.

The degree of f(x).

The determinant whose element in the ith row and the jth column is as;.

The matrix whose element in the ith row and the sth column is ai.

The transpose of a matrix A.

The adjoint of a matrix A.

The cofactor of ai; in A = (as)).

An (n—1) by (n — 1) submatrix of an n by » matrix A = (a;;), i.e. a minor of 4.
The real part of a complex number z.

The imaginary part of z.

The conjugate of z (a complex number, or a Gaussian number, or a Gaussian integer,
or an algebraic integer).

A (simple) algebraic extension of F.
A multiple algebraic extension of F.
The norm of g.

The trace of g.






Part 1—Algebra of Logic

Chapter 11

Mathematical Logic
§1.1.1 Tautologies

Df.1.1.1.1 Logic is analysis of language, which consists of signs.

Since signs do not always represent a language, the signs at issue are only some
particular signs conventionally coordinated to some significant objects, concrete or
abstract. Of such signs, the most fundamental and purposeful signs are propositions.

Df.1.1.1.2 A proposition is an assertive statement (or sentence), which is composed of
several words and has a truth value, i.e. it can be true or false.

Example:
“This is white” is a proposition while “May God bless you!” or “Who are you?” is not.

A proposition, then, is not merely a sentence or statement, much less a definitely
exclamatory or interrogative (or generally emotional or volitional) statement; it is,
as a matter of fact, a cognitive statement which must be verifiable as true or false.

MTh.1.1.1.3  (Principle of the Identity of Indiscernibles). Two propositions are of the
same meaning if they cannot be discerned differently for all possible verifications.

Example:

“This is white”, “Dies ist weiss” (in German), and “Ceci est blane” (in French) are all of the
same meaning despite their symbolic differences; so are also the following two propositions in the
same language: “Men are two-footed animals” and “Men are bipeds”.

This first metatheorem (i.e. theorem of theorems) is one of the most fundamental
of all logical principles, explicitly formulated by Leibniz and called “principium iden-
titatis indiscernibilium” (which is in fact a modification of the so-called Occam’s
razor: entities should not be multiplied unless necessary). The principle is indeed
the core of nominalism which is the backbone of modern mathematics.

Df.1.1.14 Given some already approved propositions, the process of obtaining new
propositions solely by virtue of the form and not the content of the original proposi-
tions is called logical (or deductive) inference.

Such logical inferences may be symbolized, as in mathematics and mathematical
logic, but at the very beginning a great emphasis should be put on the fact, which
may be inferred from Godel’s theorem (which lies beyond the scope and purpose of
this book), that a single system of formal logic cannot embrace all forms of reason-
ing which are correct. Stated otherwise, mathematical reasoning or mathematics
in general is but one system of formal logic which as such must suffer from limita-
tions imposed on itself by itself; one of such limitations is, for instance, “implication”
(cf. Df. 1.1.1.6,i below).



2 PART 1 — ALGEBRA OF LOGIC [CHAP. 1.1

Df.1.1.1.5  Propositions may be composite, i.e. made up of subpropositions by the following
connectives (or logical constants): negation, disjunction, and conjunction, of which ne-
gation is called a unary connective and disjunction or conjunction a binary connective.

(i) Negation, defined by the adjoining table where p denotes a
proposition and 1 and 0 represent “true” and “false” respectively, P
which in turn define p which reads “not-p” and denotes a propo-
sition which is not p. Hence, as the table shows, p is false if p is
true, and true if p is false.

Note. If p is negated more than two or three times, the bars above
p may be set in front of p; e.g. ---p instead of 5 (cf. Problem 15, iv).

—t
= o k1]

(ii) Disjunction, defined by the table at right, where 1 and 0 P q PV q
denote as above, p and ¢ designate two propositions, and pv q

reads “p or ¢ (or both)” and means p or (in the sense of and/or) q. 11 1
Hence the disjunction as such is the so-called inclusive disjunc- 110 1
tion in contrast with the exclusive (or complete) disjunction, 0 1 1
denoted by pv q (cf. Problem 1). 0|0 0
(iii) Conjunction, defined by the table at right p, ¢, 1,0 denoting

as above and p-q reading “p and ¢” and designating the same. " q P q
The dot may be replaced by an upside-down wedge ~ or may dis-

appear completely, viz. pq, just as for multiplication in elemen- 1] 1 1
tary algebra. In the latter case the function of parentheses also 110 0
will be the same as in elementary algebra; e.g. p(gvr) =D+ (qv7) 0] 1 0
and pgvr = (pq) v r. This practice will be adopted throughout o0 0

Part 1.

These three may be considered the primary connectives in the sense that, on the
strength of them, two secondary connectives may be obtained as follows.

Df.1.1.1.6 p | g | pa
(i) (Material) implication, defined by the table at right, again
?,q,1,0 denoting the same as above, and p — ¢ reading “if p, 1 1 1
then ¢” (or “p implies ¢” or “p only if ¢”). This connective is 140 0
redundant, since it can be proved (cf. Problem 9) to be identical 0|1 1

. . .. — 0 0 1

with, and may be replaced by, either 5v ¢ or pq.
(ii) (Logical) equivalence, defined by the table at right, p,q,1,0 » q | peq
designating the same as above, and p <> ¢ (or p = q) reading “p if
and only if ¢” [or “p is (materially or logically) equivalent to ¢”’]. 1 1 1
This connective is also redundant, since it can be proved 1 0 0
(cf. Problem 10) to be indiscernible from, hence may be replaced 011 0
by, (p > a)(@ > p), Le. (Bv a)(@v D) or (b3)(D). il I

It must be emphasized that the ‘“if-then” defined by (material) implication is
somewhat different from what is meant by “if” and ‘‘then” in everyday language,
mainly because the ordinary “if-then” often designates causal relations, which are
more physical than logical. The implication in mathematical logic is to mean neither
more nor less than “not-p or ¢ or “it is not the case that » and not-q”.

Example:

[Ty} 6o

p” and “q” representing “two lines are parallel” and “two lines do not intersect” (in Euclidean
space) respectively, “p - q” denotes “if two lines are parallel, then the two lines do not intersect”,



Sec. 1.1.1] MATHEMATICAL LOGIC — TAUTOLOGIES 3

whose meaning in mathematical logic is identical with “it is not the case that two lines are parallel
and it is not the case that the two lines do not inersect”, i.e. “it is false that two lines are parallel
and they intersect”.

6C 09

Likewise, “p” and “q” representing ‘“two triangles 71 and T are similar” and ‘“the corresponding
sides of T; and T are proportional” respectively, “p <> ¢” denotes “if T1 and T: are similar, then the
corresponding sides of T: and T: are proportional, and if the corresponding sides of T) and T: are
proportional, then T: and T. are similar” or “if T and T: are similar, then the corresponding sides
of T: and T. are proportional, and conversely” or “T; and T. are similar if and only if the
corresponding sides of 7: and 7. are proportional” or “the corresponding sides of T\ and 7. are
proportional if and only if T: and T: are similar”.

Notice the difference in the meaning of “if and only if” exemplified above and
“if and only if” in everyday language. If this example is to be interpreted in every-
day language, it becomes immediately false or at best inadequate, since “T; and T:
are similar” holds also when ‘“‘the corresponding angles of T: and T: are equal”.
Mathematical language is, to repeat, not identical with everyday language.

Note. “if and only if” will be abbreviated as “iff” throughout this book.

Df. 1.1.1.7 A tautology is a proposition which is true for all truth-values of its sub-
propositions.

Example:

The proposition: p>g=pvqg (or p>g=pg or Hvq=pg) is a tautology, since its truth-
value as a whole is always 1 for every possible choice of truth-values for p and ¢q. (Cf. Prob. 10.)

Df.11.1.8 Any negated tautology, which therefore must always be false, is called a
contradiction.

Example:
The negation of a tautology: p—>p (cf. Prob.15,i below) is p—> p, and pop=pvp since
p~>p=pvp by Df.11.1.6,i. Hence, by breaking negation lines (cf. Prob. 12, below), p—=>p =

Bvp=pp=pp (. p=p, cf. Prob. 4 below), and pf, which reads “p and not p” (at the same time)
is certainly a contradiction in every sense of the word.

To carry out logical inferences the following principles must be first taken for
granted.

MTh.1.1.1.9  (Principle of Substitution). Proper substitutions do not affect the truth-
value of tautologies.

Proper substitutions consist of either substitutions on variables, i.e. the symbols
which denote propositions, or definitional substitutions. E.g. if p>q¢=pvq is a
tautology, it remains a tautology through the substitution of new variables, say,
@ and b in the place of p and ¢ respectively; i.e. @> b =avb is a tautology just as
its counterpart in terms of p and ¢ is a tautology and as long as the substitution is
carried out completely and consistently. (Hence @b = pvq, for instance, is not
ipso facto a tautology unless, of course, there are some additional stipulations.)

Likewise a definition itself may serve as a substitution if one definition is logically
equivalent to the other; e.g. p§+v pq may be replaced by pv ¢ whenever and wherever
it is convenient to do so once the former is defined [or, in this particular case
(cf. Prob. 1), proved] to be the same as the latter.

The fundamental principle of substitution is followed by a group of metatheorems
(which may be classified in many ways, depending on the taste of authors).
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MTh. 1.1.1.10  If a proposition q is deductible by MTh.1.1.1.9 from P, which may be a
tautologous proposition or a set of tautologous propositions, then “p - ¢ is a tautology.

Example:

The well-known five tautologies of the Principia Mathematica by Whitehead-Russell constitute
such a set, which runs as follows:

P1: Principle of Tautology. ava- a.

P2: Principle of Addition. a—> avb.

P3: Principle of Permutation. avb— bva.

P4: Principle of Summation. (b—->¢)—~ (avd—>ave).
P5: Principle of Association. avbve) > bviave).

Note. Such tautologies, called the primitives (or postulates or azioms), must be consistent and
complete, as P1-5 are, but may not be independent, as P1-5 are not; e.g. P5 is deducible from the rest.
(cf. Prob. 17 below).

MTh.1.1.1.11  If “p - ¢” is true and “p” is true, then “¢”’ is true.

Example:

66,90

p” and “g” representing “an infinite series converges” and “the general term of the given series
approaches zero” respectively, the logical inference of this metatheorem takes the following form:

(i) “p—q” is true: “if an infinite series converges, then the general term of the given series
approaches zero” (which is a true theorem of the Calculus).

(if) “p” is true: “an infinite series converges”.

. “q” is true: “the general term of the given series approaches zero” [which is true if (i)

and (ii) are true]|.

This rule is often called the Principle of Inference or modus ponens, a name
inherited from medieval logic.

MTh.1.1.1.12 If “p->q” is true and ‘“q” is false, then “p” is false.

Example:
“p” and “q” representing “a function f(x) is differentiable at x = x” and “f(x) is continuous at

”

x = x0” respectively, this metatheorem is the logical inference of the following form:

(i) “p-—q” is true: “if a function f(x) is differentiable at x = o, then f(x) is continuous at x = xo”
(which is a true theorem of the Calculus).

(ii) “q” is false: “f(x) is continuous at x = x,” is false, i.e. “f(x) is discontinuous at x = x¢”
is true.
Y. “p” is false: “f(x) is differentiable at «x = x¢” is false, i.e. “f(x) cannot be differentiated at

x =wo” is true [which is true if (i) and (ii) hold].

=33

Stated otherwise: if “p — ¢” is true and “§” is true, then “Pp” is also true; or, stated more
differently: if “p > ¢’ p”

is true, then “q —» §"” is also true (cf. Prob. 13).

This rule also has a medieval name, modus tollens, or it is called the Principle of
Negative Inference (or Contraposition).

MTh.1.1.1.13 If “p~ ¢” is true and ‘¢ - 7"’ is true, then “p - 7" is true.

Example:
“p”, “q”, and “r” designating “a function f(x) is differentiable at x = x0”, “f(x) is continuous at
z=x0”, and “f(x) is integrable at x = xo” respectively, the logical pattern of this metatheorem runs

as follows:
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(i) “p—q” is true: «if a function f(x) is differentiable at = xo, then flx) is continuous at
x =" is true (which is in fact true).
(ii) “q— 7" is true: “if f(x) is continuous at x =xo, then f(x) is integrable at x =" is true

(which is also proved to be true).

. “p - r”is true: “if f(x) is differentiable at x = o, then f(z) is integrable at x =" is true
(which is logically true).

Generalized, this metatheorem has the following form:
“pl > pZN, “pZ - psn, e and “pn—l - pn” imply “pl - p"’)'

In this sense it has a descriptive name: Chain Rule (or Syllogism Principle, as
it is called in the Principia Mathematica).

MTh. 1.1.1.14  If “p” is true and “q” is true, then “pg” is true.
Example:

“p” and “q” denoting “a number n is an integer” and “n is positive” (in the same context)
respectively, this metatheorem has the following scheme:

(i) “p” is true: “a number n is an integer” is true.
(ii) “q” is true: “n is positive” is true (in the same context).
. “pq” is true: “a number n is an integer and it is positive” is true, i.e. “n is a positive integer”

is true (in the given context).

This rule is called the Principle of Adjunction.

MTh. 1.1.1.15 There exist two rules of disjunctive inference:
(i) Modus tollendo ponens: if “pv q” is true and “p” is false, then “q” is true.
(ii) Modus ponendo tollens: if “pv ¢’ is true and “p” is true, then “q¢” is false.

The validity of this metatheorem can be readily exemplified by letting, for in-
stance, “p” and “q” represent “a number z is an integer” and “x is a real number”
respectively for (i) and “a number n is odd” and “n is even” respectively for (ii).

MTh. 1.1.1.16 There exists an equivalence inference: if “p=gq” is true and “p” is true,
then “q” is true.
Example:

“p” and “q” representing “two triangles T, and T. are similar” and “T: and T, are congruent”’

respectively, it is evident that “T: and T. are congruent” is true if “two triangles T and T. are
similar iff T: and T: are congruent” is true and “T1 and T, are similar” is true.

Solved Problems

1. Analyse the concept of exclusive (or complete) disjunction in terms of connectives,
then verify it by a truth table.

PROOF:

(i) Since the exclusive disjunction is defined by “p or g but not both”, it can be true when and only
when one and only one of p or g is true. Stated otherwise: “p or ¢ but not both” must be identical
with “p and not-g or not-p and ¢” or “p or ¢ and it is not the case that both p and g hold”; i.e. if “v”
is to denote the exclusive “or”, then it must be proved to be a tautology that

pvq=pivhg or pYq=(pvq)bg)
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(ii) The tautologies are demonstrated as follows:

1 2 3 4 5 6
P | q | 3| pil|Pe|pivde|pve | pvg = piviq
1|1 000 ] 0 0 0 1
1 /0floj1|1]o0 1 1 1
0 | 1 1/10]lo0] 1 1 1 1
0 lo11|1]lo] o 0 0 1

The truth-table above is numbered to show that the demonstration consists of six steps.
Step 1 is justified by the fact, as in Df. 1.1.1.5-6, that there cannot be other alternatives (i.e. in the
two-value logic of “true” and “false”) for two propositions p and g. Step 2 follows from Step 1, by
Df.1.1.1.5,i. Step 3 is obtained by Step 2 and Df. 1.1.1.5,iii. Step 4 follows from Step 8 and
Df.1.1.1.5,ii. Step 5 is the result of the original analysis of the concept itself. Finally, Step 6 is
obtained from Steps 4,5 and Df.1.1.1.6,ii. Since Step 6 shows that the proposition is true on all
occasions, i.e. a tautology, the proof is complete.

PY g =(pv q){Pg) can be proved likewise.

Note. “pv ¢” is sometimes considered an exclusive and complete disjunction — exclusive, because
at most one term of the disjunction is true, and complete, because at least one of the terms is true,
i.e. the disjunction is true.

Show that “p|q”, which reads “p and ¢ are not both true”, » q pla

symbolized by the stroke “1”, called the alternative denial

and defined by the truth-table at right, makes all the primary 1 1 0

connectives of Df.1.1.1.5 deducible from itself. 1 0 1

PROOF: g (1) i
The three primary connectives may be expressed in terms of

strokes, defined as above, as follows:

M p=plp, @) pve=@|p)|(gle, Gi) pa=(@|e|(@]q)

each of which is a tautology, as can be readily verified by a truth-table, e.g. with respect to (ii):

P g | pvael|p|p|glg | (®lp)](a]a) pva=(®|p|(glg

1 1 1 0 0 1 1

1 0 1 0 1 1 1

0 1 1 1 0 1 1

0 0 0 1 1 0 1

(i) and (iii) can be proved likewise.

Prove that “p | q”, which reads “neither P nor q is true” " q pbq
(le. p and ¢ are both false), symbolized by the dagger *“|”,
called the joint denial and defined by the truth table at L ! 0
right, works exactly the same way as the alternative denial 1 0 0
with respect to the primary connectives of Df.1.1.1.5; i.e. 0 1 0
they may be replaced by the joint denial. 0 0 1

PROOF:
The three primary connectives may be expressed in terms of daggers, defined as above, as follows:

i) p=plp, (i) pveg=@lgliply, @iii) pa=(pip)i(glq)

each of which is a tautology, as can be verified by a truth-table as in Prob. 2.
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4.

Prove that double negation is affirmation; i.e. p =p is a tautology.

PROOF: It is proved by a truth table at right: » 5 5 5 =p
The same conclusion may be drawn, however,
by a simple comparison of the truth tables of p and 1 0 1 1
p which are exactly the same. 0 1 0 1

Prove the following rules of identity: (i) p =», (ii) pvp =p, (i) pp =».

PROOF:

Proofs will be readily provided by truth-tables.

It should be noted, however, that the rules of identity, in particular (i), are not the same as the
most fundamental principle of reasoning: “principium identitatis” in traditional logic, without which
logic cannot take a single initial step. For, it is obvious, the connectives cannot be defined in the first
place unless it is understood, if only implicitly, that whatever is is itself (cf. MTh.2.1.1a).

Prove the following tautologies: (i) pp, (ii) pvp, (iii) (p > p) = D.

PROOF:
Proofs by truth-tables are trivial, e.g.,
P P PP (p>P) =D
1 0 0 1
1 1 1

which proves (iii). Others can be proved likewise.

Note. (i) is the symbolized version of the traditional “principium contradictionis”, but certainly
not the metaphysical principle itself, which cannot be deduced, while (i) is deduced on the strength of
truth tables. In this sense (i) is called the rule (and not the metaphysical principle) of contradiction.
In the same sense (ii) is the rule of excluding middle (and not the metaphysical “principium exclusi
tertii”); (iil) is the symbolized version of the familiar pattern of inference: “reductio ad absurdum”
(cf. MTh. 1.2.10).

The following propositions are tautologies:

(i) Associativity. (ia) pv(gvr)=(pvq)vr, (ib) p(qr) = (pg)r.
(ii) Commutativity. (iia) pveg=qvp, (iib) pg=qp.

(iiia) Distribution under disjunction. pv(qr) = (pv q)(pv 7).
(ilib) Distribution under conjunction. p(gv7) = pgv pr.

PROOF:
Since the six proofs are all similar, only (iiib) is proved:
pigqg|r| qvr |pqg | pr p(gv ) pqv pr plgvr) = pgVv pr
1111 1 1 1 1 1 1
1 1 0 1 1 0 1 1 1
1 0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1
4] 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1
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Note. The truth-table above begins with three columns for three initial subpropositions, consti-
tuting a ternary matrix of propositions in contrast with the preceding unary (or monary) matrices
(cf. Df.1.1.1.5, i; Prob. 4, 6) and binary matrices (cf. Df.1.1.1.5, ii, iii; Prob. 1, etec.). In this sense there
exist quaternary matrices of propositions (cf. Prob. 8 below) or quinary or, in general, n-ary matrices
of propositions, depending on the number of initial subpropositions. The number of the rows of truth-
tables, then, will grow with the number of initial subpropositions; e.g. a septenary matrix of proposi-
tions has 27 = 128 rows and, in general, a n-ary matrix has 2 rows, which may be so many as to
incapacitate manual truth-table computations.

Prove that implications may merge as follows:

B @=>9vp-7)=p=>quvr (iv) (@=>7)g~>7) =pvg-r

i) (@>qm->7 =p->qr (v)  (p=>a)(r=s)~> (pr-gs)

() (@->r)vg=7r) = pg->r (vi) (p=>aq)(r—>s) > (pvr—>qvs)

PROOF:

Since the six propositions have similar proofs, (i) and (vi) are considered their -representatives.

Pla 7| Pp>q|p>rgvr| (p=>@Vvip=>71) | pogvr | p=gVvp-or)=p-qvr
1 (111 1 1 1 1 1 1
11110 1 0 1 1 1 1
101 0 1 1 1 1 1
11010 0 0 0 0 0 1
0111 1 1 1 1 1 1
0/110 1 1 1 1 1 1
0[0]1 1 1 1 1 1 1
0/0]0 1 1 0 1 1 1
Pla |7 8| P2q 728 pVT I gVs | (p=>q)(r=s)|pvr > qvs((p=q)(r=s) > (pvr - qva)
1|11411 |1 1 1 1 1 1 1 1
1{1]1]0 1 0 1 1 0 1 1
1{110]1 1 1 1 1 1 1 1
1(1(0]0 1 1 1 1 1 1 1
1(0(1]|1 0 1 1 1 0 1 1
110 (110 0 0 1 0 0 0 1
1]0(0]1 0 1 1 1 0 1 1
1000 0 1 1 0 0 0 1
0111111 1 1 1 1 1 1 1
of1|1]o| 1 0 | 1 1 0 1 1
0|1(0]1 1 1 0 1 1 1 1
01100 1 1 0 1 1 1 1
00|11 1 1 1 1 1 1 1
0|0 j11]0 1 0 1 0 0 0 1
0(0(0]1 1 1 0 1 1 1 1
0[O0 010 1 1 0 0 1 1 1




Sec. 1.1.1]} MATHEMATICAL LOGIC — TAUTOLOGIES 9

9. Implications may be dissolved as follows: (i) p>q = Dvg, (i) p—~>q = pq
PRO(.)F: p|q|P | Pvg | P4 p2g=5Dvyq
@ 110 1 1 1
1 /0740 0 0 1
011 1 1 1
0o lo0]f1 1 1 1

(ii) can be proved likewise.

10. p=gq iff (0~ q)(g~>p); ie. (P=q)=(p—>q)(g~>p) is a tautology, and so is (p= q) =
(Pva)@vp) or (p=q)=(pd)(aD).

PROOF:

Problem 9 has already proved that p>g=p5vq and p—>q =pd and that, likewise, ¢~ p =
gvp and q-p = qp. Hence the proof is complete if a truth-table justifies the first part of the
problem, viz.:

P q P>q | qp (r~>q)lg—p P=gq (p=q) = (p~>q)(g~> D)
1 1 1 1 1 1 1
1 0 0 1 0 0 1
0 1 1 0 0 0 1
0 ) 1 1 0 1 1

11. Both implications and equivalences are transitive, i.e.,

i @=a@>7)~>(@~>7), i) (p=gg=7r)~>(@=7)

PROOF:
Since both proofs are similar, only (ii) is proved:
p|lq|r P=q |¢="r p=4qg)lg=1) p=r p=qlg=r) -~ (p=r)
1]131 1 1 1 1 1
11110 1 0 0 0 1
1 (011 0 0 1 1 1
1]01]0 0 1 0 0 1
011 |1 0 1 0 0 1
0ol1,0 0 0 1 1 1
0|01 1 0 0 0 1
0|0 (O 1 1 1 1 1
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12. Negation lines may be broken as follows:

i) pvg=p-q, (i) pg=pvy, (iii) p=q¢=(P=0q) = @®=9

PROOF:
Because of similarity, the proof of (iii} alone is shown:

P=q = (=9

fit
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(= A e - =)
[l T R S e
P e b e e

And, by Prob. 10, p=¢=(p=7); hence p=g=(F=q) = (p=7).

(Or, by observation, all three have exactly the same truth values, justifying the conclusion.)

13. g—»p iff p—gq; ie p~>q = q-pis a tautology.

PROOF:
plaiP|dlp2>qladg—>p)po2g=g->7p
1]1{01|o 1 1 1
1(0{o0]|1 0 0 1
0o|1({110 1 1 1
0011 1 1 1

Note. @ > P is called the contrapositive (or opposite converse) of p - q.

14. An arbitrary term or factor or implication itself may be added to implications as
follows:

i) p->pve (i) (p=@)>®~->qvr), (iii) (- q) = (pr-9q),
(iv) p->(¢a~p), (v) p~>(@~0)

On the other hand, a term or factor in implications may be dropped as follows:
(vi) (pvr->q) = (p-9), (vii) (p=>qr)~> (p-q)
and any term or factor proved to be always true or false may be dropped as follows:

(viii) p(gv q) = p, (ix) pveg=p

PROOF:
All nine propositions are tautologies whose proofs are quite readily verifiable by simple truth tables.
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15. Deduce the following propositions solely by MTh.1.1.1.9-16:

i) p->p, () pvp, (i)
PROOF:
(i p-opvp
pvp-p

pop

(i) p-vp

(i) Bvp
p

v Bo-p
B ---p) - [(pv D)2 DV ---p)]

(pvp)—> (pv---p)
pvp

pV---p

(pv---p) > (---pV p)
---pVvVp

poDp

p->p, (iv) p->p

by MTh.1.1.1.10,P2
by MTh.1.1.1.10,P1

by MTh.1.1.1.13

by (i) above
Df. by MTh.1.1.1.9
by MTh. 1.1.1.10,P3

by MTh.1.1.1.11

by (ii) and MTh.1.1.1.9
Df. (p~q=p5vq) by MTH.1.1.1.9

by (iii) above
MTh.1.1.1.10,P4
MTh.1.1.1.11
by (ii) above
MTh, 1.1.1.11
MTh.1.1.1.10,P3
MTh.11.1.11

Df., as in (iii), by MTh. 1.1.1.9

16. Deduce, as in Prob. 15, the following propositions:

@ p-pp, (i) pe-»,

PROOF:
@ (Bvp b
5~ GV

p>pvp

@) p-pv
>

(i) (@~q) > [(Bve) ~> BV
q-q
pvag-oPvqg
PVg>qVvp
Pvg-qvp
(p—>q) > (@~ D)

(i) (p~q) (@D

MTh.1.1.1.10,P1
MTh.1.1.1.12
Prob. 15, iii
MTh.1.1.1.13

Df. (pq = pVv @, cf. Prob.12,i) by MTh.1.1.1.9

MTh. 1.1.1.10, P2
MTh.1.1.1.12
Prob. 15, iv
MTh.1.1.1.13

Df. [cf. (i) above] by MTh. 1.1.1.9

MTh.1.1.1.10, P4
Prob. 15, iii
MTh.1.1.1.11
MTh.1.1.1.10,P3
MTh.1.1.1.13

Df. (v ¢ =p—->gq) by MTh.1.1.1.9
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17. Prove the redundancy of P5 in MTh.1.10 by deducing it from P1-4.

[CHAP. 1.1

, “q__)ﬁ’,?

PROOF:
rorvp P2
rTVp-opvr P3
repvr MTh.1.1.1.18
(ro>pvr) > lgvr-gvipv)] P4
gvr—=>gqv(pvr) MTh.1.1.1.11
lavr-=>qvipvr) > {pvigvr)=pvigvipvnl} P4
pv(gvry = pvigv(pvr) MTh.1.1.1.11
pvigvipvn)] = lgvpvnvp P3
pvi{gvr) > [gvipvr))vyp MTh.1.1.1.13
pvr > (pvrvg P2
pvrivg > gvipvr) P3
pvr > qvipvr) MTh.1.1.1.13
popvr P2
[P=avpvn] > {lgvipvr]vp - lgvpvnlvigvievn)}} P4
lavevrive > {{gvipvn)vigv(pv ]} MTh.1.1.1.11
lavievnlvigvevn] = [gv(evr) P1
lavipvn)lvep > qvipvr) MTh.1.1.1.13
Hence it follows from the last step and the ninth that
pvigvr) > qvi(pvr) MTh.1.1.1.13
18. Does “p - 3’ follow from four hypotheses: “ps”, “p-qvy?, “s-> 7’
PROOF:
It does, since
(1) ps Hyp:
() p-o>gqvr Hyp:
3 s—r Hyps
“4) q—p Hyps
6) qvr (1), (2), and MTh.1.1.1.11
(6) + (1), (), and MTh. 1.1.1.11
* q (5), (6), and MTh.1.1.1.15, i
8 P (4), (7), and MTh.1.1.1.11
9 pp (1), (8), and MTh.1.1.1.14
(10) ps—pp (1)-(9), and MTh.1.1.1.13
(11) pp— ps (10), and MTh. 1.1.1.12
(12) ps (9), (11), and MTh.1.1.1.11
(1%) p-s (12), and Df. (@b =dav b and a>b = dv b) by MTh.1.1.1.9




Sec. 1.1.2] MATHEMATICAL LOGIC — QUANTIFICATIONS 13

*$1.1.2 Quantifications

Df.1.1.2.1 A sign which represents a proposition is called a (propositional) variable, in
contrast with which all connectives, defined by Df.1.1.1.5-6, are called constants.

Example:
p, q,7,ete. throughout §1.1.1 are all variables, where each variable preserves a recognizable
identity in various occurrences for a definite context.

Df.1.12.2 Any combination of concepts which involves one or more variables is a (propo-
sitional) function, which becomes a proposition whenever its variables take values
and become specified.

Example:

“y is a real number” is a combination of concepts which contains a variable x and as such is a
propositional function, being neither true nor false; it takes value and becomes a proposition iff it is
specified, e.g. * = V2. Note that a proposition like “pv ¢” or “p-q” is actually a propositional
function as long as no specified values are assigned to both p and gq.

Df.1.1.2.3 A propositional function f of one variable x, denoted by f(x), may be satisfied
by all values of z or some value or values of # or no values of z. The first case is
denoted by (z)f(x), which reads “for all values of x, f(z) is true”, and (x) is called a
universal quantifier. The second case is denoted by (Ex)f(x), which reads “there
exists a value of « such that f(z) is true”, and (Ex) is called an existential quantifier.
The proposition (x)f(x) in entirety is called a universal proposition, and the proposi-
tion (E2)f(z) an existential proposition.

| Example:

“x is an equilateral triangle”, which may be denoted by L(x), is a propositional funection; so is
“x is an equiangular triangle”, denoted by A(z), but their compound “if x is an equilateral triangle,
then z is an equiangular triangle” is a universal proposition, since the proposition is valid for any «
in this specific context. Hence (x)[L{z)—> A(z)], which reads “for any «, if « is an equilateral triangle,
then # is an equiangular triangle”.

Note. Different notations are also available for quantified propositions; e.g. (z)f:
or V.f(x) or {a:f(x)} (or {z]|f(x)}) instead of (2)f(x), and (Hx)f(z) or H.f. instead of
(Ex)f(x). In particular, the form {x: } or {x| } will sometimes be used in Part 2.

or (Ex) either if it lies directly to the right of the quantifier or if it is a component
of some compound propositional function in parentheses (or brackets or braces)
immediately to the right of the quantifier. The variable of the propositional function
within the scope is called a bound variable and, if otherwise, a free variable.

l Df.1.1.24 A propositional function is said to lie within the scope of the quantifier (x)

Example:
In the example above: (x)[L(z)~> A(z)], = of both L(x) and A(x) is bound, while z of C(x) in a
context (Ex)[A(x)v B(x)] - C(x) is free.

MTh. 1.1.25 The negation of quantifications is defined as follows:

) @@ = (Eo)f(@) i) (Eo)f@) = (x)f(x)
and, as it immediately follows,
i) (@f(x) = (Bx)f(x) (i) (Ex)f(z) = (2)f(z)

The so-called square of opposition from classical logic illustrates the relation
among them:
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contraries —

(@) () > (2)7(2) ,

superaltern superaltern

g z

= g

= &

=~ [}

=

o a3

2 =

subaltern / {'__ subaltern
(Ex)f(x) ~- - —» (Ex)f(x)
subcontraries

Fig.1.1.2a

In traditional logic (x)f(x) and (Ex)f(x) are represented by A and I (from affirmo)
respectively; likewise (z)f(x) and (Ex)f(%) by E and O (from nego) respectively. If
S and P represent subject and predicate respectively, then, again in classical logic,
SAP designates “all S is P”, i.e. (x)f(z); SEP “No S is P”, i.e. (x)f(x); SIP “some S
is P”, ie. (Ex)f(x); and SOP “some S is not P”, i.e. (Ex)f(x).

Note that the third case of Df.1.1.3.1, i.e. a propositional function satisfied by

no values of z, is now represented by SEP, i.e. (Ex)f(x) = (x)f(_x-).

Furthermore, the so-called four categorical propositions of A,E,I,0 have pic-
torial representations, called Venn diagrams, by drawing two intersecting circles as
follows:

A: SP=0 E. SP=0

)
™

I. SP+0 0: SP+#0
Fig.1.1.2b

Although the diagrams look self-explanatory, their exact interpretation presup-
poses a certain amount of knowledge on classes or sets; further explanations, there-
fore, will be given in Chapter 2.8.

To carry out inferences through quantified propositions, a few new metatheorems
must be added to MTh. 1.1.2.5 and the metatheorems of §1.1.1, which are justifiably
presumed to remain valid even after going through quantifications. (A detailed,
and rather delicate, examination of this presumption lies again beyond the scope of
this book.)
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MTh.1.1.26 (Principle of Generalization).
(i) U.G. (Universal Generalization): (2)f(z) is true if f(x) is satisfied by any arbitrary
(but significant) values of x.

(ii) E.G. (Existential Generalization): (E)f(x) is true if there exists at least one
instance a such that f(a) is true.

Example:

The procedure in geometry of starting with “Let ABC be any triangle”, proving that ABC has
a certain property, and ending it with a conclusion that all triangles have the property is a typical
case of U.G. On the other hand, solving algebraic or elementary transcendental equations is a
familiar case of E.G.: e.g. there exist two roots, real or imaginary, for the equation ax’+bx+ec =0
where a, b, ¢ are real and a+ 0; or, from trigonometry, there exists a certain set of values which
satisfy « in sinx+cosx = 1; or, from logarithms, there exists a value of = which satisfies the
equation 10% = 3.

MTh. 1.1.2.7 (Principle of Specialization).
(i) U.S. (Universal Specialization): f(a) is true for any significant value a for x if
(z)f(x) is true.
(ii) E.S. (Existential Specialization): there exists at least one significant value a for
x such that f(a) is true if (Ex)f(x) is true.
Example:

The time-honored syllogism: “All men are mortal; Socrates is a man; therefore Socrates is
mortal” is a case of U.S. On the other hand, e.g., “there exist some real numbers which are not
rational” justifies “/2 is an irrational number”, exemplifying E.S.

It must be made quite clear at this juncture that, in the process of inference, a
free variable (sometimes called a flagged variable) in a hypothesis or in any line of
inference may introduce fallacies with respect to MTh. 1.1.2.6-7 unless closely watched.

Example:
An arithmetic theorem asserts that there is no largest integer, i.e.,

(x)(Ey)(x <y) 2)
from which it may follow, by applying U.S,,

Ey)x<y) @
from which in turn, by applying E.S,, there follows
r<a 16))
such that, by applying E.G.,
(Ex)(x < x) 4)

which is of course false. The trouble started obviously in (2), where z is free. First of all, the
variable should have been flagged and “(2)” should have been replaced by “z, (2)” which explicitly
shows that = is flagged in (2); likewise “x, (3)” and “x, (4)” instead of plain “(3)” and “(4)”, since
they depend on (2).

To eliminate fallacies caused by MTh.1.1.2.6-7, then, the following rule should
be obeyed:

(i) U.G. in deriving (z)f(z) from f(x) is valid iff x is not flagged in f(x).

This rule alone is not enough, however, to safeguard an inference against fallacies.
As is evident in the above example, there is another false step in (3), where an am-
biguous term is carelessly introduced. Hence the second rule is:
(ii) Any term introduced by E.S. must have subscripts to indicate all the free variables
of the premises at issue.
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In (3), for instance, “x <a” should have been written as “x <a.” which yields
“(Ex)(x <az)” in (4) to be correct.

Certain ramifications may take place with respect to such rules of inference for
a full and rigorous treatment, some of which may appear in a form of notes in the
following problems, but it is certainly not the task of the present text to cover all
of them.

Solved Problems

1. Find free variables in the following propositional functions:

W) @@ o) (v) @A@BG)  (vii) (E2)F() = G()

(i) (»A(y) (v) (@)[P(x) > Q(z) v Q(x)] (viii) (2)(Ey)[A(2)B(2)] = C(z,y)
(ili) (E2)F(z) - G(2) (vi) A(z)~ (2)B(x)

Solution:

(i) =z of g(x) is free. (iv) y of B(y) is free. (vii) =« of G(2) is free.

(iii) z of G(z) is free. (vi) x of A(x) is free. (viii) x,y of C(x,y) are free.

(E2)[P(2)Q@)], (i) (E2)[P(x)Q(2)] = ()[P(x)~ Q(x)].

[

2. Prove: (i) (2)[P(x)~> Q(%)]
PROOF:

@ @PE Q@) = (Ex)[P@E) - Q@) MTh.1.1.2.5
= (Ex)[P(x) v Q(x)] §1.1.1, Prob. 9
= (E2)[P(x)Q(x)] §1.1.1, Prob. 12, i
(i) (Ex)[P(@)Q()] = (¥)[P(x)Q(x)] MTh. 1.1.2.5
= (2)[P(x) v Q)] §1.1.1, Prob. 12, ii
= (x)[P(x) > Q(x)] §1.1.1, Prob. 9, i

3. Symbolize the following inference, then justify each step of the inference: “All mam-
mals are animals; some mammals are biped; therefore, some animals are biped.”

PROOF:

Let M, A, and B represent the predicates of being mammal, animal, and biped respectively, and
“Hyp” below, as everywhere else, will denote a hypothesis; then the symbolized inference runs as

follows:

(1) (2)[M(x) > A(x)] Hyp:

(2)  (Ex)[M(2)B()] Hype

(3) M(a)B(a) E.S. twice in (2)

(4) M(a) > A(a) U.S. in (1)

(5) A(a)B(a) (3), (4) and MTh.1.1.1.11, 14

(6) (E=)[A(»)B(x)] E.G. in (5)
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Deduce, symbolically and justifiably, “Some periodic functions are continuous” from
“All trigonometric functions are periodic functions” and “Some trigonometric func-
tions are continuous™.

PROOF:

Let T, P, and C designate the attributes of trigonometric functions, periodic functions, and con-
tinuous functions respectively; then

(1) (@)[T(x) > P()] Hyp:

(2) (Bx)[T(x)C(x)] Hyp:

3 T@C E.S. in (2)

4) T(a) = Pla) U.S. in (1)

(5) P(a)C(a) (3), (4), and MTh.1.1.1.11, 14
(6) (Ex)[P(x)C(x)] E.G. in (5)

Given two premises: “All irrational numbers are real numbers” and “All real num-
bers are complex numbers”, draw a conclusion through a symbolic procedure of
inference,

Solution:

If I, R, and C designate the predicates of being an irrational number, a real number, and a
complex number, then

(1) (@)[(x) = R(w)] Hyp:

(2) (@)[B(x) > C(x)] Hyp:

8) I(a) ~> R(a) U.S. in (1)

(4) E{a) - C(a) U.S. in (2)

(5) I{a) - C(a) (), (4), and MTh.1.1.1.13
6) (@)[I{x) > R(x)] U.G. in (5)

Note. U.G. in (5) is allowed only because the inference began with (x) and went through onto
(5) without free =z.

Symbolize, then justify, the following reasoning: “No rational being is willing to
destroy the world; no maniac is unwilling to destroy the world; every sane person is
a rational being; therefore, no sane person is a maniac.”

PROOF:

Let B, W, M, and S represent “rational being”, “willing to destroy the world”, “maniac”, “sane
person”; then

@) (@)[Rx) > W(x)] Hyp:

(2) (2)[M(x) > W(x)] Hyp:

) @)[S) > Rx)] Hyp;

4) R(a) > W(a) U.S. in (1)

(5) M(a) - W(a) U.S. in (2)

(6) S(a)= R(a) U.S. in (3)

()  S(a) > W(a) (6), (4), and MTh.1.1.1.13
(8) Wia) - M(a) (5) and MTh.1.1.1.12

9) S(a) > M(a) (), (8), and MTh.1.1.1.13

(10) (@)[S(x) —> M(@)] U.G. in (9)
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Find fallacious steps in the following reasoning where O predicates an odd number:

(1) (Ex)[O(x)] Hyp:

(2) O(a) E.S. in (2)

(8) Ofx) Hyp,

(4) O(@)O(x) (2), (3), and MTh.1.1.1.14
(5) (Ex)[0(x)0(x)) E.G. in (4)

PROOF:

The concluded fallacy that there exists a number x such that it is odd and not odd was first
introduced in (3), where z should have been flagged, then in (4), where z should have been flagged
again, since it depends on (3); finally, (4) should never have been existentially generalized, since a and
free x occur together in (4) (ef. MTh. 1.1.2.7, ii).

Justify, formally, the following reasoning: “All integers are rational numbers; there-
fore, all negative integers are negative rational numbers.”

PROOF":
Let I, R, and N predicate integers, rational numbers, and negative respectively; then
1) @) > R()] Hyp:
(@) (Ey)[I(y)N(xy)] x, Hyp.
(3) I{a:)N(zaz) z,E.S. in (2)
(4) I(a:) > R(a.) U.S. in (1)
(5) R(a:)N(zaz) x,(3),(4), and MTh.1.1.1.11
(6) (Ey)[R(y)N(xy)] x, E.G. in (5)
(7 EYIyN(@y)] ~> (Ep[Ry)N(zy)] (2)-(6), and MTh.1.1.1.13
®)  @NEWIWIN@EY)] > (Ey)[RH)Ny) U.G. in (7)

Symbolize, then justify, the following inference: “None of the primes are integrally
divisible by an even integer greater than 2; any of the primes is integrally divisible
by the unity; there exist some primes; therefore, the unity is not integrally divisible
by an even integer greater than 2.”

PROOF:

Let P, D, I, and U denote “primes”’, “is integrally divisible by”, “even integers greater than 27,
and “the unity” respectively; then

0 @[P@)] > @[(y)~> D(xy)| Hyp:

2) (@)[P(x)] > (Ey)[Uy)D(xy)] Hyp:

(3) (Ex)[P(x)] Hyps

(4) Pla) E.S. in (8)

(6) P(a) > W)[I(y) > D(ay)) U.S. in (2)

(6) Pla) > (En)[U(y)D(ay)) U.S. in (2)

) @I(y) - Diay)] (4), (5), and MTh.1.1.1.11
(8) I(b) > D(ab) U.S. in (7)

(9 (Ep[Uy)D(ay)] (4), (6), and MTh.1.1.1.11
(10) U(b)D(ab) E.S. in (9)

a1y I (8), (10), and MTh. 1.1.1.12
(12) U®BI®) (10), (11), and MTh.1.1.1.14
(13) (Ex)[U(x)I(x)] E.G. in (12)

Note. U(x) being by definition one and only one number 1 among integers, the conclusion is not
actually for “some x” representing more than one number; in other contexts, however, it may be
literally for “some z”.



Chapter 1.2

*Mathematical Proofs

Df.121 P, P, ..., P.+— P, which reads “Py, P, ...,P, yield P”, means that a propo-
gition P is finally derived from a sequence of other propositions P1, Py, . .., Pa.

Example:

Prob. 15-18 of §1.1.1 and Prob. 2-9 of §1.1.2 are treated by the sequences of several propositions,
sometimes as many as seventeen, to arrive at the final proposition to be justified. In Prob.9, for
instance, P, is the twelfth proposition and P the thirteenth.

The symbol “+—” is called a turnstile, denoting an assertion.

Df.1.22 P, which reads “yields P”, means that P is derived directly from axioms, and
from them alone, by MTh.1.1.1.9-11.

Example:
Prob. 15, ii, iii, iv of §1.1.1.

Df.12.3 A demonstration, which may be symbolically represented by Di,Ds,...,Dn+ D
where D is a proposition to appear at the end as a consequence of the propositions
Dy, Ds, ..., Dn, is a sequence of propositions Pi, Ps, ..., P, such that P, i=12,...,n,
is either an axiom or any of the D’s or any of the P;, j <4, or whatever is derived
from the two preceding P’s by MTh.1.1.1.9-11.

Example:

Prob. 9 of §1.1.2 has Hyp:, Hyp:, Hyps as Di, D2, Ds and (Ex)(U(x)f(?)) as D; all other steps
represent P; or the result of the application of MTh.1.1.1.9-11. Note that the seventh step, for
instance, may be in need of a long demonstration for itself to justify the logical inference involved
in the step.

As is obvious even in a single example, demonstrations may not, and sometimes
technically cannot, always be carried out in full detail, since they are generally of
staggering length except for exceptionally simple problems as Prob.15-18 of §1.1.1.
It is not only impractical and unnecessarily tedious, but not even desirable to write
out every detail of an entirety of logical reasoning for each problem, let alone an
analysis or justification of each step in the logical reasoning.

In practice, therefore, demonstrations must naturally suffer from certain, often
drastic, abridgments, the amount of which depends on their prospective readers.
There is no harm, of course, in such abridgments as long as it is understood that the
demonstrations, on demand, can fill in all missing steps. For the sake of convenience
and practicality, therefore, the following definition is accepted, if only tacitly, by all
working mathematicians.

Df.12.4 A mathematical proof is a set of representative clues, intelligible to whom it is
intended, which point to the existence of a demonstration.

It is because of this reason that proofs in advanced research papers usually omit
so much of details that they can be considered intelligible by but few experts in the
field. When challenged, however, the writers of such papers may go all lengths to
fill in omitted steps or give detailed demonstrations for certain unintelligible parts.

19



20 PART 1 — ALGEBRA OF LOGIC [CHAP. 1.2

However abridged a mathematical proof may be, a proof as a model of precision
must always meet the specification inherent in the core of demonstrations, viz. the
logical inference from the assumed (hypotheses) to the justified (conclusions), since
mathematics itself, as knowledge, must always proceed from what is given to what
is to be verified or justified, or more broadly, from the known to the unknown. Such
a procedure is of necessity presented in the form of implications (or what is the
same, conditionals).

Df.1.25 If a proposition A implies a proposition B, i.e. A > B, then B is said to be a
necessary condition for A.

Stated otherwise: “a necessary condition that A be true is that B be true”
means “A implies B” or “If A, then B” or “B only if A”.

Example:

A necessary condition that an integer be integrally divisible by 4 is that it be integrally divisible
by 2; a necessary condition that a quadrilateral be a rectangle is that it be a parallelogram. Note
that, as in these examples, necessary conditions connote minimal conditions.

Df.1.2.6 If a proposition A implies a proposition B, then A is said to be a sufficient
condition for B.

Stated otherwise: “a sufficient condition that B be true is that A be true” means
“A implies B” or “If A, then B” or “B only if A”.
Example:

A sufficient condition that an integer be integrally divisible by 4 is that it be integrally divisible
by 8; a sufficient condition that a quadrilateral be a rectangle is that it be a square. Maximal con-
ditions thus connote sufficient conditions.

In an abstract context the line of demarcation between necessary and sufficient
conditions may not look sufficiently distinct, since A is a sufficient condition for B
and B is a necessary condition for 4 whenever A4 implies B, but the line becomes
quite clear in a concrete context.

Example:

“If n is integrally divisible by 4, then it is integrally divisible by 2” is quite distinguishable from
“If n is integrally divisible by 2, then it is integrally divisible by 4’; the latter is obviously false
while the former is true. In the former the if-clause (A) is indeed a sufficient condition for the
then-clause (B), and B is a necessary condition for A.

Df.1.2.7 If a proposition A implies a proposition B which in turn implies A4, then A
(or B) is said to be a necessary and sufficient condition for B (or A), or A and B are
said to be logically equivalent.

Stated otherwise: “a necessary and sufficient condition that A be true is that B
be true” means “A implies B and B implies A” or “A implies B, and conversely”
or “A and B are logically equivalent” or “A iff B” or “B iff A”.

This is the only case where a necessary condition is also a sufficient condition,
and vice versa. E.g., a necessary and sufficient condition that an integer n be
integrally divisible by 4 is that n be a multiple of 4; a necessary and sufficient con-
dition that a quadrilateral be a rectangle is that it be a parallelogram with one angle
a right angle.

A necessary and sufficient condition in a definite context may be stated in several
different ways as long as the results are all logically equivalent themselves; e.g., a
necessary and sufficient condition that an integer be integrally divisible by 9 is that
it be a multiple of 9 or that the sum of its digits be a multiple of 9.
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It must be emphasized here again that the necessary or sufficient condition with
respect to mathematical proofs is certainly not physical, but purely logical, in the
well-defined sense that the “if-then” connective is not necessalli_ly of a causal rela-
tion, and that “A - B” is logically equivalent to “AvB’ or “AB”.

In general, an implication with respect to two propositions A and B is studied
in the frame of proofs by the following four cases:

i) A->B (ii) B~ A (i) A-B (ivy B~A4

Df.1.2.8 Given an implication A - B, its converse is B- A, its opposite (or thverse)
A - B, and its contrapositive (or opposite converse) B - A.
Example:
If A and B represent two propositions “T: and T: are two similar triangles” and ‘“the cor-
responding angles of the two triangles T: and T: are equal”’ respectively, then

(1) A - B: “if T, and T: are two similar triangles, then the corresponding angles of the two tri-
angles T, and T are equal.”

(i) B — A: “if the corresponding angles of the two triangles T, and T, are equal, then Ty and T,
are two similar triangles.”

(ili) A > B: “if T, and T: are not two similar triangles, then the corresponding angles of the two
triangles T: and T. are not equal.”

(iv) B - A: “if the corresponding angles of the two triangles T and T: are not equal, then T, and
T, are not two similar triangles.”

‘ It just happens in this special case that everyone of the four alternatives is true,
simply because A and B are logically equivalent; it will still be the same if A and B
‘ read “two lines are parallel” and “the two lines do not intersect” respectively,
| within the frame of reference definitely defined as Euclidean space. These cases,
however, are exceptional, and as has already been exemplified by “n is an integer
integrally divisible by 4” and “n is integrally divisible by 27, it is usually the case
that the converse of a proposition does not hold even if the proposition holds. Hence
\ the following distinction:

MTh.1.29 If “A > B” is a theorem, so is always “B > A”, but not always “B—->A” and
‘ “A - B”; on the other hand, if “B~> A” is a theorem, so is always “A - B, but not
always “A~>B” and “B—~> A",
Example:
A theorem in Euclidean geometry: “If two lines are parallel, then the lines do not intersect”
may be legitimately established by proving its opposite converse: “If two lines intersect, the lines
‘ are not parallel.” Likewise, using the example of MTh.1.1.1.11: “if an infinite series converges,
| then the general term of the series approaches zero” is logically equivalent to: “if the general term
of an infinite series does not approach zero, then the given series does not converge”. In either form
the theorem may be proved to be true and then applied to other problems, but it does not logically
follow from the theorem that “if the general term of an infinite series approaches zero, then the given
series converges” (which is generally false) or “if an infinite series does not converge, then the
general term of the series does not approach zero” (which, again, is generally false).

Note the similarity between this metatheorem and Prob.13 of §1.1.1; in the same
spirit, it can be readily verified by truth-tables that “p —~ ¢” is not logically equivalent
to (lq - p,’ OI‘ ‘(I-) - q’).

Other modes of indirect proofs are also available as follows.
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MTh.1.2.10 “A - B” is a theorem if a contradiction “CC”’ can be derived from “A - B”.

Stated otherwise: if the negation of the desired conclusion (B) is introduced as
a new hypothesis (B), and if the use of this new hypothesis (B) together with the
original hypothesis (or hypotheses, represented by A in either case) brings forth a
contradiction (CC), then it must be the case that A4 - B.

This metatheorem is merely a symbolized form of the so-called indirect proof or
reductio ad absurdum proof, whose examples are abundant in elementary geometry
(with which the reader is quite familiar).

Note the resemblance in the form of reasoning between this metatheorem and
Prob. 6,iii of §1.1.1; note, also, the way this metatheorem was already applied to
Prob. 18 of §1.1.1, in particular to the steps {(10)-(12). In this sense the metatheorem
may be considered also patterned after the familiar tautology: p=>q = pg;, the
reasoning in the present context, then, may be symbolized as follows: pq > 7 >

pa > (pq).

MTh.1211 If A;vA,v...vA, and if A,, As, ..., and A,._;, then A, is a theorem.

Example:

x =y if it can be proved that neither x <y nor « >y where the frame of reference is the
trichotomy: <y or 2=y or xz>y. As this example verifies, it must be assumed that the
alternatives A, 4., ...,A. exhaust the entire case.

Symbolized in terms of propositional calculus, this metatheorem has the follow-
ing form (which can be readily verified by truth-tables):

wvavr)(pq) = r or in general (Prvpev - VD) D1P2 - Due1) = D

It is self-explanatory that MTh. 1.2.9-10 may be freely employed to deduce pi, ps, . . .,
Pn-1 individually.

It must be emphasized as a general remark that a single counter-example is quite
sufficient to disprove a case.

(As for the modes of fallacious reasonings, such as petitio principii, non sequitur,
post hoc ergo propter hoc, etc., they are found in any text-book, old and new, on

Logic.)

Supplementary Problems
Part 1

TAUTOLOGIES
1.1.  Prove, by truth-tables, the following tautologies: (i) pg = p, (ii) pq = pVv q.

1.2.  Prove that the following twofold distributions under disjunction and conjunction are tautologies:

(i) (pvervs) = prvagrvpsvrs (if) pgvrs = (pvrigvr)(pvsigvs)

1.3. Negation of equivalent terms is equivalent to the original equivalence; ie. (p=¢q) = (P=q) is a
tautology.

14. Prove the redundance of a negation: pv g = pvq.
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15. Complete the replacement of the five connectives by the stroke and the dagger, defined by Prob. 2-3
of §1.1.1; i.e., express the secondary connectives - and <> also in terms of | and {.

16. Express p|q in terms of | and vice versa, then justify the expression by truth-tables.
1.7. Prove that a proposition which implies its own negation is a contradiction.
1.8. Find the exact relation between the following pair of propositions: av b¢ and a = (a(bv o).

19. Prove the following tautologies without using truth-tables:

() al(dve)dd) = avbvevdve (i) (@vbve)avbveyavbve) = (abe)v (abe)v (abd)

1.10. Verify the following tautologies, first by truth-tables, then by MTh. 1.1.1.9-10:

(i) (@a=b) - (ave=bve) (iii) (@=b) = (@=>c=b-y¢)
(i{i) (a=1b) > (ac=bc) (iv) (@=bd) - ((a=¢) = (b=0))

1.11. Prove, first by truth-tables, then without truth-tables: ((a — ) - (a= B) = avb.

1.12. Test, by truth-tables, the validity or fallacy of the following propositions:

@ (@->b)b—-8 > (c—>a) (i) (@~>b}e—>b) - (¢— q) (iii) (av b)aveb—-9¢ - a

1.13. Deduce, by MTh. 1.1.1.9-11 and Prob. 15-17, the tautology: (p— q) = (g7~ pr).

1.14. Is @ deducible from three hypotheses: a— b, bve, ac 7 If so, justify the logical inference (without
any use of truth-tables).

1.15. Deduce, using only metatheorems, @ from three hypotheses: ab — cd, b,d.

QUANTIFICATIONS
1.16. Prove the following quantified tautologies:
i (Ex)(P(x)Q(x)) ~ (Ex)P(x)* (Ex)Q(x) (i) ()P(@)Q(x)) <> (x)P(x)* (x)Q(w)

1.17. Discuss the fallacy involved in the inference: (Ex)P(x)+(Ex)Q(x) — (Ex)(P(x)Q(x)).
118. Prove: (x)P(x) - (Ex)P(x).

1.19. Prove the following quantified tautologies:
i) @P@)Vv (©)Qx) = (x)(P(x)v Q)
(i) (o)(Px)v Q) — (v)P(x)v (Ex)P(x)
(ili) (Ex)(P(x)v Q(x)) < (Ex)P(x) v (Ex)Q(x)
(iv) (&} P(x) > Q(x)) — ((x)P(x)~ (x)Q(x))
v)  (@{P(x)~> Qx)) - (Ex)P(x)~- (Ex)Q(x))
(vi) (Ex)(P(x)=> Qx)) < (x)P(x)~> (Ex)Q(x)

1.20. Given the well-established theorem that the square of an even integer is again an even integer,
symbolize the proof that an integer is odd if its square root is also an odd integer.
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Chapter 21

Sets in General

Df.2.1.1 A set is a well-defined collection of distinct elements.

This definition, where the “set” is defined in terms of its synonym “collection”,
is obviously nominal. In this sense, as is well known, the set cannot be properly
defined, although it may be replaced by any of its synonyms such as collection, class,
aggregate or even family and can be readily exemplified by any of collective nouns
such as army, assembly, flock, herd, jury, etc.

The term “well-defined” in Df.2.1.1, however, specifies that it can be determined
at least whether or not certain elements belong to the set in question (where the
elements themselves remain undefined), and the term “distinct” specifies that, given
two elements, their identity or difference can be discerned. Such a discernment is
considered always possible in logic and mathematics on the strength of the most
fundamental metatheorem, which runs as follows:

MTh. 2.1.1a (Principle of Identity). Whatever is is identical with itself (cf.§1.1.1, Prob.5
note).
Example: A set S is identical with S itself.

Df.2.1.1b  The membership of a set is denoted by “¢” and the non-membership by “#”.
Example:
xe X designates that « is a member of a set X and reads “x is an element of X” or “x belongs °
to X”, while x¢#X reads “wx is not an element of X” or “x does not belong to X”. It is customary
to use small letters for elements and capital letters for sets. If N denotes the set of all natural
numbers, then zeN specifies that « is a natural number, and y¢ N designates that ¥ may be a
negative integer or an irrational number or anything but a natural number.

Since a set is uniquely determined by its elements, the elements of the set, enclosed
in braces, may be explicitly listed as a notation for the set itself; e.g. A = {a, b, c)}
for a set A whose elements are a, D, ¢ and nothing else. If B is a set which consists
of a,b, ¢ and possibly more, then notationally, B = {a,b, ¢, .. .}. On the other hand,
a set which consists of a single element is called a unit set, and the set whose only
element is x is sometimes called singleton z, denoted by {x).

Df.2.1.2 If each element of a set X is also an element of a set Y, then X is called a
subset of Y, denoted by X C Y which reads “X is contained in Y” (or what is the
same: Y D X, which reads “Y contains X).

Example:

Ncl, if N is the set of all natural numbers and I the set of all integers; in this context, N is a
(non-empty) subset of I.

Th.213 If ACB and BCC, then A CC. (Cf. Prob. 1.)
Example: If N CJ7 and I C R where R is the set of all rational numbers, then N C R.

MTh. 2.14 (Axiom of Extension). Two sets X and Y are equal, denoted by X =Y, iff
they have the same elements.

24
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Example:
If A=/{ab,ec} and B ={a,c b}, then A =B. It must be noted that the equal sets may not
be identical (cf. MTh. 2.1.1a), as is actually the case here.

Th.215 If XCY and YCX, then X=Y. (Cf.Prob.2.)

Df.2.1.6 A set of certain elements in its entirety is called the universal set (or universe),
denoted by U, which is considered a subset of U itself.
Example:

Given A = {a,b,c} alone with respect to itself, then 4 is U; it is also a subset of itself, since
it satisfies Df. 2.1.2. :

Df.2.1.7 A set which does not contain any element at all is empty (or vacuous) and called
the null set, denoted by @; it is considered a subset of every set.

Example:
Taking away a,b,¢ from A = {e,b,c¢}, A becomes empty, i.e. @; ( is a subset of, say,
C = {¢, b,a}, since each member (nothing!) of @ belongs to C.

Note. Df.1.1.2.3 gives Df.2.1.7 a more formal expression, viz. (z)(x+#2x) or
what is the same: {x: x>} or {x| x+*=x}.

Df. 2.1.8 If a set X is a subset of a set Y and at least one element of Y is not an element
of X, then X is called a proper subset of Y, denoted by X CY; the null set is considered
a proper subset of every set except itself.

Example:

The proper subsets of {a,b,c} are: {a,bd}, {a, ¢}, {b,c}, {a}, {b}, {c}, and @. Including itself
{a, b, ¢}, which is a subset of itself, although definitely not a proper subset of itself, the number of
the subsets of the set is 2° = 8, which gives the following generalization.

Th.2.1.9 A set S of » elements has 2" subsets.  (Cf. Prob.7.)

Df.2.1.10 Given two sets X and Y, there exists a one-to-one (or 1-1) correspondence
between X and Y iff xe¢X has one and only one correspondent ye¢Y, denoted by
zeoy or xeX « ye?.

Example:
If X denotes the set of all positive integers and Y the set of all negative integers, then there
exists a 1-1 correspondence between X and Y, since 1<>—1,2< -2, ..., ne-—m, ....

Df. 2.1.11 If the elements of two sets X and Y can be placed in one-to-one correspond-
ence, they are said to be (cardinally) equivalent, denoted by X < Y; they are also
said to have the same cardinal number, denoted by o(X) = o(Y).

Example:

There exists a 1-1 correspondence between the set X of all positive integers and the set Y of all
positive odd integers; hence o(X) = o(Y), viz.,

X: 1 2 3 4 5 . . . 100 . .oon
OREROREN OB ORK) ) ¢
Y: 1 3 5 7 9 . . . 199 . . 2n—1
Df. 2.1.12 The relation of equivalence satisfies the following three laws, called the
equivalence relations:
Reflexive: XX
Symmetric: XoY impliess YeoX

Transitive: XoY and Y« Z imply X2
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Example:
The relation represented by the logical equivalence (cf. Df.1.1.1.6) is an equivalence relation, since

i) p=p (ii) p=gq implies g=1p (iiif) p=gq and g=7» imply p=r

Df.2.1.13 A set has cardinal number #», viz. o(S) = n, iff there exists a 1-1 corre-
spondence between the elements of S and the integers 1,2,3, .. .,n; such a set is
finite.

Example:

C = {¢,b,a} is of cardinal number 3, i.e. o(C) = 3, which is obviously a finite number.

Df. 2.1.14 A set S is countable (or denumerable) and has cardinal number d, viz.
o(S) =d (or the so-called “aleph null”), iff there exists a 1-1 correspondence between
the elements of S and all positive integers; such a set is infinite.

E.g. ef. Th.2.1.15 below.

Th. 2.1.15 The set of all rational numbers is a countable set, but the set of all real
numbers is not. (Cf. Problems 12-14)

Df. 2.1.16 A set S which is equivalent to the set of all real numbers is said to have the
cardinal number ¢ of the continuum, viz. o(S) = ¢ (or the so-called ‘“aleph-one”).

Example:
The set of all points in a closed interval [0,1] (cf. Problems 9, 10, 14),

Solved Problems

1. If ACB and BCC, then A CC.

PROOF:
Take any element x which belongs to A, viz. xe¢A; then xz¢B since A Cc B. Then also z¢C
since B C C. Hence every element of A is also an element of C, i.e. A C C.

2. If ACB and BC A, then A=B.

PROOF:
Let xeA; then xeB since A C B. Conversely, if xeB, then xeA since BC A. Hence,
having the same elements, A = B.

3. If ACB and BCC, then A CC.

PROOF:
Since ACB and BCC, at most AcC. Butif A=C, then BCc A (. Bc (), which is
contradictory to A ¢ B. Hence A c C.
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4.

The set R of all rational numbers is a proper subset of the set R* of all real numbers.
PROOF:

Since every rational number is also a real number, B C R*. There exists, however, at least one
element of R*, say V2, which does not belong to B. Hence R+ R* and from R C R* and R+ R*
it follows that R C R*.

(Note that the existence of any irrational number is enough for the proof; instead of \/5, other
well-known irrational numbers such as =, ¢, etc. may be used, although their irrationality is not so easy
to prove as that of \/E, which runs as follows: If \/5 is a rational number, then \/§ = p/q where p and
g are positive integers without any common divisor but 1. Squaring both sides of the equation,
2q® = p?, meaning that p must be an even number. Hence let p =2p’; then 2q2=4p’2, ie. q2=2p’2,
meaning that g is also an even integer and that p and ¢ do have a common divisor other than 1, contrary
to the initial assumption. Hence V/2 is not a rational number.)

In Mathematical Logic the statement “if p, then ¢” (cf. Df.1.1.1.5) is true whenever
either p and ¢ are both true or p is false and ¢ may be true or false. Using this
logic, prove that the null set is unique.

PROOF:

Let @, and @, be two null sets, which must be proved to be equal, i.e. @, = @, or what is the same,
9, C @, and @, C @,. The former is proved when the statement “if ze @,, then x e (,” is proved to be
true. Since @, is vacuous, x ¢ @, is false, and the statement as a whole is always true, ie. @, C @,.

Likewise the latter is proved if the proposition “if xze(),, then z¢®,” is proved to be true.
Since @, is vacuous by hypothesis, x € (), is false, and the proposition as a whole is true, i.e. @, C 0,.

Hence, putting two conclusions together and by Th.2.1.5 and Df.2.1.8, @, = ,, and the null set
is unique.

Both Mathematical Logic and traditional Aristotelean Logic define the same contra-
positive rule (ef. MTh.1.2.1.12): “If p, then ¢” is equivalent to “if not ¢, then not p”.
Prove by this rule that the null set is unique.

PROOF:

Let @, and @, be two null sets as above; then, since the statement “if x ¢ @,, then x ¢ @,” is always
true according to the definition of the null set, the contrapositive rule proves that “if ¢ ,, then ¢ Q,,

ie. O, C @,

Likewise, since the proposition “if x¢ @,, then x¢ @,” is true by definition, it is immediately
deduced through the contrapositive rule that “if xe®,, then x¢@,”, ie. @, C O,.

Hence, taking both conclusions together and by Th.2.1.5, @, = @,.

A set S of n elements has 2" subsets.

PROOF:

In general, the number of the subsets whose elements are m out of n is the number of combinations
of n elements taken m at a time, that is,

Cu = nl/(m! (n—m)!)
Hence the sum of all subsets, including the universe (.C.) and the null set (.Co), is
2 2WCm = Co+ .C14 - + .Cn
m=0
= (1+1" = 2

Note. This proof presumes the binomial theorem (with which the reader is quite familiar); there
appears in any textbook of the subject a theorem deducible from the binomial theorem that

2" = 1+ = .Co+ Ci+ - + 0+ oo + JCa
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10.

11.
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The set I of all integers is equivalent to the set N of all natural numbers.

PROOF:
A 1-1 correspondence between I and N can be made as follows:

I: 0o 1 -1 2 -2 —m
O 0 0
N: 1 2 38 4 5 2m  2ml + 1

Find a 1-1 correspondence in each pair of the following intervals: (i) two closed in-
tervals of [0,1] and [0,2]); (ii) [0,2] and a straight line of infinite length.

Solution:

Draw the projecting rays for (i) from a point 4, and for (ii) from two points A and B, as in
Fig. 2.1a and 2.15. Then, as is rather self-explanatory in the figures themselves, the two points a ani!)
in the interval [0,1] = BC in Fig. 2.1a are the correspondents of ¢’ and b’ in the interval [0,2] = DE,
ie. a>a’, b b, and in general, for any two points ze BC and ' ¢ DE: x <> ',

Likewise, in Fig. 2.15, a<>a’, b b, c ¢/, dd’, and in general, for any two points xe CD
and 2'e EF, x<> %', proving the desired 1-1 correspondence.

BC = [0,1] , CD = [0,2] L ==
DE = [0,2]

Fig.2.1a Fig.2.1b

Find a 1-1 correspondence between a closed interval [0,1] (i.e. 0=x=1) and a half-
closed interval [0,1) (i.e. 0=a’<1).

Solution:
As in Fig. 21¢, let &2’ if £+1/2", n=1,2,...; if 0 1/8 1/4 172 1
x = 1/2", then let x < 1/2"*1 = »’, % ———t t —+—

E.g, if =1, i.e. £ =1/2° then it is made 1-1 corre-
spondent to &’ =1/2°*1=1/2 and « =1/2 < 2z’ = 1/4,
x=1/4 ©< 2’ =1/8, etc., while the fraction of any other
type, eg. * =1/3, is made directly 1-1 correspondent to it-
self, i.e. x’' =1/3.

Then, since any point in the interval 0 =z =1 is either x —t
the fraction of the type 1/2" or the proper fraction of some
other types, expressed by x % 1/2", the two modes of 1-1
correspondence exhaust all possible correspondences be- Fig.2.1¢c
tween & and x’, completing the proof.

There exists a 1-1 correspondence between the set of all natural numbers and the set
of all lattice points (i.e. the points whose coordinates are integers) in the plane.
PROOF:

It is self-explanatory in Fig. 2.1d below, since each lattice point is now made 1-1 correspondent
to a natural number.
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12.

13.

E.g., the lattice points Pi, Ps, P3, Py, Ps, ... may be 21 22 23 24 25 26
now replaced simply by the natural numbers 1,2,3,4,5, A - Y
.., since there obviously exist the 1-1 correspondences: 20 7 8 9 10 o7
P, 1, P;<> 2, etec. Furthermore, all the lattice points > 3> -
will certainly be exhausted by this procedure if the M )
counting begins with 1 and moves in the direction 19 6 1 [2 1
pointed by arrows, ie. 1>2->83—->4->5-> ..., complet- \ i )
ing the proof. 18 5 4 3 12
A o - A
Fig. 2.1d 17 < 16 15 14 - 13

The set of all rational numbers is countable.

PROOF:

Cf. Problem 11 above, and note that the set of all lattice points can be put into 1-1 correspondence
with the set of all rational numbers represented by the pairs of coordinates in the form of quotients
(cf. Prob. 4), even when duplicates are omitted. Hence the latter also is countable.

Second proofs. The mode of 1-1 correspondence above is by no means unique; others, e.g. Fig. 2.1,
2.1f, 2.1g, are also available.

1/1-2/1 3/1-»4/1 ... /1 2/1—-3/1 4/1 ... 1/1-2/1 8/t 4/1
A R

/2 2/2 3/2 4/2 ... 1/2—-2/2 3/2 4/2 ... 1/2  2/2.73/2 4/2

Dl o

1/3 2/3 3/83 4/3 ... 1/3+-2/3<3/3 4/3 ... 1/8" 2/3 3/3 4/3
| }

1/4 2/4 3/4 4/4 ... 1/4—~2/4—3/4—~4/4 ... 1/4 2/4 38/4 4/4

Fig.2.1e Fig.2.1f Fig.21g

These proofs establish the 1-1 correspondence between the set of all natural numbers and the set
of all positive rational numbers, but this can be readily extended to the set of all rational numbers
(ef. Prob. 8).

A real algebraic number (cf.Df.5.8.2.2) is a real root satisfying a polynomial equa-
tion with integral coefficients

aox™ + 12" '+ ...+ A x +a, = 0, >0 n=1,;

and the set A of all real algebraic numbers, containing such irrational numbers as
\/§ and /3 (the roots of 22—2 = 0, 2*—3 = 0 respectively), is larger than the set R
of all rational numbers (i.e. RCA). Prove that A is nevertheless countable.

PROOF:
Consider the height h of the equation, defined by

B = n+ a + laf + o+ lan-] + lad
Since both = and ao are at least 1, h = 2. The equations of height 2, 3,4 are respectively
x=0; 20=0, x*x1=0, 2=0; 3x=0,x*2=0,20*1=0,222=0, 2°*1=0, 2’+*2=0, £*=0
and their roots are respectively: 0; —1,0,1; -2,—1,-1/2,0,1/2,1,2.

The real roots of the equations of higher heights can be obtained likewise, and the set of all real
algebraic numbers can be so arranged that it can be counted, i.e. has the cardinal number d.
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The set of all real numbers between 0 and 1 is uncountable.

PROOF:

Assume the set to be countable, and list the elements in decimal expansions of the set in a sequence
{ri,7e,7s, ...}, where they are counted in that order. Since every rational number may be expressed
as a repeating decimal and indeed in two ways (e.g. 1/2 = 0.5000... = 0.4999..., and in general
0.¢1@z...(a=+1)000... = 0.@1a:... = a.999..., ending in an infinite succession of either 0’s or 9’s),
it is agreed not to use the latter type of expansion (with 9’s) for the decimals 71,75, ... in the sequence.
List it then in the following array

rr = Oautnasn...
72 = 0.a21a2ass . ..
rs = 0.a30s20aa. ..
where a;; represents one of 10 digits. Now construct a number = 0.b1b:bs. .., where b, is 8 if

a7 8 and 7 if a. =8 (or in any other dichotomy, e.g. 1 if @.. is one of even digits, and 2 if d.. is
one of odd digits, etc.). Then, despite the fact that obviously lies between 0 and 1, it does not belong
to the original sequence, since it differs from 7. in at least the first decimal place, from 7: in at least
the second decimal place, and so on. Hence the initial assumption turns out to be untenable, proving
that the given set is not countable.

Generalize this proof, and it can be proved that the set of all real numbers in any interval, and
eventually of all real numbers as a whole, is a fortiori uncountable; this process, however, involves
operations on sets (cf. Df. 2.3.1).



Chapter 2.2

Operations
§2.2.1 Operations in General

Df.22.1.1 An operation on a set S is a code, i.e. a set of rules, laws, and principles in
terms of definitions, metatheorems and theorems, which assign to each ordered sub-
set of n elements of S a uniquely determined element of S.
Example:
The familiar operative rules of addition and multiplication, denoted by “+” and “+”, on the

set N of natural numbers where, in this particular case, each ordered subset is always only two
elements of N.

The operation in general, then, may be analyzed as follows:

Df.22.1.1a A mathematical operation involves at least three elements:
(i) an operand, the entity which has to be transformed;
(ii) an operator, which symbolizes a rule of manipulation specifying the process
of transformation;
(ili) the transform, i.e. the result of the manipulation.

Example:
In the three equations:

at+b = ¢ D.(z") = nax"?! j‘(cosx)dx = —sinx + C

the operands are @ and b, x", cosw, respectively; the operators are -+, D.( ), f( )dx, respec-
tively; the transforms are ¢, nx"~!, —sinx + C, respectively.

An operand, defined as above, is a mathematical entity which as such must be
an element of a certain set. Although a set, to be a set, may not need a well-defined
operation for itself, an operand cannot be considered without presuming the existence
of a certain set; a vacuous operand or an empty operation in a mathematical vacuum
is trivial, if not downright meaningless. Hence the following nomenclature:

Df.2.2.1.1b A set of elements is called a groupoid (or any other suitable name) if the
elements are considered the operands of a well-defined operation.

In the following pages an operation will always presume a set or sets which can
be operated on.

Df.22.1.2 The operation on S is called unary, binary, ternary, ..., in general n-ary,
depending on the number of each ordered subset of »n elements of S to be operated on.

Example:

Squaring, or taking the factorial, or taking the predecessor or successor of a natural number is
a unary operation. Integral operation (addition, subtraction, and multiplication) and rational opera-
tion (integral operation and division) on the set of integers are binary.

Because it occurs most frequently, the binary operation is re-defined as follows:

31
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Df.2.2.1.2a A binary operation, denoted by * (or o or any other suitable symbol), on a
set S is a code which assigns to each ordered pair a,beS a unique element ¢ = a*beS.
Example:

The binary operation of addition, denoted by -+, on the set N of natural numbers assigns to each
ordered pair, say, n, and ns, which belong to N, a uniquely determined element ns; = n; + n2, which
again belongs to N.

Df.22.1.3 The set S of Df.2.2.1.2a is said to be closed under *; in general, a set X, which
is a subset of a set Y (i.e. X C Y) is closed under a binary operation o, defined on Y, if
aob = ceX for every a,beX.

Example:

Ncl, where N represents the set of all natural numbers and I the set of all integers, is closed
under, say, the binary operation of multiplication, denoted by -, since the operation is defined on I
and, for every a,be N, it is uniquely determined that a-b = ¢, which belongs to N, i.e. ceN.

Df.2.2.1.4 The binary operation * on a set S is associative if, for every a,b,ce S,
ax{bxc) = (@*xb)=xc

Example:
The binary operation of addition on the set N of all natural numbers, viz.

e+ (b+e) = (a+b)+ ¢ for every ab,ceN

Df.2.2.1.5 The binary operation * on a set S is commutative if, for every a,be S,

axb = b=xa
Example:

Addition and multiplication on the set of all natural numbers are both commutative, since
at+b=>b+a and a+b = bea for every a,beN. (On the other hand, subtraction on the set I of
all integers is neither associative nor commutative, since it is not always the case that a — (b —c¢) =
(a—b)~¢c or a—b = b—a for every abycel)

MTh. 2.2.1.6 (Principle of Duality). A properly worded valid proposition concerning a
certain pair of sets X and Y or operators * and o may yield a second valid proposition
through the interchange of X and Y or * and o; the first proposition is called the dual
of the second, and conversely.

Example:

A =B, where A and B are two sets, is the dual of B=A (c¢f. MTh.2.1.4). Or, in a geometry of
two dimensions, the following two propositions are duals: “Any two distinct points on the same plane
determine a unique line” and “Any two distinct lines on the same plane determine a unique point”;
note how the terms “point” and “line” are interchangeable in the two valid propositions. Likewise,
in a geometry of three dimensions, “Any two distinct planes on the same point determine a unique
line” and “Any two distinct lines on the same point determine a unique plane” are duals where
“line” and “plane” are interchangeable.

Df.2.2.1.7 Given two binary operations * and o on a set S, the operation * is distributive

o if
under o i ax(boc) = (a*b)o(axc),

and the operation is distributive under # if
ao(bxc) = (aob)*(aocc)

If both distributions hold simultaneously, the former is the dual of the latter, and
conversely.
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Example:

a*(b+e¢) = a*b+a-c for every ab,cel; ie. multiplication on the set I of all integers is
distributive with respect to addition, but addition on I is not distributive with respect to multiplica-
tion, since it is not always the case that a+(b+¢) = (a+b)* (a+¢) for every ab,cel. In other
algebraic structures, however, both distributions may hold simultaneously (c¢f. Df.2.4.1.13 and
Df.2.4.2.1).

Df.2.2.1.8 An element, denoted by e, of a set S is an identity for the binary operation x
on Sif a*e =¢exa = a for every acS.
Example:
0 of the set I of all integers is the identity for the binary operation of addition on I, since

0+a = a+0 = a for every acl; likewise 1 is the identity of the binary operation of multiplica-
tion on I, since 1*a=a+*1=a for every acl.

Df.2.2.19 If a set S contains an identity e for the binary operation *, and if a*b =
bxa = e for every a,beS, then a is an inverse of b, and b is an inverse of @, in S.

Example:

a+ (—a) = (—a)+a = 0 for every a,—acl implies that a is the inverse of —a, and conversely,
in I under +; likewise, a is the inverse of 1/a, and conversely, in I under * since a*(1/a) = (1/a)*a =1,
a7 0.

MTh. 2.2.1.10 (Well-Ordering Principle). Every non-vacuous subset of natural numbers
‘ contains one, and only one, smallest element.

Example:

the smallest element 1; likewise a non-empty subset N. = {100,101,102}, N.CN, has 100 for its

N.=1{1,2,3, ...,100}, which is a non-empty subset of the set N of all natural numbers, has
smallest element.

This disarmingly simple-looking principle is in fact one of the most fundamental
metatheorems upon which other metatheorems can be founded or systematically co-
ordinated (cf. Df.2.4.1.18, MTh.2.4.1.19-20).

(Note, also, that this principle, generalized and proved first by Zermelo, is directly
related to the critical question in modern mathematics of admissible mathematical
methods and mathematical existence problems, which, however, is far beyond the
scope of this book.)

On the strength of this metatheorem the following metatheorem, for instance,
may be proved (cf. §2.2.2, Prob. 1).

MTh. 2.2.1.11 (Principle of Finite Induction). If S is any non-vacuous subset of natural
numbers containing 1 and the integer n+ 1 for every integer n, neS, then S contains
every natural number.

Stated otherwise: let a proposition P(n) correspond with a positive integer n; then
P(n) is true for all n if, for each positive integer m, the assumption that P(k) is true
for all positive integers k, k=m, implies that P(m) itself is true.

This is in fact the abstract formulation of Mathematical Induction.
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§2.2.2 Transformations

Df.2.2.21 A relation is represented by a set R, each element of which is an ordered pair,
denoted by (x,y), where x is the first coordinate, and y the second, of the pair; the
term “ordered” specifies the sense that (x,y) # (y,x) unless the relation is symmetric
and that (x,y) = (u,v) iff =u and y=v.

Example:

E denoting a relation “is predecessor of”, (x,y) designates “x is y’s predecessor” and is obvi-
ously different from (y, ) in the same context which designates “y is z’s predecessor”; on the other
hand, if R denotes a symmetric relation “is equal to”, it then follows that (x,y) = (y,x), since
“x is equal to y” and “y is equal to x” are logically equivalent.

Df.2.22.2 The set R whose elements are the ordered pairs (x,%) may be represented by

xRy (which is not the same as yRx unless R is symmetric); and iff 2Ry, x is said to

be R-related to y, in which case z is called the referent, and y the relatum, of R.
Example:

R denoting a relation “is greater than”, xRy designates “x is greater than y¥”, but never

“y is greater than x” in the same context, where x the greater is the referent and the other the
relatum, but not conversely.

Df. 2223 Given two sets A,B, and their elements acA, beB, the set C of all pairs
(a, b) is called the Cartesian (or direct) product, denoted by A xB, where “x” desig-
nates the operator of the product; ie. C = AxB = {(a,b): (aeA)x(beB)}, which
reads “for each pair of @ and b, a is an element of A and b an element of B”.
Example:

If A and B consist of the points on the X and Y axes respectively, representing two sets of all

real numbers, then the Cartesian product C = AXB is the Cartesian plane itself, each point of
which is represented by a pair of two real numbers: (x,y).

Df.22.24 A transformation is a set T, where T is a (non-empty) subset of the set R of
relations, such that no two elements of T have the same first coordinates.

Stated otherwise: a set T is a transformation iff (x,%)eT and (x,2)eT imply
Y=z

T defines thus nothing more than a correspondence between two sets X and Y,
merely specifying each element of X to be related to an element of (all or some of) Y;
nevertheless, transformation and function may be considered synonymous if the
former is ramified (cf. Df.2.2.2.8 below) as follows:

Df.2225 If X and Y are any two sets, then a transformation T (or mapping M) of X into
or onto Y is an operative rule which assigns to each element z of X a uniquely de-
termined element y of Y; notationally, T: X-Y or y = T(x), where T(x), i.e. y itself,
is called the tmage (or map) of x by T.

T, then, defines what the usual functional notation f defines, with which the
reader is quite familiar. Hence the following definition:

Df.2.2.2.6 The correspondence T above is also called a function f of X into or onto Y;
ye Y, which uniquely corresponds to xeX by f, is called the value of f at . In the
same context the set X is called the domain of f and the set Y the range of f.

Note. A transformation T of X may map several elements of X onto one and
the same element of Y¥; e.g. ¥y =sinz, where = = 2’ +2kr for any integer %, maps
all real numbers x onto the same real number sina’, since sin(z’ +2kx) = sina’.
Note also that each element of Y is not always the image of some element of X; e.g. if
¥ >1 or y <—1, there is then no real number x such that ¥ = sinzx.
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Df. 2227 Two transformations T, and T are equal iff Ti(x) = T2(x) for every wzeX.

Example:

If X=1{1,2384} and Y = {1,2} for which S is a transformation that maps an odd number
of X onto 1 of ¥ and an even number of X onto 2 of Y, and if T is a transformation that maps
lor3of Xontol of Y and 2 or 4 of X onto 2 of ¥, then S =T, since

S1) = S@) =1 S@) = S@) = 2
T = TG3) = 1 T@) = T@) = 2

I

Il

Note, however, that the equality of two transformations cannot be taken into consideration unless
their domains and ranges are equal; e.g. if S maps {1,2} into {3,5} through S(1)=3, S(2) =5, and
if T maps {1,2} into {3,5,7} through T(1) =3, T(2) =5, then S# T despite their apparent
equivalence in transformation.

The transformation in general may be analyzed in a manner the operation in

general was dissected (cf. Df.2.2.2.1a), articulating the customary, and sometimes
rather ambiguous, terms “into” and ‘“onto” as follows:

Df. 2228 A transformation T: X—->Y is called

(i)  surjective (or onto) if T(x) =1y, i.e. if there is at least one xe X for every yeY;

(il) injective (or into) if T(a)=T(b) for every a,be X implies a=0b, or, what is
the same, a +# b implies 7(a) = T(b); i.e. if every element of Y which is a T-image
of an element of X at all is a T-image of one, and only one, element of Xj;

(iii) bijective (onto-into in the sense of one-to-one) if both (i) and (ii) hold simul-
taneously; i.e. for every xe¢X and yeY, T(x)=T(y) implies x =y, or, what is
the same, x>y implies T(x) = T(y).

Example:

y = sin«, described as above with respect to Df.2.2.2.6, is patently surjective, since the mapping
certainly does not exclude the possibility that an element of ¥ (i.e. —1 =y = 1) may be the image
of several elements of X (i.e. —» < 2z < +«).

On the other hand, y = log.x, or x = ¢¥, represents an injective mapping, since every element of
Y (ie. —» <yeY < +=) that is an image of an element of X (i.e. 0 <zcX < +w) at all is the
image of only one element of X.

Another example of injective mapping is the mapping

x - (x,y) = (x, f(2)

where f is an injection of X into X xY (cf. Df.2.2.2.3), which may represent an ordinary mapping
in the Cartesian plane.

As is quite evident in the last example, the definition of functions (cf. Df.2.2.2.5) in the cus-
tomary text-book of College Algebra or Calculus usually describes an injective transformation,
although the wording may not be quite the same as here.

Thirdly, the mapping (x,¥y) ~ (y,x) of XXY into and onto Y xX is bijective. Or, in a more
concrete context, y = Sin~'x, or x = siny, with the following restriction, viz.,

jxl =1 and lyl < #/2

is a bijective mapping, since the mapping is both onto and into under the restricted domain and
range. This is indeed pictorially represented by the principal branch of the inverse sine curve, where
the elements of X and Y are exhaustively paired such that every element of X (or Y) has neither
more nor less than one element of Y (or X) as its counterpart, completing the curve by the strict
1-1 transformation. It must be emphasized that no part of the principal curve is left out here in
the process of mapping.

DFf. 2229 If X and Y are two sets having an abstract structure built on certain operative
principles and rules, of the same type, then the transformation 7: X->Y which
preserves the initially defined operations is called a homomorphism.
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Stated otherwise, in terms of * and o (cf. Df. 2.2.1.7): a homomorphism with
respect to * and o of a set X onto or into a set Y, denoted by (X, *; Y, o)-homomorphism,
is a transformation X under * onto or into Y under o such that, for every a,b e X and

every T(a),T(b)eY, T(axb) = T(a)yoT(b)

Note. “(X, *; Y,o)-homomorphism” is to show explicitly how the operations are
tnitially defined for X and Y; it is quite possible, however, that the two initial opera-
tions, denoted by * and o respectively, are identical.

Df.2.22.10 An endomorphism of X is a homomorphism T: X~ X.

Df.2.22.11 An isomorphism is a bijective homomorphism; notationally, T: X< Y, in
contrast with the plain surjective or injective homomorphism, T: X- Y.

The presence of the double arrow “<’” in the isomorphism indicates that the
mapping X - Y can be reversed here, viz. ¥ > X; hence an isomorphism is necessarily
a 1-1 transformation.

Df. 2.2.2.12 An automorphism of X is a bijective endomorphism; notationally, 7T: X < X.

These four fundamental concepts of transformations are still too abstract to be
exemplified at this early stage, but they will soon reappear in due course, incorporated
either in entirety or in part in some specific frameworks of algebraic structures,
which will be studied in this and other chapters.

Df. 22213 If Y, is any subset of Y, then the inverse image of Y, under a transforma-
tion T, denoted by T (Y,), is the set of every xeX whose image is in Y,; if every
ze X has no image in Yi, then obviously 7T-}(Y,) = &.

Stated otherwise, the 1-1 transformation S, defined by S(x) =y for T(y)==x, for
every reX,yeY, is the inverse of T, denoted by 7.

Example:

x = g(y) = y—1 1is the inverse of y = f(x) = v+ 1, for every 2eX, ye¢Y, where X and Y
are two sets of all real numbers; if, however, y = f(x) = 2, then z = g(y) =Vy for every
xeXi,yeY:, where X, and Y, are subsets of X and Y respectively, viz. of all positive real numbers,
including 0.

In both examples, g(y) and f(z) may be replaced by f '(y) and g~!(x) respectively, since one of
them is the inverse of the other.

Df.2.2.2.14  Given two transformations S and 7 on a set X, the product (or composite)
of S and T, denoted by T'S, is a transformation defined by TS(x) = T(S(z)) for all z¢ X.

The composite (or product) of two transformations in terms of the familiar func-
tional notation is a function of a function; e.g. if f and g represent two transforma-
tions on X, viz. f(z)=2® and g(x)=sinz, then fg(x)= f(g9(x)) =sin*z, and
gf(x) = g{f(x)) = sin x®, revealing that the product of two transformations is not al-
ways commutative.

Th. 2.2.2.15 1If S is a 1-1 transformation of X into Y and T a 1-1 transformation of Y
into Z, then T'S is a 1-1 transformation of X into Z. (Cf. Prob. 7 below.)

Example:
If »=F(y) and y = g(z), then = = f(g(z)) = F(2).
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Th.2.22.16 The product of transformations is associative, i.e. R(ST) = (RS)T, where
R, S, and T are three transformations on a set X. (Cf. Prob. 8.

Example:
If f(x) = % g(x) = Inz, and h(x) = sinx, then f(gh(x)) = (fo)h(z) = flg(h(z))) = (In (sin x))%.

Df.2.22.17 The identity transformation, denoted by I and defined by I(z) =x for every
ze X, maps every element of X into itself.

Example:

x=ux for every xeX (or y =y for every y¢Y) is an identity function on a set X (or Y).

The reason for defining the identity transformation is clearly shown in the follow-
ing theorem.

Th.2.2218 TT- ! = T-'T = 1. (Cf. Prob. 9.)

Example:

If T:y=«x+1 and T-hma=y—1, then TT : y=(y—1)+l=y and T'T: a=(x+1)—1==x.
Since both x =« and y =y are identity functions and as such may be represented by one and the
same I, it follows that T7T-* =TT =1,

Solved Problems

1. Deduce the principle of Finite Induction (cf. Th.2.2.1.11) on the strength of the Well-
Ordering Principle {(cf. Df.2.2.1.10).

PROOF:

Let S be any set of all positive integers containing 1 and the integer n +1 for every integer n
in S, and S’ be the set of all positive integers not in S; then, by this hypothesis, 1¢S". Suppose that
Th.2.2.1.11 is false, i.e. S’ is non-empty. Then, by Df.2.2.1.10, S’ contains a least positive integer
m>1, ie. m—1 is a positive integer, which must be in S ("." m—1 < m). But then, by hypothesis,
m = (m—1)+1 also must be in S if m — 1 is in S, which is contrary to the assumption.

Hence S’ cannot be non-empty; it must be empty, and Th. 2.2.1.11 is (indirectly) proved to be true.

2. Given two finite sets A and B whose cardinal numbers are m and n respectively, i.e.
0(A) =m and o(B) =n, find the cardinal number of C = AxB.
Solution:
Let A and B be {a1, as, ...,a.} and {by, be, ..., bs} respectively, and exhaust the elements of C
in the following array of mn elements:
(a1, bi), ((ll, bz), sy {ay, bn)
(az, by), (as, ba), ..., (az, bn)

(am: bl): (amr bz), ey ((lm, b")

It is evident that o(C) = mn, since there are m rows and n columns.
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If a set X consists of n elements, the set S of all possible mappings of X consists of
n" elements.

PROOF:
If n=1, i.e. X = {2}, then S cannot contain more than 1 mapping, ie. T, defined by T, (1) = 1.
If n=2, ie. X={x, 22}, then the following 22 distinct transformations, Ti, T, T, T, defined by
T1(£I:;) = X1 Tz(xl) = ¥ Ta(wx) = X2 T4(x1) = X2
T, (xz) = %1 Tz(-’)&z) = X2 Ts (CL‘z) = % T4(x2) — X2
exhaust the possible mappings.
In general, since each element x:¢ X can be mapped onto any of x;e X, the number of all possible
pairings of (2, ;) with respect to Tk, where each of i,7,k may be repeated as often as possible, is n”.

(Out of n different elements, when each may be repeated as we please, the number of ways in which
an arrangement of r elements can be made is n". Here r = n.)

Let f and g be two mappings on the set R* of all real numbers, defined by f(x) = x +1
and g(x) = 2*+1, xzeR*; find fg and g¢f.

Solution:

f@*+1) = @+ +1 = ¢*+2

gx+1) = (x+1°*+1 = 2*+ 82>+ 32 + 2

I
I

fg = Fg(=))
9f = g(f(=))

Il

Let S and T be two transformations from {1, 2, 3} to itself, defined by: S(1)=1, S(2)=2,
S@B)=3; T(1)=8, T(2)=2, T(3)=1. Find ST(1), TS(2), ST(3).

Solution:
ST(1) = S(T(1)) = S(8) =8. TS(2) =T((2) = 2. ST(3) = S(1) = 1.

If S is a 1-1 transformation of X into Y and T a 1-1 transformation of Y into Z, then
TS is a 1-1 transformation of X into Z.
PROOF':

Let S(x) =y, xeX, yeY, and T(y) =z, ye Y, zeZ; then TS(x) = T(y) = =.

Also, if 2+ 2’, x,2' ¢ X, then S(x) #* S(x’) and TS(x) == TS(x").

Hence TS is a 1-1 transformation of X into Z.

If C is a class (cf. Df.2.3.9) of all 1-1 mappings on a set S, C is closed (cf. Df.2.2.1.8)
with respect to the binary operation of composition.

PROOF:
If Xce¢,YcC, and YX(y) = x, YX(z) = x, for w,y,2¢S, then YX(y) == = Y(X(z)). Hence,
since Y CC is a 1-1 mapping, X(y) = X(z), which in turn implies y = 2, since X CC also is a 1-1 mapping.

Hence YX is also a 1-1 mapping, i.e. YX C C; C is thus closed with respect to composition.

The composition of transformations is associative.
PROOF:
Let R, S, T, be any three transformations on a set E, and x e E; then
R(ST)(x) = R(ST(x)) = R(S(T(x)))
and (RS)T(x) = RS(T(x)) = R(S(T(x))).

Hence R(ST) = (RS)T.

Prove: TT-' = T-1T = I, on a set X.

PROOF:
Let xe X and T (x) =y, ye X; then TT H(x) = T(T~*(x)) = T(y) = x, since T~*(x) =y iff T(y) =u.
Hence TT-'=1.

Likewise T°*T =1, and TT ' = T~'T = I.
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10. Prove that, for any 1-1 mapping f and its inverse f~lonaset A4,
X C f'A(X)
where X C A and, by definition, f(X) = {f(x1), f(x2), ..., f(@n), ...} xieX.

PROOF:
If xeX, then f(x)e f(X), which implies Fifleye FHFX), ie e f ' fX). Hence X C FHf(X).

11. If A, A2 A and A D A,, then, for any 1-1 mapping f on a set A,

f(A1) — f(A2) C f(A1— Ay

PROOF:
Let b e f(A)) — f(A:), where azA; and f(a) =b, ie. ag¢ Ay then be f(A,— A,) since ae Ar— A,

Hence f(A1) — f(A2) C f(A1— A»).

12. Prove that (ST)~!= T~!S~!, then generalize the result.

PROOF:
Since, from Prob. 9 above, (ST)(ST)™* =1I and, by Prob. 8-9,

(STNT-S™Y) = S(TT-HS~' = SIS™* = S§™* =1
it follows that (ST)(ST)™* = (STNT-'S~Y) =1 and, by Prob. 6-7, (ST)™' = T"'S™%.

When generalized, the new theorem is of the form

(I'Ts... T~ = T:'...Ty'TT
and can be proved likewise, viz.,
Tzl T3 TiT:T,... Ty = Tt .TeHT1'T)Te... T = T3'...(T2'Ts)...Tx
= ... = TiT, = 1 = ("1WT:...T) " (TiT:...T»)

13. Establish the law of positive exponents for transformations, defining at the start:
T°=], T'=T, and T'*'=TT
PROOF:
If m=n=1, then T"T" = T™*" obviously holds, since T'T' = TT = T,
If the same holds for m=j,n=k, then for m =j+1, n=k+1,
Tj+1Tk+1 = Tj+lTTk — T(j+l)+1TTk—1 = ... [ T(j+l)+k TTO — T(j+1)+k+11 — T(j+1)+(k+1)

Hence, by induction, for any natural numbers m and », 77" = Tm+n,
Likewise, (T™" = T™".

14. Generalize the exponential law of Prob. 13 to all integers m and n, defining 7%= (T%)~1.
PROOF:
The case for m = n =0 is trivial, and the case for m >0 and n >0 has already been established.
If m =-m, m>0, and »' = —n, n >0, then
Tm’Tn’ — T—~mT—n = (Tm)—l(Tn)—l — (TnTm)—l = (Tn+m)—1
— T—(n+m) —_ T—n—m — T—MAn — Tm'+n’
The case for only m (or n) <0 can he established likewise.

The generalization of (7™)" = T™ can be similarly carried out.



Chapter 2.3

Operations on Sets

Df.23.1 The join (or union or (logical) sum) of two sets X and Y, denoted by XUY
which reads “X cup (or join) Y”, is the set of all elements which belong to either X
or Y or both.

Example:

It X=1{a,b,¢} and Y = {b,¢, d}, then X UY = {a,b,¢,d}; likewise, if I; represents the set of 0
and all positive integers and I. the set of all negative integers, then I U I, = I, ie. the set of all
integers.

Df.23.2 The meet (or intersection or (logical) product) of two sets X and Y, denoted by
X N'Y which reads “X cap (or meet) Y”, is the set of all elements which belong to
both X and Y.

For the same example as above, XNY = {b,c} and Inl = Q.

Df.23.3 The (relative) complement (or difference) of X with respect to Y, denoted by
Y—X (or Xy or Xy), is the set of all elements which belong to Y but not to X. If
Y is the universal set itself or defined likewise, the complement of X is considered
absolute and as such is denoted by —X (or X’ or X¢), designating the set of all ele-
ments which do not belong to X.

For the same example of Df.2.3.1, consider I the universe; then I7 (or —I)) is
the set of all negative integers and I (or —I,) the set of 0 and all positive integers.
(Since both complements in this example are absolute, there is no place for confusion
even without the additional “with respect to 7.

The outcome of three operations may be represented either one-dimensionally,
where X and Y are shown as two partially overlapping segments of a line (cf. Fig. 2.3a),
or two-dimensionally, by Venn diagrams (cf. Fig.2.3b-d).

X >

Y >

: ! ' !
XY »— XnY Y-X >

XuY
Fig. 2.3a
A A A
B B B
AUB ANB A—-B
Fig. 2.3b Fig. 2.3¢ Fig.2.3d

40
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From the definition itself and figures above there immediately follow the follow-
ing operative properties with respect to A —B:
(i) If 2zeA, then 2zeB or x¢e (4 —B).
(ii) If xeB, then z¢(A—B).
(iii) If xe(A—B), then z¢B.
Note. “z ¢ (A— B)” may be replaced by “2 ¢ A — B” as long as the operations

on sets themselves can be distinguished from those on the elements of sets; sets and
elements are said to belong to different types.

Df. 234 If a set S is a subset of U, the universe, then
(i) xe U implies that xeU or zeS".
(ii) xS implies x¢S’, and xeS’ implies z¢S.
(iii) U=¢’, and @ =U".
Note. Since S is a subset of U, the universe, the complement of S with respect U,
viz. U~ S, is absolute; hence S’ (or —S).

Df.2.3.,5 Idempotent law:
@ SusS==S i) SNS =S

Df.2.3.6 Involution law: (S = S.

Note. If there exist distinct identity sets with respect to the operations of join
and meet, as in a Boolean Algebra (cf. §2.4.2), then Df.2.2.2.5-6 become theorems,
i.e. can be proved.

Th.23.7 Join and meet are dually (cf. MTh.2.2.1.6) associative, commutative, and
distributive (cf. Prob. 7 below):
i) AuUuBUC =(AuB)UC AnNBnNnC) = ANBNC
(iiy AUB = BUA ANB =BnNnA
iii) AuBNC) =(AuBNAUCQ) ANBUC) = (ANBUANC)

Th.2.3.8 (De Morgan’s law). For any three sets A,B,C,
i) A-BUC) =(A-B)Nn(A-0) i) A—-(BNnC) =(A-B)U(A-0)
(cf. Prob. 10)
and if A is the universe or otherwise obvious,
i) BUCY =B NnC i) (BucCy = BnC
The law holds dually and may be extended to any number of sets. (Cf. Prob. 16).

Df.2.39 A class, denoted by C (or any capital script letter), is a set of sets. (A class
as such belongs to a type which is different from the type to which a set or an element
of a set belongs.)

Df.23.10 Join and meet may be extended to any number of sets; if C is a class of sets Si,
i=1,2,...,n,..., the join of C, denoted by Ug S, is the set of all elements
which belong to any of the S, and the meet of C, denoted by NgccS, is the set of
all elements common in or all of the Si. How the terms are grouped in computing
joins and meets, however, is immaterial because of the following theorem.
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Th.2.3.11 The general associative, commutative, and distributive laws, for XiCC, (cf.
Prob. 14), are:
(i)-(i)) Uy cX is unique; so is NyceX.
(i) YU (NyeeX) = Nyxce (Y U X); YN(UgceX) = Uxcce (Y N X).

Df.2.3.12 Two sets X and Y are said to be disjoint iff XNY = ; a class C is disjoint
iff no two sets of C intersect, i.e. NxceX = 0.
Example:
Lnl = @ (cf. Df.2.3.2).

Df.2.3.13 A partition of a universal set U is a subdivision of U into subsets which are
disjoint and exhaustive, called the cells of U; notationally, U = C;UC,U ... UC,
where C; is a cell and C;NC; = @ if i4j.

Note. There may be several ways of partitioning one and the same set U. If,
eg., U = {ab,cd}, then {{a},{b,cd}}, {{ab}, {e.d}}, {{a,c}, (bd}}, ..., {{a},{b},
{c},{d}}, are all distinct partitions of U, the last in particular being the partition
of U into its unit sets.

Solved Problems

1. Find X and Y if
i) {1,235} —{1,3,8,9,10) = X
i) (1,2,3)U{2,7,8) = X
(i) {2,3,4} N (2,5,8) = X
(iv A—B =X and B—A =Y where A = {x| xe R* =0} (which designates “all
real numbers greater than, or equal to, 0””), and B = {z| xeR* =0} (which
reads “all real numbers less than, or equal to, 0.

Solution:
@) {2,5). (i) {1,2,3,7,8}. (iii) {2}). (iv) X = {x| xeR* > 0}, Y = {x| zeR* < 0}.

2. If ADB, then A—-C D B—C.
PROOF:
If B—C = @, then the proposition is obviously true,

If B—C+* 9, thenlet xe(B—C), i.e. xeB and «¢C. But x4 (. ADB), and now xz¢C.
Hence xe(A—C). That is, if xe(B—C), then ze(4d~C), ie. A—C2>2B-C.

3. Prove that A—~(A—~B) = B if A D B; then observe, referring also to Problem 2
above, that Y being the null set in the context of X D Y is immaterial.
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6.

PROOF:
First A —(A—B)2 B, then B2 A—(4 — B) must be proved.

Let A — B = C; if B=10, then evidently 4 — C D B; and if B# (, then, letting « ¢ B, it follows
that «¢A and z¢(A—B), ie. xeA and xz¢C. Hence xe(A—C), and A—-C 2 B, ie.
A—(A—B) D B.

Conversely, if A —C = @, evidently B D A—C; and if A—C # (), then, letting xe(d—C),
ie. xeAd and z¢C, viz. xeA and x¢(A—B), it follows that xeB. Hence B 2 A—C, ie
B>A—-(A—B).

From the proofs of Problems 2,3, it is obvious that, in the context of X DY, it is not necessary
to examine the case of Y = if the case of Y (0 is proved valid. This is in fact a truism if it is
remembered that the null set is a subset of every set (cf. Df. 2.1.7). Henceforth, in the similar context,
only the case of ¥ # @ will be examined.

Note. It can be readily proved likewise that A D B if
A—(A—B)=B;hence A—(A—B)=Bisin fact the necessary and
sufficient condition for ADB. (E.g., in the language of elementary
mathematics, if A stands for the set of all real numbers and B for
the set of all rational numbers, then A — B is the set of all irra-
tional numbers; take away this set again from the set of all real
numbers (i.e. A — (A — B)), then what remains is the set B of all
rational numbers. Hence A—(A—B) = B.)

Note also that the whole proof can be carried out pictorially,
i.e. by a Venn-Diagram (cf. Fig. 2.3¢).

Fig. 2.3¢

Prove: (ia) A CAUB, (ib) BCAUB.
(ii) If AcC and BCC, then AUB C C.
(iii) If AUB = A, then BCA, and conversely.

PROOF:
(ia) If xcA, then x ¢ AUB, by Df.2.31. Hence A ¢ A U B, by Df.2.1.2. Likewise (ib).

(ii) Let xe AUB; then xe A or xe B. In either case, since A ¢ G and B C C, it follows that z¢C.
Hence A UB ¢ C.

(iii) Since B C A, and also obviously A C A, it follows from (ii) that AUB C A. And, from (i),
A CAUB. Hence AUB = A.

Conversely, since AUB = A, it immediately follows that AUB C A, and, from (i), BcCc AUB.
Hence, by Th.2.1.3, BCA.

Prove: (ia) ANBCA, (ib) ANBCB.
(ii) If CCA and CCB, then C C ANB.
(iii) If BCA, then ANB = B, and conversely.

PROOF:
(ia) Since ANB = {x| x¢ A and xe B}, x ¢ ANB implies x¢ A. Hence ANB C A.
Likewise (ib).

(ii) IfxeC,then 2eA and ze B (." C C A and C C B by hypothesis). Hence C C ANB.

(iii) Since B C A and, obviously, B C B, it follows from (ii) that B C A n B. Also, from (1),
ANB C B. Hence AnB = B.

Conversely if xe B, then x ¢ ANB (".” ANB = B by hypothesis). But, from (i), ANB C A, which
implies by Df. 2.1.2 that x¢ A. Hence B C A.

Prove: (i) AUB = ANB iff A=B.
(iify AUB =(A—-B)UB.
(iii) (A—-B)UB=A iff A D B.
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PROOF:

(i) IfA=B, ie. ADBand A C B, then from Prob. 4iii and Prob. 5iii, AUB = A = B = AnB,
ie. AUB = ANB. Conversely, if AUB = AnB, ie. AUR 2 ANB and AUB C AnB, then
from Prob. 4ia and Prob. 5ia, ANB C A ¢ AUB, and from Prob. 4ib and Prob. bib, AnB C
B C AUB, ie. AUB=A =B =AnB, ie. A =B.

(i) (A—B)UB C AUB, since A—B CACAUB and B Cc AUB. Now, if x ¢ AUB, then xe A

or xeB. If xeB, then « e (A—B)UB, and if ¢ B, then x¢A and z e A—B, ie.
x e (A—B)UB. Hence AUB C (A—B)UB, and together with its converse proved at the
start, AUB = (A — B)UB.

(itf)  From (ii), (A~B)UB = AUB. Hence (A~B)UB = A iff A = AUB, i.e. A D B (cf. Prob. diii).

Prove that join and meet are dually associative, commutative, and distributive (cf.
Th.2.2.2.4), then verify it, using the following three sets: A = {1,2,3), B = {3,4,5},
C = {1,3,5}.
PROOF:

These operative rules will be proved only with respect to join, since the proof with respect to meet
will then be similarly and quite easily carried out, due to their duality.
(i) AUBUC) = {z|xed or (xeBorxecC)} = {#| (e A or xeB) or xeC} = (AUB)UC. Like-

wise AN(BNC) = (AnB)NnC.

(ii) AUB = {x| xeA or xe B} = {z| xeB or xe A} = BUA. Likewise ANB = BNA.
(iii) Let xe AU(BNC); then xeA or xe BNC. If xeA, then xe AUB and xcAUC (" A C AUB,

A C AUC); hence ze(AUB)N(AUC). Also, if xeBNC, then xeB and zeC, ie. x¢ AUB
and xe AUC; hence xe(AUB)N(AUC). In either case AUBNC) ¢ (AUB)N(AUC).

Conversely, let x e (AUB)N(AUC), i.e. xe AUB and e AUC; then xcA or xe¢B and z:C, i.e.
xeAorxzeBNC. Hence (AUB)N(AUC) Cc AUBNC). Thus, altogether, AU(BNC) = (AUB)N(AUC).
Likewise AN(BUC) = (ANB)U(ANC).

Given A = {1,2,3}, B = {8,4,5}, C = {1,3,5}:

AuBUC) = {1,2,8,4,5} = (AUB)UC; An(BNC) = {3} = (AnB)nC.
AUB = {1,2,3,4,5} = BUA; ANnB = {3) = BnA.
AUBNC) ={1,2,3,5} = (AUB)N(AUC); AN(BUC) = {1,3} = (ANB)UANC)

As a second proof, one of the distributive laws, for instance, can be pictorially verified by Venn
diagrams as follows:

AUB AucC (AUB)N(AUC)
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10.

11.

12.

Referring to §2.2.2, prove that, for any 1-1 mapping of a set A into a set B,
f(AnB) C f(A)Nf(B)

where, by definition, f(S) = U.esf(z) for any set S.

PROOF:
If z ¢ f(ANB), then, by definition, x e f(A) and z ¢ f(B) hold simultaneously, ie. ¢ f(A)Nf(B).

Hence f(ANB) C f(A)Nf(B).

In the same context as above (Prob.8), prove that
f(Anf'(B) = f(A)nB

where YY) = Uyevf '(¥), Y C B, when f(X) = Uzexf(), 2 C A.

PROOF:

Directly from Problem 8, it follows that f(ANf~'(B)) C FANFFE1B) = f(A)nB, ie.
FLANF~Y(B)) C f(AYnB. Conversely, if be f(A)NB, then f(a) =« for ac A, ie. aef '(B); and since
beB, it follows that @ ¢ Anf~'(B). Hence be f(ANf'(B)), and f(A)NB C (ANnfFY(B)).

Hence, from two conclusions, it follows that f(Anf~'(B)) = f(A)nB.

Prove De Morgan’s law: (i) A—(BUC) = (A-B)n(A-C), (i) A—-(BNnC(C) =
(A—B) N (A—C); then verify the law with three sets A, B, C, given as in Problem 7.
PROOF:

Let x ¢ A—(AUC), ie.xcAd and 2 ¢ BUC; thenx¢B and z¢C,ie. x ¢ A—B and x ¢ A—C,
jie. x e (A—B)UA—C). Hence A—(BUC)C(A—B)n(A—-0C).

Conversely, if xe (A—B)N(A—C), ie. xe A—B and xeAd—C, then zeA and ¢ B, x¢C,
ie zeA and x ¢ BUC, je. ¢ A—(BUC). Hence (A—B)n(4A—-C) ¢ A—(BUC).

Hence A—(BuUuC) = (A—Byn(A—0).

Likewise A —(BNC) = (A —B)u(A - ().

Given A = {1,2,3), B = {3,4,5}, C = {1,3,5}:
A—(BUC) = {1,2,3} — {1,8,4,5} = {2} = {1,2) n {2} = A—B)n(4—-C)
A—(BnC) = {1,2,3} — {3,5} = {1,2) = {1,2u{2} = A—-BHuAd -0

Referring to Df.2.2.2.3 (on the Cartesian product), prove that

(ia) Ax(BUC) = (AxB)U (AxC), (ib) Ax(BNC) = (AxB)n (AxC)
(ila) (AUB)xC = (AxC)U (BxC), (iib) (AN B)xC = (AxC) N (AxC).
PROOF:

(ia) Let (x,y) e AX(BUC), i.e. zeA, ye BUC; then ye B or yeC, ie. (x,y) e AXB or (x,y) e AXC,
Hence (x,y) ¢ (AXB) U (AxC), and AX(BUC) C (AXB)U (AXC).

Conversely, if (x,y) ¢ AXB, then ye B and, since y ¢ BUC, (x,y) e AX(BUC).
Hence (AXB) U (AXxC) C AXx(BUC), and thus AX(BUC) = (AXB) U (AX().
Likewise (ib), (iia), (iib).

Prove that (i) addition of finite cardinal numbers is associative and commutative, and
(il) multiplication of finite cardinal numbers is associative, commutative, and dis-
tributive with respect to addition.
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PROOF:
(i) The two laws follow directly from the associativity and commutativity of the join of sets.

(ii) Let A,B,C be any three sets of finite elements, viz. o(A)=a, o(B)=10, o(C) =¢; then, by
Df.2.1.11 and Problem 2 of §2.2.2,

(iia) o(AX(Bx(C)) = a(be) = (ab)e = o((AXB)x()
(iib) o(4AXB) = ab = bg = o(A X B)
(lic)  o(AX(BUC)) = a(b+e¢) = ab+ac = o((AXB) U (AXC)) (cf. Problem 11, ia above).

13. If A and B are any two sets and 4, C A and B, C B, then

AXB — AixB: = ((A—A:)XB) U (4:x (B—B)) I Bl ase | @-agem
= (A-A)XB) U (Ax(B-B)) M
= (Aix(B~By)) U ((A—A)xB)) 18% AiX(B = B)|(A~A)x (B~ B)
U ((A— A1) x (B— By)) !
PROOF: AT A —

Cf. Fig. 2.3f, where the proof is completed by partition

(cf. Df.2.3.18). Fig. 2.3f

14. Now that the Principle of Finite Induction is affirmed (cf. MTh. 2.2.1.11), generalize

the three fundamental laws of association, commutation, and distribution with respect
to join and meet (cf. Th.2.3.8).

PROOF:
The case for n=1 is trivial for all three laws.

For n =2, the commutative law has already been proved (Prob. 7,ii), and the associative law
AU(AUB) (AUA)UB or any of its equivalents also holds; so does the distributive law
AU(ANB) (AUA)N(AUB) or any of its equivalents.

For n =3, the associative or distributive law has already been proved (Prob. 7,i, iii), and the
commutative law AU(BUC) = (BUC)UA = AUBUC also holds.

Their duals with respect to meet for » = 1,2,3 are also true.

(1

In general, assume that the associative law with respect to join (or meet) holds for n=k, viz.,
SiUSU(. .. (Se-1USK)...) = (SIUSZ)U(SSU(...(Sk—lUSk))~--) =
= (...((SIUSZ).-.)USk—l)USk = S1US:U ... USk-1US:

Then, for n = k+1,

S1U(S:U(.. Se-1U(SkUSk+1)). . D= (. ((S1uSy).. JUSk-1) USK)USk+y
= SiUS:U...USk-1USkUSk+1,
and the law must generally hold.
The commutative law for » sets is proved likewise.

As for the distributive law, assume that it holds for n = k, viz.,

Si1U(S:n ... NSk-1NSk) = (S1US)N ... N(S1USk-1) N (S1USk)

Then, for n = k+1, viz,

S1USN ... .NSkNSk+t) = S\U((Szﬂ...ﬂSk)ﬂSk+1)
(SlU(Sgﬂ...ﬂSk))ﬁ(SlUSk+1) = (S]USQ)O...H(SlUSk+1)

Hence the law generally holds.

The general duals with respect to meet can be proved likewise.
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15.

16

17.

18.

19.

Prove that, for any 1-1 mapping f on a class C of the sets S,t=12,...,n,
f(UsceS) = Uscelf(S))
PROOF:
If be f(UgcS), then there exists @ such that ae Ug- ¢S where b = f(a). This implies that
aeS; for any S:cC, ie. b=f(a) ¢ f(S:). Hence f(UsceS) € UscelfS).

Conversely, going backwards, Ugc ¢ (f(S)) € f(Usce S). Thus, together, f(Usc¢S) = Ugcc (f(S)).

Generalize De Morgan’s law, viz.

i) A—UsceS = Ngcc(d-98), (i) A-— NgceS = Usce(d—09),
Or more simply, considering A the universe,
(i) (UsceSY = Ngces, (it) (NsceS) = UsceS
PROOF:
A—UgceS = (o zed and 2 ¢ UgceS) = {z| xeA and x¢S; SicC, i = 1,2,...,m, ...}
= {xlxe(A—8S)} = xengcc(4d—S). Hence A—UgceS = Ngccld—S).

Likewise for (ii).

Second proof. Use the Induction Principle. For n=1 the case is trivial, and for n=2 the
validity of the case has already been established by Prob. 8 above.

In general, assume that the law holds for n = k, viz.,

A—(SiUS:U...US) = (A—S)Nn@A-=8)n...NnA—S»
Then, for n = k+1,
A—UgceS = A—(S1U...USkUSk+1) = A—((SiU...USKUSk+1)
= (A—(S1U...US)) N (A — Sk+1), by De Morgan’s law itself for n =2
= (A-S)n... m(A'_Sk)n(A—Sk+l) = ﬂSCC(A—S)'

The duals are proved likewise.

If SoCC, then Ng.cS C Soe C UgccS.
PROOF:

Let x & NgccS; then, by hypothesis, ¢ So, and Ngc ¢S C So. And if xS, then = ¢ Ugc¢S;
hence So C Uge¢S.

If Se=8:1=...=8:=..., then obviously Ngc¢S = So = UgccS-

Hence, in general, Ngc¢S C So C UgceS.-

Deduce the duals of the distributive law of join and meet, using the involution law
(cf. Df.2.3.6) and De Morgan’s law.
PROOF:

An(BUC) = (AnBUC)Y)Y = (A’VBUC)) = (A'UB'nCY) = ((A'UBYNA'VC)Y

= (A’UBYU(A’UBY = (A"nB”yud’'nC”’y = (AnB)UANC).
Its dual is deduced likewise.

Prove A N (AUB) = A; then deduce from itself its dual, ie. AU(ANB) = A, as
above, using the involution law and De Morgan’s law.
PROOF:

(i) Obviously AN(AUB) C A. On the other hand, from ACA and A C AUB, it follows that
A C An(AUB). Hence AN(AUB) = A.

(i) AU{ANB) = ((AUANB)Y = (A'n(AnNB)) = (A'n(A'UB")Y = (A") = A.
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20. Find S"of S = S;US:N S; U ((Ss+US5) N (Se U S7 N Ss)).

Solution:

S’ (S1US2NSaU ((S5US5) N (SsU SN Ss)))
S1N(S2US5)" U((SsUSs) N (SsU (S7N Ss)))’
S1N(S2US5) N ((S:US5) U (SsU(S:n Ss)))
S1M(SzUS5) N((SinSHU(SIN (S:n Ss)))

SN (S2USH) N((SiNSH) U (SN (S1nSa))).

Il

it

Il

I

21. A—B = A iff A and B are disjoint, i.e. A N B = @.

22

23

24

PROOF:

Since AnB = @, ie. {x| xed and x¢B}, if x¢eA—B, then xc A, ie. A—BCA; also if
zxed,then x e A—B, ie. A C A—B. Hence ANB = ¢ implies A—B — A.

Conversely, if A—B = A, ie. {x| xeA and xgB} = {x| xcA}, then obviously ANB = a.

If two sets A and B, where ANB = @, are countable, so is C = AUB.

PROOF:
(i)  If both A and B are finite, i.e. o(A)=m and o(B) =n, then o(C) = m +n, which is evidently

countable.
(ii) If o(A) =m and o(B) = d in the sense of Df.2.1.14 (or likewise o(A) =d and o(B) = =), then let
A = {a1, a5 ...,an} and B = {by, by, ..., bn, .. .}, and arrange the elements of AUR so as to

be countable as follows:

C = {al,az, ...,am,bl,bz, ...,bn}

(iii) If both A and B are infinite and countable, viz. o{4) = o(B) = d, then arrange the elements of C
in such a countable manner as follows:

C = {ad,bx,(lz,bz,...,an,bn,...}

Hence C is countable in all three cases, completing the proof.

The join of a countable number of mutually disjoint countable sets is also countable.

PROOF:
Let Si = {ai, @i, ..., ...}, and arrange S1,S:,...,S;, ... as follows:
S = Q11, 12, Gty3, Cl1g, . . .
S = Q21, A2z, U23, A24, . , .
S =, G, s, G,

........................

Their join is then countable in several ways (cf. §2.1, Problem 12).

Establish the existence of uncountably many real transcendental numbers (i.e. real
numbers which are not algebraic), using Problems 13-14 of §2.1.

PROOF:

If the set T of all real transcendental numbers were countable, then the join of T and 4, the set
of all real algebraic numbers which is countable (cf. Prob. 13 of §2.1), also must be countable. Hence
the set k& of all real numbers (= AUT, by definition) also must be countable; that is, the set R, of
all real numbers between 0 and 1 must be o fortiori countable, which is contrary to what Problem 14
of §2.1 proved. Hence T cannot be denumerated.



Chapter 2.4

Abstract Structures
*$2.4.1 Lattices

Df.24.1.1 A binary relation on a set S is a set R of propositional functions such that if
x,yeS, then either xRy (reading “ax stands in the relation R to ¥”) or xKy (i.e.
negation of zRy). In either case x is called the referent and y the relatum of R
(cf. Df.2.2.2.1).

Df. 2412 R on S is reflexive if xRx holds, antisymmetric when xRy and yRx hold
simultaneously iff x =y, and transitive when xRz if xRy and yRz, where z,9,2¢S
(cf. Df.2.1.12).

Df.24.13 S is partly ordered with respect to R if R on S is reflexive, antisymmetric,
and transitive.
Example:

The set N of all natural numbers under a binary relation, = (or =, cf. Df. 4.1.2.12-13), is partly
ordered, since, for xy,zeN: (i) *=z (or x=2x); (i) *x=y and y=« (or =y and y =) imply
x=y; (iii) x=y and y =z (or x =y and y =z) imply * =2z (or x =z). Other examples are: “is
contained in”, “is subset of”, (both denoted by “C”), ete.

Df.2.414 Two partly ordered sets S; and S» are isomorphic (cf. Df.2.2.2.11) if there
exists a 1-1 correspondence T between S; and S: such that, for xeS: and YeSs,

Tx) 2 T(y) it 2y

Th.2.4.1.5 Any set which is partly ordered with respect to E (cf. Df.2.4.1.1) is likewise
partly ordered with respect to the dual R of R (cf. Problem 1).

Sta‘ged otherwise: The converse of any partial ordering is itself a partial order-
ing. (R is thg “converse”’ of R such that 2Ry (reading “x is in the relation R to v”)
iff yRx; e.g. R of “is contained in” is “contains”.

Df.24.16 If z,yeS and both xRp and yRp hold for peS, then p is called an wupper
bound of x and y; if pRq holds for any upper bound geS of x and ¥, then p is the
join or least upper bound (or, abbreviated, l.u.b. or sup, an abbreviation of supremum)
of z and y.

Example:

10 is an upper bound of the set consisting of the numbers —7, —1, 5, 8, and 9; so is the number 11
of the open intervals (—9, 5) and (7,11) and also of the closed intervals [—13, —11] and [9,11]. There
cannot be a number x that is an upper bound of the set of all positive integers, or of all positive
real numbers for that matter, for = is evidently less than the number x + 1.

Whenever a set is bounded above, it may have many upper bounds, since an upper bound «
implies many other upper bounds, =+ 1, etec., of which x may be the lLub. if there exists no upper
bound less than x itself.

Df.2.4.1.7 Dually, if x,y¢S and both pRx and pRy hold for peS, then p is called a
lower bound of z and y; if ¢Rp holds for any lower bound geS of @ and ¥, then p
is the meet or greatest lower bound (g.l.b. or inf, an abbreviation of infimum) of x
and y.

49
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The examples of lower bounds and the g.lb. are readily constructed in parallel
to those of upper bounds and the lLu.b.

Df.2.4.1.8 A lattice is a partly ordered set L (LCS), any two of whose elements z and Yy
have a join, denoted by 2Uy, and a meet, denoted by xnNy.

Example:
The set R* of all real numbers under “=” (meaning as usual “is less than or equal to”), ete.
(Cf. Prob. 4-6.)

Df.2.4.1.9 If there exists a 1-1 mapping T of L, into L; such that, for «,y=L; and
T(x),T(y) & Ls,

T(xUy) = T(@)U(y) and T(@Ny) = T(x)N(y)
then L: and L, are said to be isomorphic.

Th.2.4.1.10 The operators of L, viz. join and meet, are interchangeable in any theorem
with respect to L. (Cf. Prob. 2.)

Th.24.1.11 The commutative, associative, absorption, and idempotent laws hold in L
{(cf. Prob. 7), viz.,
Ll. zUy = yUz and zNy = yNz
L2. xU(yUz) = (xUy)Uz and =zN(yNz) = (xNy)Nz
L3. zVU(xNy) = x and zxN(zUy) = x
L4, 2Ux =2 and 2Nz = g

Th.24.1.12  The four laws L1-4 of Th.2.4.1.11 completely characterize L. (Cf. Prob. 8.)

Df.2.4.1.13  If L satisfies the distributive law,
L5. zU(yNz) = (xUy)N(xUz)
(and the dual, cf. Prob. 11), L is then called a distributive lattice.
Df.2.4.1.14 If for every x ¢ L there exists an 2’ such that
xUx =« and axnNaz’ = o

(where u# and w’ are called the universal bounds), L is then called a complemented
lattice.

Df.24.1.15 L is called modular (or Dedekind) iff xDz implies zN(yUz) = (zUy)Nz2.
Th.2.4.1.16 If L is distributive, it is then modular. (Cf. Prob. 14.)

Df.2.4.1.17 If L is distributive and complemented, it is called a Boolean lattice.
£ % £ * %

A review of the Well-ordering Principle (cf. Df. 2.2.1.10) in relation to partial
ordering may help understanding both concepts.

Df.2.4.1.18 The ordering in general may satisfy some of the following axioms: Given
a set S whose elements are a,b,¢, ...,
O1l. a=band b=a imply a = b.
02. a=band b=c¢ imply a =c.
03. Eithera=b or b=a for any a,beS.
04. Any non-empty subset R of S has an element 7; such that r; =7 for any reR.
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The partial ordering satisfies 01,02, the simple ordering O1,02,03, and the
well ordering O1,02,03,04. The Well-ordering Principle is logically equivalent to
the following metatheorems:

MTh. 2.4.1.19 (Axiom of Choice). If C is a class of disjoint non-empty sets S, ¢ = 1,2,...,
then there exists a set S which consists of exactly one element x; each from S..

MTh. 2.4.1.20 (Zorn’s Lemma). If every simply ordered subset of a partially ordered
set S has an upper bound (or a lower bound), then S has at least one maximal (or

minimal) element.

Solved Problems

1. Prove Th.2.4.1.5.
‘ PROOF:
Since the dual R is characterized by

(i) xR (ii) y=« iff yRz and zRy (iii) zRwx if «Ry and yRx
R and R are evidently isomorphie, i.e.,
(i) =Rz <> xRz (i) =y iff xRy and yRx < y=« iff yRx and xRy
(iii) xRz if xRy and yRz < zRx if 2Ry and yRx

Hence S remains partly ordered under R.

(The proof will be verified in concreto if R and R are replaced by “=" and “=”)

2. Prove Th.2.4.1.10.
PROOF:
From Th.2.4.1.5 it directly follows that, L being a fortiori a partly ordered set,
xUY, 2, ye L under R <> any, x,ycL under B

Hence the join may be replaced by the meet, and conversely, in any theorem with respect to L.

Note. This theorem validates the dualization of all theorems with respect to L.

‘ 3. If a set S is a partly ordered set which has Uy (or zNy), where z,y¢S, then the
join (or meet) is unique.
PROOF:
Suppose S has two joins, j1 and js, for x and y; then, since Ji,j: £ S, there exist ;R;, and ,&;,
from which it follows, by Df.2.4.1.3, that j: = j.. Hence the join is unique.

The case of the dual can be proved likewise.

4. Prove that the set R* of all real numbers under “=" (or ‘“=") forms a lattice.
PROOF:
R* is partly ordered, satisfying Df.2.4.1.3, and if 2,y e B*, then xUy is the greater (or the equal)
of x and y, and xNy is the smaller (or the equal) of x and y.

P

Hence R* under = is a lattice.

=

So is R* under =, as can be proved likewise.



52

PART 2 — ALGEBRA OF SETS |[CHAP., 24

The set N of all natural numbers under “1”, designating integral division (ie. “aly”
meaning “x divides ¥”, x being an exact divisor of Y), forms a lattice.

PROOF:

N is a fortiori partly ordered, satisfying Df. 2.4.1.3; also, x Uy is here the least common multiple
of x and y, and Ny is their highest common factor.

Hence N under “|” is a lattice.

If K is a class consisting of all subsets of a set S, then K is a lattice.

PROOF':

K being a class whose elements are sets, it has the relation of inclusion, by Df.2.1.2, and is
partly ordered. Also, K has joins and meets for any X,Y C K, exactly the way defined by
Df. 2.8.1-2, viz. XUY and XNY. Hence K is a lattice.

Establish the commutative, associative, absorption, and idempotent laws for L under RE.

PROOF:

i) The Commutative law: Let Uy = p and yUx = ¢ for %,4,p,9 ¢ L; then either pRq or qRp.
If pRq, then (xUy) R (yUx), and if gRp, then (yUw) R (xUy). Hence, L being a partly ordered
set and by Of.2.4.1.3, it follows from (xUy) R (yUx) and (yUz) R (xUy) that

xUy = yUx

The dual can be proved likewise, viz. zny = ynx.

(ii) The Associative law: Let xU(yUz) = p for x,y,z,p¢ L; then, by Df.2.4.1.6, zRp and (yUz) R p.
But then, by the same Df., y R (yUz2) and z R (yUz); hence, from y R (yuz) and (yuz) R p, it
follows that, by Df.2.4.1.3, yRp, and likewise zRp. Hence zRp,yRp, zRp, ie. p is an upper
bound of x,y,z.

Let ¢ be any upper bound of x,y,2; then, by Df.2.4.1.6, xRq and (yUz) R q; and applying
the same Df. again, xU(yUz) R g, i.e. pRq. Hence p is the l.u.b. of 2%,Y,2.

On the other hand, let (xUy)uz = r for x,y,2¢ L; then, going through the same steps as
above, it follows that »Rs for any upper bound s of ,7,z, and r is the Lub. of x,Y,%.

But then, by Problem 3, p = 7, ie,

xU(yUz) = (xuy)Uz

The dual can be proved likewise, viz. xN(yNz) = (xNy)nz.

(iii) The Absorption law: By Df.2.4.1.7, (xNy) Rz and, from Df. 2.4.1.3, xRux; hence x is an upper
bound of xNy and x. If w is any upper bound of these two, it is then an upper bound of any of
the two, e.g xRw. Hence z is the L.u.b. of  and zny, i.e.,

xU(xNy) =

The dual can be proved likewise, viz. xN(xUy) = .

(iv) The Idempotent law: Applying (iii) to xUz,
xUx = aUxN(zUy) = zU(xnNY) = =
where Y is a substitute for xUy (or any element, for that matter). Hence

xUx = «

The dual can be proved likewise, viz. xNz = x.
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8. The four laws L1-4 of Th.2,4,1.10 (cf. Problem 7 above) completely characterize L.

10

11

12.

PROOF:

In any abstract structure which satisfies L1-4, 2Uy = y iff xny = xn(xUy) = x, and by
defining * =y to mean xUy = y, the structure becomes a lattice where Uy is the Lub. of » and y
and xNy the g.l.b. of x and y.

E.g. (i) aUx = z entails the reflexive property of L. (ii) y = aUy = yUx = =, by L1, if
x=y and y =y, affirming the antisymmetric nature of L. (iil) xUz = xU(yUz) = (xUy)Uz =
yUz = 2, by L2, if x=y and y =z, justifying the transitivity of L.

Furthermore, since xU(xUy) = (xUx)Uy = xUy, by L1,4, xzUy is an upper bound of x and,
by L1, also of y; but it is the Lu.b. of # and y, since x =z and y =z imply (xUy)Uz = xU(yUz) =
xUz = z.

Also, dually, xny is the gl.b. of ® and ¥, which completes the proof.

If 2,y2eL, then zU(yNz) = (xUy)N(xU2) and xN(yUz) = (xNy)U(xNz).
PROOF:

Since, by Df.24.1.7, « = 2Ny and =z = xnz, it follows that =z = (xNy)u(xnz). Also
yUz = (xNy)U(xnz), since (yUz) =y = (xNy) and (yUz) = z = (xNz).

Hence zU(ynNz) = (xny)u(xnz).
The dual can be proved likewise.

For every a,b,c,d, e L, (i) an(bUc) = (anb)Uc if a=¢, and

(iiy aUc=bUd and anc=bNd if a=b and ¢=d.
PROOF:
(i) Since ane¢ = ¢, (i) follows directly from Problem 9.

(i) Since aUc¢ = b and auUc = d, by Df.2.4.1.6, it immediately follows that aUe¢ = bUd. The
dual can be proved likewise.

If a distributive law is given as L5 in L, eg. zU(yNz) = (xUy)N(xUz), then the
second distributive law, viz. xN(yUz) = (zNy)U(xN2), can be deduced as the dual
from LS5.
PROOF:

Applying L5,1,4,3,2,1, 4 successively,

(wNy)U(xnz) (ny)ue)n(@ny)Uz) = (zU(@ny))n(zu(zny))

N ((zUx)N(zUY) = (xn{zUx))N(zUy)
(xN(@wU2))Nn{yUz) = xn(yUz)

fl

I

Il

L is modular iff, for every x,2’,yeL, zUy = 2’Uy, 2Ny = 2’Ny, and z=a’ imply
r=u.
PROOF:

(i) If L is modular, then x =x’ under the given conditions, since xNyUz’) = (xUy)na’, by
Df.1.4.1.15, where xzn(yUx’) = zn(x’'Uy) = zn(xUy) = 2, by L1,3, and (zUy)nz’ =
’N@Vy) = «'Nn(x'Vy) = ', by L1,3.

(i) If « = «’, then L is modular. For, if L is not modular, there exist x,%",y such that x = z’ and
#'Ulyne) # (@'Uy)ne. Now z'U(ynz) < (¢'Uy)na’, since « = x’Uy and ynz = .
Then, letting z'U(ynz) = X and (@'Uy)na’ = Y,

XUy = YUy = (@'Uy)Uy = z’Uy = 2'U(yU(yna)) = (x’Uyne))uy = Xuy

proving that XUy = YUy for X <Y, which is a contradiction. Hence L must be modular if
r=x'.
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13. L is a distributive lattice iff

(xUy)N(yU2)N(zUz) = (xNy)U(yN2)U(zNx) for z,y,zeL
PROOF:
(i) If L is distributive, then

(VYN (YL2)N(2UR) ((xuy)NwU2)N2)U(xUY)N(yU2)Nx)

(wuy)nz)U(yuz)ne) = ((zN2)U(ynz)u((ynz)u(znz))
= (xny)U(ynz)u(znx)

Il

(ii) Conversely, if (i) holds, then

zN{{xNny)u(ynN2)u(zne))

xnyu@En(ynzyu(znz)) (.° zuy = x)
NV (Ne)U(xNYN2)) (. znx = x)
= (xNy)U(zne)

On the other hand,

zN{xUy)N(yU)N(zUz) = (NUyHN{((zU2)N(YU2)) = (xn@U2)NEU2) = 2N (yUz)

Hence xn(yuUz) = (xNy)U(xnz), ie. distributive.

14. If L is distributive, it is then modular.

15.

16.

PROOF:
Let x =z then xzU(ynz) = (xUy)N(xUz) = (xUy)Nz, which, by Df.2.4.1.15, completes the proof.

K of Prob. 6 is a Boolean lattice.
PROOF:

If X,Y,ZCK, then each element of K can be complemented and there also exists a dual distributive
law with respect to X,Y,Zc K.

Prove that any algebraic structure A which for any z,y.z¢ A, satisfies
Al. Uz ==z

A2. rzUu = uUa = u» for a universal bound ue A

A3. zNu = unNzx = x

A4, xzN(yUz) = (xNy)U(xnz) and (yUz)Nz = (yNx)U(zNa)

is a distributive lattice with a universal bound .

PROOQOF:
(1) L4 is complete if the dual of Al exists, viz.,

x = xnu = xN(@Uu) = (@nax)U@nu) = (@Nnz)U(znN(zUn))
= (xn)U((xnx)U{znz)) = (xNx)U(xnx)Uu)
= (xNx)NEnx) = =N Ala

(it) L3 is immediately provided as follows:
xU(@Ny) = (xnwulzny) = zNUy) = zNu = = Aba

and similarly (xNy)Ux = 2 A5b
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Then, using Al, 4, 5a,

xN@EUY) = (@Nx)u(xny) = zU(xNy) =
and similarly xN(yUx) = x

Note that Aba and Abc are equivalent to L3.

Applying Abc-d, 4,

Uy = (zN(yux)uyn(yuz)) = (xUy)N(yUwx)
(zuy)NyYU((zUy)Nz) = yUsx

I

which proves one-half of L1.

Applying A4, 5a, 5¢,

2N((xUy)UR) = (N(xUy)U(xznz) = zU(xN2) = @
and similarly yN((xVy)Uz) = y
and zN{(xuy)Uz) = 2

Applying A7a-¢c, A4 twice, and Al,

xU(yUz) {xN((zUp)Uz)UN((zUY)U2)U (N (xUY)U2))
Uy N(zuy)U2)U(zN((zUy)Ux)

(rUp)UN((xUY)UZ) = (2Uy)Uz

I

Il

which proves one-half of L2,

Applying A8a, 5a,
(xUy)N(xU2) (xNxU)HU¥N(xUz) = 2U((¥Na)U(¥Nz))

(@U@Na)UYN2) = xU(YN2)

1l

Il

which proves the rest of A4, now completing L5, and similarly

(xNy)uz = (xUz)N(yU2)

55

Abe
Abd

Aba

Ala
ATb
ATc

ABa

Ada

A4d

Since A4a-b is now available, the duals of A6a and A8 can be proved likewise, thus completing

L1-5.
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§2.4.2 Boolean Algebras

Df.2.4.21 A Boolean algebra is a set B of elements z,,z, ..., operated on by the dual
binary operators of join (union or disjunction) or meet (or intersection or conjunc-
tion), denoted by v and A respectively, as follows:

B1. Closure: (la) zvyeB if 2,yeB (10) xz~AyeB if x,yeB
B2. Commutative law: (2a) zvy =yva (2b) Ay =yYnx
B3. Distributivelaw: (3a) v (y~2) = (2vy)A(xve) (8D) xA(yva)

= (ZAY)v(xr?)
B4. Identity: (4a) zvO =2 (4b) zAl =2

(O and I correspond to ® and U of Df.2.1.6-7, called here the zero element and
the universal element respectively.)

B5. Complement: (ba) xzvar =1 (6b) z~rx’ =0

B6. Inclusion: xCy (reading “x is included in y”) iff x’'vy =1

B contains other fundamental properties such as the laws of association, idem-
potence, involution, absorption, etc., which, however, can be deduced from B1-6 (cf.
Prob. 1-11).

Boolean algebras are special lattices, viz.:

Th.24.2.2 A Boolean lattice is a Boolean algebra; i.e. if a lattice L is distributive and
complemented, it becomes a Boolean algebra B through corresponding joins and
meets, e.g.

zUY < vy and xNY < TAY (Ct. Prob. 22)

Th. 2.4.2.3 Conversely, B becomes L under the relation of inclusion, B6, denoted by C,
with corresponding joins and meets (cf. Prob. 23),

Note that B6 can be defined in various ways, viz.:

Th.24.24 xCy iff xvy =y oriff xany =2 oriff x Ay = 0. (Cf. Prob. 12-16.)
(This theorem also may be considered exemplifying the difference between mathe-
matical and everyday languages (cf. Df.1.1.1.6 and notes); for, if the theorem is to
be interpreted in ordinary language, it is patently false, since a single “if and only if”
in the latter demands the exclusion of all but one “iff”’, in which the theorem above
abounds.)

Boolean algebras as abstract mathematical structures may become models for other
mathematical or logical or even industrial systems, e.g. as follows:

Df.2.4.25 There exists a 1-1 correspondence between a binary Boolean algebra B and
an algebra C of circuit designs as follows:

B v A — U %]
) T ) 0
C parallel series negation on off
circuit circuit

(Cf. Prob. 24-26 below.)

Df.24.26 There exists a 1-1 correspondence between a binary Boolean algebra B and
a two-valued algebra P of propositions under the connectives of “or”, “and”, and
“not” as follows:
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B v A — (or”) U %)

: ! ! !
and/or ; and not true false

Th. 24.2.7 The algebra P of propositions is a Boolean algebra. (Cf. Prob. 27 below.)

The outcome of the theorem is that PART I of this book, in particular §1.1.1,
Tautologies, is nothing but a Boolean algebra, and that what can be asserted on the
strength of the definitions, metatheorems, and theorems of §1.1.1 can be asserted
likewise by Df.2.4.2.1 and its theorems, and conversely.

Solved Problems

1. Both identity elements, viz. O and I, of B are unique.
PROOF: ‘
Suppose there exist two zero elements, O: and O: where O: 7 Os; then, by Bda, -
O1v 0. = 0 and O:v O = 0
But, by B2a, o . O;v O, = 0:v 0
Hence O:= 0., i.e. O is unique.

The uniqueness of I can be proved likewise.

\ 2. Any complement, viz. #’ for x, in B is unique.

‘ PROOF:

Let x1 and #: be both complements of « in B such that 2ve, = I, avael =1, 2 Anxi = 0, and
x~nx; = O, But, then, applying B4b, 3b, 2¢, 2a, 4a successively,

#i = winl = zian(xvas) = (ziAx)v (2lAx)
‘ = (@Arx)v(xirxi) = Ov(zinz) = (eirzd)vO = x|~z

And, taking exactly the same steps, #: = #{ A ws, ie 2i=wxs. Hence «’ of z is always unique.

Note. The notation “=" in the proof is to show the steps where only the principle of substitu-
tion, and not any of B1-6, is applied. This: distinction is necessary whenever such a difference is
substantial.

3. Each of the identity elements in B is the complement of the other, viz. O’ =1 and I’ =O.

PROOF:

There exists O’}for O in B and, as Problem 2 has proved, O’ is unique. Now, by Bda, O'v 0 = 0O’
and, by BSe, Ov O’ = 1. But, by B2a, O'v0O = Ov(Q’. Hence 0 =1.

I’=0 can be proved likewise.

4. Prove the idempotent law for B, viz. (a) zva ==z and (b) xrx = .

PROOF:
Applying Bda, 5b, 3a, 5a, 4b successively,

z = a2v0 = xv@azr) = (vaya(eva) = (@va)al = zvea

‘ The dual can be proved likewise.
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5. Prove the involution law for B, viz. (z’) = 2" = .

PROOF:
Since x’ is unique, by Problem 2, so is «''; and again by Problem 2 itself, &'’ v O = 2,
Al =", ¥'va’ =1, o Ax"” = O.

Now suppose «” # x; then, since z’ = x”’v O and, applying B5b, 3a, 4a step by step,
2’v0 = z'vieax) = (@'va)ax’va) = z'va, ie. v’ = x'vux

and since =z »* z, it follows from Problem 4 that x’va »# «”, ie. a” %z, which, however, is
contradictory to the Principle of Identity (cf. MTh. 2.1.1a). Hence 2’ = x.

Note. The same can be obtained by starting with z”” Al and 2z + .

6. Prove: (a) avI=1, (b) x~0 = O.

PROOF:
Applying B4b, 2b, 5a, 4b, 5a successively,

xvI = (xvDaAl = In@v]) = (@vae)salav]) = av@ Al = zva = 1

Likewise, applying BS5a, 2a, 5b, 3a, 4a, 5a,

A0 = (A0)vO = Ov(EAOD) = (xAz)v@EAOD) = 2A@'Vv0) = xanx’ = O

7. Prove the absorption law for B, viz.
(@) ev(xay) = x and (b)) xAa(xvy) = x; then prove that z =y if zvz = yvz
and Az = Y~z

PROOF:
Applying B2a, 4a, 3a, Prob. 6a, Bda successively

xA(zvy) = (xvydrax = vPHalev0) = zv{yn0) = a2v0 = x
The dual can be proved likewise., Furthermore,
x = 2A(evz) = 2Ayvz) = (@Ay)veanz) = Ary)vyaz) = yalevz) = yalyvz) = y

i.e. * =y, by repeated application of the laws of absorption and substitution.

8 Ifa=cand b=d,then avb=c¢vd.

 PROOF:
By MTh.21.1a, X=X; then if X =avy, avy = axvy. Let x=a and y=b; then, by
MTh.1.1.1.9, av b = av b. But, by hypothesis, « = ¢ and b =d, which implies, by MTh. 1.1.1.9 again,
avb = ¢vd, completing the proof.

9. Prove the associative law for B, viz.
(@) zv{(yvz) = (@vy)vz and (b) 2AYA2) = (X AY)AZ.

PROOF:
(@) Let X = xv(yvz) and ¥ = (xvy)Vvz; then, applying B3b, Prob. 4b-7b,

2AX = (@Arx)vealyve) = zviealyve) = =z
and applying B3a, Prob. 7a-b,
xAY = (eAnf@avy)vicanz) = xzvi{xnz) = =z

Hence 2 AX =2 Y.
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On the other hand, applying B3b, 2b, 5b, 2a, 3a successively,
2AX = @Ax)vE' Alyvz) = (@ax)v@ Ayvz)
= Ov@a(yvze) = @ Alyva)vO = x'A(yvaz)
and applying B3b, 3b, 2a, ba, 2b, 4a, 3a,

YAX = @Aalxvy)vE az) = (@A2)Vv (@ Ay) V(@ A2)
= ({(gAaz)vE@E Ary)vie' nz) = Ov@ ry)Vviz Az
= ('Arx)vO)Vv®' Az) = (Ay)vie' Az) = 2'A(yvz)

Hence 2'AX =y A X.
Applying Prob. 8 here,let a = 2AX, b=2'AX, c =AY, d =y AX, and (@AX)v(z'AX) =
(A Y)v (¥ A X). Then, applying B2b, 3a, 5a, 4b, step by step,

XAax)v(Xax) = (Y Az)v(Y A2,
ie. Xn(egve) = Ya(eve), ie XAl = YAl de. X=Y

Hence zv(yvz)=(xvy)va

(b) Likewise, x A (ynz) = (xAy)Az.

10. Prove De Morgan’s law for B, viz. (a) (xvy) = 2’ ~ry’ and (b) (xAy) = 2’vy.
PROOF:
(a) (xvy) = &' Ay’ obviously holds if it is proved that
vy)v@ Ay') =1  and vyrn(@ Ay) = O
(cf. B5 and Problem 2)
Applying B3a, 2a, Prob. 9a, B2a, 5a, Prob. 6a, B4b successively,
(xvvE' Ay) = (Evy)va)allevylve) = @vevy)Allzvy)Vvy)
= (('veyvyyanlevyvy)) = yvDnaevI) = IAI =1

Likewise, applying B2b, 3b, 2b, Prob. 9b, B2b, 5b, Prob. 6b, Bda,

il

@EvyY A Ay) = @ AY)nevy) = (& AY)Ax) V(@ AY)AY)
@EA@ ANV@ AY)AY) = (@A) AY)V (@AY AY)

Whrlgrz))v@ alyry)) = W AO)v(E' A0) = Ov0O = O

i

It

(b) The dual can be proved likewise.

11. Prove that inclusion in B (cf. B6) is dual, i.e. xCy and Dy are dual.
PROOF:

The dual of “wcy iff «’'vy = 17 is “aDdy if ' Ay = 0”, which is true, since
’vy =0 © @Ay =0 =1 © &)vy =1 & zvy =1 & yczx < xDy

Note that this theorem validates the “dualization” of all other inclusion theorems. Note, also,

that the double arrow signs are employed here, as in Prob. 13-20 below, to show the loglcal equivalence
between any two successive steps in the proof.

12. Prove that «Cy iff vy = v.
PROOF:
If vy =y, then 2'v(zrvy = (g'vo)vy = (ave)vy = 1vy =y, ie 2v(zvy =
2'vy =1, Hence xCy.

Conversely, if xzCy, ie. z'vy = 1, then 2vy = (xvy)al = (xvy)Ar@@'vy) = (yva)a
yve)=yvienrna)=yv0 =y, ie. zvy =y.
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13.

14.

15.

16.

17.

18.

19.

20.
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Prove: x C x.

PROOF:
By Prob. 4e, v x = x, which is, by Prob. 12, logically equivalent to xCx, completing the proof.
Second proof. xCx < a’'vz=2xvaz =1, by B2a,4a,S6.

xCy iff zAy = O.
PROOF:
2xCy © 2'vy=1 < @vy) =I & (@)Vry =0 < vry = 0, by B6, Prob. 3,10, 5.

xCy iff xAy = 2.
PROOF:
If Ay = x, then, applying Prob. 9b, B5b, Prob. 65,

I
o

xAY = (@APAY = xAlyAy) = A0
iie. Ay = O; hence, by Prob. 14, xzCy.
Conversely, if Cy, i.e. £ Ay’ = O, by Prob. 14, then by applying B4e, Prob. 14, B3a, 5a, 4a,

z2ny = (@AYVvO = @Ayvay) = zalyvy) = anl = x

rry=2 iff avy=y (oriff xAy = 0).
PROOF:
TAYy =x > xCy < xvy=y (S way =0), by Prob. 12,15, (14).

If xCy and y C 2, then z C 2.
PROOF:
Since *vy =y and yvz = 2, by Problem 16,

xvz = xzvyve) = (xvy)vz = yvz = g,

by substitutions and Problem 9a, ie. zvz = z. Hence, by Problem 16 again, xCz.

Second method: Since x Ay = x, by Problem 15, and YV 2z =2z, by Problem 16,
zrnz = xzAlyva) = (eay)vicaz) = xvi{enanz) = =

Hence, by Problem 15 again, « C z. (Other methods can be similarly devised.)

If zeB, then OCax C 1.
PROOF:

Since Ovae = xv O = z, by B2a4a, ie. Ova = x, it directly follows from Problem 12
that OCx; also, from Problem 6a, 2v I = u, ie. wcClI. Hence, together, O CxCI for any xe¢ B.

If xCy and y Cz, then x = v.
PROOF:

Since, by Problem 12 and hypothesis, vy = y and yVve = z, and also, by B2a, vy = yvu,
it immediately follows that x = y.

rxCy iff y Cua.
PROOF:
2Cy © 2Ay' =0 © Yyrx=0 © yarx' =0 © yca

ie. x¥Cy <> y'Ca’, by B6,2a, Prob. 5, B6.
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21.

22,

23.

*24.

If xt Cz and ¥ C 2, then (xvy) C z.

PROOF:
Since #vz = 2z and yVv 2z = z, by hypothesis and Problem 12, it follows that

(xvy)ve = avyve = avz = 2, ie. (wvy) Cz

A Boolean lattice L is a Boolean algebra B.

PROOF:
The transformation is clear through the following 1-1 correspondence:

L B

1. Commutative law: L1l < B2

2. Associative law: L2 < Prob.9

3. Absorption law: L3 <> Prob.4

4. Idempotent law: L4 < Prob.4

5. Distributive law: L5 < B3

6. Complementation: Df.1.4.114 < B5

B becomes L under B6 (cf. Th.2.4.2.4).

PROOF':

(i) B is partly ordered under B6, since, for z,y,z¢ B,
(a) Reflexive: zCzx, by Problem 13;
(b) Antisymmetric: Cy and yC« imply x =y, by Problem 19;
{¢) Transitive: 2Cy and yCz imply xCz, by Problem 17.

(i) «vy e B, by Bl, is also an upper bound of « and y, since zv(rvy) = (xvar)vy = xVy,
by Prob. 9,4, which proves, by Prob. 12, « C zvy, and likewise ¥y C zVv y.

(iii) Let b be any upper bound of x and y, i.e. *Cb and yCb; then, by Prob. 12, zvb = b and
yvb = b, Hence (xvy)vb =xv{yvbd) =xvb=">, ie, again by Prob. 12, xvy C b,
which proves that v y is the L.u.b., i.e. the join, of # and y.

The steps of (ii) and (iii) can be similarly taken for x Ay, to prove it to be the g.lb,, ie.
the meet, of  and y.

Hence B under B6 is a lattice.

Find, by Df.2.4.2.5, the diagrams of circuits which correspond to the following
propositions:

(i) pva, (i) pqg, (iii) (pv(pv Q) vpg.

Solution:

(i)  Since a switching circuit design parallel
is an arrangement of wires and p q circuit P q pva
switches where an open switch
pre;rents the ﬂ;)lw of currer}llt v;fihile on on on 1 1 1
a closed switch permits the flow, F
the table at right exhausts all 0; © on ! 0 L
possible cases, given two distinct o on on 0 1 1
switches p and ¢ through which off off off 0 0 0

current is to flow if either p or g
or both are closed. It is evident
that the first table is logically
equivalent to the second table,
which is the truth-table of pv ¢
where p and ¢ are two proposi-
tions. The circuit for pvq is
then represented by the two q
switches p and ¢ in parallel as

at right,
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(ii) Likewise, there exists a 1-1 correspondence between the conjunction of two propositions pg and

the condition that current flow if both switches p and ¢ are closed, as is manifest in the corre-
sponding two tables below:

series
p q circuit p q pq
on on on 1 1 1
on off off 1 0 0
off on off 0 1 0
off oft off 0 0 0

The circuit for pg is then represented by » and ¢ in series, i.e. as follows:

p q

(iif) Once it is proved, by (i) and (ii), that there exists a

1-1 correspondence between a disjunction and a paral- P
lel circuit and between a conjunction and a series 7 g—1
circuit, and, by Df.2.4.2.5, that # is on and off if D I
is off and on respectively, the diagram of the circuit
is immediately obtained for (pv (pv q)) v pq, or what D q
is the same, (Vv (PAG)V (PAq), as shown in the
adjoining diagram.
*25. Design circuits for the following propositions:

i) (pgr)v (B(av 7)), (i) (pvavrys(pvarv as). » q i

Solution:

(i) Since pg7 is a series circuit, which is in ——T —
parallel with p(¢v 7) which in turn is p ~ q | ]
in series with a parallel circuit of ¢V 7, P _
the proposition reveals itself in the ad- r

joining figure.

(ii) Reasoning similarly, the second design is obtained as follows:

p P
q s q P
r q s

*26. Represent the circuit below in a proposition, then simplify it by the theorems dis-
covered in §1.1.1.

p q

r 8 1;-——J

ST

Solution:

Since the first parallel circuits are represented by (pqv #v 3vi) and the second by (pgvV rst),
and since they are in series, the design as a whole is represented by (pgv #vEvt)pqgv rst). Now

Ii

(pgv #vEVE)(pgvrst) = ((pg)v (FVvEVD)((pg) Vv (rst)) by Df.

= (pq) v ((Fv v )(rst)) by Prob. 10, iii, a
= (pg) v ((rsd)(rst)) by Prob. 12, ii
= pq by Prob. 14, ix of §1.1.1

Hence the given design is logically equivalent to the following design:

p q
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Prove Th.2.4.2.7.
PROOF:
By Df.2.4.2.6, B1-6 can be written as follows:
P1: Closure (la) pvqe P if pgeP (1b) pqeP if pgeP
P2: Commutative law (2¢) pvgqg = qvp 2b) pqg = qp
P3: Distributive law Ba) pvigr) = (pva)pvr) (3b) plgvr)y = pgvopr
P4: Identity (4a) pvgeg = p (4b) pp=1p
P5: Complement (5¢) pv P is a tautology. (5b) pp is a contradiction.
P6: Inclusion ®6) p—2>q = pVvy

Since it is already known that every proposition included in P1-6 is a tautology (which can be
readily verified by truth-tables as in §1.1.1), this completes the proof.

Supplementary Problems
Part 2

Prove that the null set ¢ (cf. D£.2.1.7) is a subset of every set.

Prove, first in terms of ¢ (membership), then by a Venn diagram, that

AN(BNC) = (AnB)NnC = AnBnC
Give second proofs of Th. 2.3.7 in entirety (except the one already given) by Venn diagrams.

For any two sets A and B,
iy Au(B—A) = AUB, (i) An(B—A4) = ©

If A and B are two subsets of a set C, and if AUB =C and AnB = @, then B = C— A4.
Prove that {{a},{a,b}} = {{c},{c,d}} iff a=c and b=d.

Given X = {p,q} and Y = {r,s,t}, find
() XxX, (i) YxY, (i) XxY, (iv) YxX.

Prove that the four categorical propositions - A (all @ is b), EF (no a is b), I (some a is b), and
O (some @ is not b) — can be expressed as ab =0, ab =0, ab >0, and ab % 0 respectively.
A
Consider Prob. 2.8 above in terms of Venn diagrams, interpret-
ing them in the language of ¢ as in the figure at right. a b
Simplify the following expressions, justifying each step with .
B1-6 and other theorems deduced from them:
i pvavrvaealpvyg). (Ex)((x £ a)(x € B))

i) ((PArgd)v@ A AllpArgv (@ Ag)).
iii) (PAQV @AYV @ ASATNADPAG ATV AS ALYV @D A AD).
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2.11,
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

*2.19.

*2.20.
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Verify the validity of the results of Prob. 2.10 by truth-tables or (in particular for (ii1)) by meta-
theorems of §1.1.1.

Simplify, justify, and verify (as in Prob. 2.10-11) the following expressions:
G @PAgLAYYA@ Agary.

i) @vavrv@AdAr)Alprgv (DAY @ AQ)).

(iii) ((p/\q)v(TAS/\t))/\(r’vs’vt’v(p/\q)).

If o(X) denotes the number of elements in a set X (cf. D£.2.1.11), and if A and B are any two sets,
then

o(AUB) = o(4) + o(B) — o(4dnB)

If Ay, As, ..., A. are mutually disjoint sets such that AVAU.. . UA, = U, (cf. Df. 2.3.18), then
for any set B,

o(B) = o(A:nNB) + 0o(A:NB) + --- + o(A.NB)

Draw a Venn diagram for the case of three subsets A,B,C, and define the eight disjoint (nonover-
lapping) regions Ry, R; ...,Rs in terms of “” (eg. Bi=(xcA)rn(@eB)A(@xeC), ..., Rs =
(xg Ay A(x#B) A (x¢C)), then determine the following sets by listing their elements in terms of
Ri, 1= 1,2,. . .,82
() U, (i) A, (i) B, (iv) C, (v) 4’, (vi) AUB, (vii) ANB
(viii) A’'N(ANB), (ix) (AUB)NC, (x) (ANB)NC’

A foreign language school has 200 students, of which 120 students study French, denoted by o(F) = 120
(cf. Prob. 2.13), 90 students study German, i.e. o{G) =90, and 70 students study Russian, i.e.
o(R) =70. It is also known that o(RNn@) = 30 (i.e. 30 students study both Russian and German),
o(RNF) = 50, o(GNF) = 40, o(FNGNR) = 20. Find o(RNG'NF’) and oR'NGNF).

The result of a poll shows that the numbers of people who listen to the programs A, B, and C are
@, b, and ¢ respectively; and the numbers of people who listen to both 4 and B, both B and C, and
both C and A are d, e, and f respectively. Find the number of people who listen to A, B, and C.

Draw the switching circuits which represent the following expressions:

B pArl@nrvs)v(raltvau), (i) PArgANVY@AGA{rAs) v (tAw)).

Referring to Prob. 2.13 above, interpret the following set of axioms

(i} P(x) =0 if x is a logically false proposition.

(ii) 0= P(x) =1 for any proposition z.

(i) P(xvy) = P(x)+ P(y)— P(xy) for any two propositions z and Y,

where P(x) denotes the probability of any proposition z and the same probability is assigned to any
two equivalent propositions.

If x and y in Prob. 2.19, (iii) are inconsistent, then
(iv) P(xvy) = P(x) + Py)
and also, £ designating the negated «,

v) P@) = 1— P)



Pars 3— Algebra of Groups

Chapter 3.1

Finite Groups
§3.1.1 Groups in General

Df.3.1.1.1 A group is a set G of elements a,b,¢, ... under a binary operation * (or o or
any other suitable symbol or, as below, no visible symbol at all), satisfying the
following four axioms:

G1: Closure. a*b ¢ G (or more simply written: abeG) is unique for every
a,beG; a*Db or ab is called the product of the factors a and b.

G2: Associativity. a(bc) = (ab)c for every a,b,ceG.

G3: Identity. eeG such that ea = ae = a for every aceG.

G4: Inverse. a~'eG such that a 'a =aa"! =e¢ for every acG.

Th.3.1.1.2 The identity of G3 and the inverse of G4, defined by Df.3.1.1.1, are unique.
(Cf. Prob. 1.)

Th.3.1.1.3 (Cancellation Law for Groups). For every a,b,x G, both xa=uxb and ax =bx
imply the same a=b. (Cf. Prob. 2.)

The definition of groups by Df.3.1.1.1 is in fact stronger than necessary, since
it contains some redundant properties, viz. one-half of G3 and G4. These as such
can be replaced by the corresponding weaker axioms as in Th.3.1.1.4 below.

Th.3.1.1.4 Df.3.1.1.1 is equivalent to the following alternative set of axioms:
Gl’ =Gl
G2’ = G2
G3’. Left-identity: ea = a, ee G, for every aeG.
G4’. Left-inverse: a~'a =e¢, a ‘e G, for every aeG.

The term “left” here is the dual of “right”; for the left-identity can be replaced by
a right-identity and the left-inverse by a right-inverse (cf. Prob. 3).

Df.3.1.1.1 can be made even weaker, abstracting away the axiom of the explicit
identity, as in Th. 3.1.1.5 below.

Th.3.1.1.5 Df.3.1.1.1 is equivalent to the following alternative set of axioms (cf. Prob. 4):
G1” = G1
G2” = G2
G3”. Unary operation “inverse”: a 't G is unique for every aeG.
G4”’. Inverse law: a~'(ab) = b = (ba)a™".
The number of axioms may be reduced, too, and the following set of axioms for G
is an example.

65
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Th. 3.1.1.6 Df.3.1.1.1 is equivalent to:
Gl = Gl
G2 = G2
G3’” = Th.3.1.1.8 for both left and right; viz. each of xa=2xb and ay = by for every
a,b,x,y ¢ G implies a = b. (Cf. Prob. 5,11.)

Not only other alternative sets of axioms for G are available (cf. Prob. 6 and
Supplementary Prob. 3.3), but also, depending on the number of axioms involved,
other kinds of groups may be obtained.

Df.3.1.L1.7 A group G, defined by G1-4 (or other equivalent alternative sets of axioms),
is called an Abelian (or a commutative) group if it satisfies an additional axiom:
G5. Commutative law: ab = ba for every a,be@.
In particular, an Abelian group under addition is sometimes called a module.
Note that an Abelian group is a special group; if a set G is an Abelian group,

it is then a fortiori a group, satisfying G1-4. In this sense the class A of all Abelian
groups is a sub-class of the class G of all the sets which satisfy G1-4.

On the other hand, the class G of ordinary groups may become a sub-class of the
class of more general groups such as semi-groups, quasi-groups, loops, etc., defined
as below.

Df.3.1.1.8 If a set D satisfies only G1 and G2, it is then called a semi-group (or demi-
group in the French mathematical literature in which a semi-group satisfies G1-2
and Th.3.1.1.3). (Cf. Prob. 11.)
In terms of “groupoid” (cf. Df.2.2.1.1b), the semi-group may be defined also as
follows:

Df.3.1.1.8a A semi-group is an associative groupoid (cf. Df.2.2.1.4).

It must be noted that a semi-group which also satisfies G3 is called a monoid;
viz. a monoid is an associative groupoid with an identity element.

Df.3.1.1.9 If a set Q satisfies G1”7 uniquely, i.e. if any two of a,b,ceQ in ab =c uniquely
determine the third, it is then called a quasi-group.

Df.3.1.1.10 If a set L is a quasi-group with G3, i.e. a two-sided identity: ea =ae=¢
for any acL, it is then called a loop.
It is evident that G, defined by all of G1-4, is a special kind of D,Q,L, satisfying
each of Df.3.1.1.8, Df.3.1.1.9, and Df.3.1.1.10.

Df.3.1.1.11 A non-empty subset S of G under * (a binary operation in Df.8.1.1.1) is
called a complex of G; S is then called a subgroup of G if S is itself a group under =*.

In particular, G is considered a subgroup of itself, and the unique set which
consists of the identity e alone, which does form a group, as can be readily verified
(cf. Prob. 15 below), is regarded as a subgroup of every group, including itself.

Df.3.1.1.12 A subgroup which is neither G nor ¢ alone is called a proper subgroup.

Th.3.1.1.13  Any complex S of a group G is a subgroup iff
(i) a,beS implies abesS, and
(ii) aeS implies a7 'eS. (Cf. Prob. 8 and also Th.3.2.1.1.)
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Df.3.1.1.14 If G has n elements, ne N, N denoting as usual the set of all natural num-
bers, it is then called a finite group of order n.

D-f. 3.1.1.15 If G has infinitely many elements, it is called a group of infinite order or
simply an infinite group.
Example:

The set of all integers under addition; or the set of all rational numbers, excluding 0, under
multiplication (cf. Prob. 9).

The groups in this chapter will be of finite order unless stated otherwise.

Solved Problems

1. The identity of G3 and the inverse of G4 are unique.

PROOF:
(i) Suppose ¢’ is also an identity; then ee’ =¢’, and since e is also an identity, ¢¢’ =e. Hence
ee' = ¢’ = e, which explicitly reveals the uniqueness of e.

(ii) Suppose b is also an inverse of a, i.e. ab=aa '=e. Then, since a le G, it follows that
a~Yab) = a~Yaa"Y), by Gl, and (a"'a)b=(a"'a)a™', by G2. Hence, by G4 itself, eb = ea™!, and
b=a"1, by G3, proving that the inverse ¢™! is unique.

2. Prove the cancellation law for G (cf. Th.3.1.1.3).

PROOF:
Since, by Gl, ze=xb in G implies = '(xa) = x~'(xb), where z 'e G, it follows from G2 that
(¢ 'x)e = (x~'x)b, i.e. ea = eb, by G4. Hence, by G3, a =b; i.e. xa = xb does imply a=b in G.

Likewise ax = bx in G implies a = b, which completes the proof.

3. Prove Th.3.1.1.4.
PROOF:

In accordance with the weakened axioms, the cancellation law also weakens; it becomes a left-
cancellation law that xa = «b implies a = b (proved as above, in Prob. 2).

Now, the left-identity of G3’ is also a right-identity, since, by G4’, a 'a=e¢=c¢e=a'ae, i.e,
¢ 'ae = a~'a and, by left-cancellation, ae = a. Hence G3’, implicitly representing the two-sided identity,
is equivalent to G3.

The left-inverse of G4’ is also a right-inverse, since, by G2/,3,4, a '=ea '=(a'a)a™'=
a N aa")=a"le, ie. a"}aa"!)=a"'e and, by left-cancellation, aa™'=e.

Hence, likewise, G4’ is equivalent to G4.

Hence, altogether, the set G1’-4’ is equivalent to Gl-4.

Second Proof (without resorting to cancellation). Letting, by G4’, ¢ 'a =e¢ and xa '=e¢, then
applying G2',3',4’ repeatedly,

aa”! = e(aa™) = (xa" N aa"?) = x(a Y al(e™Y))) = z((ea " a)a™?!) = z(ea™) = xa”' = e
which proves the right-inverse for G4’. Using this result immediately,
ae = a(a"'a) = (aa™Ya = ea = a
which proves the right-identity for G3'.

Note. It goes without saying that, conversely, G3-4 entails G3’-4/, since the former explicitly
contains the latter in itself.

Note also that another equivalent set of axioms for G can be readily obtained from Gl1’-4’,
simply by replacing “left” by “right”’; the proof will be carried out with (or without) right-cancellation.
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Prove Th.3.1.1.5.
PROOF:
(i)  As above, G1-4 obviously entails G1//-4”".

(ii) Conversely, the latter entails the former, since G3-4 can be obtained from G3”-4" as follows.
Substitute ¢~'¢ for b in b = (ba)a~! of G4/, and ¢ ‘¢ = ((e7"e)a)a™! = (¢ 'e)(aa™t) = ¢ Ye(aa™Y)) =
aa” !, If a=c¢, then ac ' =a 'a = x is unique in G for every a=ce G hence, if x as such is
defined as the identity, G4 is at once obtained.

Furthermore, if x=e, then xzb = (¢ 'a)b = a"Hab) = b, by G2” and G4”; likewise bx =,
which yields G3.

Hence the set G1’-4" is equivalent to the set G1-4.

Prove Th.3.1.1.6.
PROOF:
Let a1, A2, ..., G (A)
be the distinct elements of the group G of order n; then, for any a:e G,
ais, Qilz, ..., Qil, (B)
are, by G1'”, also the elements of G and are distinet, since, by G3',
ait; = a;dax implies a; = ak
Hence (B) is actually a different arrangement of (4), and if a. ¢ G, there exists an element @, such that
A: = @iy
Likewise, by G3'”, there exists a. such that
Az = Q204

The identity element of G is then defined by letting a: = a. = e, since, given any two elements a. and
a, of G such that
auli = a; and 0ty = a;

it .always follows that
Al = Qu(@iy) = (@u@)ay = aity = aa
and likewise, asa. = a.. This establishes G3.

Now, if there exist any two elements a, and a, in G such that

aidy, = e and a8 = e,
then Qaitly = (@qada, = ea, = ap
and Uity = Qq(@iaty) = age = aq

Hence a, = a; = a;?', where a;* must be unique, since, by G3'"’, there can be one and only one solution
for aia. = e. This yields G4, completing the proof.

Prove that Df.3.1.1.1 is equivalent to the following definition of a group: A group

is a set G of elements a,b,c,... under a binary operation /, satisfying the five axioms
below:
G’l. a/be G is unique for every a,be G. G’4. (a/a)/(b/c) = ¢/b
G'2. afa = b/b = 1 G’5.  (a/b)/(e/b) = a/c
G’3. a/(a/a) = a
PROOF:
(i)  Referring to G'2-3, let (a/a)/e = 1/a = &¢™%; then, by G'3-4,
(@)™ = (aYa et = (a Ya Y (e/a)/a) = al/(a/a) = a and ab = a(d™)! = /bt

Hence, since a/b~'e G is unique, ab is unique, deducing G1.

(i) Since a/b=a/(b") ' =ab"!, afa =aa"'= 1; and, immediately using this result, a lq =
e '(@”)"*=1. Hence aa '=a g =1, establishing G4.
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(ii) Let a=1 in e '= (¢/a)/a; then 17*=11"" and 1= 1/1=11"*=1"'. Hence, by G2,
al™' =al = and, by definition, a™'=1/a = 1la”!, from which it follows that (a ) 1=
(e 1", ie. a=1la, proving G3.

(iv) Let a=w b=y, ¢=1 in G'5; then (xy)(ly) '==x1"1, ie (zy)y~' ==x. Now, let a==zy,
b=y, c=2z"1 then ab™'= (xy)y ' =2 and G'5 itself becomes (ab~')(cb™")"' = ac™'. Hence,
since (be 1) l=¢cb ! (0 G4 L(be ) 1=¢cb"Y), it follows that (ab~')(be™')=ac™'. This, in
terms of «,¥, z, is indeed x(yz) = (xy)z, proving G2.

Conversely, through ab~!= a/b, G’1-5 can be deduced from Gl-4, establishing the desired
equivalence between the original and the alternative definitions.

If aco =a, acG, then a=e.

PROOF:
a = ae = alae™?) = (aag)a™! = aa™' = e

Prove Th.3.1.1.13.

PROOF:

If (i) and (ii) hold for S, then S immediately satisfies G1, by (i) itself, and (i) also assures G2
for S. For, if a,beS implies abe S, then both ab,ceS and a,bce S imply the same: abceS. Also,
since there is at least one element in S, ¢ = aa™! must be in S, by (ii), proving G3 for S. As for G4,
it is directly provided by (ii) itself and the existence of e, which has already been established.

Conversely, if S is a subgroup of G, (i) obviously holds. Also, since the identity x =¢' of S
satisfies xx = x (¢f. Prob. 7), it is the identity of G itself. But then, since the inverse of any ae G
is unique, the inverse of any element s&S must be the same as its inverse in G. Hence (ii) holds.

This completes the proof.

Prove that the set I of all integers under addition is a group, and so is the set R of
all rational numbers (0¢ R) under multiplication.
PROOF:

(i) Gl: wyel implies ztyel. G2: wx,yzel implies z+(y+2) = (x+y)+z G3: e =0
G4: z7' = —¢.

(ii) Gl: w,yeR implies ayeR. G2: z,y2¢cR implies x(yz) = (xy)z. G3: e=1. G4: 2~ '=1/x.
Note that both I and R are Abelian groups, since (x+y)=(+2) e I and (xy)=(yx) ¢ R,
satisfying G5.

Why, or why not, are the following sets groups under multiplication?
(ify  The set I of all integers.
(i) The set C of all complex numbers.

(iif) The set S of all real numbers of the form =z +y\/§, where x,ye R are not
simultaneously zero.

(iv) The set U of the third roots of unity.
PROOF: A
(i) I is not a group under multiplication, because G4 does not hold here.

(ii) C forms a group under multiplication, since

Gl: (atbi),(ctdi) e C, where a,b,c,de R* (R* denoting as before the set of all real numbers)
implies (a+bi)(c+di) = (ac—bd) + (ad+be)i ¢ C, where (ac—bd),(ad+bc) ¢ R*.

G2: (a+tbi),(ctdi),(et+fi) e C, where a,b,c,d,e,feR*, implies
(a + bi)((c + di)(e+ fi)) = (ace— adf —bef —bde) + (acf + ade + bece — bdf)i
= ((a+ bi){c + di))(e + fi)
G3: e=1 (=1+09).
G4: (a+bi))"' = 1/(a+ bi).
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(iii) S is a group under multiplication, since
Gl: (a+bV2),(c+dV2) e S, where abedecR, implies
(a+ bV2)(c + dV2) = (ac+2bd) + (ad+bc)VZ ¢ S, where (ac+2bd),(ad+be) ¢ R.
G2: (a+ b\/é), (c+ d\/§), (e + f\/é) £ S, where a,b,c,d,efeR, implies
(@+bV2)((c+ dV2)(e+1V2) = (ace+2adf + 2bef + 2bde) + (acf + ade + bee + 2bdf)V/2
= ((@+bV2)(c + dV2))(e + fV/2)
G3: e=1 (=1+0V2).
G4 (a+bV2)"! = 1/(a+/2) = (a/(@® — 2b%) + (—b/(a® — 2b%))V2, a/(a?—2b2), ~b/(a®>—2b%) ¢ B

(since a®» 2b%, because a® = 2b* will mean a = +b\/2 ¢ R, contrary to the initial condition).

(iv) Solve #*—1 = 0, ie. (x—1)x*+x+1) = 0, and the third roots of unity are: 1,(—1 -+ /3)/2,
(—1—iV8)/2. Let a=(—1+iV/3)/2 and b= (—1—14/3)/2; then, since ab=ba=1, it follows
that G1-2,G3,and G4 (17'=1,a"'=b, b~ =aq) are all satisfied. Hence the set U forms a group.

A semi-group D of order n is a group if, for a,z,ye D,
(1) axr =ay implies x =y, (ii) xa = ya implies z =y
PROOF:

Let the n elements of D be di, ds, ...,ds; then, by (i), ady, ads, ...,ad. are all distinct elements
of D (cf. Prob. 5). Hence, for a,be D, there uniquely exists d; such that ad; = b, which implies that
ay = b has a unique solution d..

Likewise, by (ii), xa = b also has a unique solution.

Hence G3'” is established, and since G1’’-2" are already given by definition, D is a group by
Th. 3.1.1.6.

Given axa =b in G, find z.
Solution:
Multiplying both sides of the equation on the left, then on the right, by a1,

a Yaxa) =a 'bh — wa=a'b — zaa'=a ba"! — 2x=q 'ba"!

Prove: (a7 ')"! = a, where acG.
PROOF:
Since, by G4, (a™')"'a"! = ¢, multiply both sides of the equation on the right by a to obtain
(@™ 'a™a = ¢a = a. But, by G2-4,
(@) aha = @97 ea) = (a7 e = (a7

Hence (¢! = aq.

Define a® = ¢, where a=@G; then prove that for any integer n, a=* = (@YY = (a®)~ 1.
PROOF:
() =»>0. Form=1, a'=(a"")! = (a")~% which obviously holds.

Suppose a~* = (a7")* = (¢¥)"' for n=4k; then, for n = k+1,

a” Y = k-1 = gokg-1 — (@ Y@ = (a—l)k+1
and since a”**" = (a"Y*(a"Y) = (a¥)"(a”Y), it follows that
ak+la/—(k+1) = aak(ak)—l(a—l) - aea—l a aa/‘l — e’ i.e. a*(k'f'l) o (ak+1)—l

Hence a™**" = (a™")**' = (¢**')~*. Thus in general, a™* = (¢~ = (a™)~! for any integer n > 0.
(ii) n<0. Let n=—nr(r>0); then a™"=a’, and (@™ )" = (@)™ = ((6~)"Y)" = a’ (cf. Prob. 13);
(@)™ = (a7t = ((@)™")™' = a’. Hence, again, ¢ " = (a™)" = (¢”)~! for any integer = <0.

{iii)y For n=0, a®=a"=e; (0™ =¢ (since ’=¢ and aa'=¢); (@ '=e'=¢ Hence
a—O = (a—-l)ﬂ = (al))—l.

Hence, for any integer n, o™ = (a”™)" = (a®)"L
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15. Prove: e — ¢, ec G, where ¢’ = ¢, for any integer n.

PROOF:
(i) m>0. ¥Forn=1, ¢ =e. Suppose e=c¢ for n=F; then, for n = k+1, ekt = ¢k¢ = ee = e.

Hence e* = e for any integer n > 0.
(ify » < 0. Since ee=¢, ¢7'=¢ for n=—1. In general, letting n=—r (r>0), ee=¢ "=(e) =
e = e.

Hence ¢" = e for any integer n.

16. Generalize G2, i.e. (@1Q2... am)(@m+18m+2 ... Gmtn) = A1l2... Cmin

PROOF:
Since, by G2,
47] (azas) = (a1az)a3 = a102Qs3, (al(azas))m = a1 a203d4, ey ((ll(az(.  Qn-1)). . Jan = a2, . G
1 m+1 m
let [Tai = ai and [] a: = ( ai) @m+1. Then, since the case for n =1 evidently holds, suppose
i=1 i=1 i=1

m n m+n
ITa: TI amex = II @i for m. Then, for n+1,
i=1 k=1 i=1

"

3

+1 m n m n
a; H Am+k = H a; (( H am+k) am+n+1) = (H a; H a'm+n) Am+n+i
1 k=1 i=1 k=1 i=1 k=1
m+n mtn+1

(H ai)am+n+1 = H a;
i=1 i=1

i

Il

completing the proof.

17. For any integers m and »n, and aeG, a™*" = a™a.

PROOF:
(i) m>0, >0 a™'" = a.......... a = a..... aa..... a = a"a”
m+n m n

(i) m<0,n<0: Let m=-—p and n=—q, p > 0, ¢ > 0; then, by Prob. 14,

am+n — a—(p+q) p— (a—l)p+q — (a—l)p(a—l)q — a—pa——q = aman
(iiiy m=0,n+#0: a®*" = a* = ea = a%a". (Likewise when m =0, n =0.)
(ivy m>0,n<0, mtn=0: Since —n >0, it follows by (i) and (iii) of Prob. 14,

am+n — am+ne —_ am+na—nan — (am+na—n)an — a(m+ﬂ)+(—n)an = a™a®

vy m>0,n<0, m+n<0: Since —m—n >0, it follows from (i) that ¢ ™" "g™ =g ™" **™ = g™ "
then, by Prob. 14, a"’a™ = a™*"a¢ ™" " = ¢ and
amtt = g™tre = gnttgT"g" = """ (e ™ "a™e" = (a™T"e ™" Ma"a® = a™a"
(vi) The same result is obtained if m and n are interchanged in (iv) and (v).
This exhausts all possible cases, completing the proof.

18. For any integers m and n, and every aeG, (a™" = a™.
PROOF:
(i) m>0: Formn=1, (@) =a™=a™'. If (a™a*) = a™ for n=k, then, for n = k+1, (a™)*1 =
(a™)*a™ = a™a™ = g™**™ = g™**1) proving the general case for n > 0.
(i) = <0: Letn=-—r; then »>0 and, by Prob. 14, (™" = (™)™ " = ((a™)") ! = (a™)" ! = ¢~ ™" = q™",

(iiiy n=0: (@)’ =e=a’=a™". This completes the proof.
19. In G, (ab) '=b"'a"!, and in general: (ai02...a.)"!' = a;'...a5'la;%
PROOF:

(i) Since (ab)ab)™*=e and (ab)b~la '=qbb Na '=aea '=aa"'=e, ie. (ab)(ab) != (ab)b la"?,
it follows, by right-cancellation, that (ab)™! = b~ ¢~ .

(ii) When =n=1, (a:)”'=a,"!, which evidently holds. Suppose for n=k, (aa:...ax)"! =
agt. . aztart, ie, (ai@e...ox)a;'...a;'ai') = e. Then, for n = k+1,

(maz. .. oxac+)(a )t e’ . aztar?) = (d1ds...a)de+1a5l;(0xt. . aztar?)
= (1@2...ax)e(ax’...a;'a;?)
= v = @a! = e

completing the generalization,
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If a,beG, then (bab~')" = ba"b~! for any integer n.
PROOF:
(1) =n>0: If n=1, it obviously holds. Suppose (bab~')* = ba*b~1; then, for n = k- 1,
(bab= )+ = (bab~')*badb~! = ba*b 'bab~! = ba*ab~' = ba**'b~!, Hence (bab~y)" = ba"b~ L.
(i) n<0: If n=-—1, then (bab™")"' =ba"'b"! since bab 'ba~'b~'=¢. Hence
(bab™ )" = (ba™'d )" = bl@a H)""b"! = barb~!

A group G is Abelian if, for a,be G, (i) @* = e, or (ii) (ab)? = a2b?, or (iii) b 'a~1ba =e.

PROOF:

(i) Since a* = aa = e and aa~* = ¢, it follows that aa = aa~?! and, by left-cancellation, a =a~!. Hence
(ab) = (ab)~! and, by Prob. 19, (ab)™' = b 'a"! = ba, i.e. ab = ba (= (ab)™"), establishing the
commutativity in G.

(i)  Writing it out, (ab)® = (¢b)(ab) = aabb = a%b?, i.e. abab = aabb. Then, by left-cancellation, bab =
abb and, by right-cancellation, ba = ab, which is G5 for an Abelian group.

(iif) ab = abe = ab(b~'a"'ba) = a(bb "a"'ba = (aa"")ba = ba.

If a group G is Abelian and ¢,be G, then (ab)* = a"b™ for any integer n.

PROOF:

i =>0: I n=1,then (ab)' = ab = a'd', which is evidently true. Suppose, for n = k, (ab): =
a*b®; then, for n = k+1, (ab)**! = (ab)kab = a*brab = a*ab*h = a**'p*+, justifying the gen-
eralization.

(i) m»<O0: Since —m >0, it follows from (i) that (ab) ™™ =a~"b~" Also, by Problem 17,
(ab)"(ab)™™ = ¢ and a"b™(ab)™" = a"ba""b"" = a"a""b"b " = ¢e = ¢, i.e. (ab)*(ab) ™™ = a"b™(ab)~".
Hence, by right-cancellation, (ab)" = a"b".

(iili) n=0: (ab)’=e = ee = a®" completing the generalization.

If M(z) = rx+5s, where xeR* (the set of all real numbers), r,sck (the set of all
rational numbers), and »+ 0, then the set S of the function of the form M is a non-
Abelian group.
PROOF:
Let F,G,He S, ie. F(x) = ax+b, G(x) = cx +d, H(x) = ex + f, where a,b,c,d,e,fc R and a,c,e = 0;
then:
Gl: F,GeS implies that FG(x) = F(G(x)) = a(cx+d)+ b = acx + (ad+b) ¢ S.
G2: F(GH(x)) = acex + (acf+ad+b) = FG(H(x)).
G3: I(x) =, ie. r=1 and s =0, is the identity of the group.
G4: M ' (x) = x/r—s/r.
G5: FG(x) = acx + (ad + b) #* acx + (be +d) = GF(x).

Hence the set S is a non-Abelian group.

§3.1.2 Groups of Permutations

Df.3.1.21 A set M of 1-1 transformations R,S,7,... on a set E, as defined by Df. 2.2.2.5,

forms a group of transformations if M satisfies the following conditions:
Gl. If S,TeM, then ST eM is unique.

G3. TI=IT=T, I:M.

G4. If TeM, then T e M.
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Note that G2 is implicitly contained in the definition of transformation itself
(cf. §2.2.2, Prob. 8).

Transformation groups, defined as above, are abstract, but they may become
quite concrete, e.g. when exemplified in various arithmetics and geometries (cf. Prob.
1-7). In theory, these groups belong to the group of permutation, defined as below.

Df.3.1.22 A 1-1 transformation on a set E of n distinct elements into E itself is a
permutation of degree n.

Example:

A set E = {1,2,3} has a 1-1 transformation 7 on E into E itself such as 1-2, 2~ 3, 3-1,
T in this case being the so-called cyclic permutation.

The definition of permutation, which is to subsume transformation itself in the
framework of groups, may be defined without an explicit use of the term, e.g. as

follows:

Df.3.1.2.2a Given n distinct elements a;,as,...,a, of a set E in this specific (distinct)
arrangement, an operation of replacing a: by bi, a2 by bs, ..., a. by b, to yield any
other (different or same) arrangement bi,bs...,b. of the same n elements, is a

permutation P, denoted by

P - ar a2 ... O
by b2 ... bn
to indicate that each element in the first row is to be replaced by the element directly

below it in the second row.

It is evidently immaterial here in what order each column of the permutation
may be placed, i.e.,

P = a az ... Qn . az An ... 1 an Q1 ... Q2 _
by ba ... b)) \babe ... b))  \bubi ... b))
as long as each permutation remains the same. Since, as elementary algebra proves,

there are n! different permutations of n elements, each of the n! permutations can
be written in different arrangements, shown as above.

Df.3.1.2.3 The product of two permutations P and @, denoted by PQ, is obtained by
carrying out the operation defined by P and then by Q.

Example:

- (1238 123
<132 and @ <231>, then
PQ:<123 123\ - (/123\132\ _ (123
132/\231 132/\213 213
and QP:<123 123\ _ /123\231\ _ /(123
231182 231/\821 321

As this example clearly shows, permutations are not always commutative, but
they are obviously associative, as can be readily verified by definition itself (cf.
Prob. 9). Note, however, that the composite (or product) of transformations, e.g.

ST (or RST), defined by Df.2.2.2.5 and Df.3.1.2.1, must be written as TS (or TSR)
in case transformations are redefined as permutations by Df.3.1.2.3.
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Df.3.1.24 A permutation of degree n which does not affect the product of any number
of permutations of the same degree is the identity permutation, denoted by I, which
obviously has the following general form:

;- <a1 a ... an>
a az ... Qp
by which PI =IP =P for any permutation P of degree n.

Example:
_ /4132 1234

I 1 = P =
<4132> and (4321)’ then,

pr = (1284Ya132\_ 12384\ _ p _ (4132\ 1234\ _
432104132 4321 1132 4321

Df.3.1.25 Iff PQ = QP =1, then Q is the inverse permutation of P, denoted by P1.
Inverse transformations in general have the following characteristics:

Th. 3.1.2.6

ar az ... Qn by ba ... ba
: L= : -1 — .
(l) If P-= <b1 by ... bn> ’ then unlquely P - <a1 az ... an> ’

(i) (P77 =Py
(iii) (PQ)~' = Q'P~'. (Cf. Prob.10; also Prob. 14).

Th.3.1.2.7 The set P, of all permutations on a set S of » elements forms a group of
order n! (cf. Prob. 11).

Df.3.1.2.8 The group P, of Th.8.1.2.7 is called the symmetric permutation (or substitu-
tion) group of order n! (or degree n), or simply the symmetric group of order n!,
sometimes denoted by S, instead of P.,.

Df.3.1.29 The group P, may yield subgroups (cf. Df.3.1.1.11), which are called permu-
tation groups (or groups of permutations). P. being a subgroup of itself, it is also
a permutation group.
Example:

If a set S on which permutations operate has only 3 elements, say, a,b,c, then the (symmetric)
permutation group P, is of degree 3 and order 3! =6; i.e. the group-forming set P, has 6 elements,

viz.,
— [a b c _ a b c — abc
I = <abc>’ 4 = <acb>’ B <bac>’
a b c — a b c _ abc
(bca)’ b = <cab>’ B o= <cba>’

out of which I,C,and D, for instance, forms a subgroup of P,, viz. a permutation group of degree 3
and order 3, as can be readily proved (cf. Prob. 6).

c

Df.3.1.2.10 A permutation P on a set S of n distinct elements a1,as,. . .,a, is a cycle (or
circular permutation) of degree (or length) m if S has a subset S; whose m distinct
elements by,bs,. . .,bm, are cyclically interchanged, i.e. bi=> b2, b2=>bs, ..., bn—>b;, and
a:i—>a; for any a;¢ S.
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P =

a az ds ... @ az Givy ... On

Example:
<a1 dz Q3 ... Qi1 @ Qi+y ... an>

It is customary, however, that cycles have a contracted form, viz.,
P = (a1)(az0s...a)(@+1) ... (Qn)

where a cycle consisting of a single element indicates that the element remains un-
altered in the new arrangement; such cycles are often entirely omitted, further ab-
breviating the contracted form, viz.,

P = (agas..‘ai) (: (a3...ai(12) = ... = (aiaz...ai_l))

Df.3.1.211 Two or more cycles which have no element in common are called (mutually)
disjoint (Cf. Prob. 16).

Th.3.1.2.12 Every permutation can be changed into a product of disjoint cycles. (Cf.
Prob. 17.)

Df.3.1.213 In particular, if m =1 in Df.3.1.1.10, i.e. a; > a; for any a;¢S: (and, as before,
ai»a; for any ai¢#Si), then P = (a:)(a2)---(a») is the identity permutation I itself,
denoted by (1) in this context; if m =2, then a cycle is called a transposition.

Th.3.1.2.14 Every cycle can be expressed as a product of transpositions in infinitely
many ways. (Cf. Prob. 18.)

Th.3.1.2.15 Every permutation can be expressed as a product of transpositions in in-
finitely many ways. (Cf. Prob. 19.)

Df.3.1.2.16 A permutation is called even if it can be rewritten as a product of an even
number of transpositions; otherwise it is called odd.

Th.3.1.2.17 A permutation cannot be both even and odd. (Cf. Prob. 20.)

Df.3.12.18 A complex A. of even permutations of the symmetric group S, forms a
subgroup of S., called the alternating (sub)group of Sn.

Example:
Sz = {(1), (12)} has 4. = {(1)}, and Ss = {(1), (12), (13), (23), (123), (132)} has 4; = {(1), (123), (132)}.

Likewise S: has 4. = {(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}.

Th.3.1.2.19  Of the n! permutations of S, A. consists of n!/2 permutations. (Cf. Prob. 21.)
* * * * *

In the following pages, to clarify and simplify the process of discovering and
examining groups, the so-called multiplication table (or Cayley table) will be employed;
it is a table with a double entry:

al as . e a],
ar § i1 Qa2 s Ay
a2 | Q21 Q22 s Qe
Qa; Qi1 Qi2 te Qij

where a; = a:qa;.
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Example:

A Boolean algebra B (cf. Df. 2.4.2.1), formed by the subsets of I = {a,b}, may be schematized by the

following multiplication table, where x = {a}, y = {b} {and consequently, ' =y, y' =, I’ = 0, 0'=I:

LO ©

v I 0 x v 1 A
0 0 x Y 1 o
x x x I I x
y Yy I Y I v
I I I I I I

Solved Problems

€ @ O O
~® 8 O~

o
0
0
0

2 O 8 O

1. Suppose an owner of a car without a spare tire rotated the tires according to the

following patterns:

Rotation 0 Rotation 1 Rotation 2 Rotation 3
F.L. F.R. F.L.ZZF.R. F.L. F.R. F.L. F.R.
R.L. R.R. R.L.==R.R. R.L. R.R. R.L. R.R.

Show that the rotations form an Abelian group.

PROOF:

The arithmetic of rotating tires is given by the multipli-
cation table at right, where the properties of G1-5 can be
quite easily checked.

For example, if xRy represents the binary operation of
the first rotation x being followed by the second rotation y, then
1R2 =3, 3R2 =0, ete., which reveals the closure property (G1).
Again, e.g. 1R(2R3) = (1R2)R3 =1, etec., affirming the associ-
ativity (G2). Since 0R1 =1R0 =1, etc., rotation 0 is obviously
the identity (G3). Also 0°'=0,171=1, 2-1=38, 3-1=2, pro-
viding inverses (G4) for all rotations of tires. Furthermore,
e.g. 1R2=2R1, 2R3 = 3R2, etc., exemplifying G5.

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 1 0
3 3 2 0 1

Given the right-hand orthogonal coordinate system (cf. Fig. 3.1.2a), let a,b,c be the
clockwise rotations through 180° about X,Y,Z axes respectively, and ¢ be the original

position; then e,a,b,c forms an Abelian group.

zZ

Fig.3.1.2¢

e a b c
e e @ b [
a a e c b
b b c e a
c c b a e
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PROOF:

This set of rotations is characterized by the multiplication table above, which does reveal all of
G1-5, when studied as in Prob. 1. The multiplication table, incidentally, reveals a distinguished group,
known as the (Klein’s) four group or Vierergruppe, often denoted by Vi (cf. Prob. 12 below and §3.1.3,
Prob. 12).

Let an ordered pair of real numbers, (z,y), 1-1 correspond to a point in the plane. If
the point (2,y) is moved horizontally by @ units and vertically by b units, it then attains
the new position (z-+a,y+b), or simply {a,b}, braces denoting such translations in the
plane. Now, if the translation {a,b} is followed by another {c,d}, then the total trans-
lation is {a+c,b+d}. Prove that such translations form an Abelian group, called the
group of tramslations.
PROOF:

Let T represent the binary operation of translation; then
Gl: {a, b} T{c,d} = {ate¢,bt+d}.
G2: ({a,b) T{c,d}) T {e,f} = {atc,b+d}T{e,f} = {atcte, b+d+f}
{at+(cte), b+(d+f)} = {a, b} T {cte,d+f} = {a,b} T ({c,d} T {e, f}).

Il

G3: {a, b} T{0,0} = {a,b}.
G4: {a,b}T{—a,—b} = {0,0}.
G5: {a,b}T{c,d} = {ate,b+d} = {ct+a,b+d} = {c,d} T {a,b}.

Hence the translation forms an Abelian group.

The rigid motions of an equilateral triangle (cf. Fig. 3.1.2b) entail two sets of sym-
metries: (i) rotational symmetries So,S1,S:, representing the clockwise rotations through
0° (or 360°), 120°, 240° respectively, and (ii) reflective symmetries Ss,S4,Ss, repre-
senting the reflections in the axes AD,BE,CF respectively. Prove that these sym-
metries altogether form a group.

PROOF:

So Sq S: S S Ss

So Se S S S S4 Ss
Sy S Se So Ss Ss S4
S S So S S Ss Ss
Ss Sa Sa Ss So S S:

S. S Ss Ss S: Se S

Fig.3.1.2b Ss Ss Ss S S1 Sz So

The multiplication table above does provide all of G1-4 for the set of the rigid motions, which
therefore form a group, completing the proof.

Note that, as can be immediately observed, the set of rotational symmetries, itself a group, forms
a subgroup of the original group; the latter is not Abelian, but the former is.

Repeat the algebra of symmetry, as above in Prob. 4, for the rigid motions of a square,
which form a group, called the dihedral group (of the square), and denoted sometimes
by Di. (In general, the dihedral group D. is the group of all symmetries of a regular
polygon of n sides.)
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PROOF:

Let 0,1,2,3 be the clockwise rotations through 0°,90°,180°,270° respectively and 4,5,6,7 be
the reflections in the axes EG,FH,AC, BD (cf. Fig. 3.1.2c) respectively; then, by the following multi-
plication table, G1-4 can be readily checked.

D G C 0 1 2 3 4 5 6 7

\\ I: //
. . L 0Jo 1 2 3 4 5 ¢ 7

AN | /
NS 1 1 2 3 0 7 6 4 5
\\ | //
Hb—o_ > W] F 212 38 0o 1 5 4 7 @
VAR TN
e i N 3138 0o 1 2 6 7 5 4
S AN 4 14 6 5 7 o0 2 1 3
7

S/ ! R 5|5 7 4 6 2 o 3 1
A E B 6 |6 5 7 4 3 1 o 2
Fig.3.1.2¢ T|l7T 4 6 5 1 3 2 9

Note that here, too, is a subgroup, viz. the set of rotational symmetries, which forms an Abelian
group. Note, however, that the subset {0,1,2, 3} is not the only subgroup of the original group; as a
matter of fact, there are eight more, viz. {0,2,4,5}, {0,2,6,7}, {0, 2}, {0,4}, {0,5}, {0,6}, {0,7}, {0},
which may be schematized as follows:

{0,1,2,3,4,5,6,7}
|

{0, 2! 4,5} {0, 1', 2,3} {Pz, 6,7)
{0,4) {05} {0,2} 0,6}  {0,7}
L | { | |
{0}

Similar schemata may be obtained without difficulty for the preceding problems.

Rewrite the transformations (i.e. rotations and reflections) of Prob. 4-5 in terms of
permutations and cycles.
Solution:

()

Let 1,2, 3 represent the vertices of the equilateral triangle; then their transformations are

_ /123\ _ _ 123\ _ 123\ _
S = <1 2 3> = @, S = (2 2 1> = (123), S. <3 : 2> = (132)
S = <i g g) = (23), Si = G g i‘) = (13), S5 = (; ? g) = 12

(ii) Let the vertices of the square A,B,C,D be represented by a, b, ¢, d; then their transformations
through symmetries are:

0o = (¢

a

— [ a

3_<d
6

bcecd abed
= 1), 1 =

bcd> 1) <bcda>

bed abcecd
= deb 4 =

abc> (adeb), <badc

(ac),

7

(

abcecd
adcecbd

)

_ abed
(abed), 2 = <c da b>
_ _ abc
= (ab)ed), 5 = <d ¢ b
= (bd)

:)

(ac)(bd) .

(ad)(be),
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7.

10.

Express the group of a regular hexagon in terms of a group of permutations of its
vertices.
Solution:

Let So, S1, Sz, Ss,S4,Ss be the symmetries of rotation through 0°, 60°,120°,180°,240°,300°, and
S, S7, Ss, Ss, Sto, S11 represent the symmetries of reflection (cf. Fig. 3.1.2d); then

Se = (1) (or (1)(2)(3)(4)(5)(6))

S: = (123456) S. = (153)(264)
S: = (14)(25)(36) S, = (135)(246)
S; = (654321)

Ss = (16)(25)(34) S: = (1)(4)(26)(35)
Ss = (12)(36)(45) Se = (2)(5)(13)(46)
S = (14)(23)(56) Si = (3)(6)(15)(24)

By completing a multiplication table it can be verified with-
out difficulty that the set of the twelve symmetries actually forms
a group (cf. Prob.12).

Fig. 3.1.2d

Given a regular tetrahedron (cf. Fig. 8.1.2e), find all the symmetries which form a
group of rotations. A
Solution:

Since the regular tetrahedron has 4 vertices, there exist
4! = 24 permutations (i.e. all possible rotations, cf. Supplementary

Prob. 3.1) but only the following twelve rotations form a group: D
(1), (ABC), (BDC), (ACB), (AC)(BD), (ADC), (BCD), B
(AB)Y(CD), (ABD), (ACD), (ADB), (ADXBC)
as can be readily checked by a multiplication table. c
Fig. 3.1.2¢
Verify the associative law for permutations.
PROOF:
L P — ay az ... QGn P — bi b: ... ba P — Ci C2 ... Cn , h
et ! <blb2...b'n ’ : €1 €C ... Cn ’ : dle...du where
Bibs...bu €1C2... Cn, dids ... ds are merely different arrangements of the same = elements
a1 a2 ... @ then
P.P — a; Az ... Qn d P,P — blbz...b"
e <C102...Cn an e dids ... da
H P.P.,\P — ar dz ... an €1 €2 ... Cn — a dz ... Qn R
ence (BiP2)Ps <c1c2...cn dids ... dn dids ... dn
and likewise P (P.P3) = <gi ;: " Z)

Thus (PxPz)Pa = P1(P2P3).

Prove Th.3.1.2.6.
PROOF:
(i) It is sufficient, since

PP = <tl1 a ... an by bz ... bx — a az ... On - 7
br b ... bn ar @z ... Qn Qi az ... Qa

PP = bi b2 ... ba a1 az ... Qn\ __ by b2 ... ba = 7
a az ... Qn by b ... ba - by bs ... b.
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Conversely, it is necessary; for, if PP~'= PR and P-! # R, then, by Df.3.1.2.5, P-'PP~!= P-!PR,
i.e. IP"'=1IR, i.e. P~'=R, which is a contradiction. Hence it must be the case that R =P~ Also,
if P7'P =RP, then likewise R =P-. Hence P-! is unique.

@) By (i), Py = by b2 ... ba _1: @ G ... 4\ _ p
’ a az ... Qan by b2 ... bn

(ii) By Problem 9, (PQ)Q™'P™") =P(QQ )P '=PIP~*=PP~' =], Likewise, (@T'PINPQ) = I
Hence, by Df.3.1.2.5, (PQ)"' = Q~'P—1,

Prove Th.3.1.2.7.

PROOF:
Gl: P,Qe P, implies PQ¢e P., by Df. 3.1.2.3.
G2: P,Q,ReP. implies P(QR) = (PQ)R, by Prob. 9.
G3: PI=1IP =P, [¢P., by Df.3.1.2.5.
G4: PP~ '=P~'P =1, by Prob. 10(i).
Hence the set P, forms a group, satisfying all of G1-4.

Prove that the following cycles form a group under Co Ci C: s
permutation: Glo o o o

(1), (12)(34), (13)(24), (14)(28) Gl 6 G oG

PROOF:
C C
Let (1) = Co, (12)(34) = Ci, (13)(24) = Cs, (14)(23) = Cs. Cs ’ GG
Then their products yield the multiplication table of a group, Cs Cs C. C, Co

which also satisfies G5; i.e. it is Abelian.

Find a group of permutations on a set {1,2,3,4} for which a mapping
(@, @2, @3, 24) = X122 + 2324

remains invariant.

Solution:

1234
abed

Now, if the mapping is to remain unvaried under the permutation, i.e. =f = f, then it must be
the case that, e.g. (i) watto = #1202, Tettq = Xsta, (i) Xa®s = X3, Xe2a = %122, ete. Such permutations are

1), (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)

Let 7 be the operator of the prescribed permutations; i.e. 7 = < > implies 7f = xaws + xc2a.

which form a group, as can be verified without difficulty (cf. Prob. 12 above).

Prove (@1as...an) ™' = (an... a» ay).
PROOF:
Since
(m az ... a'n)(an... az lll) = au 2 oo Gn-t On n cee G2 O
Az Az ... Aa a; An-1 ... A1 An

— ar Qz ... OQn-1 Qn dz A3 ..., Qn ay\ __ ap Az ... Op-1 Qn
Az Q3 ... On (221 ar Q2 ... Qe-1 @ ay Qs ... OQn-1 Qn
=

and likewise (ax ... a2 ai)(a; a» . . . @-) = (1), then by Df.3.1.2.5, (a1 as ... @)t = (Cn .. @2 @),



Sec. 3.1.2] FINITE GROUPS — GROUPS OF PERMUTATIONS 81
15. Prove: (i) (@12 ... a)(0: G2)(@r ... G2 @1) = (@1 0x)
(i) (@1 @2 ... @)@ Gn+1) = (@102 ... An Unt1)
PROOF:
D o awae way = (oo e e )
a a2z ... QUn
- <a_n a ... a1> = (o a)
i @y = (G ) )
R ay Az ... On An+1 .
- Az @3 ... Gn+1 Ot = (a1 @ G s
16. Verify (i) (123)(45) = (45)(128) and (ii) (123)(23) = (23)(123); then generalize, i.e.
prove that PQ = QP if P and @ are disjoint cycles.
PROOF:
@) (123)45) = <1 234 5><1 234 5> - <1 234 5> _ <4 512 3> ~ (45)(123).
23145/\12354 23154 54231
is 1 23yv123 123
12 = = =
(i) (123)(23) (2 3 1><1 3 2> <3 2 1> (13),
1 23Vy1 23 12 3\ _ —
23)(1 = = = (12) # (18) = (123)(23).
(28)(123) <132><231> (213> (12) # (13) = (123)(29)
In general, therefore, PQ = QP if P and Q are disjoint, since the elements permuted by P are
left unchanged by @ and also the elements permuted by @ remain the same under P.
17. Prove Th.3.1.2.12.

PROOF:

Let P = aL qz ... Qi ... Ak ... An
bibs ... bi ... bx ... ba ’

(i) If the elements in the first row of P are all completely different from the elements in the second
row of P, it is then obviously the case that P = (a1 b1)...(a: b)...(axb,), proving the theorem.

(if) If the first row has some elements in common with the second row, and if bi;s= a:, then b, may be
found in the first row of P. Suppose b, = a;, then b1+ b;, since b; cannot occur twice in the
second row (i.e. all elements in each row are distinct, by Df.3.1.2.2). Now, if bi= a1, then the
eycle (a1 by) is closed.

If ;5 a1, then b; may be found in the first row of P, and suppose b: = ax; then by is different
from b: and b:.. Now, if bx = a1, then the cycle (a: b: b;) is closed.
If bi = a., then the process can be continued until, after at most = steps, the cycle closes.
If the first cycle thus obtained does not involve all the elements of P, then take b, as any other
element in the first row of P and, repeating the process prescribed as above, another cycle can be

obtained. If the process is reiterated until the elements of P are exhausted, P is then expressed as a
product of disjoint cycles, establishing the theorem in general.

Note. In particular, the identity permutation on = elements is expressed as (1) or m cycles each
of which has length 1, viz. (a:)(a2)...(ax). (Cf. Df.3.1.2.13.)

How readily the process works and simplifies the matter has already been tested by Prob. 6, ete.
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18.

19.

20.
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Verify (i) (ab)(ac) = (abe) and (ii) (ab)(ac)(ad) = (abed), then generalize: (@1az. . .ay) =
(@1 @z)(@1 @s). - (a1 @), which in essence is Th.3.1.2.14.

PROOF:

s _ abcNabe\_ [fabe _
@ (ab)ac) = <bac><cba>_<bca> = f{abd)

;s _ abecd\abecd\fabed\ _ fabecd _
@) (ab)ac)(ad) = <bacd><cbad><dbca> - <bcda> = (abed)

In general, if (a: a:)(a1 as)...(arax) = (a1 az ... ax), then
(@1 @2)(a1 as). . (@1 ax+1) = ((@1 @2)(@: as). . . (a1 ax)){a: Qk+1)
= (al az ... ak)(al a/k+1) = (al az ... ak+1)

by Prob.15(ii). Hence (aias ... a.) = (a1 a2)(a1 as). .. (a1 a.).

Furthermore, since it is evidently the case that (a: a)(a; @) = (a; a)(ai a;) = (a: ay)(a: @) = (1), any
number, infinitely many if desired, of such transpositions may be multiplied to the original product,
proving Th. 3.1.2.14.

Prove Th. 3.1.2.15.

PROOF:

Since every permutation can be changed into a product of disjoint cycles, by Th. 3.1.2.12, and the
cycles in general can be changed into a product of transpositions in infinitely many ways, by Th. 3.1.2.14,
every permutation can be changed into a product of transpositions in infinitely many ways, proving
Th. 3.1.2.15.

For example: (1234) = (12)(13)(14) = (12)(14)(23) = (14)(24)(34) = (12)(13)(24)(34)(34) = . ...

Prove Th.3.1.2.17.

PROOF:
Let 7P be the homogeneous polynomial obtained by the operator = (cf. Prob. 13) of permuting the
independent variables @i, xs, ..., . in a product of differences defined as follows:
n
P = H (zi - xj) = (x1 — X2)(%1 — xa)(xl —x4)... (xl - xn'—l)(xl - xn)
i<j=1

(x2 — 903)(902 —X4). .. (22 — Tn—1)(oz — a)

(Xn—2— Tn=1)(Tn—2 — %)
(x,.—; - x,.)
(E.g., for n =38, P = (21— x2)(x1 — @s)(2s — 25), and if 7= (123), then 7P = (w; — wa)(w2 — 21)(d6a — &1).)

With respect to a transposition (a, @) in #P, all the factors of =P are then divided into the
following four types:

i)  (ar—as)

(ii) (@i — ar)(a;i — as), i =12 ...,r1

(iii)  (ar — a;)(as — a;), J = st+l,s+2,...,n
(iv)  (ar— ar)(ax — as), k= r+l,r4+2,...,5—1

As can be readily observed, the transposition (a. a;) changes the sign of (i), but the signs of
(ii), (iii), (iv) remain unaffected. Hence (ar as) changes =P into —zP.

In general, if = can be factored into an even number of transpositions, the sign of P remains
the same, and if = can be factored into an odd number of transpositions, 7P becomes —zP. These
alternatives are mutually exclusive, completing the proof.

In particular, the identity permutation is considered even, since

1) = (12)(12) = ... = (an @)t an)
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21. Prove Th.3.1.2.19.

PROOF:

Let P, of order n! consist of r even permutations p1, ps, ..., P and s odd permutations q1,¢z, ..., ¢s
(and nothing else, i.e. 7+s = n!, cf. Th.3.1.2.17). Now multiply p:, ps, ..., P, by a transposition ¢,
ie. tp,tps, ...,tp,, which are r odd permutations and all distinct, since if, e.g., tp:=tp;, then
pi= (t7')pi =t~ (tp)) = t " (tp) = (¢ 't)p; = p;, contrary to the assumption. Hence the odd permutations
of the form tpx, k=1,2,...,7, must be all distinct and consequently s = 7. )

Likewise, multiplying g¢i, g2, ..., qs by ¢, which now produces s distinct even permutations, r = s.

Hence r =s, and since r-+s = n!, it follows that » =s =n!/2.

$3.1.3 Homomorphism and Isomorphism

Th.3.1.3.1 Given an (X,*; Y 0)-homomorphism f of a set X onto or into a set Y, ie. f(a*xb) =
f@)of(b) for all a,beX (cf. Df.2.2.2.9), it follows that

(1) o is associative if * is associative,
(ii) o is commutative if * is commutative, and

(iii) eeX, which is an identity under *, corresponds to an identity under o, f(e)eY.
(Cf. Prob.1).

These properties belong to the homomorphism in general of one set onto the
other. The corresponding sets in this context may be replaced by a pair of cor-
responding groups through the following definition and theorem.

Df.3.1.32 A homomorphism of a group G onto or into a group G’ is a transformation
H of G onto or into all of G’ such that, for all x,y¢G,
H(xy) = H@x)H(y) = v
for all &,y eG’. G’ =H(G) itself is called here a homomorph (i.e. homomorphic
image) of G.

Note that the operator which operates on # and y may be different from the
operator which operates on 2’ and ¥’ (cf. Prob. 4). Note, also, that the correspondence
in a homomorphism may be many-one (cf. Prob. 5-8).

Th.3.1.3.3 If, in addition to (i)-(iii) in Th.3.1.3.1, there exists
(iv) f(e~')eY such that f(a)of(a™") = fle), corresponding to a~!'e X such that
axa ! =g,
then it is an (X,*; Y ,c)-homomorphism f of a group X onto or into a group Y. (Cf.
Prob. 2.)

And conversely, as in the following theorem:

Th.3.1.34 If X is a group under #*, and if f is an (X,*; Y ,0)-homomorphism of X onto or
into Y, then Y is a group under o. (Cf. Prob. 3.)
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Th.3.1.3.5 The relation of homomorphism is transitive (cf. Df.2.1.1.12); ie. if G is
homomorphic to G’ which in turn is homomorphic to G/, then G is homomorphic to
G”. (Cf. Prob. 4.)

Df.3.1.3.6 If a (G,*;G’,0)-homomorphism of G onto or into all of ¢’ is one-one, it is then
a (G,*; G’ 0)-isomorphism of G into (or more precisely, onto and into) G’.

Stated otherwise: If there exists a 1-1 transformation J of a group G into a
group G’ such that

(i) there exists a unique correspondent f(x)e G’ for every xe(, and
(ii) there exists a unique correspondent xe G for which f(x)e &,

then the 1-1 correspondence is an isomorphism between G and G’.

Notationally, the isomorphism may be eagily distinguished from the homomorphism
by the use of two-way, against one-way, arrows, since there does exist a two-way
traffic in isomorphisms while such a traffic, by definition, is not always assured for
homomorphisms. As such, Df.3.1.8.2 and Df.3.1.3.6 may be put together as follows:

A homomorphism of G onto or into G’ is a mapping G- G’ such that z—>2’ and
y=>y imply (xy) - 2’y for all 2,y G, and an isomorphism of G onto and into G’ is a
one-one mapping G < G’ such that r <2’ and yoy’ imply Y >y,

Th.3.1.3.7 The relation of isomorphism is reflexive, symmetric, and transitive (cf.
Df.2.1.1.12 and Th.3.1.3.5). (Cf. Prob. 9 below.)

This relation obviously does not hold for a homomorphism of G onto or into G’
where the elements of G’ may satisfy additional properties which cannot be found in G.
The following theorem of isomorphisms, however, is similar to Th.3.1.8.4 of homo-
morphisms.

Th.3.138 If G’ is a set closed with respect to o, and if there exists a (G,*;G’ 0)-iso-
morphism between G, a group under *, and G’, then G’ is a group under o. (Cf.
Prob. 10.)

This theorem may be employed to prove an unidentified structure to be a group.
Also, as in Th.3.1.8.4, it has a converse form:

Th.3.1.3.9 If there exists an isomorphism between G and G’, then the identities of G
and G’ correspond and the inverses of corresponding elements in G and G’ cor-
respond. (Cf. Prob. 10.)

The importance of the concept of isomorphism is embodied, for instance, in the
following theorem (by Cayley), which also may be interpreted as assuring the com-
pleteness of G1-4 with respect to transformations, i.e. permutations.

Th.3.1.3.10 (by Cayley). There exists an isomorphism between any abstract group G of
order n and a suitable group of permutations P, of degree n (i.e. order n!) (Cf.
Prob. 18.))

In general, then, the properties of any finite abstract group G will be immediately
found by examining the properties of a permutation group P which is isomorphic to
G; this is an explicit advantage, since many properties of permutation groups are
readily available through detailed studies in the past.
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Solved Problems

Prove Th.3.1.3.1.
PROOF:

If a,b,ce X, then, by Df.2.2.29, a- f(a), b > f(b), ¢~ f(c), where f(a),f(b),f(c)eY. Using the
same definition and the given hypotheses,

) flax(bxe)) = fla)ofbxc) = fla)o (f(b)of(c)), and f((a * b) * ¢) = f(a *b) © f(c) = (f(a) © f(b)) ° f(c).
But, since a*(b*¢) = (a*b)*¢, it directly follows that f(a*(d*c)) = f({a*b) *¢), and conse-
quently that f(a) o (f(b) o f(e)) = (f(a) f(b))  f(c).

(ii) can be proved likewise.

(ili) Since a*e —e*a = a for all ae X, fla*xe) = flexa) = f(a), i.e. fla)of(e) = f(e)ofla) = f(a).
But a— f(a) and a e X implies f(a) e Y; hence f(e)eY, which then is the identity of Y under o.

Prove Th. 3.1.3.3.

PROOF:

Gl: By Df.2.2.2.9, a*be X does imply f(a)of(b)e Y.
G2-3: Proved by Prob. 1(i), (iii).

G4: Given here as a hypothesis.

Hence, satisfying G1-4, both X and Y are groups and the homomorphism is of one group onto
or into the other.

Prove Th.3.1.3.4.
PROOF:

Since X is already a group under *, there exists a !¢ X for all ae X such that a*xa ' =a " '*a = e,
where ee X. And, by the prescribed homomorphism, f(a)° f(a™!) = f(a™") o f(a) = f(e), where f(e) is
the identity of Y, for all f(a)e Y. Hence the inverse in Y of f(a) does exist, which is f(a™?), providing
G4 for the given set Y.

Since Y has already satisfied G1-3 through Df.2.2.2.9 and Th.3.1.3.1, it is now proved to be a
group under o,

Prove Th.3.1.3.5.
PROOF:

If G,G’,G"” are all groups, it then follows, directly from Th.3.1.3.4, that G- G’ and G' = G"”
imply G—->G".

In general, let S be the homomorphism of G onto or into G’, and T the homomorphism of G’ onto
or into G”. Then, by S, aeG—>a'eG@ and beG—->b'eG imply abeG—> a'd’eG’, and by T,
aeG->a’eG’ and b eG —a"eG’ imply a'b’eG -~ a''b"’eG’. Hence, by S and T, aeG~—
a’eG"’ and beG- b’ G’ imply abeG— a’b”eG”, i.e. there exists a homomorphism of G onto
or into G".

Let I be the additive group of all integers; then a mapping f, defined by f(n)=2n,
is a homomorphism of 7, into I: under addition.
PROOF:
By hypothesis, #n: = f(ni) =2n: and m. — f(n:) =2n.,, which together imply, by hypothesis,
ntme 2 fiu A+ me) = 2m A+ ) = 20+ 2me = f(m) + fn)

proving that f is a homomorphism of I, into I+ under addition.

Verify that a set S={1,—1} forms a multiplicative group; then prove that there exists
a homomorphism of P,, the symmetric group of degree », onto S.
PROOF':

S does form a group under multiplication, as can be immediately verified by the multiplication
table shown below.
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Prob. 20); then #P. =1 if P. is an even permutation, and #P.=—1
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Now, let = be the operator defined by Th. 3.1.2.17 (cf. §3.1.2, % 1 -1

if P, is an odd permutation. Also zP=1-1 and «P=—1 - —1;

thus (zP =1)zP =-1)= (zP =—1) > (1)(—~1) =—1, which is ob- 1 1 -1
viously a many-one correspondence. Hence » is a homomorphism
of P. onto S, both under multiplication. —1 -1 1

Verify that the set E of the four roots of #t—1 =0, ie. E = {1,-1,7,—1}, forms a
multiplicative group, then prove that a transformation 7, T(n) = 1", is a homomorphism
of I+ (cf. Prob. 5 above) under addition onto E under multiplication.

PROOF:
E is a multiplicative group, as can be proved by the multi- X 1 -1 i —1
plication table at right, and I+ is an additive group. Since, by
hypothesis, p - T(p) =% and q - T(q)=1 for all pagels, it 1 1 -1 1 —1
foll th R
ollows that -1 . 1 i i
ptq » Tptq = i**1 = ri0 = T(p)T(g)
i ) —1 -1 1
which definitely is a many-one correspondence, proving that T is a
homomorphism of I+ under addition onto E under multiplication. -1 —1 7 1 -1

Let S = {S0,51,8z,...,811} be the group of a regular hexagon obtained by six rotations
and six reflections (cf. §3.1.2, Prob. 7 and Fig. 3.1.2d) and R = {Ry,R1,R:} be a set
of axes, Ro,R1,R» representing AD,BE,CF respectively, in which vertices are reflected.
Find a homomorphism with respect to B and S.

Solution:

Let (Ro R)), for instance, represent the permutation of vertices by reflecting in Ro, then in Ry;

S is then expressed in terms of the permutation of R as follows:

So - (€8} S — (RORI)
Si = (RoR:R») S: - (B:R»)
Sz = (RoRle) S — (RoRle)(R1R2) = (ROR2)
Ss - (1) Sy — (RoRy)
S — (ROR1R2) NI (Rle)
Ss = (RoR:Ry) Suu = (RoR:R\)(R\R:) = (RoR:)

i.e. there are six two-one correspondences, viz.,

So, Sz = (1) S1,Ss = (RBoR(R2)
S:, Se — (RoRle) Se, Su — (RORI)
S7, S0 = (R1Rs) Ss, S = (RoRz)

Moreover, e.g. S1Ss=S8s > (RoR(R:)(RoR1R;) = (RoR:Ry), as prescribed by hypothesis; this proves

a homomorphism of S onto R, both under permutation.

Prove Th.8.1.8.7.
PROOF:

(i)

(if)

(iii)

It follows, directly from Df.3.1.3.6, that G <> G, since ac G« aeG and beG <> be @ imply
abeG <> abe G, ie. G G. Likewise G < G’ and G’ < G'.

Since aeG e, beGe b @, and abe G © a'b e G’ imply a'eG' < aeG, b'eG <>
beG, and a'b’e G’ <> abe G, it immediately follows that G < G’ implies G’ <> G. Likewise
G’ <> G" implies G” <> G’, and G” © G implies G« G".

aeGea’'eG and a'eG < a”’¢ G’ imply, by Df.2.1.1.12, that ae G < o' = G". Likewise
beGo b e@ and b'eG © b”"eG” imply beG <> b G”. Hence, by Df.3.1.35, a:G &
a’eG"’ and be G > b" G’ imply abeG < o'V G, ie. GG,

Isomorphism is thus reflexive, symmetric, and transitive.



Sec. 3.1.8] FINITE GROUPS — HOMOMORPHISM AND ISOMORPHISM 87

10.

11.

12.

13.

14.

15.

Prove Th.3.1.3.9.

PROOF:

(i) aeGe adeG and ecG < ¢ ¢G' imply, by Th.3.1.3.7, that aeeG < a’¢’'e G’ and eac G <>
ea’'eG’. But ae=a and eea=a in G. Hence a’'¢’=a' and ¢'a’ =a’ in G’, proving that ¢’ is
the identity element of G'.

(i) aeGea' G and a 'eG <> a' 'eG@ imply that e '=a'aceG < d'a’"'=a’"'a’ ¢ G, which
in turn implies aa"'=a"'a=ee G < a'a’"'=a’"'a’=¢ e G'. Hence a’"! is the inverse of o’ in G'.

Find an isomorphism between the group E of four roots (cf. Prob. 7 above) and the
group T of tire rotations (cf. §3.1.2, Prob. 1).
Solution:

Observe the four 1-1 correspondences between E and T: 10, —1<1, i< 2, —i<> 3. Also, in
general, if x,ye E and x,y'e T, then x <>z’ and y <y’ imply xy <> 2'y’. E and T are thus isomorphiec.

Find a group R of symmetries of the rectangle (cf. Fig. 3.1.8a below); then establish
an isomorphism between R and the four group V..
Solution:

Since a 180° rotation yields a transformation B of the
vertices 1,2,3,4: B =(13)(24), and since there are two reflective 1
symmetries: C = (12)(34) and D = (14)(23), R does have four ele-
ments: A, B,C,D, where A is the identity transformation. E also -4 e | _

I
|
|
T

forms an Abelian group, as can be easily verified by a multipli-
cation table (cf. §3.1.2, Prob. 12) where, in comparison with the
multiplication table of V., the following four 1-1 correspondences 2 D 3
can be observed: A<>¢, B q, C<>b, D<>¢. Hence R and V.,

are isomorphiec. Fig.3.1.3a

Prove that the additive group A of all real numbers is isomorphic to the multiplicative
group M of all positive real numbers, excluding 0.
PROOF:

Since 10¢=10° iff «a = b, where a,be A, and since 10 aeA, has the unique inverse logi 10°,
there follow aeAd < 10°eM and beA < 10°e M which together imply (a+b)ed < 10¢°=
(10°)(10°) e M. Hence there exists an isomorphism between A under addition and M under multiplication.

There exists an isomorphism between the transformation group S of an equilateral
triangle with respect to symmetries (cf. §3.1.2, Prob. 4) and the permutation group P
of degree 3.

PROOF:

P is of order 3! =6 and has thus 6 elements: (1),(12),(13),(23),(123),(132), which are put into
1-1 correspondence with the six members of S as follows (ef. §3.1.2, Prob. 6):

DeS, (12)eS; (13)e8;, ((23)eS; (123)<8;, (132)«e S,

Hence S is isomorphic to P.

Generalize Prob. 14, i.e. prove that any rotational group R of a regular polygon (or
polyhedron) is isomorphic to a suitable permutation group P.
PROOF:

Let the vertices of the regular polygon in general be ai, as, ...,a., which are first mapped onto
as, as, ...,a: by a rotation through 360°/n. Represent the first transformation R, by a permutation P,
ViZ., ay = Pl((lm), Az — Pl((ll), ey On— P(an—l), i.e.,
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Rl Py =@ ... o)), and likewise
az A3 ... A1
R, & Py = (81082 ... 0n} and in general
as A4 ... A2
R, © P, = a  dz vee On
13 K 2
Ai+1 Oi+2 ... A;

And, as usual, let the rotation through 0° be

Ry, & P, :<a1 az ... an>

a: Az ... Un

Then, since it obviously holds that RiR:<> PP, or in general R:R;., <> P,P;;,, and since the set
R ={Ro,Ry,...,Re-1} forms a group, it follows from Th. 3.1.3.8 that the set P = {Py,P1,. .., Pn-1}, which
is isomorphic to R, also forms a group.

16. If a group G has a multiplicative rule: a>=b3=e and ab=0b%a for every a,be(,
then G is isomorphic to Sa.

PROOF:

Since e,a,b,b?, b%a =ab are evidently distinct and ab? = b%ab = b%b%q = b%ba = ba, G is of degree 3
(e, a,b) and of order 6, which corresponds to the degree and order of Sa. Moreover, there exist three
basic 1-1 correspondences:

e (1), a<(12), b <> (123)
which yield three other distinct 1-1 correspondences with respect to Ss:
ab < (13), ba < (23), b <> (132)

completing the proof.

17. Verify that the four group Vi, or any (abstract) group which is isomorphic to Vy, is
isomorphic to a suitable permutation group P.

PROOF:
It follows from the multiplication table of V. (cf. §3.1.2, Prob. 2) that

e(_)<eabc>:(1)

eabe

@ © e a b ¢ — (eabe
ea aa ba ca aechb

[N e a b ¢ :<eabc
eb ab bb cb bcea

c © <e a b e > = <e ab c) = (ec)(ab), and that, e.g.,
ec ac be cc cbace

abeeabc :eabc<eaaabaca
eab aab bab cab ea aa ba ca /\ eab aab bab cab

=<e o b e ><e a b ">: ((ea)(ab))((eb)(ac))

ea aa ba ca /\ eb ab bb cb

(ea)(be)

Il

(eb)(ac)

Hence the four group V.= {e,a,b,c} is isomorphic to the permutation group

P = {(1), (ea)(ad), (eb)(ac), (ec)(ab)}
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18. Generalize Prob. 17, i.e. prove Th. 3.1.3.10.

PROOF:

Let the general abstract group of order n be the set G = {G1,Gs,...,Gx}; then let each element of
G 1-1 correspond to an element of the set P of permutations of degree n, P = {P1,Ps,...,P.}, such that

G, o P < = ar az R
aip- QiPr A2Pr ... QAuDPr

and G, © P, = a \ - (O az R
Qi Ps a1Ps A2Ps ... QaDPs

where a:p- or a:p. is obviously the transformation of a; through the permutation P, or P, i.e.
P.(a:) = a@ipr or Ps(a:) = aips; hence

Ger PaN PrPx = 231 asz <. Qn
aipr aA2pP- ... anpr Cblps azps ce. QnDs

:<a1 Q2 < .. On
A1LPrPs A2PrPs ... anprps a1 P dzpt cee QuPt

where aip: = aip.ps = Ps(P.(s;)) which, by the definition of permutations (and also of transformations
(cf. §2.2.2, Prob. 7)), belongs to the original set of permutations P. That is, in general, G.¢ G < P,e P
and Gse G € P, P imply

G.G.cG © PP, = < X > < > < >—P,ep
aiPr i Ps Qi PrPs a;Pe

Then, since G is a group and P is now isomorphic to G, P is also a group by Th. 3.1.3.8, completing
the proof.




Chapter 3.2

Subgroups
§3.2.1 Cyclic Subgroups

Th.3.21.1 A complex (i.e. non-empty subset) S of a group G is a subgroup (ef. Df.3.1.1.11)
iff S satisfies G1, i.e. iff abeS for every a,beS. (Cf. Prob. 1 below.)

Example:

Th.3.2.1.2 Any complex S of a group G is a subgroup iff aeS and beS imply a~1beS.
(Cf. Prob. 2.)

Example:
The ten subgroups of D..

Note. Th.3.2.1.2, as well as Th. 3.2.1.1, is actually a simplified version of Th.3.1.1.13.

Th.3.21.3 1If A and B are two subgroups of a group G, then their meet, ANB, which is
called the common subgroup of A and B, is also a subgroup of G. (Cf. Prob. 4.)
Example:

{0,1,2,3} and {0,2,4, 5} being the subgroups of D,, their meet {0,2} does form a subgroup of
Ds; or, likewise, {0} is a subgroup of D on the strength of its being the meet of {0,2} and {0, 4},
for instance.

Th.3.2.14 If G is a group and ae G where a+#e, then a set C of elements a", where nel
(the set of all integers), forms a group. (Cf. Prob. 5.)
Example:
Cf. Prob. 6,11, etc., below.

Df.3.21.5 The group C of Th.8.2.1.4 is called the cyclic subgroup generated by a, and
a itself is called a generator of C. (Cf. Prob. 7,9,11,12, etc.)

Df.3.2.1.6  The order of an element a¢ G is the order of the cyclic subgroup C, CCG, and
is the smallest positive number # for which a*=e; if a"* ¢ for any nel, then the
order of ¢ (or C itself) is said to be infinite. (Cf. Prob. 6,7,9, etc.)

Note that the existence or non-existence of = is guaranteed by the Well-ordering
Principle (cf. Df.2.2.1.10), and that e itself is the only element of G which is of order 1.

Th.3.2.1.7 Any cyclic group is Abelian. (Cf. Prob. 16.)

The problem of determining all subgroups of a specific group is generally com-
plicated, but not for cyclic groups, which are taken care of by the following theorem.

Th.3.2.1.8  All subgroups of a cyclic group are cyclic. (Cf. Prob. 17.)

Th.3.2.1.9  Any homomorph of a cyclic group is cyclic. (Cf. Prob. 20.)

Many other interesting and important properties of cyclic groups will appear as
problems (cf. Prob. 6ff.) in the following pages.

90
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Solved P

Prove Th.3.2.1.1.
PROOF:

SUBGROUPS — CYCLIC SUBGROUPS 91

roblems

Since necessarily ae G if ae S, it immediately follows that a'e G, i=0,1,.... But, then, since G

is a finite group (as is not “stated otherwise”, cf.
a’, al, a?, ... cannot be all distinet. Hence it mus

Prob. 7 below), the elements in the infinite sequence
t be the case that a™ = a*, where m#n; ie. ¢ "=

a* "=qa’=e. Since aa " !=e=a™"" it follows that/aa™ " '=e¢. Now,let m >n;then k = m—n—1=0.

If k>0, then a ™! = a*e G; and if k=0, then a~

! = a® = ee G. In either case it follows that a ¢ G,

satisfying the second condition of Th.3.1.1.13. (The second condition, thus deducible from the first
condition of Th.3.1.1.13, is now proved to be redundant for finite groups.)

Thus satisfying both conditions of Th.3.1.1.1
elements of S is again in S.

8, S is a subgroup of G if the product of any two

Conversely, if S is a subgroup of G, then a/beS obviously implies abeS, completing the proof

for Th.3.2.1.1.

Note that if m <mn, the proof will be kept the¢ same by a trivial revision: £k = n—m —1. Note,

also, that this proof is valid iff G is a finite group
and S the set of all positive integers under addi
but not the second.

Prove Th.3.2.1.2.
PROOF:
(i) If S is a subgroup of G, then, by Th. 3.1.1.13

e.g. if G is the group of all integers under addition
tion, then both G and S satisfy the first condition,

a,be S implies a™'¢ S; hence a™'be S.

(ii) If a,be S implies ¢ 'be S, then a~'a =ee§ which in turn implies a7 '¢ = a~'= S, which then

implies (¢7')~'b = abeG. Hence Gl, G3,
obviously holds, the proof is complete.

If a group G is isomorphically mapped int

and G4 are established, and including G2, which

b a group 7, then a complex S’ of G/, whose

elements 1-1 correspond to the elements of a subgroup S of G, is a subgroup of G’.

PROOF:

Since a,be S and a',b’e S’ imply a <> a’ and <> b’, and also, by Th.8.1.39, ¢ 'e G and o' 'e G’

imply a '<>a’7!, it follows that a~'b < a' 710’
and, again by Th. 3.2.1.2, S’ is a subgroup of G".

Prove Th.3.2.1.3.
PROOF:

By Df.23.2, as ANnB implies ac A and «
aa™! = ec A and ec B, which proves AnB is not

Furthermore, a,b ¢ ANB likewise implies ab ¢
Hence, by Th.3.2.1.1, AnB is a subgroup of

Prove Th.3.2.1.4.

PROOF:

Gl: If mmel and a™,ae C, then, by Prob. 17 of
amtreC, i.e. a™a™e C.

G2: d'(ama”) = (a'a™a" = d'a™¢” = a'*"""e C

G3: ae™ = a*a® = a", and obviously a’eC.

G4: (@")™' = a™™ by Prob. 18 of §3.1.1, and a™*

Hence C forms a group.

But then, by Th.3.2.1.2, ¢ 'beS; hence a'"'b’'e S’

e B, and consequently ¢ '¢ A and a 't B. Hence
an empty set.

A and abe B, which together imply ab e ANB.
G.

§3.1.1, a™a" = @¢™*" and, since m+ne I, it follows that
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6.

10.

PART 3 - ALGEBRA OF GROUPS [CHAP. 3.2

Find the order of (i) an element —1 of the multiplicative group G whose elements
are —1 and 1, and also of (ii) an element 1 of the additive group I whose elements
are all integers.

Solution:

(1) Since (—1)* =1 = ee @, the order of —1 is 2.

(if) Define the additive operation of I as (1)" =n; then, for no positive number n, (1) =0 which is

the identity of I. Hence the order of 1 is infinity (cf. Prob. 8 below), and the cyclic additive
group generated by 1 is an infinite cyclic group.

In the following pages, as before, groups will be of finite order, unless stated otherwise.

A cyclic group generated by « is finite if m=n, m,nel, implies a™=a", and infinite
if m+n implies a™+a®.
PROOF:

Since m # n, it is evidently the case that either m >n or m <n. Let m >n (or, with only a very
slight modification, m <=, ¢f. Prob. 1 above); then a™ == e, m—n >0, if a®=a* Now, let k be the
smallest of m —n such that a* = e, and p be any positive number such that p=kqtr, r=0,1,...k1;
then, by Prob. 17, 18 of §3.1.1,

a? = @Mt = g*g" = ()T = e’ = ea’ = a’
ie. the positive integral exponents of the generator a will always be limited to 0,1,...,k—1. Hence
the elements of C cannot but be: a®°=v¢,a,a? ...,a*"}, which then of course forms a finite group.

If m+ n implies a™ # a", then, because of the proof just completed, C cannot be a finite group,
i.e. must be an infinite group.

There exists an isomorphism between any infinite cyclic group C and the additive
group I of all integers.

PROOF:

If a™a™e C and mnel where m#=n and a™ +# a® (cf. Prob. 7 above), i.e. a™ and " are distinct
elements of C, then let a™ <>m and a® < n, which in turn imply a™a"=a™""eC < m+tnel, com-
pleting the proof.

Any infinite cyclic group has exactly two distinct generators: one generator and its
inverse.

PROOF:
Let the one generator be a; then, since a"=(a"!)~" by Prob. 14 of §3.1.1, a' is obviously the
other generator.

They are distinet, i.e. a2 a7, since a =a~? implies aa™*=a*>=e (i.e. a finite cyclic group of
order 2), which is a contradiction.

They also defy the existence of any other possible generators for the following reason. Suppose
there exists the third generator b of the same group; then a =% and b = o (since both a and b are
tors), i.e., . "
generators), i.e @ = (&) = o
but, by Prob. 7 above (“m # n implies a™ + a™” is, by the contrapositive rule, ¢f. MTh. 1.1.1.12, logically
equivalent to “a™ = a" implies m =x”), it must be the case that 1 = 71, where 7 and j are both integers.

Hence j must be either 1 or —1, i.e. b=a or b =a"!, proving that a and a~! exhaust all possible
generators.

The additive group R* of all real numbers is not eyclic; nor is the octic group D. of
the square (cf. Prob. 5 of §3.1.2).

PROOF:

(i) Suppose B* be cyclic, and let a=0¢ R* be a generator; then, if the additive operation of R*
is defined as (a)" =mna, where nel (cf. Prob. 6 above), it follows that [(@)* = |a|, ie. any real
number smaller than |a| cannot belong to R*, which is a contradiction. Hence the additive
group R* in its entirety cannot be cyelic.
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(ii) Of the right transformations with respect to|rotational and reflective symmetries: 0,1,2,3,4,5,6,7,
none can generate the other seven; hence, by |definition, it is not cyclic.

(Note, however, that the group can be generated by two: 1 and 5; viz. 0=1° 1=1, 2=1% 8=1%
4=51,5=5,6=>51% 7=>51%)
11. Verify that the multiplication table on the right speci- a b c d

fies a cyclic group, by finding its generatqr (or gener- B b

o ¢ a

ators).

PROOF: b e b o d

(i) a=a, a>*=¢, a*=d, a*=a’=b. d b a

(i) d=d, d®*=¢, d®=a, d*=d°=b. d d a c

12. If a is a generator of a cyclic group C of |order %, then a,0?,...,a*=¢ are all distinct

elements of C; and if in general a? =¢, then p is divisible by k.

PROOF:

(i) If the elements of C are not distinct, i.e. if sqme, e.g. a' and &/, are identical, then a'~/ = e, which
implies that ¢ —j (if > 4, or what is the same: j—1 if i <j) is smaller than k, ie. that k is not
the smallest positive integer for which a* =le, contradictory to Df.3.2.1.6. Hence the elements
of C must be all distinct.

(ii) Since a®» =a” = e for any positive number p such that »p = kg+r (cf. Prob. 7 above), r must
be now either smaller than k, which is against Df. 38.2.1.6, or 0. Hence » must be 0, i.e. p=kq,
which is evidently divisible by k.

13. Let the group R of all rotations of a regular octagon through =/4 be Ro, Ry, Eo, B3, R,

R;, Re, R7, and find the elements among them which generate E.

Solution:

Since R®=Ro=(1), B, is a generator which does generate the other seven distinct elements;
but Rs, R, Re are not, since R:*= R.>= Rs' = (1), against the conditions prescribed by Prob. 12 above,

R;, however, generates distinct elements, viz. Raf = Ro, Rs®> = R1, Rs®° = R:, Rs' = Rs, Rs* =Ry, Ry’ = R;,

R? = Rs, R = R..

Likewise, Es and R: generate C.
Note, as will be generalized below, that thel greatest common divisor of the exponents of the

generators, i.e. 1,3,5,7, and the order of R, namely 8, is 1.

14. If a cyclic group C is generated by an element a of order n, then a™ generates C iff

the greatest common divisor of m and n jis 1.

PROOF:

The n elements, a™ a®™,...,a" V" g =¢, |are all distinct. For, if eg. a'm=a/™, 0=4, j=n
and i>J (cf. Prob. 1, 7, above), then
gim—im = | gli-im = 4

where, by Prob. 12, (i — j)m must be divisible by # and, by hypothesis (viz. the g.c.d. of m and = is 1),

i—j itself must be divisible by n. But then, by| the original stipulation, i —j is a positive integer

smaller than #n, which brings forth a contradiction. Hence the = elements a™ a*",...,a" Y™ ¢

are all distinct; i.e. a™ is a generator of C.

Conversely, if a™ is a generator of C, let the g.c.d. of m and n be d and d+#1, i.e. d>1. Then,
since m/d and n/d must be positive integers and also, by Prob. 12, a*=ce,
(am)n,/d — (an m/d  — em/d = e
where n/d is necessarily a positive integer smaller than » itself. But then, again by Prob. 12, a™
cannot be a generator of C, contrary to the assumption. Hence d must be 1, completing the proof.
15. Any group G of order 3 is cyclic.

PROOF:

Since G is of order 3, it must have elements other than e. Let a## e ¢ G, then a*+# a; for, other-
wise, it must be the case that ¢ = e (cf. §3.1.1, Prob. 7), contrary to the assumption.
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18.

19.

20
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Also a®+ e; for, otherwise (i.e. if a®=e¢), it must be the case, by definition (of a group), that
ab=a or ab="b or ab = e for the third element b of G, i.e. b= ¢ and b= a. But if ab = a, then b=,
and if ab =b, then a =e, both contrary to the assumption. Hence, eliminating the two cases out of
three, it must be the case that ab =e¢. But then, if a* =e, it follows that a®?=ab, ie. a =b, again
contrary to the assumption. Hence a?#a, and e,a,a® are three distinct elements of G.

Since, then, aa* = a® = ¢, it follows that a must be the generator of G; hence G is cyclie, completing
the proof.

Any cyclic group is Abelian.
PROOF:
If a is a generator of a cyclic group C, i.e. a™,a*c C, for any mmne I, then
amar = g"t" = g"t"™ = qrg™

Hence C is Abelian.

Any subgroup of a cyclic group is also cyclic.
PROOF:

Let S be a subgroup of a cyclic group C; then ae C implies that the elements of S are all given
in terms of a?, where p>0. Given in general p=rkq+r, 0=r <k, p must always be divisible by k,
i.e. r=0, if k is to be the smallest of p. Hence a® = (a¢*)¢, which proves ¢* to be a generator of S.
S itself, then, is a cyclic group.

Note, as in Prob. 1,7,14, etc., that the case of p <0 does not affect the proof as a whole; for,
then, a 7S, —p >0, and ¢ ? = (a¥)9, i.e. a®» = (@¥) " 9¢ S.

Set up a homomorphism between the alternating group A. (cf. Df.3.1.2.18) and the
cyclic group of order 3.

Solution:

Given A (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), it is at once
observed that (123)*=(132), (124)>= (142), (134)>=(148), (234)*=(243), and also that ((12)(34))* =
(12)(34), ((13)(24))* = (13)(24), ((14)(23))* =(14)(23), and of course (1)*=(1).

Hence, the cyclic group of order 3 being the set {a,a? a®= e}, there exists a homomorphism of
three four-to-one correspondences:
(1), (12)(34), (18)(24), (14)(23) - e =
(123), (124), (134), (234) - a
(123)%, (124)2, (184)%, (234)* - a?

a3

Verify the homomorphism of the cyclic group of order 2 onto the dihedral group D.
(i.e. the octic group of the square).
PROOF:
Referring to §3.1.2, Prob. 5, 6, rewrite:
e=(1), a=(1234), b=(13)(24), c=(1432), d=(12)(34), 7= (14)(23), g=(13), h=(24)
which in turn are reduced to

e=a', a=a, b=a’ c=d® d=a*f, fP=e, g=da*f, h=af

Hence there exists a homomorphism of two four-to-one correspondences, viz.,

a,a’,a’, 0t - e and af, d’f, a*f,a*f - a

Prove Th. 3.2.1.9.
PROOF:

Since, by Th.3.1.3.1 and Th.3.1.3.3, any homomorphism H: G- G maps the identity and the
inverses of G onto their counterparts of G, it is always the case that (a")’ = (@), nel, under H if a
is the generator of G. Hence the powers (a/)" = (¢”)’ of a’ exhaust G’ as the powers a” exhaust G.
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$3.2.2 Cosets and Conjugates

Df. 3.2.2.1

The product of two complexes K; and K, denoted by KiK», of a group G is

the set K of all elements of the form k:k;, where kie Ki, k;e K2, and kik; may not be

all distinct.
If K, and K. are both finite, ie. ¢=

1,2,...,m and §=1,2,...,n, then K has mn

elements, not all of them distinct; e.g. if G is the symmetric group Ss of degree 3,
K = {(1),(12),(123)}, and K» = {(13),(132)}, then K has 2-3 =6 elements, of which

only 4 elements are distinct, viz. (1)(13)
(123)(13) = (23), (123)(132) = (1).
Complexes are special subsets, since
(cf. Df.3.1.1.11), and as such need a sligh
in Df.3.2.2.1, with respect to their joing
fact, are no longer the meets as defined
still the joins as defined in Df.2.3.1; viz

K1UK1 = K1, K1UK2 KgU

Multiplication of complexes is gener.
tive and distributive, as is plainly justifi

K1(K2K3) = (Kle)Ks, KI(K2UK3) =

The inclusion relation also holds; viz.
then K,CK,, and if the converse K:CK

The cancellation law does not hold
not imply K»= K3, although, conversely, ]
iff K; consists of a single element.

Df.3.222 If G, is a subgroup of G and K

1

- (12)(132) = (13), (1)(132) = (12)(18) = (132),

they are specified as ‘“non-empty” subsets
't modification, as has already been observed
and meets. The products of complexes, in
in Df.2.3.2, but the sums of complexes are
for every K K:KsCG,

Kl, K1U(K2UK3) = (K1UK2)UK3

ally non-commutative, but definitely associa-
ied by Df.3.2.2.1, viz.,

K1K2UK1K3, (K2UK3)K1 = K2K1UK3K1

if each element of K; is an element of Ko,
, simultaneously holds, then K;= K.

here; i.e. KiKo=K:K; or K:K:=K3K, does

K, =K; implies KiK:=K:K; and K:K:=K3K:

;. a single-element complex of G, then KiG:

is called a left-coset, and G1K. a right-coset, of G in G.

G, itself is both a left- and right-cose

t of G in G, since ¢G=Gie =G for K1 = {e};

also, if K, is any single-element complex of G, both K,G,; and G:1K; must contain

K, itself, since eeGi.
Note. “Right-coset” and “left-coset”

are duals, as is implied by Df.3.2.2.2 which,

together with Df.3.1.1.7, also implies that such an orientation of right and left is

needed only for non-commutative group
left-cosets cannot but coincide. Any of
left-cosets will thus have a counterpart

In the following theorems the sing
single letters a,b,c, ... .

Th.3.2.2.3 There exists a 1-1 corresponden
coset aGi in G (cf. Prob. 1).

Th.3.2.24 Iff a 'be G, then aGi1=0bGy (cf.

As a matter of fact, a~1b ¢ G implie

Th. 3.2.2.5 If aGi+bG,, then aG, and bG: ¢

Th.3.2.2.4 and Th.3.2.2.5, when pu
and bG, are either identical or without

A

t together, assert:
common elements.

5: for, in an Abelian group, right-cosets and

the following theorems stated in terms of

in terms of right-cosets.

e-element complexes K; will be replaced by

ce between a subgroup Gi; of G and a left-

Prob. 2).
s a=b (cf. Prob.3).

re disjoint (cf. Prob. 4).
any two left-cosets aG:
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Th.3.2.26 There exists a partition (cf. Df.2.3.13) of G,
G = a:G1Ua:G1U ... Ua, Gy

where G is decomposed into a join of a finite number of disjoint cosets (cf. Prob. 6-7).

Df.3.22.7 The partition in Th.3.2.2.6 is called the left-decomposition of G with respect
to Gi, and an arbitrary element a; of each left-ccset is called a representative (cf.
Df.2.1.15) of that coset. The equation of the partition itself is called a class equation.

The orientation of right and left is necessary for the decomposition of non-
commutative groups, because right and left decompositions may turn out to be
distinct. (Cf. Prob. 7,10,11.)

Th.3.228 If, as in Th.3.2.2.6, G = a.G1Ua:G1U ... Ua,G,, then
G = Gia;'UGaz'U ... UGazt

Df.3.2.2.9 The number » of distinct left-cosets of G, in G is called the index of G, in G,
denoted by n=(G:Gy).
Example:

The index of the left-cosets of Gi in G above, in Th. 3.2.2.8, equals the index of the right-cosets
of Gi (cf. Prob. 9). In the case of infinite groups, however, the sets of right and left cosets with
respect to a subgroup are said to have the same cardinal number.

Th.3.2.2.10 (by Lagrange). The order of a subgroup G; of a group G is a divisor of the
order of G (cf. Prob. 12-13).

Conversely, however, a group of order » may not have a subgroup of order k
even if k is a divisor of »; e.g. a permutation group of order 12,

(1), (123), (124), (182), (142), (234), (243), (134), (143), (12)(34), (13)(24), (14)(23)

has no subgroup of order 6, although it does have subgroups of orders 2,3, 4. (The
converse holds if £ is a prime or prime power; the existence and number of such
subgroups is studied by the Sylow theorems, which are beyond the scope of this book.)

Th.3.2.211 The order of an element aeG is a factor of the order of G. (Cf. Prob. 14.)

Example:

In the octic group of the square (cf. §3.1.2, Prob. 5) the transformation 1 has order 4 and other
transformations also have orders (such as 2) which are factors of 8.

Th.3.2.212 Any group of prime order is cyclic and has no proper subgroups. (Cf.
Prob. 15.)

% #* * * *

Df.3.2213 If K is a complex of a group G, then the set H whose elements are of the
form x~'kx, for some x and all ke K, is called the transform of K by z, denoted by
H=2"'Kx or H=K*;, the element x, which need not be unique, is called the trans-
forming element.

Df.3.2.2.14 If both H and K are complexes of G in Df.3.2.2.18, and if G, is a subgroup
of G such that xe Gy, then H is said to be the conjugate of K under Gi; all H con-
jugate to K under G constitutes a class of conjugates.

Example:

If G is Ss, Gv = {(1),(12)}, and K = {(12), (13), (23)}, then two sets of conjugates of K under Gi:
Hy = (1)7'{(12),(13), (23)}(1) and H. = (12)7%{(12), (13), (28)}(12) yield a class of conjugates.
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If a,b,ce G, then the conjugate ¢ of

Example:
In Ss, (23) is the conjugate of (12) by (123),

In general, if

— ay az. .
P (bl bs. .

(cf. Th. 3.1.2.6)
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b by a under G is c=a 'ba.

since (23) = (123)~'(12)(123).

» , th -1 — ¢ C2...
> e q <a1 az. ..
au\/ b1 bz... ba\ _ [ C1€2...Cn

b A\dide. . da dids...dn

(Cf. Prob. 16.)

(Cf. Prob. 17.)

and r=aee = (e o
Th. 3.2.2.15 Conjugacy is an equivalence relation.
Th.3.2.2.16 K and K* in Df.3.2.2.13 are of |the same order.
Th.3.22.17 If S is the set of all cycles of length n, then S=S* (cf. Prob. 18).
Th. 3.2.2.18

1.

the order of a itself. (Cf. Prob. 21.)

The order of an element ce G which is conjugate to an element ae G equals

Solved Problems

Prove Th.3.2.2.3.
PROOF:

Let g:e Gi and ag:e aG;; then, since ag: = ag; at once implies g:=g;, the correspondence g:<>ag:

must be 1-1.

Stated otherwise:
element g: of Gy, viz. gi=a 'ai.

each element a: = ag; of {
Hence g: <> a;,

Prove Th. 3.2.2.4.
PROOF:

If a 'be Gy, then (¢7'0) ' G1.
b Ya )" '=b"'a (cf. §3.1.1, Prob. 19), ie. b~
then

Let a 'b=g

a; — ag; =
Hence aG:CbG:.
Conversely, if aG:=bG: to begin with, the

Likewise, bG1CaG1, starting

which in turn implies g: = a"'bg;, which further implies a™'b = gig:

a 'be G

Examine a 'beG; in terms of an equivs
Solution:
(i) Reflexivity: @ = a implies a™'a = ee G

(ii) Symmetry: @ = b implies a 'be G:;, wh
implies b = a.
(iti) Transitivity: a=b and b =¢ imply 4

(a”1b)(b~'¢) e G1, which fun

Furthermore, since the implications in (i)-(ii

14 =(a"b)"* =g e Gu.

(b Yag: = b(b ta)g: =

he coset aG, is in fact the unique image of a distinct
or what is the same, a 'a: <> ag:.

71 as in general gie Gy, {=1,2,...,7n; then (a7'b)™'=
Also, if a;eaGy, 1=12,...,n

a;eaG > a;e bGi

with b;e bGy to arrive at b;e aGi. Hence aG(= bG1.

n gie Gi and ag: = bg:;, which implies a"'ag:=a " 'bg;,
‘e Gi. Hence aGi=bGy implies

bg;i'9;e bGy, e

lence relation.

1.

ich in turn implies & 'a = (¢7'd) '€ G;, which further

“1peG: and b 'ceGi, which in turn imply e ‘¢ =
ther implies a = c.

i) can be readily reversed, the converses of (i)-(iii) also

hold. Hence there exists not only an equivalence relation with respect to a™'b, but also the latter

implies ¢ = b in Gi.
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Prove Th.3.2.2.5.
PROOF:

Suppose aGiNbG: #* @, i.e. suppose that aG; and bG: do have an element z in common; then
x = ag,=bg, for some p and g where ag,,bg,c G.. Hence a”'ag, =a by, ie a0 =g,9;'e Gy, and,
by Th.3.2.2.4, aG:1=bG:, contrary to the initial assumption. Hence it must be the case that
aGiNbG, = D.

A subgroup G; of a group G is the only coset which in itself is a subgroup of G.

PROOF:

Let any coset of Gi be aG\y; then, if aG, is a subgroup, ¢& Gi implies ee aGy (cf. §3.1.1, Prob. 8),
i.e. GiCaGy, and conversely, ie. ¢GiCGy. Hence aG: = G..

Prove Th.3.2.2.6.

PROOF:

Let the elements of G be by, bs, ..., b, r= n; then there follow r left-cosets b:Gy, b.Gy, ..., b.Gy,
which may not be mutually exclusive (cf. Th. 8.2.2. 5-6). Hence choose out of r left-cosets only =
non-overlapping left-cosets a:G:, i=1,2,.. .,m, and

G - Ui“a,«Gl, I={1,2,,n}

Find the left decomposition of the octic group D, of the square (ef. §3.1.2, Prob. 5, 6):
e=(1), a=(1234), b=(18)(24), c= (1432), d=(12)(34), f=(14)(23), g=(18), h= (24),
with respect to a subgroup Gi= {e,h}.

Solution:
Since there are eight elements in D e,a,b,e¢, d,f,9,h (corresponding to bi, bs,...,b, in Prob. 6
above), there follow eight left cosets (corresponding to b.:Gy, b.G, . .., b.Gy), viz.,

eG: = {ee,eh) = {e, h} aGy = {ae, ah} = {a, f} bG, = {be, bk} = {b, 9}
¢G1 = {ce,ch} = {¢,d} dG, = {de,dh} = {d, ¢} fGi1 = {fe, ek} = {f,a}
9G:1 = {ge,gh} ={9,b}  hG:i = {he,hh} = {h, ¢}.

The eight left-cosets, however, are not mutually exclusive, as can be readily observed, since
eG1 = hG1, aG:1 =[Gy, bG1= gG1, ¢G1=dG:. Hence choose only 4 disjoint left-cosets (corresponding to
a:G1, 1=1,2,3,4) out of eight, viz. either the set of ¢Gy, aG1, bGy, ¢G1, or the set of hGy, fG1, gG1, dG.
In either case the partition of Ds is complete, viz.,

Dy = eGiUaGIUBGIUCG = dG UfGUgG URG,

Prove Th. 3.2.2.8.

PROOF:
If be Gy, then b7 'ea:Gy, i=1,2,...n, which implies that there exists g ¢ Gi such that b~!= aig.
Since b= (b"") 7" =(a:¢)"' =g 'a;’, where g~'e Gy, it follows that be Gia;'. Hence

G = Gia7'UGia;'u...UGa;!

where all right-cosets are mutually exclusive. For, if Giai'NGiaj! # @ and there thus exists ce G
such that ce Gia;* and ce Giay', then ¢ =gia;! and ¢ =g:a;' for some gi,9:¢ G1; hence
agit = (giei)T' = (gaa;)T' = ayg;!

which implies a:GiNa;Gy # @, contrary to the original hypothesis. Hence the % right-cosets must be
all mutually exclusive, and there now exists the right decomposition of G with respect to Gi:, where
the number of right-cosets is equal to that of left-cosets.

There exists a 1-1 correspondence between the right and left cosets of Gy in G.

PROOF:

It immediately follows, from Prob. 8 above, that there exists a 1-1 correspondence of the form
a. G, < G ai_l.
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10. Decompose the octic group of the square i

11.

12.

13.

14.

15.

3.2.2]

Solution:
Since e '=e¢,a'=¢, b'=b, ¢ '=aqa, d’
G = eGIUaGIUbGIUcGl = Gle"‘UG

G

and also, likewise, dG1UfG1UgG:ChG,

Find the difference, if any, between the
group G of degree 3, viz. (1),(12),(13)
G = {(1),(12)}.
Solution:
According to the left decomposition:
G (1)G1U(13)G1U(23)G1

and according to the right decomposition:

G G:(1)UG(13)UG1(23)
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n Prob. 6 into a join of right-cosets.

=d, f"'=f, g ‘=g, h"*=h, it follows that
1a_1UG1b_1UG1C‘1 GleUchUGlbUGla
G1dUG1fUG19UG1h-.

right and left decompositions of the symmetrie
,(23), (128), (182), with respect to a subgroup

{(1), 12)}u{(13), (132)} U{(23), (123)}

{(1), (12)} u{(13), (123)} U{(23), (132)}

Hence the two decompositions are distinct, although they do consist of the same number of cosets.

The order of a group G equals the prod

the order of Gi.

PROOF:

Since there always exists a partition of G
turn has exactly m elements, m being the order

Prove Th. 3.2.2.10.
PROOF:

Since {e}, the set which consists of e alone

may be written in terms of indices, viz. (G:{e})
that any coset aGi contains ¢ = ae). Then, by

(G:{e})

Hence the index (G:G1) must be a divisor of the

Prove Th.3.2.2.11.
PROOF:

If acG, then a cyclic subgroup generated

(cf. Df.3.2.1.6).

Prove Th.3.2.2.12.
PROOF:

Since, by Th. 3.2.2.11, the order of a cyclic
be a factor of the prime order p of G, when p
must be p. (Note. a+*e, i.e. G: has a as well

orders of G and Gi being the same, G = G1, and,

If G has a proper subgroup G:, then the
But then, since k¥ can be neither p nor 1 (cf.
have any proper subgroup.

uet of the index of a subgroup G: in G and

into n disjoint cosets (cf. Prob. 6-7), each of which in
of G itself (cf. Th. 3.2.2.3), mn must be the order of G.

is a subgroup of any group, the orders of G and G:
and (Gi:{e}) respectively (cf. Df.3.2.2.9, and also note
Prob. 12 above,

= (G {eNG:Gy)
index (G:{e}).

1

by @ has the same order as the order of a itself

Hence, by Th. 3.2.2.10, the order of a divides the order of G.

ubgroup G: generated by an element a e G (a7 ¢) must
has as its factors only 1 and p itself, the order of G:
as ¢, and as such cannot be of order 1.) Hence, the
G must then be cyclic.

g

order k of G: must be a factor of the order p of G.
Df. 3.1.1.12), it is self-contradictory. Hence G cannot
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16. Prove Th.3.2.2.15.
PROOF:
(i) Reflexivity: a:= e 'aie, where a1eG; ie. a: is the conjugate of itself by e.

(i) Symmetry: If, for ai,as ¢ G and for some b, a1 =>b"'ab, then (b= 'a;b-'= (07 "H (b 'azb)b ™' = a;
Le. if a1 is the conjugate of a, by b, so is a2 of a by b

(iii) Transitivity: If, for a.asa:e G and for some be, ax=b7'ab and a:=c 'ase, then ai=
b~ e 'asc)b = (cb) 'as(ch); i.e. if a: is the conjugate of a; by b, and a» the conjugate of as by e,
then a: is the conjugate of a; by cb.

17. Prove Th.3.2.2.16.

PROOF:

Since there exists a correspondence, for any se S, reR, and some ¢S, such that s> » =z %y,
and conversely that » > xra='=2x(x 'sx)x ' =s, the correspondence between S and S®= R is one-one.
Hence both sets have the same number of elements.

18. Prove Th.3.2.2.17.

PROOF:

Let s = (@ia2 ... @) and z = <‘Z;‘Z2‘Z:ZZ>, then

o lsy = b1 b2 bu. . b\ a1 0. . O ...\ .. ... ¢
Q1 Qz...0n...0 J\ G2 Q3...Q1...0 /\ by ba...bs... b,

biba ... bu... b\ _
= " = (bibs...bs
<bzb3...b1,..b,> (bu Ba-.. -Bo)

Hence any element of S® is also a cycle of length n.

Conversely, it is clear that there exists some # such that = 'sx =7 for any reS=.
Hence S = §=.

19. If a set S consists of the permutations of the form: s=aas...a, where a,de.. .., 0n
are disjoint cycles of lengths oy,0s,...,0. respectively, then the set of all permuta-
tions conjugate to S contains the elements of the form: 7= bibz...b, where by,bs,. .. b,
are disjoint cycles of lengths 01,0s,. . .,0, respectively.

PROOF:
For some ¢, r = ¢7's¢c = ¢ a1 0z2...a.)c = ¢ Hai(ee™ Nas(ce™). . . (ce" Van)e = (¢ 'asc)(ecaze). . .
(¢7'axc), where all conjugates of ai, 1=1,2,...,m, by ¢ are disjoint since the set of a; consists of

disjoint cycles. Also, by Th.2.2.2.17, each of ¢ 'a:c must have the length of a; itself, and conversely,
by Th. 3.2.2.16-17. Hence there exists a 1-1 correspondence between the two sets of disjoint cycles of
the same lengths: a: <> bi, a2 <> b, ..., an < ba.

20. Classify the classes of conjugates in the symmetric groups of degree 3,4,5.

Solution:
(i) Ss has six elements: (1), (12), (13), (28), (128), (182), the conjugates of which are subdivided into
three sets:

(a) (1). This is trivial, since it always holds that «~ (1) = (1).

(b) (12),(13),(23). E.g. (1)~'(12)(1) = (12); (23)71(12)(23) = (23), (132)~1(12)(132) =(18); i.e. the
conjugates of three transpositions of S; are also transpositions, as can be deduced from
Th. 3.2.2.17 and Prob. 19.

(c) (123),(132). E.g. (1) (123)(1) = (128); (23) (123)(23) = (132); (182)~'(123)(132) = (123), which
is indeed the expected result: i.e. the conjugates of the cycles in Si of length 8 are also the
cycles of length 3.

(ii) The conjugates of S, likewise, are subdivided into five types: (a) the identity permutation (1);
(b) the transpositions, e.g. (12); (¢) the cycles of length 3, e.g. (123); (d) the cycles of length 4,
e.g. (1234); (e) the product of two disjoint transpositions, e.g. (12)(34). '
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(iii)

and (f) the cycles of length 5, e.g. (12345)

of length 3 which are disjoint, e.g. (12)(345

21. Prove Th.3.2.2.18.
PROOF:

If ¢ = b 'ab for some b and a" = e, then, sin
pose for n==Fk: (b~ 'ab)*=b"'a*b. Then, for n 3
b~ 'a**'b, and in general, (b 'ab)*=b"'a"b =
greater than that of a.

Conversely, if (b7 'ab)"=e¢, then b~ 'a"b = e.

Hence a"=(beb )" =bec"b ' =b(b lab)"b '3
be greater than that of e.

Thus ¢ and ¢ must have the same order.

*3$3.2.3 Normalizer

Th. 3.2.3.1
G* =G4 is a subgroup of G.

Since Gi*=Gy, ie. 7Gx =Gy, is
has an alternative form: a complex K,
that commute with every element of G4

Df.3.2.3.2 The complex K of Th.3.2.3.1 is
N¢,(K) or simply N(K).
Example:

If G is the symmetric group S; = {(1), (12
the normalizer Ng,(K) is the complex K =
(132)(1), (123)(123) = (123)(123), (123)(132) = (13
Manifestly, N(K) is a subgroup of G; note, alsg

N(K) may consist of only one elemg¢
all elements of G.

Th.3.23.3 Given a subgroup G: of a grou
G+ =G, is a subgroup of G. (Cf. Prob

Df.3.23.4 The complex K of Th.3.2.3.3 is
C¢,(K) or simply C(K).
Example:
If, again, G is S; and G, = {(123), (132)}, th

Csy(K) = {(123),(132)}

As is exemplified above and also exp
the case that C(K)CN(K) in any group
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The conjugates of Ss, likewise, are classi
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fied into seven patterns: (a),(b),(c),(d),(e) as in (ii),

(g) the products of one transposition and one cycle

»

)R

ce for n =2: (b lab)? = (b~ 'ab)(b~lab) = b~'a?b, sup-
=k+1, (b7 'ab)**'=(b"tab)*(b 'ab) = (b~ a*b)(b~ab) =
“'eb=e. Hence the order of ¢=>b"'ab cannot be

= b(b'a"b)b ' =beb '=¢, and the order of a cannot

s and Centralizers

Given a subgroup G; of a group G, the complex K of all xe¢G such that
(Cf. Probh.

1.

logically equivalent to G.x=xG,, Th.3.2.3.1
K C G, which consists of those elements of G
is a subgroup of G.

called the normalizer of G, in G, denoted by

,(13), (23), (132), (132)} and G: = {(128), (132)}, then
{(1), (123), (132)}, since (1)(128)=(123)(1), (1)(132) =
2)(123), (132)(123) = (123)(132), (132)(132) = (132)(132).
, that N(K) is Abelian.

ent of G or, if G is an Abelian group itself,

p G, the complex K of all xeG; such that
2.)

called the centralizer of G: in G, denoted by

en

vs. Ne (K} = {(1),(123), (132)}

licit in Df. 3.2.3.2 and Df. 3.2.3.4, it is always
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Df. 3235 If Gi=G in Th.3.2.3.3, then C(K) is called the center of G, and the elements
of C(K) are called the central elements of G.
Example:

If Gi=G in the examples of Df.3.2.3.2 and 3.2.3.4 above, then C(K)= N(K)={(1)}, as can be
readily verified by the multiplication table of S;. (The center, of course, may be of more than one
element; c¢f. Prob. 3 and also Th. 3.2.3.8.)

In general, C(K) and N(K) coincide if Gi=G — which is obvious from their
definitions — just as they do when they consist of a single element. It is then self-
explanatory to speak only of the normalizer or the centralizer of G if G=0G..

Th.3.23.6 The normalizer (or centralizer) of G. in G contains G: in itself. (Cf. Prob. 4.)

Th.3.2.3.7 The number of the conjugates of a complex K contained in a group G is
(G : N(K)), i.e. the index in G of the normalizer of K in G; the index is also a divisor
of the order of G. (Cf. Prob. 7.)

Th.3.23.8 The center of a group G, where G+« {e}, whose order is of p*, where p is a
prime and n any integer, is greater than the identity alone. (Cf. Prob. 11.)

Df.3.23.9 If the order of every element except the identity of a group G is of a power
of a prime p (as in Th.3.2.3.8), G is called a p-group.

Th.3.23.10 Any group G whose order is of p?, where p is a prime, is Abelian. (Cf.
Prob. 12))

Solved Problems

1. Prove Th.3.2.3.1.
PROOF:

Since ®~'gx = g for all x¢ G and all ge Gi, it immediately follows that g =xgax~'= (x ") Ig(x"1).
Hence, if x¢ K, then also x7'e¢ K. Moreover, if y gy =g, then (xy) ‘glaey) =y Y (x"gx)y=y gy—=g.
Hence xy ¢ K, satisfying the conditions of Th.2.1.1.13, which proves K to be a subgroup of G.

2. Prove Th.3.2.3.3.
PROOF:
The proof will be the same as above, only with a slight modification, since the only difference
between these two theorems is a small (but important) stipulation: “xe Gy’ vs. “x e G”.
The proof, however, may be given in a nominally different way, for instance, as follows:

If x,ye K, lLe. xg =gz and yg = gy for all x,y,9eG1, then (xy)g ==x(yg) = x(gy) = (x9)y = (gx)y =
g(xy), which implies xy e K. Also, it follows from xg =gx that goz~'=2x"'g, which implies ¢ K.
Hence, by Th.3.1.1.13, K is proved to be a subgroup of G.

3. Find the center, the centralizers, and the normalizers of the octic group G of the square
(cf. §3.1.2, Prob. 6): 0= (a)(b)(c)(d), 1= (abed), 2= (ac)(bd), 3= (adcb), 4= (ab)(cd),
5= (ad)(bc), 6 =(ac), 7= (bd).
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Solution:
Let K, = {0}; then, using the multiplication
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table of G, K, is at once found to be the centralizer,

in fact the center, of G in G itself. Obviously, then, K is also the normalizer of G itself in G; further-
more, since K, is a subgroup of G, K, is the normalizer of K, itself in G.

Likewise K, = {0,2}, which is a subgroup of

G, is the center, the centralizer, and the normalizer

of G in G itself; also, K is the normalizer of K3 (as a subgroup) in G.

Let K;={0,1,2,3}, which, again, is a subgroup of G; then the complex K; is the centralizer, and
also the normalizer, of the subgroup K; in G; moreover, K;: may be considered the normalizer of K,

or K; in G.

K; may be replaced by K= {0,2,4,5} or K5+ {0,2,6,7}.

Likewise Ks = {0,4} (or K;= {0,5}) is the centralizer as well as the normalizer of K¢ (or K;) in G
or in K4; K¢ (or K;) may be considered the normalizer of K; in G or in K, or in K, itself.

Kg={0,6} (or Kos={0,7}) has the same chanacteristics as K¢ (or K,;) with respect to centralizers

and normalizers.

Prove Th. 3.2.3.6.

PROOF:

By definition, the normalizer (or the central
(or a subgroup G: of G) that commute with ev
since a subgroup always commutes with each of

This is true even if G, consists of a single e
with itself.

izer) consists of those elements of the whole group G
ery element of Gi; it must then contain G; in itself,
its elements.

ement, since an element of a group always commutes

Given a cyclic group S generated by an element g of a group G, N(S) contains all ¢,

where nel, and the order of N(S) is a m
PROOF:
Since (9" 'g(g™) = ¢, i.e. g(g™) =(g™g, it fol

ultiple of the order of g.

lows that g™ for any nel must be contained in N(S).

Also, since the cyelic group S generated by ¢ is now proved to be a subgroup of N(S), the order of

N(S) must be divisible by the order of g.
Note. g belongs to the center of N(S) of G

hence N(S) evidently contains the center of G.

There exists a 1-1 correspondence between the conjugates of an element g of a group
G and the right cosets of the normalizer N of g.

PROOF:
Let the right cosets of N be Nz, where x ¢ G

(ax) 'glax) = x'a 'gg

and also ax e «N for a e N; then, since ¢ 'ga=gyg,

e = x '(alga)xr = xlgx

Now, assume x;'gx; = 2, g2, when there are two distinet right-cosets x: N and z.N; then

-1y-1 -1 — -1 -1 — -1 -1 —_
(xle) gx, 2%y = X% (g%, X, = X%, " g%,x, = g

implying that z.x;7'e N, i.e. z:e Nxi;, which in turn implies that Nx,= Nz, contradictory to the
assumption. Hence the right-cosets are distingt, and to each right-coset of g there corresponds a

distinet conjugate of g.

Prove Th. 3.2.3.7.

PROOF:

Since the index in G of the normalizer N o
decomposition
ecomp G = Nz

where there exists, as proved above (Prob. 6), a
of the conjugates of K must be m = (G:N(K)).

It also immediately follows, by Df. 3.2.2.9, th

f K is presumed, as usual, to be finite, G has a right
UNz2U ... UNxm

-1 correspondence: Nzx; <> x;'gx;. Hence the number

at m is a divisor of the order of G.
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11.

12.
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Given the symmetric group Ss={a,b,cd,e}, find the number of the conjugates of
p = (abede) in Ss.
Solution:

Since (abede) = (bedea) = (cdeab) = (deabe) = (eabed), the permutations through which p remain

unvaried are
o — .5 — [abcde _ [abecde 2 — (abecde
P P <abcde>’ P <bcdea>’ P <cdeab>’
s _ [abcde «+ _ (abecde
P <deabc>’ P <eabcd>
Hence the order of the normalizer of p is 5 and, by Th. 3.2.3.7, the index is 5!/5 = 24.

Find the number of the conjugates of s = (abc)(def) in Se= {a,b,c,d,e,f}).
Solution:
Let s:=(abc) and s: = (def); then, since (abc) = (bea) = (cab) and (def) = (efd) = (fde), the set P
of all permutations which do not change s; and s, are:
8:°82%, 81'8:% 8178:%  8:1°82), sils2!, 5282 §,°8:2, $1'8:2, 12807
Since the normalizer N of s in Ss, of which N is obviously a subset, also contains another subset @
in which s, and s. interchange themselves, it follows that N = PUQq, where g = (14)(25)(36). But

the order of P is 9 and, consequently, that of Q¢ is 9. Hence the order of N is 18, and the number
of the conjugates of s in S5 is 6!/18 = 40.

Generalize the result of Prob. 8-9.

PROOF:
Let s in S. consist of ¢ cycles of length 1, ¢: cycles of length 2, ...,¢x cyeles of length %; then,

b i ]7
obviousty n = le: + 2¢ + - + ke

Now, the permutations of » distinet letters taken all at a time is n!, and since a cycle of length ¢;
may be freely permuted without changing s as a whole, the same permutation occurs ei!e:! ... c!
times if all n! cases are considered. Moreover, since a cycle of length ¢ may be written in ¢; different
ways and allows thus ¢“ equivalent cases, each permutation has been repeatedly considered 1°2¢...Jk%
times. Hence the number of distinct permutations is

n!/(l“l c1! 2% ¢! - Kok Ck!)

which is also the number of the conjugates of s in S..

The center C of a group G is a subgroup of G and, if G is Abelian, is G itself.

PROOF:

For every ge G, 2,ye C implies 9 'wg =2 and g~ 'yg =y, which in turn implies g~ 'zgg~'ax~lg =
9 'xx"'g = e. Hence g~'z7'g = (g 'g)™' = x~!, and consequently g '(z"'w)g = g -z 'gg-lyg =
x"'y e C, proving that C is a subgroup of G.

If G is Abelian, then every element of G commutes with all other elements of G; hence C coincides
with G.

(E.g. S:, which consists of ¢ and a transposition, constituting an Abelian group, is the center of
S» itself. If n =3, however, the center of S. consists of {e} alone, just as any non-commutative simple
groups (cf. Df. 3.2.5.2a).

Prove Th.3.2.3.8.

PROOF:
Decompose G into a class equation

G = 01UCzU~~UCm
and let a: be the number of elements in C:; then

Pr= vttt Om
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Assume that some of C; are the identity (whic
the center of G). Then k=1, k denoting the
Th, 3.2.3.7, that p” must be divisible by (m — k),

k + (m—k)

P
since p" is obviously divisible by p itself. Henc|
the proof.

13. Prove Th.3.2.3.10.

PROOF:

The order g of the center C of a group G is
since C is a subgroup of G, the order p* of G m

If ¢ =p?% then C =G and, by definition, ey
with every element of G. Hence G must be an

If ¢ =p, assume ae G and a¢ C. But, then
all powers of a, the order ¢’ of C’ is greater th
q’). Hence a must belong to C, contradictory t

Hence it must be the case that ¢ = p*, whic

*8§3.2.4 Endomorphisi

Df.3.24.1 A homomorphism (cf. Df.3.1.3.]
group G of G is called an endomorphis

Stated otherwise, a transformation
G if T(ab) =T(a)T(b) for every abe
b->b,..., for a,b,...eG and also «’
a—>a and b~>b imply ab->a’b’.

An endomorphism of G is logically

is a mapping f: fla)=¢a, f(b)=0b’, ...

f(ab) = f(a)f(b) = a’V".

Df.3.24.2 Every group G has at least tw
I(a)=a for any a e G, and the null opera

Th.3.24.3 Every endomorphism maps eve
f(Gy) of G. (Cf. Prob. 1.)

Th. 3.2.44 The product of two endomorphis

Operators as such; when put togeth

Df.3.24.5 If an endomorphism of G is 1-]

Stated otherwise, an automorphism
itself, viz. a transformation T: G«
i.e. there exists a 1-1: correspondence
a,a’,bb,...eG, aa and b b’ img
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h is always a class in itself and naturally belongs to
number of such identity classes. This implies, by
the number of non-identity classes, i.e.,

k+ip, 1=1,2,...,n

e k also must be a multiple of p, i.e. k> 1, completing

greater than 1, as has been proved by Th. 3.2.3.8. Also,
iust be divisible by ¢. Hence ¢ =p* or ¢ = p.

very element which belongs to G becomes permutable
Abelian group.

since the centralizer C’ of @ must contain C and also
an p, which implies ¢’ = p* (for p® must be divisible by
the assumption.

h proves G to be Abelian.

m and Automorphism

1-2) of a group G onto G itself or into a sub-
sm (cf. Df.2.2.2.10) of G or an operator on G.

T: G- G (or G1) 1is an endomorphism of
G; i.e. there exists a correspondence: a— o/,
b’,...(not necessarily distinct)e G, such that

equivalent to an operator on G which in effect
which entails the distributive property:

y operators: the identity operator I such that
tor N(a) = e which is the identity element of G.

ry subgroup G: of G onto or into a subgroup

ms is in itself an endomorphism. (Cf. Prob. 2.)

ler, are associative. (Cf. Prob. 3.)

|, then it is an automorphism of G.

of G is an isomorphism of G into and onto G
G where T(ab)=T(a)T(b) for every abeG;
between G and G itself such that, for every
ly ab<a’d’.
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In general, if T(a)=T(b) implies a =b for every a,be G, the endomorphism is an
isomorphism which in turn, in a finite group, is necessarily an automorphism. (This
is not the case in an infinite group ¥ where F' may be isomorphic to a proper sub-
group; e.g. x> nxr for some integer n is an endomorphism which in itself is an
isomorphism of the additive group of I, the set of all integers, but this endomorphism
cannot be an automorphism. Conversely, however, every isomorphism between a
group and one of its proper subgroup is also an endomorphism, but not an auto-
morphism.)

Th.3.24.6 The composite (or product) of two automorphisms is also an automorphism.
(Cf. Prob. 4.

Th.3.24.7 A(G), which denotes the class of all automorphisms of a group G, forms a
group. (Cf. Prob. 5.)

Note. A(G) is in fact a subgroup of T(G), the class of all possible transformations
of G, one of which is exemplified below.

Th.3.24.8 The transformation C of the conjugates gz !'gxr for some x and any
element g of a group G is an automorphism of G. (Cf. Prob. 6.)

Df.3.24.9 The automorphism C of the form g« 2 'gx in Th.3.2.4.8 is called an inner
automorphism.

Note. All inner automorphisms of an Abelian group are necessarily reduced to
the identical transformation. (Cf. Prob. 7.)

Th.3.24.10 The inner automorphisms of a group G form a subgroup of A(G), denoted
by C(G). (Cf. Th.3.2.3.8 and Prob. 8.)

Df.3.24.11 Any automorphism which does not belong to C(G) is an outer automorphism.

In general, an outer automorphism is an automorphism which is not mapped by

a single element; e.g. the mapping in the four group Vi eoe(=a?=b?, a b, boa,
ab e ba, is an outer automorphism.

Solved Problems

1. Prove Th.3.2.4.3.

PROOF:
G1l. Let ai,bie Gi; then, by Df.3.2.3.1, a;— ai = f(a:) and b, = b, = f(b;), where f(a:),f(b:) e f(Gy), imply
a,-biaGi - f(a/ibi) = f(a;)f(lh) = a:b:sf(Gl)

G2. If aybicieG, then ai(bici) = (aibi)e; = flai(bici)) = f((aibi)e) = fla)(F(b:)f(e:)) = (Flas)f (b)) f(e)) —
ai(biel) = (aib)e!, where alblel & f(G).

G3: Since fle) =e and f(a:) = flaie) = f(a:)f(e), it follows that a/e —a/.
G4: Since e=f(e) = fa:ia: V) = fla)f(ai "), it follows that alai~'=—e.



Sec. 3.2.4] SUBGROUPS — ENDOMORPHISM AND AUTOMORPHISM 107

2.

Prove Th.3.2.4.4.

PROOF:

Given two endomorphisms E; and E; of G, defined as Ei a'eG—>Ead)=a" "G, E: aeG-
E:a) =a’' G, respectively, it follows that EE» aeG - E\Exa) = Ei(Ex(a)) =Eia’) =a" e G.

Likewise
beG - E1Ez(b) = El(EZ(b)) = El(b,) =p"e@
and ab & G - E.Es(ab) = E:(Ex(ab)) = Ei(Exa)Exa)) = E:(@'b) = Ev(@)E\(b') = a’'b" ¢ G

Hence the composite (or product) of E: and E: is also an endomorphism of G.

The composition (or multiplication) of endomorphisms is associative.
PROOF:

Let, as in Prob. 2 above, Eix aeG->Esa)=¢'¢G, E»x d'cG>Exa)=a"cG, Ei: aeG-
Ea")=a"’eG. Then E.E:E.) = E\E:E;){(a)=E:(EEsa))) =E«(E:a")) =E(a”)=a' and likewise
(E\E2)Es = (E:\E2)Es(a) = (E:1E2)a’ = E(Ex(a)) = Ex(a”’) = o/”.  Hence E:(E:Es) = (E\E)Es.

Prove Th.3.2.4.6.

PROOF:

Given two automorphisms A, and A: of G, defined as A: ae G <> Asx(a) =a'e G and A d' e G <
A(a’) =@ € G; then, replacing only “—->" of Prob. 2 above by “<>”, the desired result is obtained,
viz. ae G < A1dx(e)=a”eG and beG < 4:14:(b) =b" e G imply abeG <> A1A.(ab) =a”b" e G.

Prove Th.3.2.4.7.

PROOF:

G1, the closure property, is provided by Th. 3.2.3.6.

G2 for A(G) is obtained from Prob. 3 above with a slight modification, viz. replacing “-=” by “©”.

G3. ICA(G), since the identity transformation I(4:) = A:, AiCA(G), is clearly an automorphism.

G4. By Df.3.24.5, A: © A ' (A)=A7! and 4; < A "(A)=A;" imply ’
A7HA:4) = ATH(AAT(A4) = ATHAATIA9ATI(Ay) = ATHAnATH(A4) = ATTAT

Hence A(G) forms a group.

Prove Th. 3.2.4.8.
PROOF:

For any g.,9:e G, ¢g1<>C(g) =2x2"gix and g:<> Clg:) =z 'g9:x do imply ¢.9: <> C(g19:) =
(e~ lg1x)(x  gx) = 2 'g1g:x. Hence the mapping C is an automorphism.

In an Abelian group all inner automorphisms become the identity transformation.
PROOF:
Let A: g <> Ai(g9:)) = x 'gix for some x and every g:¢ G; then, if G is Abelian,

Ai(gs) = xv7lgix = x7'wgs = g0 = I(gy)

Prove Th.3.2.4.10.

PROOF:

Let ¢91,92,95e G and Cri g1 < Ci(g) =x" g1z, Ca g2 <> Ca(g2) = a7 'g22, Cs: g3 <> Cs(gs) =x " 1gsx;
then

Gl. g.19: © Ci(g)Ca(g:) =2~ '(9:192)x (cf. Prob. 6).

G2. By G1 immediately above, Ci(C:C3) =2 (g1(g293))x = 272 ((g:192)93s)x = (C1C»)Cs.
G3. gie=g1 < Ci(g)Csile) =(x7'g1x)(x 'ex) =x (g1e)x = ‘g1 = C1(g1).

G4. 9191 =e¢ < Ci(g)Ci(gi ) = (x 1giax)ow tgi'e) = Ygigi Ha = lex =e.

Hence the class of inner automorphisms forms a group, denoted by C(G); moreover, since G1 above
of C(G) satisfies Th. 3.2.1.1, C(G) is a subgroup of A(G).
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Second proof. Since, by Th. 3.2.4.7, A(G) is already a group and C(G) is obviously a non-empty sub-
class of A(G), by D£.3.2.4.9, C(G) is a subgroup of A(G) iff Ci(G),CiG) C C(G) implies C;7Y(G)Ci{G) C C(G).
This is exactly the case, since for some « and any g¢ G,

CIHGA) Ci(G) = (@ 'gsx) M gim) = (27 'ga)o g7 w) = 2 'gigr e = 2 lgex = Ce(@)CC(Q)
3 3

The converse is obvious, completing the proof.

9. Find, if any, inner and outer automorphisms in (i) the cyclic group of order 3, and
(ii) the symmetric group of order 3.
Solution:

() «®=e is obviously an inner automorphism, since any identity transformation is an inner auto-
morphism, as can be readily verified, but no other elements have the same kind of transformations.
Between » and % however, there exists an automorphism S of squaring, = <> S(x) =2® and
x* <> S(x*) =x, which together imply zx?=e¢ <> S(xz?) = S(x)S(x?) = x*x — ¢. Since S is evidently
not an inner automorphism, it must be an outer automorphism, satisfying the definition
(cf. Df. 3.2.3.11).

(ii) S; consists of six inner automorphisms, thus denying any occurrence of outer automorphisms;
viz., for x"lsx <> s,

1) = (1) (il) « = (12): (i) 2 = (13):

1) < (1) (1) © (1) 1) < (1)
12) © (12) (12) & (12) 12) < (12)
(13) © (13) (13) © (13) (18) < (13)
(23) <> (23) (23) < (23) (23) <> (23)

(123) < (123) (128) < (123) (123) <> (123)
(132) < (132) (132) < (132) (132) < (132)

Likewise for = = (23), (123), (132).

10. If a group G is defined by the following multiplicative rules,
a?=b*=c*=e¢, ab=ba=c¢, bc=cb=a ca=ac=D»b

G has then only one inner automorphism and five outer automorphisms.

PROOF:

G is octic and also Abelian, as is explicitly defined above; hence, by Prob. 7, G has only one inner
automorphism which is the identity transformation.
Other automorphisms of G, which by definition are outer automorphisms, are as follows:

A Ade) =b, Ai(b)=a, Ai(c)—c¢
Ay As(a) =¢, A2(b)=b, A:(c)=a
Az Asz(a) =a, As(b)=c¢, Az(c)=0»b
A Ay =b, Ai(b)=¢, A =a
As: As(a) =¢, As(b)=a, As(c)=b

G of Prob. 10 is an octic group, but not the octic group of the square; other four octic groups,
vs. the Dihedral group, Di, are shown below.
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1. Dihedral Group, characterized by a*=b%>=¢, ba=a% (which, incidentally, has four inner and four
outer automorphisms):

e a a® a? b ab a’b  a®b
e e a a? a® b ab a*b  a’b
a a a? a® e ab a’b  a’b b
a® a? a? e a a*b  a®b b ab
a? a® e a a? a’b b ab a?b
b b a’h  a’b ab e a? a? a
ab ab b a’b  a*b a e 3 a’
a*b | a*b ab b a®b a’ a e a®
a*b | a®b a*b  ab b a? a? a e
2. Quaternion Group: a'=-¢, a®=b% ba = a’b 3. a®=c¢e¢
e a a? a? b ab a’b a®b e a a? a? at a® at a’
e a a? a® b ab a?b a®b e e a a? a® at a® a®
a a a? 3 e ab a6 a*b b a a a? a® S ab® 7 e
a? a’ a® e a a* ab b ab a? a? a? at 5 af a’ e a
a® a® e a a® a’b b ab  a?b a® a? a? a® a® a’ e a a?
b b a*b ab ab @’ a e a® at at a® a® d e a a? a®
ab | ab b ab a* o a? a e a® a’ ab a’ e a a? a® at
a*b | a’b ab b a*b e a?® a® a at ab a’ [ a a? a® at a’®
a’b | a®b a*b ab b a e a® a’ a’ a’ e a a?  a at  a® a®
4, a*=b*=¢ 5. a’=b*=¢?
e a a? a? b ab a*b a®b e a b c ab ac be abe
e e a a? a® b ab a*b a®b e e a b c ab ac be abe
a a o a* e ab ad o b o a e ab ac b ¢ abec be
a’ a? a® e a a*® a*b b ab b b ab e be a abe ¢ ac
a? a® e a a® a®b b ab a®b c c ac  be e abe a b ab
b b ab a*b a*b e a a? a® ab | ab b a abe e be ac ¢
ab | ab a%*b a®b b a a? a® e ac | ac ¢ abe a be e ab b
atb | a’b a®b b ab a? a® e a be | be abe ¢ b ac ab e a
a®b | a®b b ab a’b af e a a? abc| abe be ac ab ¢ b a e
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*§3.2.5 Normal Subgroups

Df.3.25.1 The conjugate subgroups (cf. Df.3.2.2.14, Df.3.2.4.9-10) of a group G are of
the form ¢g~'Gig, for every geG, where G: is any subgroup of G.
Example:

A subgroup G: conjugate to a subgroup G:= {(1),(123),(123)*} under the symmetric group S.
may be obtained by a transforming element, say, (14): (14)-1(1)(14) = (1); (14)71(123)(14) = (423);
(14)~1(132)(14) = (432). (Cf. Prob. 4.)

Df.3.25.2 Any conjugate subgroup G: of a group G is called normal (or self-conjugate
or invariant) iff Gi,= Gy, i.e. x7'Gix = G;, for all 2 ¢G.
Stated otherwise: a subgroup G: of a group G is normal (in G) iff G; remains the
same under all inner automorphisms of G.

Example:

The subgroup {(1), (13)(24)} of the dihedral group (cf. Prob. 5 below) is normal; so are G itself
and {e}, as is self-explanatory in Df.3.2.5.2 itself.

Hence the following ramification:

Df.3.25.2a A group containing none of proper normal subgroups, except itself and {e},
is called a simple group. (Cf. Prob. 24.)
All Abelian groups are necessarily normal, since z - gxr =gz 'z =g in any
Abelian group; so is every subgroup of an Abelian group. But not conversely, since
there does exist a family of non-Abelian groups, every subgroup of which is normal.
Hence, again, a ramification as follows:

Df.3.252b A non-Abelian group, all of whose subgroups are normal, is called a
Hamiltonian group.

One member of this family, viz. the quaternion group, has already been observed
(cf. §3.2.4, Prob. 10 note, and also Prob. 23 below), but other members at large are
beyond the scope of the present study.

In general, the normalizer N(G:) of a subgroup G of a group G is plainly the
maximal subgroup of G in which G; is normal; thus, the normalizer of Gy is G itself
iff Gy is normal in G, ie. N(G1)=G (cf. §3.2.3, Prob. 3, and also Prob. 5-6 below).
As is obvious from their definitions, the centralizer C(G) is a normal subgroup of N (Gh).

Normal subgroups may be characterized otherwise, e.g. as in the following
theorems.

Th.3.25.3 A subgroup G: of a group G is normal iff gGi=Gig for every geG. (Cf.
Prob. 8.

Th.3.254 Any subgroup of index 2 (cf. Df. 3.2.2.9) is necessarily normal. (Cf. Prob. 10.)
Stated otherwise: every subgroup G; of G is normal if G; has only one other
coset; all g; such that g;e G and ¢;¢G: will then form the right and left coset of G;

in G. This is most clearly exemplified in the following theorem.

Th.3.2.5.5 The alternating group A. of the symmetric group S, is normal. (Cf. Df.3.1.2.18,
and Prob. 11 below.)

Example:
The symmetric group S: has the alternating group
4. = {(1),(123),(123)%, (124), (124)%, (134), (134)*,(234), (234)%, (12)(34), (13)(24), (14)(23)}

which is normal, as can be individually verified without difficulty. Note, also, that A itself has a
normal subgroup, viz. the Vierergruppe (cf. §3.1.2, Prob. 2,12; §3.1.3, Prob. 12),

Ve = {(1), (12)(34), (13)(24), (14)(23)}



Sec. 3.2.5] SUBGROUPS — NORMAL SUBGROUPS 111

Th.3.2.5.6 For every complex K of a group G and every normal subgroup N of G,
KN = NK. (Cf. Prob. 14.)

Th.3.2.5.7 For every subgroup S of a group G and every normal subgroup N of G,
SN = NS is a normal subgroup of G. (Cf. Prob. 15.)

Th.3.2.5.8 (First Theorem on Homomorphism). If a group G’ is a homomorph of a group
G under a homomorphism H, then a complex K of every element k, keG, whose
homomorph is the identity e’, where ¢’ ¢G”’, forms a normal subgroup of G. (Cf.
Prob. 16.)

Df. 3259 The normal subgroup of Th. 3.2.5.8 is called the kernel of the homomorphism H.

Example:

The homomorphism H of the alternating group A. onto the cyclic group of order 3 (cf. §3.2.1,
Prob. 18) has the kernel:  {(1), (12)(34), (13)(24), (14)(23)}.

Th.3.25.10 Any two elements of a group G have the same image in a homomorph G’
of G iff they are in the same coset of the kernel S. (Cf. Prob. 17.)

Th.3.2.5.11 Th.3.2.5.10 implies (xS)(yS) = «yS, where z,yeG. (Cf. Prob. 18.)

This theorem holds, more generally, also for any normal subgroup N of a group
G, as is quite explicit in the proof.

Th.3.25.12 If there exists a homomorphism H of a group G onto or into a group G’, and
if G, is a subgroup of G, then H(G,) is a subgroup of G’, i.e. H(G); if G: is a normal
subgroup of G, so is then H(G:) of H(G). (Cf. Prob. 19.)

Solved Problems

1. If a subgroup G: of G is Abelian, so is a subgroup G: conjugate to G: under G.
PROOF:

Let a,be Gy then ab =ba and also (g7 'ag), (9 'bg)e G: for every geG. Now, (9 'ag)(g~'bg)=
g tabg = g~ 'bag = g 'bgg 'ag = (9 'bg)(g 'ag). Hence G: is also Abelian.

2. The order and the index in G of a subgroup G, equal those of a subgroup G: conjugate
to G1 under G.
PROOF:
Let the order of G: be m, i.e. a1,as,. . .,an & Gi; then, for every geG,
G: = g7'Gig = {g7'aug,9 'arg, ...,9 'ang}

each element of which must be proved to be distinet.

If glaig =g 'ajg, 1 =1i¥#*j=m, then
a = g9 laiggT' = g9 'aiggT' = a;

contradictory to the assumption. Hence the elements of G: are all distinct, providing a 1-1 corre-
spondence: a; <> 9~ 'a:g.

Thus if the order of G is n, the index in G of G, is n/m, which is also the index in G of G.
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A subgroup G: conjugate to a cyclic subgroup G; of a group G is also cyclic; the
generator of G; is g~ 'ag for every geG if the generator of G, is a.

PROOF:
The problem is to establish a 1-1 correspondence: «" <> (g~ lag)"= g larg.

If n =1, then clearly a <> g lag.
Suppose a* <> (g 'ag)* =g 'akg for n==k; then, for n = k+ 1,

g7la%* g = g7'a¥(ggThag = (97'a*g)gT'ag = (97'ag)*V

Also, if =0, then g 'a’9 =g leg=e= (9 'ag)°, and if n=—1, then g-la¢~lg= (9 'ag)~! since
(97'ag)(g™'a"'g) = ¢; for m <0 in general, since —n > 0,

g7lag = g7He™ g = (gT'aTmg) Tt = ((97'ag) ™) = (g7lag)®

Hence it is always the case that (¢~lag)" =g 'a"g for any integer n and, since Prob. 2 above
assures the 1-1 correspondence a"e G: <> g~'a"gt Gs, there also exists the 1-1 correspondence
a*e G < (97 'ag)"e G
completing the proof.

Find all subgroups conjugate to a cyclic group C generated by (123) under the sym-
metric group S:= {1,2,3,4}.
Solution:

The cyclic group C consists of (1), (123), (123)? = (182), and d-'Cd=C for every transforming
element deD = {(14),(24),(34),(4)}. Hence the conjugate subgroups are: (14)-1C(14) = {(1), (423),
(432)}, (24)71C(24) = {(1), (1483), (134)}, (34)7C(34) = {(1), (124), (142)}, (4)~*C(4) = {(1), (123), (132)}.

Find the normal subgroups of the octic group of the square.
Solution:
Referring to §3.2.3, Prob. 3, the subgroup {0} is at once found to be normal; {0, 2} is also normal.

Note. The normalizer N, e.g. {0,1,2,38), is evidently the largest of all subgroups of G which
contain {0,1,2, 3} as a normal subgroup. Likewise, N(Gy) of G1={0,2} is the maximal subgroup of G
in which G, is normal.

Let A be a subgroup of a group B which in turn is a subgroup of G; then, if A is normal
in G,so0is A in B.
PROOF:

By hypothesis, g~'ag =a for every acA and every geG. Since B is a subgroup of G, every
b e B implies every be G; hence b 'ab= a, i.e. A is normal in B.

If two subsets G: and G: of a group G are normal, so are G:G: and G, N Gs.
PROOF:

By hypothesis, 97'G19 = G1 (or G1=gG1g™") and g 'Gag = Gs (or G2 =gG2g™Y).
(i) g‘lGley = g“(gG1g‘1)(ngg‘1)g = G:1G:, ie. G1G: is normal in G.

(ii) Obviously, g '(GiNGs)g C (g7'Gig)N (g7 'G2g). Conversely, if ae (97'Gig)N(g™1Gsyg), then
a =g 'bg implies be (GiNG1) and, consequently, a eg ' (GiNGr)g. Hence (97'G1g)N(g~1Gag) C
97 1(G1NGy)g.

Hence, altogether, g~'(GiNG:)g = (97'G19)N(g7'G29) = GiNGs, 1ie. the meet of G: and G. is
also normal in G.

Prove Th.3.2.5.8.
PROOF:

Conversely, if G: is normal in G, ie. g~!G1g = G4, then 9G1=g(9 1G19) = Gug.
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9.

10.

11.

12.

13.

A subgroup G: of a group G is normal in G if ¢ 1G9 CG, for every geG.
PROOF:
Since g 'Gi1g = G, for every g e G, replace g by 9 '¢ G, and
97 Gig 2 (97)7'Gilg™) = gGigT C Gy
Hence G = 97" (gGig7™ )9 C 9Gig™!
and together with the original hypothesis ¢ 'GigCGi, it now follows that G,=gGg™?, i.e.
gG1 = G.g, completing the proof.

Note. The stipulation “g~'GigCG,”, when used for defining G, to be a normal subgroup, is
manifestly weaker than “¢g~!G.g = G.”; but, as proved above, the latter is deducible from the former,
and the simpler form of the former may often be used for finding normal subgroups (cf. Prob. 16, 19
below).

Prove Th.3.2.5.4.
PROOF:
The left-decomposition of G is, by hypothesis,
G = Giu pGl

where p is an odd permutation in S; and pG: has no element in common with G:, while the right-
decomposition is
G = GiUGip

Hence pGi=Gip and, by Th. 3.2.5.3, G: must be normal in G.

Prove Th.3.2.5.5.
PROOF:

By Df.3.1.2.18 and Th.3.1.2.19, A. is a subgroup of S, which consists of A, itself and but one
coset of A.; hence, by Th. 3.2.5.4, A, is necessarily normal in S..

Second proof (without resorting to Th. 3.2.5.4), Let p be an even permutation, i.e. » =pipz...Px
where 7 is an even number and p: is a transposition; then, for any permutation ge S,,

g7'pg = ¢ pipa...pdg = (@'piggTP2q). . (@7 Png)
where ¢ 'piq is evidently a transposition. Hence ¢~ 'pq is again an even permutation and, A. being
the subgroup of all even permutations in S., ¢ 'A.qCA..
Conversely, for any even permutation p’, ¢p'q *=(¢" ") !p'q~! is an even permutation; hence
P = q (gp'q Y)qe q 'Anq, which implies A.C q 'd.q.

Hence A, = q~'A.q, which proves A. to be normal.

Any proper subgroup of S; which is not an alternating group is not a normal subgroup.
PROOF:

Of all subgroups of Si;, As = {(1), (123),(132)} is an alternating group which, by Th. 3.2.5.5, is
also normal.

Other proper subgroups: {(1),(12)}, {(1), (13)}, {(1), (23)}, however, are conjugate to each other;
hence they cannot be normal, a normal subgroup being a subgroup conjugate only to itself.

A normal subgroup N of a group G is a class of conjugates, i.e. a join of one or more
conjugate sets in G.
PROOF:

If nie N, then g~ 'nmig € ¢~ 'Ng = N for every g e G; i.e. any element which belongs to the complex
g~ 'mig also belongs to N. This holds for each nie N, 1=12,...,k. Hence N is the join of k conjugate
sets, i.e. a conjugate class.
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Prove Th.3.2.5.6.
PROOF:

Since every element of KN is of the form kn for every ke K and ne N, and since N is a normal
subgroup, it immediately follows that kN = Nk, i.e. kn=nk’ for some &' ¢ K. Hence kne NK which
implies KNCNK. Similarly, NKCKN. Hence KN = NK.

Prove Th.3.2.5.7.
PROOF:
Since any subgroup of a group G is a complex of G, it is evident, by Th.3.2.5.6, that SN = NS.
If 2,y e SN, then » = s1n1 and y = syms, where 81,8:¢ S and mi,nee N. Moreover, xy~! = (s1m1)(8em2) 1 =
Simmz's; ' = siMmes;' where nmz! = nseN. Likewise, nsss!= 8sns, where s;! = s;e S, since SN =NS.

Hence =xy™' = smss;! = simass = 818sm3 = (183)nse SN, and conversely, which, by Th.3.2.1.2, proves
SN = NS to be a normal subgroup of G.

Prove Th. 3.2.5.8.
PROOF:

Since a,b ¢ K implies, by hypothesis, a = ¢’ and b - ¢, it follows from Th. 3.1.3.3 that a~1— ¢! = ¢
and a7'b > ¢'¢’ = ¢/, which implies a~'beK, and conversely. Hence K is a subgroup of G'.

Moreover, again by Th.3.1.3.3, geG - g’e G’ implies g~! - ¢'~!, which in turn implies g~kg —
g’ 'kg' > g'"'¢'g’ = ¢/, for every keK-e'. But, then, g~'kge K. Hence 9 'Kg C K and, by
Prob. 9, K is a normal subgroup of G.

Prove Th. 3.2.5.10.
PROOF:

If g1~ ¢’ and g: ~ g', where 9:1,9:£ G and g’ G, then gig;' > e and gig:'e S, ie. gieSgs, which
proves that ¢g; and g: are in the same coset of S.

Conversely, if g:eSg:, then g1 =sg,, where s&S; and if g.— ¢, then g, > g’ since s~ e, proving
that g: and g» have the same homomorphic image in G, completing the proof.

Note. Since this theorem is an immediate result of Th. 3.2.5.8, the former often appears as a part
of the latter, i.e. the First Theorem on Homomorphism.

Prove Th.3.2.5.11.
PROOF':

Since, by Th.2.2.,5.10, xS =Sx for every 2¢ G, it follows that (@S)(yS) = 2SyS = xySS. But
SS =S for any subgroup S of a group G, since, by Df.3.2.2.1, SS is the complex of all elements of
the form ss, for any se S, which then, by the closure property of S, yvields all distinct elements of S.
Hence (xS)(yS) = xyS.

Prove Th.38.2.5.12.
PROOF:
(i) If abeG, then a—a’ and b->¥, a' b e H(G), under H: G—-G and also a-beG = o'~b'¢
H(G:), proving that H(G.) is a subgroup of H(G).
If Gi= G, then H(G:) = H(G) is a subgroup of G/, i.e. a subgroup of the homomorph of G itself.
(if) Since geG—>9¢'eG and heGi— W e H(G)), it follows that 9 'hg - g’"'1’g’, which implies

9'7'h'g’ e H(G1) since g 'hgeG: Hence g 'H(G)g' C H(G:), proving that, by Prob. 9 above,
H(G:) is a normal subgroup of H(G).

Given the multiplicative group B* of all real numbers and e R*, find homomorphisms
and their kernels in the following correspondences: (i) » - ||, (ii) 2 - 1/2%
Solution:

(1)  Since there generally exists a two-one correspondence: x,—x — |#|, where x> |¢| and y— |y| imply
xy = |xy| = |%| |y|, this is a homomorphism whose kernel is a complex {1,—1} which does form a
normal subgroup.

(ii) A homomorphism is defined here likewise, since - 1/x* and y—1/y* do imply =y - 1/(xy)* =
(1/2*)(1/y*) in a two-one correspondence; the kernel is here again {1, —1}.
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21. In a homomorphism H of a group G onto or into a group G’, the complex C of all elements
of G corresponding to the elements of a complex C’, ¢/ CG’, is the join of all cosets of
the kernel K of H. If C’ is a subgroup of G’, then C is a subgroup of G, and if C’
is a normal subgroup of G’, so is C of G.

PROOF:

(i) Since ceC~ ¢’ C’ under H, and since ke K— ¢ ¢G’, it follows that ckecK— e'c’ =c¢'eC.
Hence ck e C, which implies ¢K CC, proving that C is the join of all cosets ¢K, ceC.

(ii) If €’ is a subgroup of G/, then a¢eC— a'¢C’ and beC- b'eC’ under H, which implies
a 'beC > o' ~'b'eC’, proving that C must be a subgroup of G if ¢’ is a subgroup of G’.

(iii) Likewise, geG—~>9¢'eG’ and ceC—>c¢'eC’ imply g lcge C*—> g'"'¢'g’e C’, which in turn
implies ¢~ 'Cg ¢ C since g~'cgeC. Hence C is a normal subgroup of G if C’ is a normal
subgroup of G'.

22. If G is an Abelian group and G is a set which consists of all g%, where ge G, t1=1,2,...,n,
then there exists a homomorphism H of G onto G. where the kernel K of H is the set
of every element k such that k*=e.

PROOF:

The homomorphism H does exist since aeG— a"¢G. and be G- b"e G, imply abe G~ (ab)" =
a*b” e G, where the kernel K of H cannot but be the set of k such that k" =e.

23. The quaternion group Q = {e,a,a%a3b,ab,a?b,a®b}, defined by e=a*, a=b=c¢, a=bc,
b=ca, c=ab, is a non-commutative group of order 8. Verify that all subgroups of
@ are normal.
PROOF:

Q has four proper subgroups; one, of order 2, is {a?}, and the other three, of order 4, are
{a}, {b}, and {ab}, which are indeed all normal, as can be easily verified by computation with the
multiplication table at the end of §3.2.4.

Note. The eight elements of Q, e¢,a,a? a? b,ab,a?h,a’ may be transformed into 1,%,—1,—4,7,
k,—j,—k, respectively, where the quaternions have the following properties:

e=p=k=-1 ij=k=—fi, jk=i=—kj, ki=j=—ik

24. If an Abelian group G is simple, the order of G is a prime.

PROOF:

All subgroups of G+ {e¢} are also Abelian and, consequently, normal. Hence, by Th.3.2.2.12, the
order of G is of a prime.

*$3.2.6 Quotient Groups

Th.3.2.6.1 The cosets of any normal subgroups G: of a group G form a group under
complex multiplication (cf. Df.83.2.2.1, and Prob. 1 below).

Df.3.2.6.2 The group of cosets of G; in Th.3.2.6.1 is called the quotient group of G by
G, or the factor group of G; in G, denoted by G/G:.
Example:

In the example of Th.3.2.5.5, V4 is a normal subgroup of A. and necessarily also of Si, which
then has the following decomposition, considering G < S, and G; < V, in Df. 3.2.5.1:
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S: = (HVauU (12)Vi U (13)V4 U (14)Vs U (123)V, U (132)V,
(1), 12)(34), (13)(24), (14)(23)) U ((12), (34), (1324), (1423))
U ((13), (1234), (24), (1423)) U ((14), (1243), (1342), (23))
U ((128), (134), (243), (142)) U ((182), (234), (124), (142))

Vi) u Vi(12) u V4(13) U Vq(14) U Vs(123) U V4(132)

I

Ss, then, decomposed into six cosets of V., yields the quotient group of Si by V., denoted by
S/ Vs (1)Vs, (12)Vs, (13)V,, (14)Vs, (123)V,, (182)V:

Df.3.2.6.3 If G and G; are of order m and n respectively, then the quotient group G/G;
is of order m/n, i.e. the index of G; in G.
Example:

S4/Vs is of order 24/4 = 6, as is quite obvious in the above example. Not so obvious, perhaps, but
more important in the same example is what is implicit there, viz. an isomorphism between S./V.
and Ss, both of which are of order 6 (cf. Prob. 2).

Df.3.26.4 If the quotient group G/G; is considered in terms of addition (instead of the
usual multiplication), it is then called the difference group of G by G, denoted by G — G..
Example:

If G represents the set I of all integers, which is a module, i.e. an Abelian additive group, then

the complex G:={n}, i.e. the set of all multiples of positive integer =, is by definition a normal
subgroup. The difference group I—{n} then consists of the cosets of the form: a+{n}, acl.

Th.3.26.5 The difference group in I, I — {n}, is isomorphic to I itself. (Cf. Prob. 7.)

Df.3.2.6.6 The coset of the form a+ {r}, ael, in the example of Df.3.2.6.4 is called the
residue class modulo n, and the difference group in Th.3.2.6.5 is called the additive
group of residue class modulo n. (Cf. Prob. 4,8-10.)

Example:
For n =4, I is decomposed into the following 4 cosets:

...—12, -8, —4, 0,4, 8,12,... = {0} = 4k = M,

.—11, -7, =8, 1,5, 9,138,... = {1} = 4k+1 = M,

...—10, -6, —2, 2, 6,10, 14,... = {2} = 4k+2 = M,

-9, -5, —1,3,7,11,15,... = {3} = 4k+3 = M,
and the class M of four sets Mo, Mi, M., M; is the addi- + | M, M, M, M;
tive group of residue class modulo 4, which, under addi- M, M, M, M, M,
tion, satisfies the multiplication table- on the right. M, M, M, M, M,
Note. The subset {0,1,2,3} constitutes a set of repre- M, M. M, M, M,

ti . Df.21. .3.2.2, M.
sentatives (cf. Df.2.1.15 and Df. 3.2.2.7) for the class M. M, M, M, M,

Df.3.2.6.6 has an alternative form as follows:

Df.3.2.6.6a If a and b are integers such that the difference a — b is divisible by m, a is
said to be congruent to b modulo m, denoted by a=5 (mod m).

Example:
17=17 (mod 5), since 17— 7 is divisible by 5.
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Th. 3.2.6.7 Congruence is an equivalence relation, i.e.,
(i) a=a (modm).
(i) a=0b (modm) implies b=a (modm).
(iii) a=0b (modm) and b=c¢ (modm) imply a=c (modm). (Cf.Prob.12.)

Th.3.26.8 a=b (modm) and ¢=d (modm) imply
(i) a+c=b+d (modm) and a—c=0b—d (modm).
(ii) ac=bd (modm). (Cf.Prob.13.)

Th.3.26.9 a=0b (modm) implies ac=be (modem). (Cf.Prob.15.)

Df. 3.2.6.10 The irreducible (residue) class modulo p, a prime, consists of (p —1) residue

sets modulo p, i.e. {1},{2},...,{p—1}, which contain no integer divisible by p.
Example:
If p =5, then
foy = {...-15,—10, -5, 0, 5, 10, 15, ...}
{1y = {...—-14, —9,—4,1,6,11,16, ...}
{2y = {...-18, -8,-3,2,7,12,17, ...}
{8y = {...—-12, —-7,-2,3,8,18,18, ...}
{4y = {...-11, —6,—1,4,9,14,19, ...}

of which the set {0} alone contains the integers divisible by 5 and as such does not belong to the
irreducible residue class modulo 5.

Th.3.2.6.11 The irreducible class modulo p forms a multiplicative group. (Cf. Prob. 16.)

Th. 3.2.6.12 The irreducible class modulo p has a subgroup which consists of {1} and
{p—1}. (Cf. Prob. 17.)

Th. 3.2.6.13 (by Fermat). If a is an integer and p a prime, then a¢*=a (mod p). (Cf.
Prob. 18.)

Stated otherwise: If an integer a is not divisible by a prime p, then a* '=1
(mod p).

Th. 3.2.6.14 If an element a of a group G has a prime order, then b~'ab=a" beG,
implies that a and b*~! are permutable. (Cf. Prob. 19.)

Th.3.2.6.15 If N is a normal subgroup of G, then the mapping of G onto G/N: g - gN,
¢geG, is a homomorphism. (Cf. Prob. 20.)

Df.3.2.6.16 The homomorphism: G - G/N, defined by Th.3.2.6.15, is called the natural
homomorphism of G onto G/N.

Th. 3.2.6.17 (Second Theorem on Homomorphism). If a homomorphism H: G - @, where
N is a normal subgroup of G and @ = G/N, is obtained by the correspondence: g = aK
where ¢ eakK, then K is the kernel of H. (Cf. Prob. 21.)

Th. 3.2.6.18 (First Theorem on Isomorphism). If there exists a homomorphism H: G~ G’
whose kernel is K, then G’ is isomorphic to @ =G/K. (Cf. Prob. 22.)

Th. 3.2.6.18 is sometimes called the Third Theorem on Homomorphism, making
Th. 3.2.7.3 the First Theorem on Isomorphism.
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Solved Problems

Prove Th.3.2.6.1.

PROOF:

Gl: Closure. Let a,be G, and ag:¢e aGi, bg: € bGy; then, since G is normal,
(agl)(bgz) = abb“yl bgz - ab(b“gl bgz) = ab(glgz) e abG;

Hence the product of any two elements (e.g. aG;, bGi) of a coset of G; is uniquely determined (i.e. abG:)
to be a distinct element of the same coset. (Cf. Th. 3.2.5.11.)

G2: Associative Law. Let a,b,ce G; then, by Gl,

aGi((0GHcG)) = aGi(beGy) = abeG: = (abG)eG: = (@GHbG)eG: = (aG)(bG))eG:
G3: Identity. Since eGiaG:=eaG:=aG; and aG;eG: = aeG: = aG, the identity of the coset is ¢G: = G..
G4: Inverse. Since aGia ™ 'Gi=aa " 'Gi=Gi and ¢ 'GiaGi=a 'aG:=G;, a~'G: is the inverse of aG.

Hence the cosets of any normal subgroup form a group.

Set up an isomorphism between Si/Vs and Ss.
Solution:
The desired isomorphism can be established as follows:

Vil) () Vi(12) < (23)
Vi(13) < (13) V.(14) © (12)
V.(123) < (123) V.(132) © (132)

as can be readily justified by computing with the multiplication table of Ss; e.g.,
(Vi(183))(V4(14)) = V4(123) <> (138)(12) = (123), ete.

Verify that there exists an isomorphism between the quotient X | 0 1
group S./A, of the alternating group A. in the symmetric group

S. and a group of order 2 which is defined by the multiplication 0 0 1
table on the right. 1 1 0
PROOF:

Let p be an odd permutation; then S./A. consists of A. and pA. (cf. Th.3.2.5.5), and an isomor-
phism is established as follows

A, <0 and pA, < 1
which is justified by the following 1-1 correspondences:

A A, = A, © 00=0 A.pA, =pA, © 01 =1

pAA. = pA. & 10=1 pA.pA.= A, < 11=0
Note. In general, the factor group G/N of a normal subgroup N of index n in G is of order .
Note, also, that the multiplication table above can be used for the additive group {0,1} of residue

class modulo 2 or the additive (but not multiplicative) group {E, O}, E representing any even number
and O any odd number.

Given a normal subgroup N of a group G, the factor group G/N is cyclic if the index
in G of N is a prime.
PROOF:

Since the order of G/N is a prime p=(G:N), it follows at once from Th.3.2.2.12 that G/N
is cyclic.
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For any subgroup S of an infinite cyclic group G, G/S is a finite cyclic group of order n

if (G:S)=n.
PROOF:

Let a generator of G be ¢ and an element of S whose exponent is the smallest be g™; then S is a
cyclic subgroup generated by g™. The cosets of S are, then: S,¢S,9%S,...,9™"'S. Hence n=m, and

G/S is a cyclic subgroup of order n, generated by gS.

Given a normal subgroup N of a group of G, any two subgroups H and K of G are
conjugate to each other in G if the subgroups H' = H/N and K’=K/N of G’=G/N are
conjugate to each other in G’, and conversely.
PROOF:

Let g’ =gN, geG, and ¢g'"'H’g’ = K’; then, for every he H, (gN) " *(hN)(gN) = g 'hgNe K.
Hence g 'hge K, ie. g7 'HgCK.

Likewise, since gkg~'e H, it follows that ¢gKg¢ 'CH; hence KcCg 'Hg. Hence, altogether,
g 'Hg=K.

The converse can be similarly proved.

Prove Th.3.2.6.5.

PROOF:

Since the difference group: I— {n} consists of the cosets of the form a-+{n}, acl, let
xel & x+{n} and yel <> y+ {n}, which together imply z+yel & (x+{n})+ (y+{n}) = (x+y) +
{n} e (I—{n}), completing the proof.

Verify an isomorphism between the additive group A ={0,1,2,3} of residue class
modulo 4 and the cyclic group C of order 4.

PROOF:
The general 1-1 correspondence between A and C is n <> @a", and individually:

0 a'=e 1< a 2 ¢, 34

The multiplication table of C is then the same as that of A.
Note. The table in Df.3.2.6.6 is the same as that of the arithmetic of changing tires (cf. §3.1.2,

Prob. 1); so is also the multiplication table of the subgroup {0,1,2,3} for the symmetries of rotations
of the dihedral group, (cf. §3.1.2, Prob. 5).

Note also that Vi is an exception.

The cyclic group C of order n is isomorphic to the additive group A of residue class
modulo 7.
PROOF:

Since C consists of e,a,a?, ...,a"" ! and A of {0},{1},{2},...,{(n—1}, let a' <> {i} =A. The
correspondence is 1-1 and also distinct; for, if a*=af, then i=j (mod m), which in turn implies
A;=A;, and conversely, if Ai=A4;, then i=j (mod n) which implies an integer k such that i—j=kn
and, consequently, a'= &’** = gi(a")* = ale* = d.

Furthermore, a'<>A; and o' <> A;, where i#j (mod n), imply d'¢’=a't? & Ai;=A+A,
completing the proof.

Note. Prob. 9 is, of course, the result of generalizing Prob. 8.

Any factor group of a cyclic group is eyclic.
PROOF:

Let H be a homomorphic mapping of a cyclic group G = {a} of order n onto a cyclic group G'
of order m. Since every element of G is a power of a, H(a) =b implies that any element b of G’ is
also a power of b, i.e. G’ ={b}. Hence G/G’ is a cyclic group of order n/m.

Note. If G is an infinite cyclic group isomorphic to the additive group I of all integers, a
homomorphism H of G into a cyclic group G’ of order m is obtained if iel is assigned to the
element b' as its homomorphic image. Thus i and j are mapped onto the same element of G’,
iff {=7 (mod m). In I, then, the residue class modulo % corresponds to G.
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The residue class modulo m is a quotient group of order m.
PROOF:

Let G be the additive group of all positive integers, which is Abelian, and N be a subgroup of G
which consists of all multiples of m. If N; is to designate a coset of N to which the integer i belongs,
then N has (m — 1) cosets in G: No, Ny, ..., Nn—1, where No=N and N;=N; iff i=j (mod m), which
by definition is the residue class modulo m. But, G being an Abelian group, N is also Abelian and,
consequently, normal. Hence, by Df. 3.2.6.2, G/N yields a quotient group of order m, which is indeed
the Abelian additive group of the residue class modulo m.

Note. Gl: Ni+j = Ni+Nj; G2: Ni+(Nj+Nk) = Ni+(j+k) - N(i+j)+k = (Ni+Nj)+Nk;
G3: No; G4 N_;,=—N.

Prove Th. 3.2.6.7.

PROOF:

(i) a—a=0=0m.

(ii) If a—b = mq, qel, then b—a = m(—q), —qel.
(i) If a—b = mqs, quel, and b—c = mqs, ¢q:el, then

a—c¢ = (a—b)+(b—c) = mg+mg = m(i +q2), qtgel

Prove Th. 3.2.6.8.
PROOF:
If a—b=mqy, q1el, and ¢—d = mq:, q2e1, then

i) (@te)—(b+d) = m(:+q2), qtq:el  and
(@—e) = (b—d) = m(g1—¢q2), @—qel;

(i) ac—bd = alc—d)+ dla—b) = m(aga+dq:), aqet+dg:iel.

Generalize Th. 3.2.6.8.

PROOF:

If a1 =bi (modm), az=b, (modm), ..., ax=b, (modm), let ai—bi=mqi, a:—bs=mqs, ..., G—bn=
Mgn, q1,92...,9n¢1; then:
(i) (@itast---tan) — (bitbet--+bs) = m(qitget---+¢a), @+qt - +quel

and (al“‘“az—' - -—an) — (b1—b2_ .. '_b'n) = m(qx-qz— .. -—Qn), qi1—qz—--—(¢nt I

proving that artast - -+a. = by+bet..-+b, (mod m)

and ai—@x—---—an = bi—bs—--.-—b, (mod m)

(ii) Since the case for n =2 has already been proved (cf. Prob. 13ii), assume, for n= k,

a1ls. . .k — bibs. . . bx = mqs, gsel

Then, for n = k+1,

iz, . . GkQi+1 — biba. . bibk+: = au@a. . .ak(ak+1 - bk+1) + bk+1(a1a2. ..t — bibs. . .bk)

m(@i®a. . OkQr+1+ De+1gs), Qb2 . .0kQr+1+ brrigse ]

It

Hence a.1as...an = bibe...b, (mod m).

Note. If ai=a:=...=a. and by=bs= ... =b, in (ii), then a"="b" (mod m).

Prove Th. 3.2.6.9.
PROOF:
Since a—b = mgq, gel, it follows immediately that ac— bec = cla—b) = emgq.

Note. If a=b (mod m), then also ac=bc (mod m), but not conversely; eg. 10=2 (mod 8)
does not imply 5=1 (mod 8). In fact, ac=bc (mod m) implies only a=b (mod m/(c,m)) where
(c,m) denotes a common divisor of ¢ and m (cf. §4.1.2.3, Prob. 39).
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16. Prove Th.3.2.6.11.

PROOF:
Let p =5, for the sake of simplicity, as is outlined in the
example of Df.3.2.6.10; then the irreducible class M modulo 5 1 2 3 4
consists of four sets: M:= {1}, M,= {2}, M; = {3}, My = {4}, their
representatives being 1,2,3,4. Then, as the multiplication table 1 1 2 3 4
on the right exemplifies,
Gl: M.My, = Maw, a,b=1,2,34; and if Mo=M, and M. =M,, 2 2 4 1 3
then, by Th.3.2.6.8, My = M.a.
G2: M.(MM) = MiMo. = Mae = MayM, = (M. MM, 3 3 1 4 2
G3: M.M, = MiM., = M, 4 4 3 9 1
G4: MM, = M:M; = MsM, = MM, =M,
17. Prove Th. 3.2.6.12.
PROOF:
Since M.M; = M, and M, M, = MpM—lMpM—l =M - M-, = MM, =M, and MM, =

My-1My = M,-1, it follows that M, and M, put themselves in a subgroup by themselves.

18. Prove Th.3.2.6.13.

PROOF:

The order of the multiplicative group M of an irreducible class modulo p is p—1, as has already
been examined in Df.3.2.6.10 and Th.3.2.6.11. Since, by Th. 3.2.2.10, the order of any element M,,
a#0, of M is a divisor of the order of M, it follows that (M,)*"'= M, (B.g, 1*'=2*=3'=4*'=1
(mod 5).) But, obviously, a? e (M.)?"!. Hence o '=1 (mod p), ie. a?=a (mod p).

If a=0, ie. ae {0}, then ¢ must be divisible by p, i.,e. a =0 (mod p), and the theorem evidently
holds.

(This theorem reveals, e.g., (10)*=1 (mod 11), (28)* =(29)*=(30)*=1 (mod 31), ete.)

19. Prove Th. 3.2.6.14.

PROOF:
Since, for a" =e¢, a =beb ' = bb™' = ¢, which is contradicting the hypothesis of a being the
generator of G, n» must not be 0; n, then, represents an irreducible class modulo p: 1,2,...,p—1.

Now, b 'ab! = a" implies b 2ab* = b~'b~'abb = b 'a™ = (b~'ab)" = (a”)* = a*’. Suppose
b~ ab* = a*; then b~ **Dab**L = p-1(b"*ab*)b = b 'a*b = a***". Hence b~ @ Dab?"! = gn® L,

But then, by Th. 3.2.6.13, there exists an integer ¢ such that
w7l = 1+pq, and b @ Vab® 0"’V = gt = g(a?)? = ae* = a

Hence, ab?™! = b?1q.

20. Prove Th. 3.2.6.15.
PROOF:

By Th.3.2510, a1eG - atxNeaN and @:eG » a:NeaN imply aia:eG = (a:N)(a:N) =
aia:N g aN.

21. Prove Th.8.2.6.17.
PROOF:

Let g1 e aiK and g:€ ;K in the mapping g > aK; then, by Th.8.2.5.11, g.g9:¢ axK where aia;e a.K.
Hence g9:19: ~ axK = a.Kaq;K, proving the mapping of G onto @ to be H, where g—e¢ iff ge¢ K in G,
since K is the identity of Q. Hence K is the kernel of H.
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22. Prove Th. 3.2.6.18.
PROOF:

It follows directly from Th. 3.2.5.10 that every g ¢ G in the same coset of K has the same image
in G’, and consequently that the correspondence ' <> «K 1is 1-1. But, since z—~ %’ and y—>y’ imply
xy—~>x'y’ where wyeaxyK, it also follows that «'y’ <> xyK = xKyK. Hence the correspondence
2’ <> 2K is 1-1 between G’ and Q.

Note. Th,3.2.6.18 may be given in an alternative form, which as such needs a longer proof; viz.
if K is a complex {k} of a group G which is mapped onto a group G’ under a homomorphism H,
then H: keK— e e¢G’ implies that K is a normal subgroup of G under H, hence the kernel of H,
and that G/K— G’ is an isomorphism.

Proof. The complex K is a group, since a,b,ce K implies Gl: H(ab) = H(a)H(b) =e'e’ = ¢’;
G2: H(a(be)) = H(a)(H(b)H(c)) = (H(a)H(b)) H(c) = H((ab)c); G3: H(e)=¢'; G4: ¢ =H(e)=H(aa ) =
H@H(a ') =e¢'H(a™*) = H(a™?).

K is also normal; it is in fact the kernel of H, since h = g~'kg for every ge G and every ke K
implies 2 ¢ K (since H(h) = H(g 'kg) = H(9g )H(k)H(g) = H(9 Y)e’'H(g) = H(g~'g) = H(e) = ¢').

Furthermore, since every 9’ ¢ G’ is of the form H(a) for some ac G, and since every element in
G/K can be written as aK, the mapping of G’ onto G/K is 1-1; so is the mapping of G/K onto G,
since H(a) = H(b) iff aK = bK. Hence the mapping is 1-1, and also isomorphic, since T(H(a)) = aK
defines the isomorphic mapping of G’ into G/K and T(H(a)H(b)) = T(H(ab)) = (ab)K = (aK)(bK) =
T(H(a))T(H(b)).

*83.2.7 Composition Series and Direct Products

Df.3.2.7.1 A normal subgroup N of a group G is maximal if it is not properly contained
by any proper normal subgroup of G.

Stated otherwise: if N is a maximal normal subgroup of G, then there exists
no normal subgroup N’ such that NCN’'CG.

Th.3.2.7.2 A normal subgroup N of G is maximal in G iff G/N is simple. (Cf. Df.3.2.5.2a
and Prob. 2)

Th.3.2.7.3 (Second Theorem on Isomorphism). If N is a normal subgroup, and H any
subgroup, of a group G, then the meet M of N and H is normal and the correspondence
NH/N & H/M is an isomorphism. (Cf. Prob. 3.)

Df.3.2.74 A series of subgroups of a group G:

where Si/Si-1 (called a composition-quotient group) is simple, is called a composition
series. The order of a composition quotient group is called the composition index.

It is evident that Si—: is a maximal normal subgroup of S;. The following theorem
is also evident.

Th. 3.2.75 There exists at least one composition series with respect to a group G. (Cf.
Prob. 5.)
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Example:

{(1)} c {(12)(84)} C V. C A4 C Ss (cf. the example in Df. 3.2.5.5), where {(12)(34)} represents three
subgroups, excluding (1) of V.4, which are all of order 2.

Hence the composition indices are: 2,2,3,2.

Th.3.2.7.6 (by Jordan-Holder). If G is a group with two composition series C: and C.,

Ci {e}ZSocslc---CsmCSm+1:G
Ca: {e}:S6CS{C---CShCSﬁ+1:G
then m = n, and there exists an isomorphism: Si/Si-1 «& S//Sj-1. (Cf. Prob. 6).
Note the difference in the subscripts of S and S’ in the isomorphism specified

above; the isomorphism takes place in some order and not always exactly opposite
to each other.

Example:

If G is a cyclic group,of order 6, {e¢,a,a? a® a',a’}, then two composition series are e C S;=
{e,,a’} C G and e C Si={ea®} C G, and

G/Si{ © Si/e and G/Si > Sy/e

Another emphasis should be put on the fact, which is implicit in the form of the
isomorphism, that each subgroup of the composition series is a maximal normal
subgroup of the preceding group alone and may not be even normal in G itself or
in any other subgroup but the preceding one.

Th.3.2.7.7 A set S of ordered pairs (a,b), acA, be B, where A and B are two groups
under a binary operation

(al, bl)(az, bz) = (axaz, blbz), where a,az e A, b1b2 eB
forms a group. (Cf. Prob.7.)

Df.3.2.7.8 The group S of Th.3.2.7.7 is called the direct product (cf. Df.2.2.2.3) of A
and B, denoted by AXxB.

Ag is but logical, aia2 and b1b: in the binary operation defined above are obtained
by the operative rules of A and B respectively.
Example:

If A represents the additive group of all integers and B the multiplicative group of the fourth
roots of unity (cf. §3.1.8, Prob. 7), a:a: is obtained by addition and b:b. by multiplication.

If A and B are two subgroups of a group G, then the definition of the direct
product of A and B is modified as follows:

Df.3.2.7.8a Two subgroups A and B of a group G form a direct product if the following
two conditions are satisfied:

(1) ab = ba for every acA, beB.

(iiy AnNnB=ce
In particular, if G = AxB, then A and B are called the direct factors of the
decomposition, which stipulates the third condition:

(iii) ¢¢G implies a unique representation g = ab for every aeA, beB.

Further generalized, the direct product of more than two subgroups is defined
as follows:
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Df.3.27.8b A group G is called the direct produet of its subgroups Gy, Gy, ..., G» if the
following three conditions are satisfied:

(i) GuGy,...Gx are all normal in G.
i) G =uG, t=12,...n
(iii) G,ﬂ(U#,- Gl) = e, ]: 1,2,. PR £

Df.3.2.7.8b, as well as Df.3.2.7.8a, may be considered a theorem (cf. Prob. 11),
since it can be deduced from Th.3.2.7.7 above and Th.3.2.7.9 below.

Th.3.2.79 If A and B are normal subgroups of a group G such that AUB =G and
ANB =¢, then G is isomorphic to AxB. (Cf. Prob. 10.)
Example:
A ={e,a} and B = {e,b} are normal subgroups of

G = {eabab} <> {(ee)(e,a)(eb)(a,b)} =AXB

This simple example makes it quite clear that Th. 8.2.7.9 may be stated as follows:

If A and B are subgroups of a group G such that ab=ba, for every acA,beB,
and if there uniquely exists g =ab for every ge @, then 4 and B have no element in
common except the identity ee G, and G & AxB,

Stated this way, Th. 3.2.7.9 becomes logically equivalent to Df.3.2.7.8a with three
conditions.

Th.3.2.710 If A is an Abelian group of order k& which is a product of two relative
primes ¢ and j such that bi=c¢i=¢e, for every beB,ceC, then B of all b and C of all ¢
are subgroups of A and BxC = A.

Generalized by induction, Th.3.2.7.10 takes the following form, called the Basis
Theorem for Finite Abelian Groups:

Th.3.2.7.10a If G is an Abelian group of order n = IIp%, 1=1,2,...,k, where p; is a
distinct prime, then G = Gi1xGq2Xx...XGx, where each G: is of order p&i.

Df. 3.2.7.11 The set of p; in Th.3.2.7.10a is called the minimal generating system and
also, with respect to the set of G; which p; generates, the basis for G.
Example:
Vi = {e,a,b,c} is an Abelian group where e=a*=b>=¢? ab=ba=c¢c, bec=cb=4a, ca —ac=1b;
furthermore, e¢=a'%®° a=a'd’, b =0a’?, ¢ =a'd'. Hence a and b constitute a minimal generating
system of, or a basis for, V..

Note that ¢ and b form a distinct basis, but not the unique basis, since, e.g.,
a and ¢ constitute just as well a basis for V..

Note, also, that Th.3.2.7.10, and consequently Th.3.2.7.10a, may not hold con-
versely.

Example:

Ss = {(1),(12),(13),(28),(123),(182)}, which is definitely non-Abelian, also has a basis, or rather,
bases, viz. ¢ = (12) and b = (13) generate: a’h®= (1), a'd® = (12), o' = (13), a'bla' = (12)(13)(12) = (23),
a'd! = (12)(18) = (123), b'a' = (18)(12) = (182); this basis may be replaced by, e.g., (12) and (23).
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Solved Problems

If there exists a normal group N: of a group G such that N;CN,CG when N, is also
a normal group of G, then N:/N, is a normal subgroup of G/Ni, and conversely.
PROOF:

Since N; being a normal subgroup of G implies that it is also a normal subgroup of N:, N./N; is
evidently a group; moreover, for every ge G, every ae N, every gN:CG/N1, and every aN:CN»/Ny,
(gN1)"*(aN:)(gN1) = N;'g 'aNigN: = g 'agN:NiN: = g *agN: C aN;

proving that N./N; is normal in G/N..
Conversely, since N, is normal in G and, as above, (9Ni)~'(aN)(gN1) = g 'agN:, where g~'agN,,

by hypothesis, is an element of N:/N,, it follows that g~'ag is an element of N, i.e. g~'Na.g = Ny,
proving N: to be normal.

Prove Th. 3.2.7.2.
PROOF:

Assume that N is maximal when G/N is not simple; then, letting N’/N be a normal subgroup of
G/N, it follows that NCN’'C(@, as in Prob. 1 above, which contradicts the assumption. Hence N is
not maximal if G/N is not simple; i.e. if N is maximal, then G/N is simple.

Conversely, assume that G/N is simple when N is not normal; then there exists a normal sub-
group N’ such that NCN’'CG and, by Prob. 1, {¢} = N/N C N'/N C G/N, contradictory to the as-
sumption. Hence N is maximal if G/N is simple.

Prove Th. 3.2.7.3.
PROOF:

By Th. 3.21.3, M is a subgroup of G and also of N which is a normal subgroup; hence, for every
geG and every me M, g~'mg is in N, and in H, too, since H is another maximal normal subgroup.
Since both H and N, i.e. HNN = M, contain it, the meet M is a normal subgroup.

Furthermore, by Th. 3.2.5.7, HN = NH is a normal group, and there exists a mapping: h— hN, for
every ke H, which is a homomorphism f of H onto HN/N. But, since all the cosets of HN/N are
given as hnN = hN, where nec N, the mapping f is actually 1-1. Hence h <> AN, which implies he N
and, consequently, heM.

Conversely, h e M implies RN = N, and M is proved to be the kernel of f. Hence, by Th. 3.2.6.18,
H/M < HN/N.

If N and H are two distinct maximal normal subgroups in Th.3.2.7.3, then HN = G,
and there exist two isomorphisms: H/M <« G/N and N/M o G/H.
PROOF:

(i) Since H and N are distinct, there must exist an element, say, h ¢ H which does not belong to N;
hence ek =k is an element of HN which is not contained in N, i.e. NCHN.

Now, assume that HN #G; then NCHNCG (since HN is also a normal subgroup, of
course, by Th.3.2.5.7). But, by hypothesis, H is maximal and is now proved to be properly
contained in HN. Hence it must be the case that HN = @G.

(ii) Since M is a subgroup of H, H has a left-decomposition, represented by a class equation C:
H = MuaMU...UaM
which clearly implies
HN = MNUaMNU ...U aMN
since hne HN implies hne aiMN, ie. HN C MNU...UacMN, and yet HN D MNU...Ua:MN,
because HN = G, by Prob. 4 above.
Moreover, since MCN implies NM = N, there follows a class equation C’:
G = NUaNU...UaN
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Assume that C’ is not a proper decomposition of G, containing some identical cosets, e.g. a:N = a;N;
then ain=a;n’ and aiaj’=n"'n"=n'"e¢ N, which implies a:aj'e H, since both a: and a; are in H,
as is explicit in C. Also, since a:aj' is in both H and N, it is also in M, which implies a:M = a;M,
contradicting the assumption of C being a left-decomposition of H in terms of distinet cosets of M in G.

Hence C’ must represent a left-decomposition of G.

Since, then, aiM C H/M and aiN C G/N, there exists a 1-1 correspondence a:M <> a;:N which
is also isomorphic; for aM<>aN and oM e>oN imply T(aMa;M) = T(aasM) = aia;N =
(aiN)(a;N) = T(a;:M)T(a;M), proving T to be an isomorphic transformation.

Prove Th. 3.2.7.5.
PROOF:
If G is simple, a composition series {e} C G is at once obtained.

If G is not simple, then there exists a maximal normal subgroup G: such that {e}=Go c G C G,
and in general, if G; is not maximal in a composition series: {e}=GoCc GiC ... c G: C G.=G,
there always exists a maximal normal subgroup G; such that

{e}=Goc GiC ... CGicCcG;cCc Ge=@G

where k is finite, completing the proof.

Prove Th.3.2.7.6.
PROOF:
The theorem is trivially true for simple groups and also for any group whose order is a prime.

Let G be of non-prime order n, which then may be factored as

n = pP1Pz2...Pr

where each p; is a prime and, representing a certain prime, may appear more than once in the
factorization, i.e. » primes are not all distinet. If » =0, then G = {e}, and if r =1, then G is again of
prime order and, G having no proper subgroups, there exists only one composition series: {e} C G.

Assume that the proof has been carried out likewise up to » =k; then, for r=%k+1, G is again
either simple, having only one composition series as above, or not simple, in which case there exists
either a unique composition series, which is trivial, or more than one composition series which ‘are
all distinct. Let two of them be

Cu {e}:SOCSIC-..CSmCSm+1:G
C:x {e)=8ScSicC...Cc8icC8u=@G

and if S.=S., the theorem at once holds by the assumption of induction, since the order s. of Sa
contains k or fewer prime factors. If S.+#S., ie. they are two distinet maximal normal subgroups
of G, then, by Prob. 4 above,

G/Sm < S//M. and  G/S. < S./M.

M. denoting the meet S.NS., which is a maximal normal subgroup of S, and S., since G/S. and
G/S:, and consequently S./M. and S./M., are simple by Th. 3.2.7.2. Consider, then,

C: {e&y=MycM,C...CM.CS.CG
Cr {e}=MocCMiC ...CcM.C8.cg

and there exists an isomorphism:
Mi/M,, ..., Si/M., G/S. <> MM, ..., Si/M., G/S:

except for order (ie. at least the permutation of the first two groups in this case). But, then, by the
assumption of induction,

Mi/M,, ..., 8Sa/M., G/S. €> Si/S,, ..., Su/Su-1, G/S.
Mi/Mo, ..., Si/M,, G/S. <> Si/Ss, ..., St/Se-1, GIS.

except possibly for permutations. Hence
Si/So, ..., SalSn-1, G/Sa <> SiISi, ..., Sa/Sa-1, G/S.

except, again, for order, completing the proof.
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10.

11.

12.

Prove Th. 3.2.7.7.
PROOF:

Gl: Since a,aze A and bi,b:e B imply (ai, bi)(az, b2) = (a1as, bibs) for which aiaze A and bib:e B,
it follows that C = A X B is closed.

G2: Ax(Bx() (a1,b1) X ((as,b2) X (as,bs)) = (a1({azas),bi(b2bs))

((@1a2)as,(b1b2)bs) = ((a1,b1) X (@2,b2)) X (as,bs) = (AXB)xC

G3: ecA and ¢ eB implies (ee')(a,b) = (a,b)(e,e) = (a,b).

G4:  (a,b)"a,b) = (@7} 07 Y)(a,b) = (¢,€'); (a,b)(a,b)™* = (a,b)(@a™ !, b™") = (e,e’).

o

If AxB=G in a group G, then A and B are normal in G, and ANB =¢, AUB = G.
PROOF:
Let A and B be identified by two isomorphisms: aeA < (a,1)¢ AXB and beB < (1,b)c AXB.
(i) Since (ai,b2) " (az,1)(a1,b1) = (@7 ,b7 Wz, 1)(a1,b)) = (ai'a:a1,1) e A, A is obviously a normal sub-
group of AXB; so is B likewise,
(ii) Since one and only one element which is simultaneously of the form (a,1) and (1,5) is (1,1),
it follows at once that ANB = ¢; otherwise, they are not even distinct, contradictory to what
is implicit in the problem. Also, since AUB contains every element of the form (a,1)(1,b) = (a,b),
AUB = AXB = @G, completing the proof.
Note. Since the isomorphisms defined above also yield that (e,1)(1,b) = (a,b) = (1,b)(a,1), it is
evident that Df. 3.2.7.8a must be considered a theorem if the isomorphisms are first defined.

The converse of Prob. 8 is Prob. 10 below.

If G contains two subgroups A and B, either one of which is normal, then AUB = AB.
PROOF:

If A is normal, then ba = bab b = (bab )b = a’b, and if B is normal, then ba = aa"'ba =
a(a”'ba) = ab’. In either case the product can be written such that no b antecedes a, ie. in general,
. . .@beii. .. by = ab, where a,aicA, b,b;c B. Hence every finite product of the form gig:...g.
with g;e A or B can always transform itself into the form ab, completing the proof.

Prove Th. 3.2.7.9.
PROOF:
Since A and B are both normal, they both contain an element a~!'b~'ab (since a (b ladb)e A
and (e~ '67'a)be B), which then must belong to ANB =e; hence a b 'ab=e, ie. ab=ba.
Now, since G = AUB = AB, by Prob. 9 above, every element g e G can be written in the form
g = ab, which is also unique, since aib; = asb: implies az'a, = bbile ANB=¢, ie ar=a: and
b1 = b,. Since g1 = ab;, and g: = a2b: imply g¢i1g: = a1biazb: = (a:a2)(bibe), and g = ab implies g <> ab,
the correspondence between G and A x B is isomorphic, completing the proof.

Prove Df.3.2.7.8b by Th. 3.2.7.9.
PROOF:
If n =1, then G = G4, and the proof is trivial; so is it when n = 2, since it then becomes Prob. 8.
Assume that the proof has been completed for n =%k. Then let A’ = UA;, 1=1,2,...,k and
B’ = A; = Ax+1, which reduce the problem to setting up an isomorphism between G and its direct
factors A; j=12,...k+1, where (i) A’ and B’ are normal, (ii) G = A’UB’, and (iii) A'NB’' = e,
bringing down the problem to Prob. 8, by Th. 3.2.7.9, which completes the proof.

If G =AxB, then G/A & B and G/B < A, and if further G’ = A’xB’, where A < A’

and B« B/, then G & G'.

PROOF:

(i) Since g =ab, for every geG,acA,beB, H(g) = H(ab) = a is a homomorphism of G onto A
and, by Gl of Prob. 7 above, H(g.g9:) = aia: = H(g:)H(g:). But H(g) =e¢ iff geA since
H(g) = e iff a—=e. Hence, by Th.3.2.5.8, G/B < A.

Likewise H(g) = H(ab) = b is a homomorphism of G onto B, and G/A <> B.

(ii) Since two isomorphisms I and I’ may be defined as acA < I(a) =a’eA’ and beB < I'(b) =
b’eB’, which are given at the start, the correspondence g =ab <> I(a)I'(b)=a’b' =g’ is an
isomorphism between G and G’.
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Given nine permutations: (1), (123), (132), (456), (465), (123)(456), (123)(465), (132)(456),
(132)(465), prove that they form an Abelian group, then find the basis of the group.
PROOF:

Let p=(123) and q=(456); then (1)=p%", (123)=p'q’, (132)=p%°, (456) ="', (465)= p'q?,
(123)(456) = p'q', (123)(465) = p'q?, (132)(456) = p%q', (132)(465) = p%¢®>, and in general pi¢pmg" =
p*"g*" and pigip™ig"~i = pmg*, which provides Gl-4. G5: Commutativity is also here, since p
and q are mutually disjoint and, by §3.2.1, Prob. 16, pq = ¢p.

Since p'q’ = p™¢* implies here p' = p™ and p’ = ¢, they are distinct as bases.

Note. This problem exemplifies a special case which, when generalized, yields the following
theorem.

If A is an Abelian group, each element of which has as order a product of prime
powers p;, t=12,...,n, then A is of order IIpi for some a;= 0.
PROOF:

If each a; =0, then IIp:% =1 and G =e¢, in which case the theorem obviously holds.

If G is of order » >1, then G+ ¢ has an element g of order g = IIpdi for some b; =0, and the
index of {g} is m =n/q < n. Now, since each element of A/{g} is of the form h{g}, where he A, and
h”=e¢ where r = IIp:‘i for some ¢; =0, (h{g})" = h"{g} = {g} implies that r is divisible by the order
of h{g}, which in turn implies that A/{g} is of order m = n/q such that each element has as order a
product of prime powers p. But then, by the hypothesis of induction itself, m =TIp% for some
di=0 and, in consequence, n = gm = (IIp:")(IIp:%) = TpPitd.

Hence A is of order Ilps% where a: = bi+d; for some b, di=0, i=12,...n.

Prove Th. 3.2.7.10.
PROOF:

If b1,b:e B, then bib:eA and, A being Abelian, (bibsY) = bi(bs 1) = ee '=e¢, which implies
bibs'e B. Hence B is a subgroup of A and also normal, since 4 is Abelian. Likewise C is a normal
subgroup of A.

Since 7 and j are relatively prime, there exist integers m and n such that im+jn=1 (ef.
Df. 4.1.2.3.15 and Th.4.1.2.3.16) and, for every ac A, a =a! = aim+in = a'"a/", which implies a'™ = ¢eC
(since (¢’ =@ = g*™ = (a")" =e™ =¢) and & =beB. Hence a = bceBC and A = BC = CB,
which satisfies the first condition of Df. 3.2.7.8a.

Let ge A such that geB and geC; then g' = gi = ¢, which implies ¢ = gim*i*» = (g)™(g/)* =
e™e" = ¢, which in turn implies that any element which is common in both B and C is the identity
eeA. Hence BNC = e, which satisfies the second condition of Df. 3.2.7.8a. Hence A = Bx(C.

Furthermore, being relatively prime, i and j may be represented by <= IIp.», u=1,2,...,%, and
j = Tlgv*, v=12,...y, where p,+* ¢, are primes (cf. Th. 4.1.2.3.17), while, by Prob. 14 above, B is of
order Ilp.'» and C of order Ig.*>. Now, since the third condition of Df.3.2.7.8a demands that a = be¢
be unique, and consequently that the order k of A be the product of the order of B and C, it must be
the case that k = (Ip.)(Ilgs*) = (Ip."w)(llg.*) = ij. But then, since the factorization of an integer
into prime power factors is unique (cf. Th.4.1.2.3.17), it follows that t, =7, and w, =s,. Hence B
is uniquely of order ¢ =IIp.'v and C of order j = lg," where k = ij, completing the proof.

Supplementary Problems
Part 3

How many symmetries are possessed by the regular tetrahedron, the regular hexahedron (i.e. cube),
the regular octahedron, the regular dodecahedron, and the regular icosahedron?

Find the number of all rotations, including the original position, with respect to the regular poly-
hedrons of Prob. 3.1 above.

If a set C satisfies the following four axioms, then C is a commutative group:
Cl = G1 (ef. Df. 3.1.1.1) C3 = G3
C2. a(be) = (ba)e for every a,b,ceC C4 = G4
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34.

35.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

The following six functions form a group under the operative rule: fifi(x) = fi(fi(x)), 4,7 =1,2,...,6,
(cf. Df.2.2.2.14):

file) = = fa(w) = 1—x fi(x) = (@— 1/

f2(z) = 1/ filz) = 1/(1 —x) fo(w) = x/(x—1)

If G is a group and a,b,c1,¢s,...,6. € G, then,

(i) aabb = ab implies b =a™;

(if) (bad ") = bab".

(ifi) (acie™t) (aca™) ... (acaa™") = a(cicz...ca)a™

The inverse of the inverse permutation P! of the original permutation P is P.

A polynomial P(xi, 2s, ...,%.) in n indeterminates z: is called symmetric (cf. D£.5.2.2.1) if it is
invariant under the symmetric group of all permutations of its subseripts. Prove the following
polynomials are symmetric, considering x:=¢a, x:=b, xs=¢:

i) (@+b—c)b+c—a)ct+a—0>b)

(ii) (@a—b)*(a—¢c)? + (a—b)?*b—c)? + (a—c)(b—c)

(iii) (@—b)*a+b—¢c) + (b—c)b+c—a) + (¢c—a)(c+b—a).

The symmetric polynomial of Prob. 3.7 above is called alternating if it remains the same except for
its signs under all permutations of its subscripts. Prove that the following polynomials are
alternating:

(i) X1 (9!32 — xa) —+ 22 (003 — ilh) + x3 (x1 - xz)
(ii) (x1 - xz)(ﬂh - xa)(ah - om)(xz - xa)(xz - xq)(xs - 904).

Prove that the product of a symmetric polynomial and an alternating polynomial is an alternating
polynomial, and that the product of two alternating polynomials is a symmetric polynomial.

If G is a permutation group of # numbers: 1,2,...,n, where »=3, to which (n— 2) cyclic permu-
tations: (123),(124),...,(12n), belong, then G is either a symmetric group or an alternating group.

Verify that any symmetric group of degree greater than three is not commutative.

If I, is a subgroup of the additive group I of all integers, and if I does not contain 0, then the
elements of I; are the multiples of the least positive integer of I..

The set S of all the common multiples of n integers ai, @s, ...,a, forms an additive group whose
elements are the multiples of the least common multiple of the given integers.

If d is the greatest common divisor of n integers ai, @, ..., @, then there exists a set of integers
by, be, ..., bs such that d = aibi+ a2be + ... + aubn.

Given an infinite eyclic group G whose generator is g, let Gi be a subgroup of G generated by g™,
and G. a subgroup of G generated by g"; then, there exists a subgroup Gs of G generated by g¢
where d is the greatest common divisor of m and n, such that the elements of Gs are of the form
a:b;, where aie G1, bje G

Find all the proper subgroups of the symmetric group Ss: = {a,b,c}.

Given a polynomial ab+ cd, verify that there exists a set M of eight permutations (1), (ab), (cd),
(ab)(ed), (ac)(bd), (ad)(bc), (acbd), (adbe) such that the polynomial is invariant under the permutations,
and that the set of the permutations is a subgroup of S:= {a,b,c,d}.

Verify that the polynomial ab+ cd of Prob. 3.17 above is changed to ad+ bc by a transposition
(be), and that ad+ be is invariant under the eight permutations of M(bc). Likewise ac+bd is
invariant under the eight permutations of M(bd).
Prove that, in the context of Prob. 3.17-18 above,

Ss = MU M(be) U M(bd)
where M «> (ab + ¢d), M(bc) < (ad + be), and M(bd) <> (ac + bd).
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3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

3.30.

3.31.

3.32

3.33.

3.34.

3.35.

*3.36.

*3.37.

*3.38.
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Reconsider Prob. 3.17-18 in terms of conjugacy.

() Find the order of the octahedral group by a right decomposition (cf. Df. 3.2.2.6).
() Reinterpret Prob. 3.2 above in terms of right (or left) decompositions.

Interpret the rotation group of the square, first in terms of cosets, then in terms of conjugate classes.

Construct a subgroup of the multiplicative group B of all real numbers, into which a homomorphism
of B may take place.

Verify the homomorphism of the rotation group of a regular 2n-gon onto the symmetric group of
degree n.

If » is the integral divisor of an integer m, then the cyclic group of order m is homomorphic onto
the cyclic group of order =.

If 9.Gi,9:Gy, ..., 9.G:1 exhaust the left-cosets of a subgroup G, of a group G, then the following
correspondence, for any ace¢ G,

a = ngl 92G1 gnGl
ag1G1 ag:G1 ... ag.Gy

vields a homomorphism of G onto a permutation group of order n.
Verify that the tetrahedral group is isomorphic to the alternating group of degree 4.

Given an isomorphism between the infinite cyclic group C whose generator is ¢ and the additive
group A of all integers, where the pattern of the isomorphism is prescribed by c¢'cC <> ac A, find
a subgroup C: of C which is isomorphic to a subgroup C; of C which consists of all the multiples
of a positive integer n.

The normal subgroup of a group G is always a join of some conjugate classes of G.
Given the symmetric group Ss, find its subgroups, cosets, and normal subgroups.
Prove that the symmetric group S; has six, and only six, inner automorphisms.

If Ay, Az, As are the three symmetric axes which connect the three pairs of the opposite vertices of
the regular octahedron, then the octahedral group is homomorphic onte the symmetric group of
A1, A», As and its kernel is the four group V.

If a group G of order 2p, where p is a prime, has a normal subgroup N of order 2, then G is a
commutative group.

If a group G of order 6 is not commutative, it is isomorphic to the symmetric group Ss.

Given two groups A and B, their direct product A X B contains two subgroups, one isomorphic to 4
and the other isomorphic to B.

If A and B are two groups, 4 XB is their direct product, and e, and e, are their identity subgroups
respectively, then:

(i) AXe, =C and e.XxB =D have one, and only one, element in common, viz. the identity.

(ii) Every element of C commutes with every element of D.

(ili) ed = pe AXB is unique for every c¢eC and deD.

If AxB < (C, where A and B are subgroups of a group C, then:

(i) A and B have one, and only one, element in common, viz. the identity.
(ii) Every element of A commutes with every element of B.

(ili) ab = c¢eC 1is unique for every aeA and beB.

If A,B,C, and D are subgroups of a group G, and if C and D are normal subgroups of A and B,
then
(AnB)C)/((AND)C) <> ((BNAYD)/((BNC)/D)
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Chapter 4.1

Rings
§4.1.1 Rings in General

Df.4.1.1.1 A module (i.e. an additive Abelian group) R is a ring if R is also a semi-group
under multiplication and, further, satisfies right and left distributions under addition.

Stated in detail, R satisfies the following eight axioms, for any elements a,b,ce R:

R1: Additive closure. a,be R implies a+beR.

R2: Additive associativity. a+(b+c¢c) = (at+b)+ec

R3: Additive identity. a+0=0+a =a

R4: Additive inverse. a+(—a) = (—a)+a =0

R5: Additive commutativity. a+b =>b+a

R6: Multiplicative closure. a,be R implies abeR.

R7: Multiplicative associativity. a(bc) = (ab)c

R8: Additive distributivity: a(b+¢) = ab+ac, (b+c)a = ba+ca

The additive identity 0, called the zero of the ring, is unique; so is the additive
inverse of a, denoted by —a and called the megative (or more simply, minus) a.
(Cf. Prob. 1.) Subtraction is thus possible and unique in R, since the equation
a+2z = b has a unique solution in any additive Abelian group (cf. Prob. 13 below).

These two binary operations of addition (including subtraction) and multiplica-
tion resemble the familiar rational operations of elementary algebra, however, only
to a certain extent; for the absence of G3-4 under multiplication results in the con-
spicuous presence of possible divisors of zero.

Df.4.1.1.2 R is a ring with divisors of zero (or zero-divisors) if x-y = 0 when =x,yeR,
z+0, y=0, x being a left and y a right zero-divisor. Otherwise, ie. if z-y =0
implies # =0 or ¥y =0, the ring is called a ring without divisors of zero. Zero itself
is considered a divisor of zero, if only for the sake of expediency.

Also, as is quite explicit in Df.4.1.1.1, R may not commute under multiplication,
may not have a unit element, and may not have inverses for its elements even if it
has a unit element. But then, of course, R may at times satisfy G3-5 under multi-
plication, and if it does, it needs the following additional definitions.

Df.4.1.1.3 R is a ring with unity if it satisfies G3 under multiplication, having a multi-
plicative identity e, called the unity of R.

Th.4.1.14 If an element z of a ring R with unity has a multiplicative inverse, denoted
by z~!, then the inverse is unique. (Cf. Prob. 1.)

Df.4.1.1.5 R is a commutative ring, if it satisfies G5 under multiplication, i.e. zy =yzx

for every x,y ¢ R; otherwise, i.e. 2y *yz for at least two elements z,ye R, R is called
a noncommutative ring.
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Df.4.1.1.6 A complex C of a ring R is a subring if C is also a ring, satisfying the axioms
R1-8.
A commutative ring may or may not have a unity; e.g. the set I of all integers

is a commutative ring with unity, while its subring I. of all even integers is a com-
mutative ring without unity.

A ring R is then, first and foremost, a module, i.e. an Abelian group under addi-
tion; hence many theorems proved for Abelian groups hold with slight modifications
for R, as is best exemplified in Th.4.1.1.7.

Th.4.1.1.7 A complex C of a ring R is a subring iff a—beC and ab=baeC for every
a,beC. (Cf. Th.83.2.1.2 and also Prob. 2 below.)

Just as some alternative definitions were available for subgroups, subrings may
be proved in some other ways; for example:

Th. 4.1.1.8 If a complex C of a ring R satisfies R1,6, and if ceC implies —ceC, then C
is a subring of E. (Cf. Prob. 3.)

The relations among rings or among rings and subrings reintroduce here the
familiar concepts of homomorphisms and isomorphisms {cf. §2.2.2 and §3.1.3).

Df.4.1.1.9 If the mapping of a ring R onto or into a ring R: aeR-a’¢R and
beR~>b'eR implies a+beR > a’+b’e R’ and abeR -~ a’b’e R’, then the mapping
is a homomorphism, while it is an isomorphism if the mapping is one-one, i.e. a¢R <
a’eR and beRob'eR imply a+beR o a/+b’e R and abeR o a’b’ e R,

Again, many homomorphisms or isomorphisms established for Abelian groups
may be modified for rings.

*Th.4.1.1.10 If S is a homomorph of a ring R in B’ when R’ itself is a homomorph of R,
then S is a subring of R’. (Cf. Prob. 5.)

*Th.4.1.1.11  Given two rings R, and R. with no elements in common, where R; contains
a subring S; isomorphic to R, there exists a ring Rs; which is isomorphic to R; and
contains R as a subring. (Cf. Prob. 7.)

This fundamental theorem of rings, sometimes called a general replacement theorem,
asserts the existence of a ring which is isomorphic to the one constructed to have
prescribed properties and which actually contains the given rings {(cf. Th.4.2.1.2-T).

Rings in general have the following properties.

Th. 4.1.1.12 (Cancellation under addition). For every a,b,ceR, a+c = b+c or c+a =
c+b implies a = b. (Cf. Prob. 12))

Th.4.1.1.13 ForeveryaeR, a:0=0+a= 0. (Cf.Prob.14.)
Th.4.1.1.14 For every a,be R,

i —(e)=a (iv) a(=b) = (—a)b = —(ab) = —ab
(i) —(a+b)=-a-D (v) (~a)(—b) = ab. (Cf.Prob.16.)
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Th. 4.1.1.15 For every a,b¢ R and every m,nel* (positive integers),

(i) ameaqr = am+n (11) (am)n = gqgmn
and if R is commutative,
(iii) (ab)* = a®b".  (Cf. Prob.20.)

Th.4.1.1.16 For every a,be R and every m,ne I (any integers),

i) mn(a+d)=mna+nb (iii) n(ab) = (na)b = a(nb). (Cf.Prob.21.)
(il) (m+n)a=ma+na

Solved Problems

The zero of a ring R is unique; so are the additive inverse —a and, in case R is with
unity, the multiplicative inverse a¢™* of aeR.

PROOF:

(i) Let 0,00¢R such that a+0 = 0+a =0 and a4+ 0 = 0'4+a = 0’. Then, by R3, 0'+0 =
0+0 =0 and 040" =0"4+0 = 0. But, by R5, 0'-++0 = 0+0’. Hence 0= 0’, proving that
0 must be unique.

(ii) Suppose be R such that b0 and yet a+b = 0 for every acR. Then, since —aeR and
@+ (—a) = 0, it follows that, by R1, (—a) + (@ +b) = (—a) + (a+(—a)) and, by R2, ((—a)+a)+b =
((—a)+a) + (—b). Hence, by R4, 0+b = 0+ (—a), i.e. b =—a, proving that the additive inverse
is unique.

The uniqueless of a~! can be proved likewise, completing the proof.

Note the similarity between this problem and §3.1.1, Prob. 1; the only difference, in fact, is the
operators, viz. “*” or “o” there and “+” here.

Prove Th.4.1.1.7.

PROOF:

(i) If the complex C is a subring of R, then a,beC implies abe C, by R6, and also —beC, by R4;
hence, by Rl, a—beC, proving that abeC and a—beC are necessary conditions for C to be a
subring of RE.

(ii) Conversely, these conditions are sufficient for C to be a subring. For ab=ba ¢ C already satisfies
(more than) R6, and ¢eC and e—beC imply a—a = 0¢C, providing R4, which in turn yields
0+ (—a) = —ae C, setting up R3. Furthermore, —a & C for a implies —be C for b and consequently
a—(~b) = atbeC, establishing Rl. Rl and R6 imply R2 and R7 respectively, as is trivial
by now. Finally, Rl and ab = baeC uniquely determine c(a+b) and (a¢+ b)e for every
¢t C, preparing for R8, which completes the proof.

Note that e¢(a+b) = ca+cb and (¢+b)c = ac+be are a matter, not of deduction, but of
definition; it is quite legitimate and consistent, however, to define them as such at this juncture, since
c{a+ b) and (a + b)e are uniquely determined.

Prove Th. 4.1.1.8.

PROOF:

From R1 and —ce C for ce C it follows at once that ¢+ (—¢) = 0 = (—c) +¢, providing R4, and
the rest can be carried out as above.

Note, again, that the introduction of “0” is a matter, not entirely of deduction, but more of
definition; all that can be purely deduced from “Rl and —ceC for ¢eC” is that “c+(—¢)”, what:
ever it may be, is unique, for which “0” may always consistently stand.
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4. Prove that the complex C of the additive identity, i.e. zero, alone is a subring of a
ring R.
PROOF:

Since 04+0 =0 and 0.0 = 0, it satisfies R1-2,R6-7, and also R3-4, since it is the identity
and the inverse of itself. Finally, 0(0 + 0) = (0+0)0 = 0, satisfying RS8.

5. Prove Th.4.1.1.10.

PROOF:

Let H be the homomorphism of mapping of B onto R’; then, since R'= H(R) is a homomorph
of the additive Abelian group R, S in R’ is clearly a subgroup of the additive Abelian group R,
satisfying R1-5. Moreover, if a,be R are the preimages in R of any two elements a,b’'eS, cor-
responding to ¢ and b respectively, then H(ab) = H(a)H(b) = a’'b’eS, satisfying R6 for S, and
consequently also R7 for S. Likewise, if a,b,ce R are the preimages of any three elements a,b'ie'e S,
corresponding to @, b,c respectively, then H(a(b+e¢)) = H(a)H(b+ec) = a'(b’+¢')eS, satisfying RS.
(Or still further, H(a(b+¢)) = H(ab+bc) » a'(b'+¢') = (a’b"+a'¢’)eS.)

This completes the proof.

6. If S is a set of elements in a 1-1 correspondence with the elements of a ring R, then S
can afford two binary operations, i.e. addition and multiplication, such that S becomes
a ring isomorphic to R.
PROOF:
The 1-1 correspondence between R and S, eg. aeR < a’¢R and beR < b’ e B, becomes an
isomorphism I if it is defined, as is but logical, that I(a) =/, I(b) =b". Then
atbeR < Ia+b) = Ia)+I(b) = a'+b'eS
and abeR © Ia-b) = Ia) I(b) = a’*b'cS

Hence S will, and can, satisfy all of R1-8, proving that S is a ring isomorphic to R.

7. Prove Th.4.1.1.11.

PROOF:
When schematized, the problem is to prove the following
relation:
R1 D Sl
7 7
R; D R,

Fig. 3.1.1a

whose diagram is given at right.

Let Rs = (Ri—S:\)UR,, and define a mapping M such that ag(R:i—S1) implies M(a)=a and
also s ¢S implies M(a) = I(a), where I is by hypothesis the isomorphic mapping of S onto and into R.
Moreover, since M is then the 1-1 mapping of B,— S, into itself and, B: and R, (or more narrowly,
R, —S: and R.) having no elements in common, M is in fact an isomorphism between E; and R..

Furthermore, the binary operations of R: are defined by M, viz.,
atbeR, < M(a+b) = M(a) + M) = a’+b' s Rs 1)
and abe R © M(a-b) = M(a) - M(b) = a’*b’ ¢ R,
which proves Rs to be a ring (cf. Prob. 6 above).
Finally, since I is the isomorphic mapping of S, onto R.,
atbeS: < Ia+b) = Ia)+1(b) = ¢/'+b ¢ R 2
and abeS: © Ia*b) =IHa)*Ia) = a'*b' cRs

where (1) actually coincides with (2), since M(a), M(b) e R, in (f) implies a,b,a+b,abeS:.. Hence
R: is also a ring and, as a matter of fact, a subring of R; according to the initial assumption, com-
pleting the proof.



Sec. 4.1.1] RINGS — RINGS IN GENERAL 135

8.

10.

Prove that residue classes modulo 2,3, 4 are rings.

PROOF:
It is self-explanatory through the following tables:

i) + 0 1 . 0 1
0 0 1 0
1 1 0 1 1

(ii) + 0 1 2 . 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

(iii) + 0 1 2 3 . 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

Observe that the last ring, for instance, is a ring with unity, but not every nonzero element
(e.g. 2) has an inverse; since 2+2 = 0, the ring has divisors of zero. This ring is also a commutative
ring, as can be readily verified by the table.

Generalize Prob. 8; viz. a residue class modulo m, where m is any positive integer,
is a ring.
PROOF:

The residue class C modulo m is an additive Abelian group (cf. §3.2.6, Prob. 11), satisfying R1-5.
Furthermore, by Th.3.2.6.8, C satisfies R6 and consequently R7, proving itself to be a semi-group
under multiplication, from which R8 also follows, viz. for every a,b,ceC, a(b+c) =ab+tac (mod m)
and (a+b)c = act+be (mod m), (ef. Th. 3.2.6.8-9).

Hence C is a ring, and as has already been shown above, generally a commutative ring with unity
and possibly with divisors of zero.

Examine whether the following sets form rings: (i) the set of all natural numbers;
(ii) the set of all integers; (iii) the set of all positive rational numbers; (iv) the set of
all rational numbers; (v) the set of all real numbers of the form x4+ 1y\/2, where x
and y are integers; (vi) the set of all real numbers of the form x +y\3@ + z%, where
x,v, 2 are rational numbers; (vii) the set of all real numbers; (viii) the set of all com-
plex numbers of the form x+yi, where x and y are integers; (ix) the set of all
complex numbers; (x) the set of all real-valued continuous functions on the interval
—1=x=1, where (f+¢)(%)=f(x)+g(z) and (fg)(x)=f(2)9(x)-.
PROOF:

The sets of (i) and (iii) are obviously not rings; for, in the first place, they are not even additive
Abelian groups, unable to satisfy R4, for instance.

All others form rings in various ways, satisfying at least R1-8 or more, e.g. with unity or without
zero divisors or with commutativity.

The sets of (ii), (iv)-(ix) are all commutative rings with unity and without divisors of zero, as
can be verified without difficulty (cf. e.g. §3.1.1, Prob. 10). Furthermore, each of them is a subring
of (ix); also, in detail, each of (v)-(viii) is a proper subring of (ix), each of (iv)-(vi) is a proper subring
of (vii), and (ii) is a proper subring of (iv).

The set of (x) forms also a commutative ring and, if either f(x) =1 or g(x) =1, it is a ring with

unity, and possibly with divisors of zero; e.g. if f(x) = max(0,x) and g(x) = max(0,—x), then both
functions are distinct from zero, yet their product is zero.
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11. The set C of the integral couples (x, ) forms a ring if they are operated on as follows:

@LY1) + (X2,92) = (@142, Y1tys),  (T0,Y1)(@2Y2) = (2125, Yrys);
so does the set T of integral triples (z, 9y, 2) if they comply with the following operative
rules:
(®1,Y1,21) + (T2,Y2,22) = (T1+T2, Y1+Ya, 21t22), (X1,Y1,21) (X2, Y2,22) = (@122, T2y 1+Y221, 2122)

PROOF:

(i) Since R1 and R6 for the set C are already given by the operative rules, R2 and R7 follow
immediately; viz.,

(1, 91) + ((02,y2) + (23,45) = (21 (@atas), Y1+ (yetys) = (@tae)+xs, (yity=)+ys)
((#1,91) + (22,92)) + (23, ¥5)

and likewise (w1, y:) (w2, ¥2) (%5, ¥5) = (%1, Y1)z, ¥2)) (%3, ¥5).
R3 is obviously satisfied by (0,0), and R4 by (x,y)"! = (—z, —y).
As for RS, it is also satisfied, since
(@1, Y1) (2, y2)+ (23, 3)) = (01, y ) (@23, Y2tys) = (wrwatai2s, Y1yt 1ys)
= (@1,41) (@2, Y2) + (21, Y1) (23, y5)
Similarly (1, y1) + (22,92)) (@, ¥s) = (21, y1)(2s,ys) + (2, ¥2) (s, ).

The set C is a ring with unity (1,1) without zero divisors, and also commutative, as can be
readily verified.

Il

(ii) The set T satisfies also all of R1-8; e.g., for RS;

(21,91, 21) (02,42, 22) + (X3,Y3,23)) = (1,41, 20) {2+ X3, Yo tys, 25+23)
($1(x2+x3), (xz+x3)y1 + (y2+y3)21, Z1(Zz+23))
(@12, Y21 Y221, 2122) + (123, T3Y1+Yaz1, 2123)
= (w:,y1,21)(x2,y2,22) + (.’1;1,:(/1,21)(903,1/3,23)

I

The set T is a ring with unity (1,0,1), with divisors of zero (e.g. (0,1,0)(1,0,1) = (0,0,0)),
and noncommutative (e.g. (0,0,1)(0,1,0) = (0,1,0) + (0,0,0) = (0,1, 0)(0, 0, 1)).
Note that, since «,y,2 are all integers, there exists multiplicative inverses iff x =*1 and z=*1
(since (2x1,y1,21)(%2,y2,22) = (1,0,1) implies «x:22=1 and 2122 = 1),

12. For every a,b,ceR, a+c¢ = b+c implies a="b; likewise, ¢c+a = ¢+ b implies a=05.
PROOF:
Since, by R4, there must be an element ¢~ "¢ R such that c+e¢~! =0, it follows that if atc = b+te,
then, by R1-3, (a+¢)t+ec™! = (b+c)+ec! » at(cte™ ) = bt+(cte™) = a+0=b+0 > a=b.
Likewise, c¢+a =c+b implies a =b.
Note. This is the Cancellation Law for a ring R, which indeed must exist, since R is after all an
additive Abelian group, for which the cancellation law does exist (cf. Th.2.1.1.3).

Given this law first, the proof of Prob. 1 can be considerably simplified; e.g. if both x and y are
the additive inverse of ae R, then a+x =0 and a+y =0, which by this law implies z =1y, proving
the uniqueness of the inverse.

13. If a,beR, then a+2 = b has in R a solution z = b —a, which is unique.

PROOF:

Since a+(b—a) = at+(—a+d) = (a—a)+b = b, it is obviously the case that « = b—a. Furthermore,
this is the only solution for a+ax = b; for, if also a+y = b, then a+x = a+y and, by the cancellation
law, x =y, completing the proof.

14. Prove Th.3.1.1.13.
PROOF:

Since a+0=a by R4, it follows that a(a+0) =a+*a by R6, while also, by R8, a(a+0) =
a*atae-0. Hence a*a+a+0=a-a and, by Prob. 12 above, a¢*0=a*a—a*a = 0.

Likewise 0+a = 0, completing the proof.



Sec. 4.1.1] RINGS — RINGS IN GENERAL 137

15.

16.

17.

18.

Prove that (a+b)~! = —(a+b), and that (ab)™! = b~la™! if a 'eR and b™'eR

under multiplication.

PROOF:

®  (a+d) + (—a)+(=b) = ((a+b)+(—a)) + (=b) = ((a+(—a))+b) + (=b) = (0+b) + (=b) = b+ (—b) = 0.
Hence (—a)+ (—b) is the additive inverse of a4 b; but, the inverse being unique by R4,
(—a)+ (=b) = —(a+b), ie. the additive inverse of ¢+ b is —(¢ +b) which may notationally
be written as (—a)+ (~b) (or, as will be proved below, —a —b = —(a + b)).

(i) (ad)(db~'a"Y) = a(db~Ha ! = gea”! = aa”! = e, proving that the inverse of ab, i.e. (ab)7?, is
uniquely b~ 'a~!; the uniqueness is provided by Prob. 1, (ii).

Prove Th.4.1.1.14.

PROOF:

(i) (—a) + (—(—a)) = 0 and (—a)+a = 0, by R4; hence (—a)+(—(—a)) = (—a)+a and, by can-
cellation, —(—a) = a.

Second proof. (0+a)+ (—a) = 0+ (a+(—a)) = 0+0 = 0; hence, by Prob. 13, (0—a) =
0—(—a), ie. a=—(—a).

(ii) Let a+b = ceR, by Rl; then, by R4, ¢+ (—¢) = 0 and, by substitution, (a+b)+ (—(a+b)) = 0,
while (a+b)+ (—a—b) = (a+b) + (—b—a) = ¢+ (b+(—=b)+(~a) = a+ 0+ (~a) = a+(—a) = 0.
Hence (a+b)+ (—(a+b)) = (a+b) + (—a—>b) and, by cancellation, —(a+b) = —a —b.

(iili) Replace b by —b in (ii), and —(a + (—b)) = —a —(—b); then, by (i), —(a—b) = —a+b.

(iv) ((—a)+a)b = (—a)b + ab, by R8, and also ((—a)+a)b = 0+b = 0, by R4 and Th.4.1.1.13. Hence
(—a)b+ab = 0 and, by Prob. 13, (—a)b = —(ab). Likewise a(b+(—d)) = ab+a(—b) = 0 and
a(—b) = —(ab). Hence (—a)b = a(—b) = —(ab), and notationally, by definition, —(ab) = —ab.

(v)  (ab+a(—=b)) + (—a)(—=b) = a(b+(=b)) + (—a)(—b) = a*0+ (—a)(—b) = (—a)(—b), by R8,R4, while
ab + (a(—b) + (—a)(—b)) = ab+ (a+(—a))(—b) = ab+ 0<(—b) = ab, again by R8,R4. But
(abta(—b)) + (—a)(—b) = ab+ (a(—d) + (—a)(— b)), by R2. Hence (—a)(—b) = ab.

Second proof. By (iv), (—a)(—b) = —(a(—b)) = —(—(ab)), which, by (i), equals ab. Hence
(—a)(—b) = ab.

Prove (i) (@a—b)—c=a—(b+c¢), (il) a(b—c) = ab—ac.

PROOF:

(i) Since —(a+b) = —a—b (cf. Prob. 16, (ii) above), (a—(b+tc))+tec=a—b—c+tec=a—b+0=a—b.
Hence a— (b+¢) = (e—b)—¢, by Prob. 12.

(il) a(d+(—c)) = ab+ a(—c) = ab—ac, by R8 and Prob. 16, (iv).

Prove the following properties of differences: for every a,b,c,de R,

@) a-b=c—diff a+d=b+c (i) (a—b)—(c—d) = (a+d)— (b+c)
(i) (a=b)+ (c—d) = (a+c)—(b+d)  (iv) (a—b)(c—d) = (ac+bd)— (ad+bc)

PROOF:

(i) If a—b = c¢—d, then adding (b + d) to both sides of the equation, (a—b)+ (b+d) = (c—d) + (b+d)
which, when simplified by R2,4,5, becomes a-+d = b+¢. Conversely, if a+d = b+e¢, then
adding ((—b)+(—d)) to both sides of the equation, (a+d)+ ((—b)+(—d)) = (b+c) + ((—b)+(—da)),
and simplifying likewise, a — b = ¢ —d.

) ((a=b)+(e—d)) + (b+d) = (a—b) + ((c—d)+(b+d)) = (a—b)+(c+b) = a+c. Hence, by Prob. 12,
(a—b) + (¢c—d) = (a+c) — (b+d).

(iii) Likewise (a—b)— (¢c—d) = (a+d)— (b+c).

(iv) By left-distribution, then right-distribution, and R2,5, (a—b)(c—d) = (a—b)c— (a—b)d = (ac—bc) —
(ad—bd) = ac — bec — ad + bd = (ac+bd) — (ad+bc). Or what is the same, first by right-distribu-
tion, then left-distribution and R2,5, (a—b)(c—d) = alc—d)—b(c—d) = ac—ad—bec+dbd =
(actbd) — (ad-+be).
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19.

20

21.
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Generalize R2, R7, and RS.

PROOF: \

(i) Since, by R2, a:+ (az + as) = (al + 0/2) +as = artart+as = 2 ai, then
i=1

(204) + ( E aj) = (a1+az+"-+dr) + (ar+1+ar+2+"'+as)

i=1 j=r+1
= ((l1+a2+'-'+ar+(lr+1) + (ar+2+ar+3+"' +as) -
= aitet-tataattaatota = X e

k=1
completing the generalization.

This result may be further generalized through R5, viz.,
(2a)+ (32 a) = Za = I a,
i=1 ji=r+1 k=1 n=1

ie.,

(artast o)+ (@it et ta) = aitast - ta. = an+ant oo o

where @iy, Gry, ..., @k, Tepresent ai, as;, ...,as in any order.
T 8 s
(ii) Likewise (H a,,)( T a,-) = II ax, and more generally, ie. if R is a commutative ring,
i=1 j=r+1 k=1

(Ma)( I, @) = ILew

(iii) Likewise a(bi+ba+ ---+b,) = a(_E b,-) and (a1t az+ .- +a)b = (21 ai)b, and more gen-
erally, =t =

(Ze)(Zh)

(a1+a2+"'+ar)(b1+b2+”'+bs) TS
a1b1+...+a1bs+azb1+-~~+azbs+~-~+arb1+~~~+a7b5 = laibj

i=1j=

I

Prove Th.4.1.1.15.

PROOF:

(i)  Define, as is quite customary, a'=a and «*=aa=a'*"; then, in general, a™=a™ 'a = g™ "D+,
Now suppose a™a*=a™**; then a™**q=gqgm+®+!=gm+®+L  Hence, in general, a™a*=g"*"

(ii) Since, by (i), (@™)'=a™ and (a™)®=(a™)(a™ =a™*™=qa®™, suppose (a™*=a™; then, again
by (i), (a™**'=(a™)*(a™) =a™a™=q™*™=qg"**D  Hence, in general, (a™)" = a™.

(iii) If ab = ba, then (ab)! = a'b' and (ab)* = (ab)(ab) = aabb = a2b?, by (i). Hence assume (ab)* = akbk,
which then implies (ab)**! = (ab)*(ab) = a*b*ab = a*ab*b = a**1b**! and in general, (ab)”=a"b™.

Prove Th.4.1.1.16.

PROOF:

(i) Define, as is exactly the case in elementary algebra, that la = a and 2a¢ = a+a, ete; then 1(a+b) =
a+b and 2(a+b) = (a+b)+(a+b) = at+a+b+b = 2a+2b, by R2 and R5. Hence, assuming k(a+b) =
ka+kb, which implies (k+1)(a+b) = k(a+b)+(a+b) = ka+kb+a+b = ka+a+kb+b = (k+1)a+(k+1)b,
it follows that, in general, n(a + b) = na + nb.

(if) Since, by (i), (m+1)a = ma+a, assume (m+k)e = ma+ka which implies (m+(k+1))a = (m+k)ata =

ma+ka+ae =ma+(k+k)a. Hence, in general, (m + nje = ma + na.

(iii) Since (1a)b =1ab and (2a)b = (a+a)b = ab+ab =2ab, assume (ka)b = kab which then implies
((k+1)a) = (ka+a)b = kab+ab = (k+1)ab. Hence, in general, (na)b =nab. Likewise, a(nb) = nab.
Hence, altogether, (na)b = a(nbd) = nab.

Note. m(na)=(mn)a and (ma)(nb) = (mn)ab can be deduced likewise, using some of (i), (ii), (iii).
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§4.1.2 Commutative Rings

4121 BOOLEAN RINGS

Df.4.12.1.1 A ring B (vs. B, a Boolean algebra, cf. §2.4.2) is called Boolean if all of its
elements are idempotent, i.e. a-a = a for every element aeB.

Stated in weak postulates: a ring is Boolean if it satisfies the following nine
axioms, i.e.,

B1-8 = R1-8.
B9: Idempotency. a-a = a for every aeB.
The following property of B, which is deducible from B1-9, also characterizes B,

viz.:

Th.4.1.2.12 Every element in B is its own additive inverse; i.e. acB implies a+a = 0.
(Cf. Prob. 1.)

Th.41.213 B is a class of all subsets of any set S. (Cf. Prob. 2.)

It is due to this theorem that a Boolean ring is sometimes called a ring of all
subsets of a set.

Th.4.1.2.14 B is a commutative ring. (Cf. Prob. 5.)

Th.4.12.1.5 A Boolean ring B of two elements 0 and a is isomorphic to the two-value
logic L; under v (complete and exclusive disjunction) and A (conjunction). (Cf. Prob. 6.)

This theorem clarifies the relation between a Boolean ring and a two-value logic,
just as the following theorem articulates the difference between a Boolean ring and
a Boolean algebra.

Th.4.1.2.1.6 B with unity is a Boolean algebra. (Cf. Prob. 7.)
B is also called a 2-ring in the sense that a p-ring is defined as follows:

Df.41.2.1.7 A ring P is a p-ring if a*=a and pa =0 for every acP.

P is necessarily commutative and, in terms of the p-ring, B is obviously 2-ring,
since a’=a, by B9, and 2¢=0, by Th.4.1.2.1.2,

Solved Problems

1. Prove Th.4.1.2.1.2.
PROOF:
Applying B9 and B8 repeatedly,
(a+a)a+a) = ala+a) +alea+a) = (aa+ aa) + (aa + aa)
(a+a)+ (at+a)

Hence a+a¢ = (a+a)+(a+a), ie. 0+(a+a) = (@a+a)+(at+a), and by Th.4.1.1.12, a+a = 0.

ata
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Prove Th.4.1.2.1.3.
PROOF:

Let S be any set and § be the class of all subsets, including the empty set @ and the universal
set U, of S, and denote the elements of S, which are sets, by A, B, C, ete; then, by the definition of the
operations on sets (cf. Df. 2.3.1-3),

Rl: ABcCS implies AUB CS. R7: An(BNC) = (AnB)nC
R2: AU(BUC) = (AuB)UC R8: An(BUC) = (AnB)U(ANCQ),
R3: AUu® = QUA = A (BUC)NA = (BNA)U(CNA).

Ri: AUA' = A'UA = @
R5: AUB = BUA
R6: A,BCS implies ANB CS. BY: An4d = A.

And furthermore,

Hence 8, the class of all subsets of any set S, is a Boolean ring, completing the proof.

If a,beR and a+b =0, then a = b.
PROOF:

Since, by Prob. 1 above, a+a = 0 and also, by hypothesis, a+b = 0, it follows at once that
e¢+ta=a+b =0. Then, by Th.4.1.1.12, a = b,

Prove that a+b = a—b if abeB, and that a = ¢+b if a+b = ¢ and a,b,ceB.

PROOF:

(i) Since, by Prob. 1, b+5b = 0 and, by R4, b+ (—b) = 0, it immediately follows that b+b =
b+(—=b) = 0 and that, by Th.4.1.1.12, b = (—b). Hence a-+b = a+(—b) = a—b.

(i) (a+b)+(=b) = ¢+ (—b) since a+b =¢ by hypothesis. But (a4 b)+ (=b) = a+ (b + (—b)) =
a+0=g¢ and c+(-b)=¢c—b=c+b by (i) Hence a = ¢+ b. (Or, more simply, ¢+ b =
{e+b)+b=ab+b)=a+0=a, by Prob. 1, ie. a = ¢+ b if a+b=c)

Prove Th.4.1.2.1.4.
PROOF:
Applying B9 and R5 twice and R2-5,
a+b (@a+b)a+b) = ala+b)+ bla+b) = (aa + ab) + (ba + bb)
(a+ab) + (ba+b) = (a+b)+ (ab + ba)
Hence, by Th.4.1.1.12, eb+ ba = 0 and, by Prob. 3, ab = ba.

Prove Th. 4.1.2.1.5.
PROOF:

Since 0+0=0, a+0=0+a=a, by R3; a+a=0, by Th. 4.124; 0:0=0, ara=a, by B3, and
a*0=0+a=0, by Th.4.1.1.13, the following two tables are immediately obtained:

+ 0 a . 0 12
0 0 a 0 0 0
a a 0 a 0 o

which are indeed isomorphic to:

v 0 1 A 0 1
0 0 1 0 0 0
1 1 0 1 0 1

where “0” and “1” denote “false” and “true” respectively.

Prove Th.4.1.2.1.6.
PROOF:
Define aUb =a+b—ab and anb = ab; then Bl follows at once. Furthermore,

B2: (2a) aUb = a+b—ab = b+a—ba = buag, and
(2b) anb = ab = ba = bna.
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B3: (3a) aU(bne) = a+ bc—abe.
(aUb)N(aUe) = (@a+b—abllat+c—ac) = aa + ac — aac + ba + be — abe — aab — abc + abac

= a+ac— ac+ ba + bc — abe — ab — abc + abe by B9
= a+ (ac — ac) + (ab — ab) + be — abe + (abe — abe) by B2 and Th.4.1.2.5
= a+0+0+be—abc+0 by Th.4.1.2.4 and Prob. 4.
= a+ bec— abe.
oau(bne) = (aub)n(aUc). And likewise:
(3b) an(bue) = (@nd)ulanc)

B4: Define 0=¢@ and 1 = U, by hypothesis, and
(4a) aU0 = ¢a+0—0al0 = ¢, ie aUO = a, and
4b) anl = al = a, ie. anl = a.

B5: Define o' =1—a, and

ba) aUa’ = a+(l—a)—a(l—a) = a+1l—a—atae = (e~a)+1+(a—a) = 1,
ie. aUad =1, and

(5b) and = a(l—a) = a—aa = a—a = 0, ie ana = 0.

B6 follows from B5, completing the proof.

8. A Boolean ring B with more than two elements is a ring with divisors of zero.
PROOF:

Since, by hypothesis, B contains ¢ and b which are distinct and a0 gnd b +# 0, it also contains,
by B1,6, a+b = 0 (since a=b if a+b=0, by Prob. 3) and ab; but, by B8, 7,9 and Prob. 2,

abla +b) = (ab)a + (ab)d (aa)b + a(bb) = ab+ab = 0

That is, ab and a+ b are divisors of zero in B if ab+#0. If ab=0, then ¢ and b are divisors of
zero themselves, completing the proof.

4.1.2.2 INTEGRAL DOMAINS

Df.4.1.22.1 A ring D is an integral domain (or a domain of integrity) if it is commutative,
with unity, and without zero divisors.

Stated in detail, D satisfies three more axioms in addition to the eight funda-
mental axioms of the ring in general, viz.:
D1-8 = R1-8.
D9: Multiplicative commutativity. ab = ba for every a,beD.

D10: Multiplicative identity, i.e. unity e (which may be denoted by 1). ea=ae=2a
(or la =al = a) for every aeD.

D11: Multiplicative cancellation. ac=bec and c¢+0 imply a=0b for every a,b,ceD.

Note that D11 implies the nonexistence of zero-divisors in D and conversely
(cf. Prob. 1), and that the additive cancellation which has already been proved for R
(cf. §4.1.1, Prob. 12) must, of course, hold here.

Example:

The set of all integers (or rational or real or complex numbers) constitutes an integral domain,
satisfying all of D1-11, but the set of even integers does not, failing to satisfy D10, for instance,
although it does form a ring in general; similarly, the set of all continuous functions on the closed
interval between 0 and 1 fails to form an integral domain because of its difficulties with D11.

(Some early authors, like van der Waerden in his Moderne Algebra and Dubreil in his Algébre,
defined D without D10, their integral domains being merely commutative rings without zero-divisors.
In the following pages, however, an integral domain is to satisfy all of D1-11, unless otherwise
modified.)

Df.4.1.2.2.1a If a complex D’ of an integral domain D forms an integral domain itself,
then D’ is called a subdomain of D.
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Example:

The set I of all integers is a subdomain of the set R of all rational numbers, while R is in turn
a subdomain of the set R* of all real numbers. As in each case, a subdomain D’ is closed relative
to the operations of the given domain D and contains both additive and multiplicative identities and
also additive inverses in itself.

Note. I, the set of integers, is sometimes called a minimal integral domain as it contains no
subdomains (cf. Th, 4.2.1.4).

Th. 4.1.2.2.2 The only idempotents in D are 0 and 1. (Cf. Prob. 2.

This theorem draws a clear line of demarcation between D and B (cf. Df. 4.1.2.1.1);
commutative rings as they both are, their difference is quite conspicuous. The dif-
ference manifests itself even more clearly through the following definition and theorem.

Df.4.1.2.23 The characteristic of a ring R is the smallest positive integer » such that

na =0 for every aeR. In particular, R is of characteristic zero (or, as is sometimes
called, infinite characteristic) if na <0 for every aeR.
Example:

B is obviously of characteristic 2 (ef. Th. 4.1.2.1.2), and the characteristic of the additive identity
in R is 1, while every familiar number system, excluding 0, of elementary algebra has characteristic
zero (or infinite). Moreover, a ring R of integers modulo m is of characteristic m itself, since the
smallest positive integer k such that ka = 0 (mod m) for any aeR is m itself (cf. §4.1.1, Prob. 8-9).

Th.4.1.224 The characteristic of every integral domain D is either zero or a prime.

(CE. Prob. 3.)

Residue classes, then, cannot always form integral domains, as is quite clearly
stipulated by this theorem, since many residue classes do contain zero-divisors
(against D11). In the residue class modulo 6, for instance, 20 and 30, yet
2-3 =0; hence the set of integers modulo 6 is not an integral domain, although the
set of integers of 7, for example, is.

Df.4.1.22.5 An integral domain D is called ordered, and denoted by D, if it contains a

complex D* whose elements, called the positive elements, satisfy the following
conditions:
(i)  Closure under addition: a,beD* implies a+beD*.
(ii) Closure under multiplication: a,beD+ implies a*be D+,
(iii) Trichotomy: aeD* implies one, and only one, of three mutually exclusive
alternatives, viz. a>0, reading “a is greater than 0”, or a=0, or —a>0.
In this context the additive inverse of a, denoted by —a and called the negative
or minus a (cf. Df. 4.1.1.1), is defined as an element which cannot belong to D+ if
a does, i.e. if a is positive. On the other hand, if ¢ does not belong to D*, i.e. if a is
not positive, hence negative, then —a is negative negative, hence positive, and belongs
to D+, A
Note. —a >0 may be written as a < 0, reading “a is less than 0. This notation
may rewrite Df.4.1.2.2.5 as follows:
(i-ii) a>0and 5>0 imply a+b >0 and a-b > 0.
(iiif ae>0ora=0ora<0 for every acD*.

The same concept is further amplified and clarified by the following definition.

Df. 41226 a>b and b<a are logically equivalent in D, both meaning the same: a—b,

which is called the difference between a and b, is positive.

If a—b is not positive, then it is either zero or negative, i.e. either a =5 or a < b;
these two alternatives are often combined in one notation, a=b, just as a=>b and
a>b may be incorporated into one, a=b, meaning that a—b is not negative,
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Note. 0=a—a for every ael—),_ i.e. zero is defined in terms of difference as the
difference between an element of D and itself.

Df.4.1.22.7 A complex S, SCD, is called well-ordered (cf. Df.2.4.1.18) if any subcom-
plex R of S contains a least element a such that a=7r for every reR.

Th.4.1.2.2.8 If an ordered integral domain D; contains a complex _p;f of :}_11 positive
elements of D;, and if D. contains a similar complex Dj, then Dy and D. are iso-
morphic. (Cf. Prob. 9.)

The elements of D, in general, have the following properties:

Th.4.1.2.2.9 All squares of non-zero elements in D are positive. (Cf. Prob. 10.)
Th.4.1.2.210 Transitivity holds in D: a<b and b<c¢ imply a<c, for every ab,ceD.
Th. 41.2.2.11 For every a,b,ceD, a>b and ¢>0 imply a+c¢ > b+c and ac> be.

(Cf. Prob. 12.)

In any ordered integral domain, defined and expanded as above, it is already
feasible to introduce the concept of absolute values, with which the student is quite
familiar, as below.

Df.41.2212 For every element a D, the absolute value of a, denoted by |al, is positive
except when a=0 for which |a|=0.

This definition yields the following results.

Th.4.1.22.13 For every a,beD,
i) |a+b| = |af + ] (i) |ab] = [a||b]
(Cf. Prob. 13-14.)

This theorem may be considered a special case of the so-called (i) triangle in-
equality and (ii) Schwarz inequality, respectively, the general case of which is ex-
pounded in terms of rational and real numbers (cf. §5.1.1, Prob. 13) and also, with
a slight modification, in terms of complex numbers (cf. §5.1.3, Prob.12,19).

Solved Problems

1. If the cancellation law holds for a ring R, then a+0e¢ R is not a zero-divisor, and

conversely.

PROOF:

(i) Let beR and ab=0; then a*b = a¢+0 = 0 since a*0 = 0+a = 0, by Th.4.1.1.13, and the
cancellation law implies b = 0. Likewise ba=0 implies d=0. Hence a is not a zero-divisor.

(ii) Conversely, if a+ 0 is not a zero-divisor, then ab=ac implies ab—ac = a(b—¢) = 0, which
in turn implies b—¢ = 0 and b=c. Likewise ba=ca implies b=c, establishing the can-
cellation law.

Note. This theorem is logically equivalent to the theorem that a product of non-zero factors in D
is not zero.

2. Prove Th.4.1.2.2.2.
PROOF:
(i) 0 and 1 are evidently idempotents in D, since 0+0 = 0, by Th.4.1.1.13, and 1-1 =1, by D10.
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(ii) Let ¢ be neither 0 nor 1, and suppose a*a = a. Then, by D10, ¢*1 = 1+a = a and, by the
assumption, a*a = a*1 = a. Hence, by D11, ¢ =1, proving that D has neither more nor less
than two idempotents.

Prove Th.4.1.2.2.4.
PROOF:

Assume that D is of characteristic » which is not a prime and is also greater than 0, and let
n=uzy, where 1<z <n and 1<y<mn. If e is the unity of D, then, by Df.4.1.2.2.3, ne=20, i.e.
(zy)e = 0, which implies (xe)(ye) = 0, which in turn implies, by D11, that either xe=0 or ye=0.

Now assume e = 0; then, for any aeD, za=x(ea)= (ex)a =0, implying that xa =0 for
any element a of D, which is contradictory to the assumption that 1 <z <x. Hence n must be either
Zero or a prime.

The same conclusion is obtained by assuming ye = 0, completing the proof.

The order p, p > 0, of the additive cyclic group generated by the unity e of an integral
domain D is a prime.
PROOF:

Suppose p = mn, where m and 7 are any two integers; then me,ne ¢ D, and by the definition
of cyclic groups, (me)(ne) = (e+e+ ...+ e)lete+ ... +e) = (mn)e? = (mn)e = 0.

But, since D is an integral domain which by definition cannot have proper zero-divisors, it must
be the case that either me =0 or ne = 0, either of which is contradictory to the definition of the
order p of the cyclic group generated by e. Hence p must be a prime.

Note that this theorem actually reassures the validity of Th.4.1.2.2.4 (Prob. 3 above).

All non-zero elements of D generate additive cyclic groups of the same order.
PROOF:
Let ¢ and « be the unity element and non-zero element, respectively, of D whose characteristic is,
by Th. 4.1.2.2.4, either p or 0.
(i) If D is of characteristic P, then pa = p(ae) = plea) = (pe)a = 0, which implies, by D11, that
pe=0 and, by Prob. 4 above, that p is the prime order of the additive cyclic group generated
by any non-zero element of D.
(if) If D is of characteristic zero, then na +# 0 for any n7# 0, which implies that the additive

cyclic group generated by « (any non-zero element of D) is of the same infinite order, completing
the proof.

An integral domain D of characteristic zero contains a complex C which is isomorphic
to the integral domain I of integers.
PROOF:

Let every element c¢e C (CcD by hypothesis) be of the form ne, where e is the unity of D and »
is any integer, i.e. nel; then C forms an infinite additive cyclic group whose elements are all distinet.
Hence the 1-1 correspondence ¢=nee(C < nel is an isomorphism, since nie <> n; and nze € n,
do imply

e+ ne = (N +me < n+ne and (nie)(nze) = (mimzde < ning

An element d of an integral domain D both divides the unity e of D and is divisible
by e iff its multiplicative inverse d—! is also in D.
PROOF:

If d divides ¢, then there exists an element ce D such that ed = ¢, which proves that ¢ = d-*.

Conversely, if d has a multiplicative inverse ¢, then cd = ¢, which proves that ¢ is divisible by d.

If a subset D+ of the positive elements of an ordered integral domain D is well-ordered,
then @) D* = (me} and (i) D = {me)

where e is the unity of D, n, any positive integer, and n, any integer.
PROOF:

(i) By hypothesis, D+ has a least element, which in this case is e, since the assumption 0<a<e,
aeD* implies an immediate contradiction that a?< g (since ae=a), a’e D+,
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Furthermore, since ¢® = ¢, by D4, it follows that €>0 and ¢*>0, and that 2¢ = e+e > 0,
8¢ = 2¢+ ¢ > 0, and in general ne = (ny—1)e+ ¢ > 0. Hence mee D" for any positive integer n..

Conversely, every element of D+ is necessarily of this form. For, otherwise, a complex C
of D+, whose elements are assumed to be not of the form, must have a least element, say b.
Then b_> e, i.e. b—e > 0, since e has already been proved to be the least element of D+. Hence
b—eeD* and b—e < b (since ¢ >0), which implies b —e ¢ C, which in turn implies b—e =
nie, i.e. b = me+e = (mi+1)e, where ni+1 is of course a positive integer, which is contra-
dictory to the assumption. Hence C must be a null set, proving that every element of D* must
be of the form nie.

(ii) Suppose that deD and dg D*; then, by Df.4.1.2.2.5, either d =0 or —de D*. In the former case,
d =0+e, and in the latter case, —d =n:e for any positive integer n., as has just been proved
above. In either case d=ms:e for any integer n. (zero or positive or negative), completing the
proof.

Prove Th.4.1.2.2.8.
PROOF:

Let e: and e: be the unities of D, and D: respectively; then, by Prob. 11, D=8, and D:=S,,
where S1 = {ne:} and S: = {ne;} for any integer n.

Suppose mier = N2¢: When mi ¥ ma, say i >N, le. mi—n2 > 0; then (n:— m2)e; = 0, which is
contradictory to the result of Prob. 11, according to which (n,— ns)er > 0. Hence each element of
D: must be uniquely expressible by ne;, and every element of D: by ne..

The uniqueness of each element of D, and D. at once entails the distinct elements of respective
sets, which then enables a definite 1-1 mapping between them, i.e.,

N+ neer = (it n2)er € (Mt n2)er = nie2+ N2

and (me)(nze)) = (nma)er <> (mime)es = (n1ex)(nze2)

completing the proof.

All squares of non-zero elements in an ordered domain D are positive.
PROOF:

Let aeD, a=0; then, by Df.4.1.2.2.5,iii, either a or —a is positive. Hence, in the first case,
o+*a=a*cD*, by Df. 41.2.2.5,ii, and in the second case, (—a)(—a) = a*a = a*eD*, by Th.41.1.14,v
(which of course holds for D), completing the proof.

Prove Th. 4.1.2.2.10.
PROOF:

The hypotheses a <b and b<c¢ are logically equivalent, by Df.4.1.2.2.6, to b—a > 0 and
¢e—b >0, and (b—a)+(¢c—b) > 0, by Df.41225i But (b—a)+t(c—>d) = (b—a)+(c—0a) =
¢—a. Hence ¢—a > 0, ie. a<c, completing the proof.

Prove Th.4.1.2.2.11.
PROOF:

i (@te)—({b+ec) = (a=b)+{(¢c—¢) = a—b > 0 since, by hypothesis, a>b, ie. a—b > 0.
Hence a+c¢ > b+e.

(if) @c—be = (o — b)e > 0 since, by hypothesis, a —b > 0, ¢ > 0, and consequently, by Df. 4.1.2.2.5,ii,
(@ —b)e > 0. Hence ac > be.

Prove that |a+b| = |a| +|b] if abeD.
PROOF:
(i) If a=0and =0, then a+b =0 and

la+b| = a+b = la|+[b]
(i) If a=0 and b=0, then —a=0, —=b=0, —(a+b) = (—a)+(—=b) = 0, and
la+b| = —(@+b) = (~a)+(=b) = laf+[d|
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If >0 and b<0, then b <—b, which implies
a+b < a+(=b) = |a| + |b] and  —(a+d) = (—a)+(~b) < a+(-b) = la| + b
Hence le+b] < o + |3
Similarly, if ¢ <0 and b >0, then
la+b| < |a| + b
Hence, from (i)-(iv), which exhaust all possible cases,
latd] = la| + |3|

Note. This result can be readily generalized, by mathematical induction, to:

n n
l 'El a; ] = 21 [ail 5 if ai,dz,. . .,anSD
i= i=

14. Prove that a,be D implies |ab| = |a| |b|.
PROOF:

(i)

(ii)

(iii)

(iv)

If a>0and >0, then ab>0; hence

jabl = ab = |||

If a<0and b<0, then —a>0, —b>0, (—a)(—b) >0, and

lab] = [(=a)(=b)] = (—a)(=b) = la||b]

If >0 and <0, then —b>0, a(—b)>0, and

lab] = |=ab] = la(=b)] = a(-b) = la||d]

Likewise, if ¢ <0 and >0, then

labl = la| [b]

Hence, from (i)-(iv), which exhaust all possible cases,

labl = laf|b]

Note. This result, just as in Prob. 8, can be generalized, by mathematical induction, to:

n n
| Hlaa | = E la|, if @y,00,...,aneD
i =

15. Prove that a,beD implies |la|—[b]] = |a=b| = |a|+b|.
PROOF: )
Since ¢ = (a—b)+b and b = (b—a)+a, it follows, from Prob. 13, that

la] = {a—0b]|+ |b] and 6] = |b—a|+ |b]
Hence la| —{b] = |a—b]| and |6 — la] = |a—b]
ie. Hal=1o]] = la—=b] = |a+(=b)| = |a]+ |b]
But ¢+b=a—(—b) and |b| =|-b]. Hence
llal — 16| = Jaxb] = |a| + |b]

4.1.2.3 INTEGERS

Df.4.1.23.1 (Peano Axioms). The set N of natural numbers satisfies the following four

axioms:

Nl. a & S(@)=a in N is a 1-1 correspondence for every acN such that ¢’¢N,
where the mapping S(a) is called the successor function and o’ the successor of a.

N2. 1eN and, for every aeN, S(a)+#1; ie. 1 is a natural number, yet never the
successor of any natural number.

N38. S(a)=S8(b) iff a=10b for every a,beN.

N4. N=M if a complex M of N contains 1 and if ae M implies S(a)e M.
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The undefined terms (i.e. primitive terms, cf. Df.2.1.1) in this definition are
“natural numbers”, “1”, and ‘“successor”. It should be noted that N4 is in essence
the Principle of Finite Induction (cf. MTh.2.2.1.11), and that there exist postulate
sets other than Peano’s, e.g. von Neumann’s, for defining natural numbers.

Df.4.1.2.32 The binary operation in N under +, defined by
(i) a+1 = a/, (ii) a+b = (a+by
for every a,be N, is called addition.

In terms of this definition, N1 can be simply replaced by S(¢) =a+1 or ¢/ = a+1.
This operation is evidently closed in N, since every element of N except 1 is of the

form a’; it is also associative, commutative, allowing cancellation under addition
(c¢f. Prob. 1-3).

Df.4.1.2.3.3 The binary operation in N under -, defined by
(i) al=aq, (ii) ad=ab+a
for every a,be N, is called multiplication.

Multiplication is obviously closed in N, since every element of N, except 1, is the
successor of some element; it is also associative, commutative, distributive under
addition (cf. Prob. 6-8).

It is clear, then, that the set N of natural numbers satisfies every property of an
integral domain except D3 (additive identity) and D4 (additive inverse), including
Df.4.1.2.2.5; N, then, is an ordered set (cf. Prob. 9-14), although it does not form
even a group, much less a ring and still less an integral domain. Conversely, however:

Th.4.1.2.3.4 Every ordered integral domain D contains a unique complex N of positive
elements which satisfies Df.4.1.2.3.1. (Cf. Prob. 17.)

The set N of natural numbers being thus defined, the set J (or I) of all integers
is developed from N in the direction suggested by Df.4.1.2.2.5, viz. to introduce all
integers as ordered pairs (a,b) of natural numbers a and b; for the difference a—b
can be either positive or zero or negative.

Df. 41235 All ordered pairs of the form (z,y), where x,yeN, are called integers,
forming the set J of integers, in which (a,b) =(¢,d) iff (a,b),(c,d)edJ and a—b = c—d,
ie. a+d =b+e.

An element of J, defined as above, which is ordinarily called an integer, may be
sometimes called a rational integer to distinguish it from the specific set I of
algebraic integers (cf. Df.5.3.2.13). Note, also, that the equality in Df.4.1.2.3.5 is
an equivalence relation (cf. Prob. 18).

Df.4.1.23.6 The binary operations of addition and multiplication in J are, respectively:
(i) (a,b)+(c,d) = (a+c,b+d), (i} (a,b)(c,d) = (ac+bd,ad+bc)
for every (a,b),(c,d)eJ.

Th. 4.1.2.3.7 Addition in J is associative, commutative, and well-defined; so is multiplica-
tion in J, which is also distributive under addition. (Cf. Prob. 20-22.)

The set J of integers as such is manifestly an integral domain, satisfying D1-11;
as has already been observed (cf. Df. 4.1.2.2.1a), then, J exemplifies an ordered integral
domain, and also, as has been revealed by Th.4.1.2.2.4, embodies a finite integral
domain through the ring I, of integers modulo p, a prime,.
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Th.4.1.2.3.8 The set N of natural numbers is isomorphic to the set J*+ of positive integers
under addition, multiplication, and order. (Cf. Prob. 23.)

Such an isomorphism as above, which preserves order, is specifically called an
order-isomorphism between two ordered sets, although it may not be explicitly men-
tioned as such (cf. Th.4.2.1.3-7).

Since I (or J), or more generally D or D which contains I, does not always assure an
integral solution « for ax =b, where a,b eI, division is evidently restricted in I, as is
clearly reflected in the familiar term “integral operation” which includes addition,
subtraction, and multiplication, but excludes division. Here is divisibility in general
(as in “rational operation”) at issue:

Df. 4.1.2.3.9 If there exists an element z ¢ I for any ¢,d e such that
cx = d (2)

then d is said to be divisible by ¢, where d is called a multiple of ¢, which in turn is
called a divisor or factor of d. The equation (1) may be expressed by cld, which
reads: c¢ divides d. Similarly, cfd denotes cx+d, reading: ¢ does not divide d.
E.g. 2|4 and 2/5.

Note. 0 is considered divisible by every element of I or D, since
a0 =0
for every element ael or ae D.

Df.4.1.23.10 If ce[I is neither 0 nor =1, and if there exists xel, also neither 0 nor =1,
such that cx =d, where del, then c¢ is called a proper divisor of d. A prime is then
defined as an integer which is neither 0 nor =1 and has no proper divisors.

Stated otherwise, a prime p is neither 0 nor =1 and divisible only by =1 and =p.

Note. del is sometimes called a composite (number) if it has proper divisors.

Th.4.1.2.3.11 Divisibility is reflexive and transitive, but not always symmetric. (Cf.
Prob. 26.)
Df.4.1.23.12 aand b, where a,bel or a,be D, are called associates if division is symmetric,

i.e.a|b and b|a. In particular, an associate of eeD is called a wunit (cf. Prob. 27-28
below). In this sense, too, an element pe D is said to be a prime element if its only
divisors are units and elements associated with p.

Example:

2+1v3 and 2 —v3 are units of an integral domain whose elements are of the form: « -+ b\/§,
where a,be .

Th. 4.1.2.3.13 (Division Algorithm). Given two positive integers a and b, there always
exist two unique non-negative integers ¢ and r such that

a = bg+r, =r<b
(Ct. Prob. 29.)
Example:
@ =50 and b=11 imply ¢ =4 and » = 6 in the context of Th. 4.1.2.3.13. For the same b, however,
¢ = —50 implies ¢=—5, r =5, and likewise a=—5 implies ¢ =—1 and r = 6.
Note. q above is called a guotient and r a remainder — terms with which the
student is quite familiar, just as with the following terms:
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Df.4.1.23.14 If a|m and b|m, where a,b,mel, then m is called a common multiple of
a and b; and if furthermore a|n and b|n imply m|n, where nel, then m is called
a least common multiple (L.e.m.) of a and b, denoted by m = [a,b].

Similarly, if d|e and d|b, where a,b,del, then d is called a common divisor of
a and b; and if moreover c¢|a and c¢|b imply c|d, where cel, then d is called a
greatest common divisor (g9.c.d.) of a and b, denoted by d = (a, b).
Example:

6 =1[2,3] and 3 = (6,9).

Df.4.1.2.3.15 If in particular (a,b)=1, then a and b are called relatively prime; i.e.
a and b have no common divisors except =1, while 1 is relatively prime to every
integer including itself. (Cf. Prob. 33-34.)

Furthermore, any two elements a,bel, a0, b0, have a lecm. [a,b], which
is always obtainable by the so-called Euclidean Algorithm (cf. Prob. 81), and have
also a g.c.d. (a,b), viz.:

Th. 4.1.2.3.16 Any two nonzero elements a,bel have a g.c.d., which is always expressible
in the form: az + by = (a,b), eyel,
which in turn is called a linear combination of @ and b. (Cf. Prob. 32.)

Also, as has already been tacitly presumed, any nonzero integer can be factored,
in fact uniquely, as is revealed in the following theorem of unique factorization, known
as the fundamental theorem of arithmetic, viz.:

Th.4.1.2.3.17 Any positive integer = can be expressed as a product of positive primes, and
this expression, except for the order of the factors, is unique. (Cf. Prob. 36.)

The restriction to positive integers is merely for the sake of simplicity in proof,
as is evident in the context.

Since the set I of integers is an integral domain, which in turn is a fortior:
a module, i.e. an Abelian group under addition (cf. D1-5 and also the resemblance
between Df.4.2.6.6a and Df.4.1.2.2.6), it may form residue classes in accordance
with the following definition:

Df. 412318 If m|(ea—0b), a,bmel, ie. if there exists an element k, kel, such that
a—b = km, then a is said to be congruent to b modulo m; notationally,

a = b (modm)
where m is the modulus of the congruence. The residue classes of integers modulo m

may be denoted simply by I.., instead of I/{m}, I/(m), etc., if there exists no danger
of misinterpreting subscripts.

Conversely, as has been proved by Th.4.1.2.2.4, I, is an integral domain iff m
is a prime. In either case, due to the additional axioms of D6-11, congruence opera-
tions in I, (or more generally in D if m is a prime) is more complex than in a plain
module, as is evident in the following theorems.

Th. 4.1.23.19 If a =b (mod m), then, for any xel,
i)y a+z=D>b+x (modm), (ii) ax = bx (mod m)

(Cf. Prob. 37.)
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Th.4.1.2.3.20 The congruence ax =0 (mod m) has an integral solution = iff d|b,
where d = (a,m); then, if it does, there uniquely exists a representative set of d solu-
tions modulo m. (Cf. Prob. 41.)

Congruences can be treated simultaneously, viz.:

Th.4.1.2.3.21 The congruences z=a; (mod m;) and x=a, (mod mz) have a common
solution iff @1 =a: (mod (mi,m2)) and, then, there is a single solution for the modulus
[m1,ms].  (Cf. Prob. 42.)

This theorem may be further generalized to a set of % simultaneous congruences
(cf. Prob. 43).

Solved Problems

1. Addition in N is associative.

PROOF:
Let M be a complex of N, for which a+ (b+¢) = (e +8)+c holds for any ¢, given a and b.
Then, by Df.4.1.2.3.2,

@a+b)+1 = (a+bd) = a+b = at+(b+1)
which implies 1¢ M. Furthermore, by Df.4.1.2.3.2,
l@tb)+c = ((atd)+e)y = (a+(b+e))y = a+(b+e) = a+(b+¢)
which implies ¢/ ¢ M and, by N4 of Df. 4.1.2.3.1, establishes
a+(b+e) = (@+b) +e¢
for N itself.

Note. The proof has been completed, in effect, by justifying induection for any ¢ and fixed ¢ and b;
this procedure will be seen again in the following problems.

2. Multiplication in N is commutative.
PROOF:

(i) Let M be a complex of N and as M, for which a +1 = 1+ a, which implies 1e M and o' M,
sinee d+1 = (@+1)+1 = 1+a)+1 = (1+a) = 1+d
Hence, by N4, a+b = b+ a holds for b = 1.

(ii) Let M be a complex of N, where a+ b = b+ a holds for b, given a, and, by the result of (i) above,
leM; then
atd = (a+b) = (b+a) = b+d = b+(a+1) = b+(1+a) = b+l)+a = b +a

proving b’e M. Hence, by N4, ¢+b = b-+a holds in N itself, completing the proof.

3. For every a,b,ce N, b+ c¢ implies a+b + a+c.
PROOF:
Let M be a complex of N, in which ¢+ b # a+ ¢ holds for a, given b and ¢. Then, since b#¢
implies 1+ b ## 1+ ¢, by N3, it follows that 1¢ M.
Now, in general, suppose ae M and b+#¢ imply a+b + b+e. Then, by the result obtained at
the start, (a+b) # (a+¢), ie a' +b = a’+¢, proving that a’e M and that, by N4, the theorem
holds for N itself.

Note. The theorem may be stated otherwise, by MTh.1.1.1.12, that a+b = a+¢ implies b =¢
for every a,b,ce N, which is a more direct statement of cancellation under addition.

4. a+b=b forevery abeN.
PROOF':
The theorem evidently holds for b =1, since a+1 = 1 by N2 of Df.4.1.2.3.1.

In general, a+b % b implies a+ b = (a + b)’ # b, by N3 (or rather its contrapositive: ¢+ b
iff @’ # b’), proving the case for b’. Hence, by N4, the theorem holds for every a,beN.
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One, and only one, of the following three cases is possible for any a,beN:
(i) a=b, or (ii) a =>b+m for some meN, or (iii) b =a+n for some neN
PROOF:

It immediately follows from Prob. 4 that neither (i) and (ii) nor (i) and (iii) can hold
simultaneously.

Now, assume that (ii) and (iii) hold simultaneously; then
a = bt+m = (a+n)+m = a+ (m+mn)

which is contradictory to Prob. 4. Hence (i), (ii), and (iii) cannot hold simultaneously. One of the
three, however, always holds for the following reason.

Let M be a complex of N for which one of (i), (ii), (iii) holds for b, given «; then (i) holds if a =1
and b =1, and (ii) holds if a# 1 and b =1, since, by N2, ¢« = m’' = m+1 = 1+m. Hence 1eM.

In general, be M implies a=bor a = b+m or b = a+n.
In the first case, i.e. if a=b, then ¥ = b+1 = a+ 1, which implies (iii) holds for b’.

In the second case, ie. if @ = b+m, then a = b+ 1 =b" for m =1, which implies that (i) holds
for b'. For m+1, ie. m=Fk, it follows that ¢ = b+ Kk =b+(k+1) =b+Q+k) = (b+1)+k =
b +k, establishing (ii) for b’.

In the third case, i.e. if b = a+ =, it follows likewise that b = (a+n)’ = a+n/, establishing
(iii) for b’, which completes the proof.

For every a,b,ce N, (a+b)c =ab+Dbc and a(b+c¢) = ab +ac.
PROOF:

(i) The theorem holds for ¢ =1, given ¢ and b, since (a+b)*1 =a+b =a*1+b-1.

In general, if the theorem holds for ¢, given a and b, then it holds also for ¢/, since, by
Prob. 2-3,

(at+b)e’ = (@a+b)e+{at+bd) = (ac+bc) +(a+b) = (ac+a)+ (be+b) = ac’ + be’
Hence, by N4, (a+b)ce = a+ ¢+ be for every a,b,ce N.
(ii) Likewise, a(b+c¢) = ab+ ac.

Multiplication in N is commutative, i.e. ab = ba for every a,beN.

PROOF:

(i) Let M be a complex of N, for which 1+b = b+1 holds, implying 1 ¢ M; then, since 1+b = b-1
impli
tmphies 1+ = 1+b+1 = bel4+1 = b+1 = b = b1
it follows that b’ ¢ M, and that, by N4, the theorem generally holds for b, given a = 1.

(i) Let M be now a complex of N where a+b = b+a holds for b, given a; then 1M, by (i) above,
and a+*b = b+a implies, by Prob. 6,

ab) = ab+1) = ab+a*l = ba+a*l = bat+a = (Bb+lDa = ba

establishing &' ¢ M, which in turn proves, by N4, commutativity in general in N.

Multiplication in N is associative, i.e. a(bc) = (ab)c for every a,b,ce N.
PROOF:

If M is a complex of N in which the theorem holds for ¢, given a and b, then 1e M, since a(b+1) =
ab = (ab)* 1.

In general, a(bc) = (ab)e in M implies
a(bc’y = albe+bd) = albe)+ab = (ablce+ ab = (ab)c

proving ¢’ £ M, which in turn proves, by N4, associativity in N.

One, and only one, of the following three alternatives holds for every a,b e N:
a>b or a=b or a<b
PROOF:

This is merely a restatement of Prob. 5, since a>b iff « = b+m for some me N, or a<b iff
b =a+n for some neN.
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For every a,b,ce N, a<b and b<c¢ imply a<e.
PROOF:

Since, by Prob. 5, a<b and b<¢ imply b =a+m and ¢ = b+n for some mme N, it follows
at once that ¢ =b+n = (a+m)+n = a+ (m+n), which implies a« < ¢, completing the proof.

For every a,b,ceN, a+c¢c < b+¢ and ac < be iff a < b. The dual also holds, i.e.
a+c¢c>b+c¢ and ac > be iff a > b.

PROOF:

(i) If a<b, then b = a+m for some meN, which implies

bte=(at+tmy+te=a+m+ec =a+c+m =(at+te)+m and be = (e +m)e = ac+cm

which in turn immediately implies a+¢ < b+¢ and ac < be respectively.

The converse follows, since, as in Prob. 5, b+¢ = (a+¢)+m for some meN, ie. b+e¢ =
(a +m)+e¢, which implies, by Prob. 3, b = a+m, i.e. a<b. Likewise, ac<be implies a<b.

(ii) The dual can be, of course, dually obtained.

For every a,b,ce N, a+c¢+*b+c and ac += be iff a = b.
PROOF:

Since a7 b implies either a <b or a>b, and since the duals of Prob. 11 hold simultaneously
and exclusively to each other, this theorem is merely a restatement of Prob. 11, and as such is valid,
of course.

Note. a+c¢=>b+c¢ and ac = be iff a = b, since this is merely a contrapositive form of the
theorem just proved. Note, also, that this form is the immediate result of the uniqueness of addition
and multiplication in N (cf. Supplementary Problems 4.3, 4.4).

For every element ae N, 1 =q.
PROOF:

By N2, a#1 implies « = " = b+1 > 1; and by N1-2, e <1 is always false. Hence a=1, i.e.
1=a.

If a <b and ¢ <d for every a,b,c,d,e N, then a +¢c < b+d and ac < bd. The dual holds,
and likewise, e +¢=b+d and ac=bd if a=b and ¢ = d.
PROOF:

By Prob. 11, a<b implies a+c¢ < b+e¢; likewise ¢<d implies ¢+b < d+b. Hence
at+tece<bte=c+b<d+bd ie. at+c<b+d.

Similarly, a+¢ > b+d and ac > bd if a>b and ¢>d.

The duals, which hold simultaneously and exclusively, imply a+#b and ¢#d if a+c¢ % b+d
and ac #* bd. This, by MTh.1.1.1.12, completes the theorem.

There exists some ¢e N such that a < be for every a,be N.
PROOF:

The theorem holds for any ¢e N such that ¢>a, since, by Prob. 13, b =1 and, by Prob. 11,14,
be > a*1 = a, completing the proof.

Note. This is the familiar Archimedean order in N; ¢f. Th.5.1.1.5 and Th.5.1.2.12 for the same
order for rational numbers and real numbers.

There exists no be N such that ¢ < b <a+1 for any ae N.

PROOF:

If ¢<b, then b = a+m for some meN. But, by Prob. 13, 1=m and, by Prob. 11, a+1 =
a+m, ie. a+1 = b, while N2 contradicts ¢+ 1 > b, which implies b =a against the hypothesis.
This completes the proof.
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17. Prove Th.4.1.2.3.4.
PROOF:
The complex D* (cf. Df. 4.1.2.2.5) of D, which consists of positive elements of D, contains the
multiplicative identity e, which may be replaced by 1, and satisfies N1-2.

Let N be the (unique) intersection of all subsets S;, 1=1,2,...n, of D*, each of which satisfies
N1-2, ie. ae N iff aeSi. Then N satisfies a fortiori N1-2 and also N3, since a+1 = b+1 for
every a,be N implies a =5 and conversely.

Let M be a complex of N, satisfying N1-2; i.e. MCN. Then M is one of S;, which implies NCM.
Hence N =M, which proves that N satisfies N4, completing the proof.

18. Equality of elements in J is an equivalence relation.

PROOF:

(i) (a,b) = (a,b) since a—b = a—b or what is the same: a+b = b+ a.

(if) (a,b) = (¢,d) implies (¢,d) = (a,b), since a~b = c—d (or a+d = b+¢) implies ¢c—d =
a=b (or b+c = a+d).

(iii) (e, b) = (¢,d) and (¢,d) = (e,f) imply (a,b) = (e,f), since a—b =c¢—d and ¢—d = e— f
imply a —b = e—f; or whatis the same: a+d=b+c¢ and ¢+f=d+e¢ imply a+d+c+f=
b+c+d+e, which in turn implies a+f = b+e, ie. (a,b) = (e, f), completing the proof.

19. For every a,bedJ and zeN, (a+z,b+zx) = (a,b).
PROOF:
Since (a,b) = (a,b) or a+b = a+b in J, by Prob. 18,i above, it follows, from Prob. 3, that
at+b+o =at+b+x for any xe N, which by Prob. 1-2 implies (a+2)+b = (b+a)+a. Hence,
by Df.4.1.2.3.5, (a+z,b+x) = (a,b), completing the proof.

20. The binary operations in J are well-defined.
PROOF:
Let (a,b),(a/,b),(c,d),(c',d") e J and (a,b) = (a’,b'), (c,d) = (¢’,d’). Then, by applying Df.4.1.2.3.6
and Prob. 19 repeatedly,
B (@b)+(d)y = (a'+c,b+d) = (ateta'+c,atetd +d)
(at+cta’+e, (a+b)+(c+d)) = (atecta'+¢, (a'+b)+(c'+d))
= (atctH(a’'+c'), b+d+{a’+¢')) = (atc,b+d) = (a,b)+(c,d)
proving that (a,b) = (a/,b') and (¢,d) = (¢/,d') imply (a,b) + (¢,d) = (a’,b") + (¢',d');
(ii) (a0)c'\d) = (a’¢’+b'd,a'd+b'¢’) = (ac’+bd'+a'c’+b'd, ac’+bd+a'd'+b'¢')
(ac’+bd'+a'c'+b'd’, ¢'(a+b)+d' (b+a')) = (ac'+bd'+a’c’+b'd, ¢/ (a’+b)+d' (b'+a))
= (ac'+bd'+a’¢’'+b'd’, cate’b’'+d'b+d'a’) = (ac’+bd’,c’b+d'a)
= (actbdtac’+bd’, actbd+c'b+d'a) = (act+bd+ac’+bd, a(ctd)+b(d+c’))
= (actbdtac’+bd’, alc’+d)+b(d'+c)) = (actbd+ac'+bd, ac’+ad+bd +bc)
= (actbd,ad+bc) = (a,b)(c,d)

Il

Il

proving that (a,b) = (a’,b") and (c,d) = (¢',d’) imply (a,b)(c,d) = (a’,b")(c’.d').

Hence the binary operations in J are well-defined.

21. Addition in J is associative and commutative.
PROOF:
(i) Let (a,b),(c,d),(e,f) e J; then, by Df.4.1.2.3.4-5,

(a,b) + ((e,d)+(e,f)) (a,b) + (ct+f,d+e) = (at+d+e, btectf)
= (at+d, b+c) + (e,f) ((a,b)+(c,d)) + (e,f)
establishing additive associativity in J.
(ii) Let (a,b),(c,d)eJ; then, by Df. 4.1.2.3.4-5,
(a,b) + (¢, d) = (a+d,b+¢) = (d+a,ct+db) = (¢d)+ (a,b)
verifying additive commutativity in J.

Il
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22. Multiplication in J is associative, commutative, and distributive under addition.

PROOF:
Let (a,b),(c,d),(e,f) e J; then, by Th. 4.1.2.3.4-5,
i) (@,b)((c,d)(e,f)) = (a,b)(cet+df,cf+de) = (a(cetdf)+b(cf+de), alcf+de)+b(cet+df))
= ((actbd)et(ad+be)f, (ac+bd)f+(ad+be)e)
= (actbd,ad+be)e,f) = ((a,b)(e,d))(e,f)
proving multiplicative associativity in J;
(ii) (a,b)cd) = (actbd,ad+tbe) + (catdb,dateb) = (c,d)(a,b), proving multiplicative commuta-
tivity in J;
(iif) (a,b)((e,d)+(e,f)) = (a,b)cte,d+f) = (a(ct+e)+b(d+F), a(d+f)+b(cte))
= ((actbd)+(ad+bf), (ad+be)+(af+be)) = (ac+bd, ad+be) + (ae+bf, af+be)
= (a,b}c,d) + (a,b)(e,f)

and likewise ((a,b)+(c,d))(e,f} = (a,b)(e,f) + (c,d)(e,f), proving distributivity in J.

23. Prove Th.4.1.2.3.8.
PROOF:
It follows from Df.4.1.2.3.5 that every element of J* is of the form (a+=x,a) for every a,xe N.

If (atw,a),(b+y,y)eJ*, where a,b,x,y e N, then, by Th. 4.1.2.3.6,
(i) (atx,a) + (b+y,b) = ((atb)+zty, (atd)) < z+y,
(i) (atwz,a)(b+y,b) = ((ay+2ab+bx)+ay, (ay+2ab+bx)) <> xy,

and furthermore the following trichotomy preserves order:
(iii) (atzx,a) = (bt+y,b) & xzZ=y

24. There is no integer between 0 and 1.
PROOF:

Suppose 0<x <1 for some xel’, where I’ is a complex of the set I of all positive integers.
Then, by the well-ordering principle, there must exist a least element y, yel’, such that 0 <y <1,
which implies 0 <y? <y, where y*cI’, which is manifestly a contradiction, completing the proof.

25. 2|1, where xel, iff x==1.

PROOF:

(i) If x==1, then evidently x=|1.

(ii) Conversely, if ab =1, where a,bel*, a0, b#0, implies ¢ =*1 and b= *1, then x|1 must
imply # ==*1. Now, by Th.4.1.3.3.13, ab =1 implies |ab] = |a||b] = 1, which in turn implies,
by Prob. 16 and Df.4.1.2.2.5, |a| =1 and |b] =1, Hence it must be the case that |a|=|b| =1,
i.e. a = =1 and b= =1, completing the proof.

26. Prove Th.4.1.2.8.11.
PROOF:
(i) Reflexivity: a|a is always true, since a = a+1.
(ii) Transitivity: a|b and b|c imply a|e¢, since, by Df.4.1.2.2.14, there exist d. and d:, where
di,dxe 1, such that b =ad, and ¢ = bd,, which imply ¢ = a(did:), where did.eI by D6, ie. ale.

(iif) Divisibility is not always symmetric, since a|b and b|a if a==b (or what is the same,

==*a). For, if a|b and b|a, then a=0bd; and b=ad,, as in (ii) above, which imply
a = bdxd;, which in turn implies, by D11, 1 =d,d; for a 0.

Hence, by Prob. 17, di = =1, which concludes that a = *b. (If a =0, then b = 0, in which case
it is trivially true that ¢ = =b.) And, conversely, it is evident that «|b and b Ja if @ = *b,
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An element u in an integral domain D is a unit in D iff its multiplicative inverse u™*
is also in D.

PROOF:

(i) If u is a unit, then by definition u|e and aou=e for some aeD, proving that a = u e D.

(i) If u~'eD, then uu"'=e¢, by D10, which implies u|e. Moreover, since be=> for every beD,
it follows that ue =u, ie. e|u, completing the proof that u|e and e|u iff u"'eD.

For some elements a,beD, a|b and bj|a iff a (or b) is a unit times b (or a).

PROOF:

(i) If a|b and b|a, then there exist two elements ¢,deD such that a=be and b=ad, which
together imply @ =adc. On the other hand, by D10, a=ae. Hence, by D11, e =dc¢ which
implies, by definition, ¢ and d are units, proving that a (or b) is a unit times b (or a).

(ii) If, say, a = bu, where u is a unit in D such that uw' =e¢, then b = be = b(un’) = (buyu’ = auw’,
which implies @ |b. Similarly, b =au implies b|a, completing the proof.

Prove Th.4.1.2.2.13.
PROOF':

Let N be the set of all non-negative integers of the form a — bg; then ae N, since a =a—0+5 > 0,
which implies that N contains at least one positive integer. Also, by the well-ordering principle, N
contains a least positive integer, say = = a— bq for some non-negative integer ¢, where the case
is exhausted by a trichotomy: »>b or r=5b or r<b.

If r>b,then 0 < r—b = (a—bqg)—b = a— b(g+ 1), which implies (» —b)e N, while obviously
r—b < r, contradicting the assumption that » is the smallest positive integer in N. Hence it must
be the case that either »r =5 or » <b.

If =50, then a = bg+b = b(qg+1)+ 0, verifying the theorem.

If r<b, then a = bg+r is already complete, immediately establishing the theorem.

(Second proof, by induction.

(1) For a =1, the theorem evidently holds, either with =1, ¢=1, r=0 or with b>1, ¢=0, r=1.

(ii) Assume that o = bg+r, =r<b; then a+1 = bg+r+1, where manifestly either
0 = r+1 < b, in which case the theorem at once holds for ¢+ 1, or at most r+1 = b
(since 0=7r<b), in which case a+1 = bg+b = b(g+1)+0, again verifying the theorem
for a+ 1.

(iii) Hence the theorem holds in general.)

Furthermore, the quotient ¢ and the remainder » are uniquely determined, since a = bg+1r =
bq' +r’, where 0=rsr' <b, implies r—7" = b(¢' —¢q), which is smaller than b, yet a multiple of
b, yielding a self-contradiction. Hence it must be the case that »—# = 0, i.e. » =1’, which implies
bg = bq’ and, by D11, q = q’, establishing the uniqueness of ¢ and r.

Any complex C of integers closed under addition and subtraction consists of either
zero alone or all integral multiples of a least positive integer in C.

PROOF:

(i) The case of C with zero alone is trivial.

(ii) If aeC, a0, then by hypothesis (a—a) e C, i.e. 0e C, and consequently also (0—a)eC, ie. —aeC.

Hence there exists at least one positive element: la|] = *aeC, which by the well-ordering
principle implies a least positive element beC.

Furthermore, by induction, kbeC (kel) implies (k+1)beC since (k+1)b = kb+b and by
hypothesis kb+beC, where kbe C and be C. Hence all integral multiples of & are in C.

(It can be further proved, on the strength of Prob. 31 below, that C does not contain any element
other than the integral multiples of b. For the Division Algorithm of Prob. 29 concludes that any
element a ¢ C implies a —bq = re C, where 0 =r <b and b, as above, may be considered the smallest
positive element of C. Hence r =0, which implies a = bq, completing the proof that the integral
multiples of b exhaust C.)



156

31.

32.

33.

PART 4 — ALGEBRA OF RINGS [CHAP. 4.1

Prcve the Euclidean Algorithm: any two nonzero integers a and b have a positive g.c.d.
PROOF:

By Df.4.1.2.25, a>b or a=b or a<b. If a="5, then the g.c.d. of ¢ and b is manifestly a or b
itself. Hence let @ > b (since the case of a < b can be similarly treated); then, by Prob. 21, a = bg +
0=r<b.

(i) If »r=0, then b is evidently the g.c.d. of @ and b.

(i) If r+ 0, then let d = (a,b) and d’ = (b,r), where d | and d = (b,), since d|a, d|b, and d|(a— bq).
Hence d|d'. Likewise, d'|b, d' |7, d'|(bq+7), and consequently, d'|a¢ and d’ =(a,b), ie. d' | d.
Hence d’ = d, which implies that the g.c.d. of @ and b is also the g.cd. of b and »r.

>

Apply, then, the division algorithm to & and r, producing b = rq1t 7, 0=7 <7, which implies
that r is the g.e.d. of b and r (ie. @ and b) if »,=0. If not, apply the algorithm repeatedly, and

b = rq: + 0<rm<r7r
r = r1g:+ 72 0<7r:<my
Ti = Tit1Qite + Tiee 0 < 7ivs < 7igs

which, as it goes on, must ultimately reduce 7n+1 to zZero, viz.,

Tr-2 = Tp-1Qa T+ Tn 0<7e < 7n-y
Tn-1 = Tal(n+1
But, evidently, (a,8) = (b,7) = (r,71) = -+- = (ra-1, 7s) = ra. Hence 7. is the g.c.d. of @ and b.

There exist integers x and y such that d = (a,b) = ax + by, where abel.
PROOF:

Since, by Prob. 31,

r = a—bg = a+ b(—q)
and = b—rq = b~ (a—bg)g: = a(—q) + b1+ qq),
assume ri = axi + by, iel”,

of which the cases for i{=0 and i=1 have already been verified as directly above. Then, from
Prob. 31 and by induction,

i = Ti—2 — Ti-1¢; = axj-2 + byj—z - (ax,-—1+ byj~1)q]'
= ali-2—~ 2j—2qs) + bYj-2— yi-1qy)
completing the proof.

Second Proof. The set L of all linear combinations of the form ax + by is closed under addition
and subtraction, since

(a:i+ bys) * (ama+bys) = a(e:s @) + by = ys)

Hence, by Prob. 30, L consists of all multiples of some minimal positive number d = ax + by,
where, evidently, ¢|a and ¢|b imply ¢|d for any c¢el*. But abeL, since ¢ = a+14+b+0 and
b = a*0+b+1, which implies that « and b are also the multiples of the minimal number de L,
iie. d|a and d|b. Hence d = (a,b) = ax + by.

If p is a prime, then p |ab implies p|a or p | b.
PROOF:

By definition, x|p iff x==*1 or a==p. Hence, if pAta, then *1 are the only common
divisors of p and ¢ and consequently 1= (@,p), which implies, by Prob. 82, there exist two integers

x and y such that
1 = ax + py

ie. b = bax + bpy
where, of course, p{bax and p|bpy. Hence p]b.

Likewise, p|a, completing the proof.
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Prove (i) (¢,b)=1 and b|ac imply b|e¢, and (ii) (¢,b)=1, a|c, and b |c imply ab|e.
PROOF:

(i) Since, by hypothesis and Prob. 32, 1 = ez + by, it follows that ¢ = cax + cby, where b|eca
and, of course, b|cb. Hence b|ec.

(ii) Since ale¢, let ¢=ad; then, by hypothesis, b|ad, and, by (i) above, b|d, i.e. d=>bd, which
implies ¢ =ad =a(bd’). Hence abjec.

If a prime p divides a product of integers aias...a., then p divides one of the factors.
PROOF:

Suppose p A ai; then a; is prime to p and, by hypothesis, p|a:as...a.. Suppose p|as; then,
likewise, p|asas...a.. Repeating the process, it follows that, at least, p|a. if p does not divide
any of a1,0z, ...,0n-1.

Prove Th. 4.1.2.3.17.
PROOF:

If n is not already a prime, then, by Df. 4.1.2.3.10, there must exist two positive integers a and b
such that n = ab, where ¢ and b may be similarly factored if they are not primes themselves. Repeat
this process until factoring is no longer feasible; then n, which is a finite number, is factored to
primes alone in a finite number of steps, i.e.,

n = [lps 1=1,2,...,r (1)
where p; is a positive prime.

Suppose that the factoring is not unique, producing another expression, viz.,

n = Hqi: j:1,2,...,8 (2)
2
Then, by (1) and (2),

P1P2...Pr = (G1Q2...(4s

which implies that any of pi, say pi, divides II¢; and, by Prob. 35, p, divides some g¢;, say q1 (by a
rearrangement of the order of ¢; if necessary). Hence p, = qi, since ¢; is also a prime.

It follows, then, that since pi# 0,

PePs...Pr = Q2Q9s5...4s

where it is deducible, as above, that p: = q.. This process is repeated until p. = ¢, is verified, where
r=s is also deduced, completing the proof.

Note. (1) should be more properly written as

3 a, a.
pip2...pn
1 T2 n

where the p's are so arranged that 1<p,;<p:<-.-- <pa., and the a’s are positive integers, since the
occurrence of equal primes should not be excluded; e.g. 360 = 2%325.

Prove Th.4.1.2.3.19.
PROOF:

(i) By Df.41.23.18, a=b (mod m) if a—b = km, kel, ie. m|(a—b) or m|{((atx)— (b+x)),
since a—b=a+x—b—w for any xcl. Hence ¢ =b (mod m) implies ¢+« = b+ x (mod m).

(i) Likewise, m|(ax —bx), xel, if m|(a—b). Hence a=b (mod m) implies ax =bx (mod m).

If (¢,m)=1, then ca=cb (mod m) implies a=0b (mod m).
PROOF:

Since, by hypothesis, m | (ca —¢b), ie. m|c(a—b), and also (e;m)=1, it follows at once from
Prob. 34(i) that m|(a—b), i.e. a=b (mod m).

(Cf. Th. 8.2.6.9, and note that the cancellation law does not generally hold for congruences.)
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39. If d=(c,m), then ac=bc (modm) implies a=b (mod m/d).
PROOF:
Since d = (c,m), it follows at once that ¢ =c¢'d and m =m’d where (¢/,m’) =1, But, by hypothesis,
m|(ac—be), ie. m'd|c'd(a—b), which implies m'|(a—b). Hence a=b (mod m), ie a=bh
(mod m/d).
40. If (a,m)=1, then ax =b (mod m) has a unique solution modulo m.
PROOF:

By hypothesis and Prob. 32, 1 = ap+mgq, which implies b = bap + bmgq, ie. a(bp)—b =
(—bg)m, which in turn implies abp =b (mod m). Hence bp is a solution of ax =b (mod m).

Suppose that y is also a solution of the given congruence; then, by Th.3.2.6.8, ay—abp =
b—b = 0 (mod m). Hence, by Prob. 39, y = bp = « (mod m), completing the proof.

41. Prove Th. 4.1.2.3.20.
PROOF:
(i) Let d=(am), ie. a=a'd and m=m'd where (a/;m')=1; then, if y is a solution of the
congruence, ay —b = km, by Df. 4.1.2.3.18. Hence b = ay—km = o'dy — km'd = d(a’y — km'),
which implies d | b.

Conversely, if d|b, ie. b=1"b'd, then, by Prob. 40, a’x =b" (mod m’) has a unique solution
modulo m’, since (a’,m’) = 1.

Hence ax=1b (mod m) has an integral solution x iff (a,m) | b.

(i) If w: is such a solution as prescribed as in (i), then it represents a class of solutions o'z = b’
(mod m'), «: representing

Xy, %2 = xitm’, .., x4 =3+ (d—1m
since, for every k, x:+ km’ is also a solution, because

a(xit+ km'y = awi + o/dkm’ = a'km, i.e.-axi = b (mod m)

Hence any of «;, 1=1,2,...,d is a solution.
Moreover, each of x; is unique, since the assumption ;= x; (mod m) for i+ j, say i> j, implies
X = x; + (1 — l)m’ — x1+ (] - l)m’ - X (mod m)

which in turn implies (i—jym’ = 0 (mod m), ie. m|(i—jm’, yielding a contradiction, since
0<i—j<d such that 0 < (i —7Hm < dm’ = m.

Hence no two of the d solutions are congruent modulo m.

Finally, the set of x: evidently exhausts the solutions, since every solution wx: of the congruence
is congruent to x; modulo m’ (since axx="5 and ax;=b (mod m), ie. axx=awx: (mod m), must
imply, by Prob. 39, xx = «: (mod m’)).

42. Prove Th.4.1.2.3.21.

PROOF:
The first congruence has a solution a; and, in general, a, + bm; for any beI, which must satisfy
the second congruence, viz. ai+ bm: = a» (mod my), ie. bm; = a:— a: (mod m:), which is actually

solvable for b by Th. 4.1.2.8.20, since (mi,ms) = 1.

Conversely, any two solutions « and ' of the given simultaneous congruences imply = —a’ = 0
for both (mod mi) and (mod m.), which in turn implies, since (mims) =1, that mima | (x —2'), i.e.
z =z’ (mod mim.), completing the proof.

43. The simultaneous congruences of the form z=a; (mod my), ¢=12,...,n,, have a
common solution iff ai=a; (mod (mi,m;)), j=12,...,mn, where (mim;)=1, and the
solution is unique, modulo [ [m..

PROOF:

Let M =[Im: and M; = M/mi; then, by hypothesis, (m:, M:) = 1, which implies that there exist
integers biel such that Mb: =1 (mod m:). If ¢ = ZaMb;, then ¢ = aiM:b, = a; (mod m,), since
M., Ms, ...,M. are all multiples of m.. Likewise, in general,

x = aMb; = (mod M)

is a solution of the given simultaneous congruences.
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Conversely, if x = d, then it follows at once from the above result that
d = ¢ (mod my), ie d = ¢ (mod [[my)

which implies that d — ¢ is a common multiple of m: and that the least common multiple is divisible
by [ITmi. Hence d = ¢ (mod []m:), completing the proof.

41.2.4 FIELDS IN GENERAL

Df.4.1.24.1 A ring is a field, denoted by F, if it forms an Abelian group under both
addition and multiplication and satisfies the distributive laws under addition:
(i) a(b+¢) = ab+ac, (i) (¢ +b)c = ac+be, for every a,b,ceF.
Stated in detail, a set F is a field if it satisfies the following eleven axioms:
F1-8 = R1-8
F9: Multiplicative identity, i.e. unity e (or 1), which is defined by ea =ae=a (or
lra=a*1=a) for every ackt.
F10: Multiplicative inverse, a—!, which uniquely exists for every aeF, where a+#0,
such that aa " '=a 'a=ce.

F11: Multiplicative commutativity, ab = ba for every a,beF.

A field, then, is an integral domain with the additional property of F10, which
is indeed more restricting than D11 (cf. Df.4.1.2.2.1).

Example:

The set R of rational numbers, the set R of real numbers, and the set C of complex numbers
are all fields; on the other hand, the integers fail to form a field, evidently unable to satisfy F10,
while the residue class modulo m forms a field iff m is a prime (cf. Prob. 3-4 below). Thus
1/{2}, 1/{3}, I/{5}, ete. are all fields, while I/{4},I/{6}, etc. are not even integral domains (cf.
Th. 4.1.2.2.5), let alone fields.

Df.4.1.24.2 A subfield S of a field F is a complex of F which is itself a field.
Example: R in the preceding example is a subfield of R, which in turn is a subfield of C.
In view of these examples, the definition of subfields may be made more articu-
late, viz.:

Df.4.1.242a A complex F” of a field F determines a subfield iff:
(i) a+beF’ for every abeF’, and acF’ implies —aeF’; also OeF".
(ii) a-beF” for every abeF’, a+0,b+0, and aeF’ implies a 'eF’; also lekF”.

As can be readily examined in terms of (i) and (ii), the meet of any number of
subfields of F' is again a subfield (cf. §4.2.1, Prob. 4), which is evidently the smallest
of the subfields and is called the prime (or minimal) subfield. This name originates
from the following definition:

Df. 4.1.24.2b A field is called a prime field if it contains no proper subfield, i.e. no sub-
field other than itself.
Example:
The set R of rational numbers is the prime subfield of F if F is of characteristic zero, and the
residue class I/{p} modulo a prime p is also the prime subfield of F if F is of characteristic p

{(cf. Th.4.2.1.4); i.e. F has two kinds of prime subfields, since the characteristic of F is either zero
or a prime (cf. Th. 4.1.2.4.3 below and also §5.1.1, Prob. 2-5).

Th.4.1.24.3 A field is necessarily an integral domain. (Cf. Prob. 2 and also Th.4.1.2.4.4
below.)

Note. The characteristic of a field, then, is a fortiori either zero or a prime
(cf. Th.4.1.2.2.5).
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Th.4.1.24.4 Any finite integral domain is a field. (Cf. Prob. 6.)

A field with a finite number of elements is called a finite field or a Galois field
(cf. Prob. 7), the study of which, however, goes beyond the scope of the present text.

Th.4.1.2.4.5 Division, except by zero, is possible in F, producing a unique result, viz. a
solution of the form b/a for ax =b, where a,b,xeF. (Cf. Prob. 8.)

The solution, defined by Th.4.1.2.4.5, is called the quotient of the division, which
has the following specific properties:

Th.4.1.246 If ab,c,deD and b+0,d -0, then
(i) (a/b) = (¢/d) iff ad = be
(i) (a/b)=(c/d) = (ad = bc)/(bd)
(iii) (a/b)(c/d) = (ac/bd). (Cf. Prob.9.)

It should be emphasized here that the form of fractions: a/b, ¢/d, ete. is not
necessarily inherent in the concept of the quotient, which indeed can be equally well
expressed in terms of pairs: (a,b), (¢,d), etc. or products: ab~!, ed!, etc.

Example:
(ad = be)/(bd) = (ad = be, bd) or (ad = be)(bd)™?, ete.

Th.4.1.24.7 A set Q, whose elements are of the form defined by Th.4.1.2.8.6.i, forms a
field. (Cf. Prob. 11.)

Df.4.1.24.7a The field Q of Th.4.1.2.4.7 is called the quotient field of an integral domain D.

Th. 4.1.2.3.8 The quotient field @ of an integral domain D contains a complex @’, which
is isomorphic to D. (Cf. Prob. 13.)

It follows directly from this theorem that, if the integral domain D is already a
subfield of a field F, the quotient field @ of D is then isomorphic to a subfield of F,
e.g. @ is isomorphic to the field of rational numbers, a subfield of F, if F' is the field
of real numbers and D the integral domain of integers, and conversely, as is in the
following theorem.

Th.4.1.24.9 The set R of all rational numbers, which consists of number couples (a, D)
of integers a and b+0, is an integral domain. (Cf. Prob. 14.)

It must be emphasized again that the form of number couples in this context is
interchangeable with the form of quotients or products (cf. Th.4.1.2.4.6). Because
it is not to be mistaken for ‘“(rational) integers” (cf. Df.4.1.2.3.5) in the form of
ordered pairs, however, the quotient form is preferred in the present text.

The set R as such, which is isomorphic to the quotient field @, is also called the
rational number fleld (cf. Df.5.1.1.1); in the same sense, the set B of real numbers
and the set C of complex numbers are called the real number field and the complex
number field, respectively. Some other fields are found by the following definitions.

Df.4.1.2.4.10 A quadratic field, satisfying F1-11, consists of elements of the form « + b,
where a,beR and 7 is an irrational root of a quadratic equation
px:+qr+r = 0,

for p,gqreR and p+0. The field as such is denoted by R[1,7], or simply R[7],
representing the set of linear polynomials in 7.
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Example:

R[\/§] designates the set of all numbers of the form a+ b\/§, which does form a field, as can
be readily verified (cf. Prob, 1, and also §4.1.1, Prob. 10,v).

Df. 4.1.24.11 A cubic field, satisfying F1-11, consists of elements of the form a + b7 + cr?,
where a,b,cc R and 7 is a root of an irreducible (i.e. not factorable) cubic equation

vt+axz+br+c = 0

for a,b,ce R. The cubic field is denoted by RI[1,#,7?], or simply R[7?], since it causes
no confusion in generality.
Example:

R{Vg] designates the set of numbers of the form a+ b\a/g-i— 0\3/2—5, which satisfies all of F1-11,
as can be readily verified.

Quadratic and cubic fields will be observed again when they reappear as exten-
sions (cf. Df.5.3.1.5) of a field.

Since a field is a fortiori an integral domain, it may be ordered, as in the follow-
ing definition:

Df.4.1.2.412 An ordered field F is a field which contains a subset F* of “positive” ele-
ments satisfying the additive and multiplicative closure and trichotomy of Df.4.1.2.2.5.
Example:

The set R of rational numbers and the set B of real numbers are both ordered (cf. Th.5.1.1.4
and Th.5.1.2.11-12).

The Archimedean order in the set N of natural numbers (cf. §4.1.2.3, Prob. 15),

too, may be generalized to F, viz.:

Df.4.1.2.4.13 An ordered field F is said to be Archimedean (or Archimedean ordered) if
there exists a positive integer n such that ne>a for a multiplicative unity eeF and
every ack.

Example:
R and R, as well as N and I, are Archimedean ordered {(cf. Th.5.1.1.6 and Th.5.1.2.12).

Solved Problems

1. The set C of all elements of the form a + br, where a and b are rational numbers and
r is an imaginary cube root of unity, i.e. (—1+43%)/2, is a subfield of the field of all
complex numbers.

PROOF:

Fl: (a+br)+(c+dr) = (a+¢)+(b+dyreC, by which F2 and F5 are readily verified.

F3: Additive identity. (0+0r) e C = 0eF.

F4: Additive inverse. —a — br.

F6: (a+br)ys(c+dr) = ac+ (be+adr + bdr* = ac + (bc+adyr + bd(—r—1) = (ac—bd) +
(ad + be — bd)r ¢ C, from which F7-8 and F11 are readily obtained.

F9: Multiplicative identity. (1+0r)e C = 1¢F.

F10: Multiplicative inverse. —(b—a+br)/(a®>—ab + b?), where a>?—ab+b*#0 (. &*—ab+ b =
((a*+ b%) + (@ — b)®)/2 > 0 unless o = b =0, which reduces the problem to a triviality).
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Prove Th. 4.1.2.4.3.
PROOF:

Suppose a,be F such that ab=0; then a0 implies a™'eF and o Yab) = (a"'a)b = eb = b.
But also, by the initial assumption, e }(ab) = 4~10 = 0. Hence b =0, proving that ab =0 entails
b=0 or a =0, which is logically equivalent to D11 (cf. §4.1.2.2, Prob. 1). This completes the proof,
since other axioms are interchangeable.

The set E of all even integers forms a commutative ring, but not a field.
PROOF:

Since the sum and product of two even integers is again even, E satisfies R1,6, which in this
case entails also R2,7,8,5, and multiplicative commutativity.

Furthermore, since 0 ¢ E by definition, R3 is satisfied; so is R4, since every element ae¢ E implies
—acE. Hence E is a commutative ring.

E is not a field, however, since it cannot satisfy, for instance, F9; for e such that ea =ae=a
for every ac E implies 1¢ B, which is contradictory to the definition of E.

The ring M of integers modulo m is a field iff m is a prime.
PROOF:

It has already been proved (cf. §4.1.1, Prob. 8-9) that the residue class modulo m, where m is any
positive integer, generally forms a commutative ring.

Assume that m is not a prime, i.e. m =m;m: where m:>1 and ms > 1; then, by definition of
congruence, 7im:=0 (mod m) with m, 0 and m.+*0, which contradicts the main property of
fields, which are supposed to have no proper zero-divisors. Hence, if M is a field, m must be a prime.

Conversely, if m is a prime, the ring M consists of the disjoint complexes: {0}, {1}, {2}, ..., {m—1},
(mod m). Then, since a product of integers is divisible by m iff one of the factors is divisible by m,
it follows at once that M cannot contain any proper zero-divisors. This in turn implies that the set
of all elements of M of the form ax, where «¢#0e M and x runs through the nonzero elements of M,
are m—1 in number and all distinct, exhausting the nonzero elements of M. Hence the equation
ay =b has a unique solution for every beM, b0, including a trivial solution x =0 in case b= 0,
proving that M is a field.

An integral domain D whose characteristic is a prime p contains a complex C isomorphic
to the field F of residue class modulo p.
PROOF:

Since the prime order of the cyclic group generated by the unity e of D implies (cf. §4.1.2.2,
Prob. 4-6) that the elements of the form ke, where k belongs to the same residue class modulo p, are
equal, it immediately follows that the correspondence c¢c=1kee(C < F.CF, where F) denotes the
residue class containing the integer k, is an isomorphism. (Stated in detail, ke <> F; (mod k) and
kie © F; (mod k) do imply kie + ke = (ki+ k;)e <> Fi+ Fimod k) and (kie)(ke) = (kikj)e < F.F;
(mod k), by Th. 3.2.6.8.)

Prove Th.4.1.2.4.4.

PROOF:
Since D is finite, assume that di,ds, ...,d. are the n distinct elements of D and let F be a set
whose elements are dxds, dids, . .., did., where dx#0 ¢ D is fixed. Then, D being an integral domain,

all elements of F are distinet ("." did: = did; implies di=d; by D11). F has thus n distinct elements,
and since D itself has the n distinct elements, it implies F' = D.

Hence the unity 1 of D must exist somewhere among the elements of F as ddm =€, 1=m=n,
which implies d» is the inverse of dr. This proves F to be a field, since any specific element d,+0 in
D =F has an inverse.
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7. If a field F is finite and has n elements, then n is of the form p™, where p is the prime
characteristic of F and m is any positive integer.

PROOF:

(i) Given e¢,2e,...,(n+ 1)e, where ¢ is the unity of F, it is evident that these multiples of e
cannot be distinct, since F' has only n elements. Suppose, then, any two different integers a
and b, say a > b, such that ae = be. This entails at once (a—b)e = 0, which in turn implies
that F' must be of a prime characteristic, say p (cf. Prob. 4 above).

Hence the p elements of a set F’ of the form ie, i=1,2,...,p—1, are distinct and every
integral multiple of e must be found in F”. If F = F", this completes the proof for m =1.

(i) Suppose there exists an element ¢ of F such that c#*1e,1=1,2,...,p—1, and that a set F'’ has
p? elements of the form ie + je, i, =1,2,...,p—1. If some elements of F” are not distinct, then,
for 7,7’ =12,...,p—1,

ie + je = e+ j'c, ie. (i—i)e = (7 —j)e (1)
assuming j >, say j/>3j, and p > §—j > 0. Hence, by Prob. 4 and §4.1.2.3, Prob. 32, there
exist two integers a and b such that

a(j’—7) = 1+ bp 2)
Multiplying (Z) by a and (2) by ¢,
a(j’ —je = ali—ie (3
a(j’ —jle = c+ cbp 4)
Since bp =0, it follows from (3) and (4) that
¢c = a(i—17)e
which contradicts the assumption that c+ie, i=12,...,p—1. Hence it must be the case that

=34, which implies (i—i)e = 0, ie. i=17, since both i and ¢ are evidently less than the
characteristic p. This completes the proof for m = 2.

(iii) If F” s F, ie. if F contains an element d such that d #* ie+jc, then all p* elements of the
form e+ je+kd, i,j,k=1,2,...,p—1, can be proved likewise to be distinct.

The similar procedure may be repeated, but not necessarily more than m times, m being a certain
positive integer, since F is a finite field. Hence, in general, n is of the form p™ if F has n elements.

8. Prove Th.4.1.2.4.5.

PROOF:

The equation ax = b, ¢ % 0, in F has a solution x, since ¢ = 0 entails ¢! in F, by F10, and x =a~'b
(or what is the same: b/a). This solution is also unique, since ax=0b and - ay =b imply ax=ay,
which in turn implies (aa Y2 = (aa~ ')y, i.e. x =y, completing the proof.

9. Prove Th.4.1.2.4.6.
PROOF:
(i) If ad = bec, then
a/b = ab™' = add™'b™' = bed b7 = ed”' = e/d
Conversely, if a/b = c¢/d, ie. ab™! = ¢d™!, then
ad = a(bdb™d = (ab™1)db = c¢d™'db = be
(ii) Since x =a/b and y = ¢/d are the unique solutions of bx = a and dy —e¢, it follows that dbx = da

and bdy = be, which together imply bd(x *y) = ad*be, ie. x*y = (ad = be)/bd, bd+#0
(*." b0 and d 0 by hypothesis). Hence

(a/b) = (c/d) = (ad = be)/bd

(iii) Since, as above, x = a/b and y = ¢/d are the unique solutions of bx =a and dy =¢,
(bd)(xy) = (bx)(dy) = ac, i.e. 2y = (ac)/(bd)
Hence (a/b)(c/d) = (ac)/(bd).
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10. Prove, in the same context as above:

11.

12.

13.

14.

(i) (a/b) # 0 implies (a/b)(b/a) =1, and

(i) (a/b) + (—a/b) = 0.

PROOF:

(i)  Since, from Prob. 9, (iii) above, (a/b){c/d) = (ac)/(bd), it immediately follows that (a/b)(b/a) =
(ab)/(ba). But, by Th.4.1.2.3.5, ab/ba is then the unique solution of bax = ab, where evidently
x=1. Hence (a/b)(b/a) = 1.

(if) Since, from Prob. 9, (ii) above, (a/b) * (¢/d) = (ad =+ be)/bd, it follows at once that

(a/b) + (—a/b) = (ab—ba)/b> = 0/b* = 0+(b)~' = 0

Prove Th.4.1.2.4.7.

PROOF:
F1 is already proved by Th. 4.1.2.4.6, (ii).
F2:  (a/b) + ((¢/d) + (e/f)) = (a/b) + (¢f + de)/df

= (adf + bef + bde)/bdf
= (ad + be)/bd + (e/f)

((a/b) + (c/d))y + (e/f)

F3:  (0/b)

F4: (—a/b) (cf. Prob.10,ii)

F5:  (a/b) + (¢/d) = (ad+ be)/bd = (¢b+da)/db = (e/d) + (a/b)

F6:  (a/b)(c/d) = (ac)/(bd)e @ (cf. Th.4.1.2.3.6, iii)

F7:  (a/b)((c/d)(e/f)) = (ace)/(bdf) + ((a/b)(c/d))(e/f)

F8:  (a/b)((c/d) + (e/f)) = (a/b)((cf + de)/df) = (acf+ ade)/bdf = (abef + abde)/bbdf
= (ac/bd) + (ae/bf) = (a/b)(c/d) + (a/b){e/f)

F9:  (a/a) for every ae D (i.e. the multiplicative identity of Q is not unique).

F10: (a/b)™* = (b/a) (cf. Prob.10,1i)

F11: (a/b)(c/d) = (ac)/(bd) = (c/d)(a/b)

Given ax =b in @, where a,beD and a0, the solution z = b/a is unique.
PROOF:

Since ax = a(b/a) = (ac/c)(b/a) = (bac/ac) = b, x = b/a is a solution. If y = b'/a’ is another
solution, then

(ac/e)(b'/a’) = (bd/d), ed+ 0, ie. (acd’'/ca') = (bd/d)

which implies, by Th.4.1.2.4.6, (i), acb’d =ca’bd, which in turn implies, by D11, ab’ =a’b. Hence,
again by Th.4.1.2.4.6, (i), a/b = a’/b’, completing the proof.

Prove Th.4.1.2.4.8.
PROOF:

Let a)b,e,...eD and (a/q),(b/q),(c/q),...eQ’, where ¢+#0 ¢ D, such that a correspondence can
be set up as follows:

a < (a/g), b (blg), ¢ (c/q),
Then @’ is isomorphic to D, since
(a/q) +(b/g) = ((ag+bg)/¢®) = ((a+b)/g) < a+b
and (a/q)(b/q) = (ab/q’) <> (ablg’) < ab

where evidently ¢’ = ¢* 0, or more generally ¢’ = ¢ 70, nel*, as long as ¢+#0, which is exactly
the case in this context, completing the proof.

Prove Th.4.1.2.4.9.
PROOF:
Rewriting Th. 4.1.2.4.6 in terms of couples:
(i) (a1, b)) = (az, b2) if aibs = asby
(ii) (a1, bx) + (az, b2) - (al be -+ az by, by bz)
(iii) (GA, b1) i (az, bz) = (a1 az, b; bz)
where ai,biel, bi+0,1=1,2,..., and bib,# 0, I containing no zero divisors.
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Since (i) is not of formal identity (i.e. (a1,b1) = (as,bs) iff a1 =a: and b:=bs), it must be proved
that (i) is a relation of logical equivalence, which is verified as follows:
(ix) (al, bx) = (al, bl), since evidently aib; = a1b;.
(iz) (a1, b)) = (@2, b2) implies (az, b2) = (a1, b1), and conversely, since ai1b: = a:2b, implies a2b1 = a1be,
and conversely.
(is) (as, b)) = (as, b2) and (az, bs) = (as, bs) imply (ai, b)) = (as, bs), since aibs=a:b; and a:b;=asb:
imply a@ib2bs = a2bi1bs = asbib: which, cancelling b2+ 0, in turn implies a:bs = asb..
On the strength of (i:)-(is), the properties of D1-11 are proved one after another in the same way
as Th. 4.1.2.4.7 above, changing only the form of quotients into that of corresponding couples.

Note. R, the rational number field, can satisfy F1-11 as well as D1-11, as is quite obvious in
Th. 4.1.2.4.7. What may not be quite obvious, however, is that the proof of Th.4.1.2.4.9 needs only
the properties of I as an integral domain and is not in need of the well-ordering principle; in other
words, the construction of rationals from integers can be carried out without bothering the principle.

4.1.25 POLYNOMIALS IN GENERAL

Df.4.1.25.1 A polynomial in x over a commutative ring R, denoted by p(x), is the follow-
ing expression:
Yax, i=01,...,n

ie. @) = a2’ +arxt + ... + aux® (1)

where the coefficients a;, not all of them zero, belong to R, while the indeterminates,
xi¢ R, are considered here commutative with every element ae R, i.e. axi= z'a. Each
of aixt is called a term of p(x).

Example:
—2x + 3x?, ie. 0x°+ (—2)x'+ 3x%, is a polynomial in = over I, the ring of integers, and
\/E-%- 5x*/6, i.e. V2x°+ 0x' + Ox% 4 0x® 4 5x*/6, is a polynomial in = over a field F.

Note. p(x) is considered unchanged, as is evident in the examples above, by the
omission or insertion of the terms with zero coefficients.

Df.4.1.25.2 Rz] (or R(x) if it is unmistakable in the context) denotes the set of all
polynomials in « over R. This process of adjoining « to R in order to form R[x] is
called ring adjunction (cf. Df.5.3.1.6 and Df.5.3.2.1).

Example:
p(x), g(x), r(x), ... ¢ Blx].

Df. 4.1.253 Two polynomials p(x) = Za,-xi and gq(x) = Zbixi, 1=0,1,...,n, are
equal iff the coefficients of each superscript of z are the same, ie. p(x) = g(x) iff
a; = bi, iZO,l,. R (A
Example:
2+ T2 = 2+ ax implies a =T.

Df.4.1.254 Given two polynomials p(z) = > wa, i=0,1,...,n, and q(x) = X b/,
i J
j=0,1,...,m, their sum is a polynomial 7(x) = 3 cka*, where ¢ = -+ bs,
k=0,1,...,norm, depending on n>m or n<m, ie, .
r@) = p) + qx)
= (@’ +aixt+ ... +an2") + (box’ + bix' + ... + bma™)
= (ao+bo)ax® + (a1 +b)xt + ... + (@m +bm)a™ + Gm12™H + .+ @n2®
if n>m, and if n <m,
= (ao+bo)x® + (a1 +b)x' + ... + (an+bu)x" + bpvrx"* + ... + bna™
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where a superscript of « which does not appear in p(x) or g(x) may be regarded as

having a zero-coefficient; similarly, »>m implies bms1 = ... = b, = 0 and n<m
implies @.+1 = ... = a. = 0. If the latter is clearly understood, then r(x) may be
more simply expressed as follows:
r@) = Daa* + 3 bpxt = > (ax + be)xk, k=0,1,...,n (orm)
k k k
Example:

(22° 4 32%) + (02° + (—4)a' + 5a®) = (2+ 0)a® + (3 + (—4)2' + (0 + 5)a?
= 2x° + (—1)z' + ba?

Df.4.1.2.5.5 Given two polynomials p(x) and q(x) as above, their product is a polynomial
s(x):
s(x) = p(x)-o(@)
= aoboxo + (aob1 +a1bo)x‘ + ...+ (aobk + a1bk—1 +...+ akbo)xk + ... + anbmx"“"
where a;=0if i¢>n, and b;=0 if 7> m.
Example:
(20" + 3w) + (02° + (—4)2' +52%) = (2:0)a® + (2+(—4) + 3+0)z' + (25 + 3+ (—4))a® + (3+5)a'*2
0z + (—8)x' + (—2)x* + 15a°

Th. 4.1.2.5.6 The set R[x], defined by Df.4.1.2.5.2, forms a ring under the operations
defined by Df.4.1.2.5.4-5. (Cf. Prob. 1.)

Th.4.1.25.7 The ring R[z] of Th.4.1.2.5.6 is commutative. (Cf. Prob. 2.)
These theorems and definitions suggest that many properties of a ring R pass
over to the polynomial ring R[z], and they do. Thus R[z] is a ring with unity if R
is with unity (cf. Prob. 3), and R[x] is a ring without zero-divisors if R is without
them (cf. Prob. 4). This is summarized in the following theorem. (The polynomials
over a field, on the other hand, will be studied in §56.211.)

Th.4.1.2.5.8 The set R[z] of all polynomials over a commutative ring R with unity and
without zero-divisors forms an integral domain iff R is an integral domain itself.
(Cf. Prob. 5.)

This theorem directly points out a concrete method to construct various integral
domains, since it gives at once that J[z], R[x], R*[z], and J,[x] which represent
the sets of polynomials over integers, rationals, reals, and integers modulo p, a prime,
respectively, are also integral domains.

Since, for instance, f(x) =ax*—a and g(z) =0 in J,(x) are distinct in form,
yet the same in function (cf. Th.3.2.6.13 and Supplementary Problem 4.18 for a con-
crete example), the following definition is stipulated at this juncture.

Df.4.1.2.5.9 The mapping (i.e. function) M: aeD - f(a), where f(a) is called the value
of f(x)eD[x] when x equals a, is called a polynomial function.
Every polynomial in D[z], then, defines a polynomial function of D into D itself
("." flaye D if aeD); in this sense, f(x)e D[x] denotes both a polynomial over D and
a polynomial function of D into D. This distinction is explicit in the following
theorem.

Th. 4.1.25.10 If D is an infinite integral domain, then distinct polynomial functions of
Diz] define distinct mappings of D into D. (Cf. Prob. 6.)
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This is not the case, however, if D is finite (cf. Prob. 7). Th.4.1.2.5.10 thus has
a logically equivalent form: f(z) and g(x) over an infinite integral domain are equal
if they define the same function.

Hence, if D is infinite, the polynomial ring in D is isomorphic to the ring of
polynomial functions in D. Since any ring isomorphic to an integral domain is
itself an integral domain, it is evident that the polynomial functions over an infinite
integral domain form themselves an integral domain.

Since, then, DCD[z] as well as xeDJ[z], it follows that a;x' may be actually
interpreted as a: times x to the i-th power; the “superscript” of z in Diz] is thus
interchangeable with ‘“power” of =.

Df.4.1.25.11 A nonzero element f(z) of the ring R[z] is said to have degree n, denoted
by degf(x) = n, if n is the largest nonnegative integer such that z" has a nonzero
coefficient in f(x), which itself is called the leading coefficient of f(x). The zero
polynomial, 0x*, then, has no degree, hence no leading coefficient, while the nonzero
coefficient of ° in f(x) is called the constant term of f().

Example:
8x*+2x —1, bz, 4, of P(x) over I, have degrees 2,1,0, leading coefficients 3, 5,4, and constant
terms —1,0,4 respectively.

Th.4.1.25.12 If f(x) and g(x) are nonzero elements of the set D[z] of all polynomials
over an integral domain D, then

deg (f(x)g(x)) = degf(x) + deg g(x),
and deg (f(x) + g(x)) = degg(x)

if deg f(x) = deg g(x) and f(x) +g(x) » 0z*. (Cf.Prob.8.)
D[x] as such may be considered quasi-partially ordered, defined as follows.

Df.4.1.25.13 For any f(x),9(x)eD[x], f(x) <g(x) iff either degf(x) < degg(x) or f(x)=0
and g(x)+=0.
Example:

22 —2 < —g?, 0<—1, ete. in D[x].

It is evident that D[z] as such is not quite partially ordered, since ordering in
D|x] is neither reflexive nor symmetric; nor is it antisymmetric, although it is asym-
metric and transitive. Neither does the trichotomy law hold for D[], since it cannot
be said that f(z) <g(z) or f(x)=g(x) or f(x)>g(x) when f(x) and g(x) are distinct
and have the same degree.

Df.4.1.25.14 A polynomial f(x) is called monic if degf(x) =n and the coefficient of " is 1.

Example:
27— 2x+ 1, x+ 3, ete. are monic polynomials.

Th. 4.1.25.15 If f(x),9(x)eD[x] and g(x) is monic, then there uniquely exist q(x),r(x) e D[]
such that
fx) = g@)q(@) + r(x), =1r(r) < g(x)
(Cf. Prob.9)

In analogy to ¢ and 7 in Th.4.1.2.3.13, ¢q(x) in this context may be called the
quotient and 7(x) the remainder of f(x) divided by g(x).
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Th.4.1.2.5.16 (Remainder Theorem). For every f(xyeD[x] and deD,
fl) = (z—d)qx) + f(d)

where f(d) = 2 ad' =deD if flx)= E a;x', 1=0,1,...,n. (Cf. Prob. 12.)

The concept of “divisibility”, defined with respect to I (cf. Df.4.1.2.3.9) may be
carried over to D[x], since Th.4.1.2.5.16 may be rephrased as follows: f(x) over D
is divisible by x—d, deD, iff f(d)=0.

Or, using the concept “factor” in the same context, the theorem may be further
restated: q(x)|f(x) (or g(x)|f(x)) iff f(d)=0, deD.

The necessary and sufficient condition /(d) =0 now yields the following definition.

Df.4.1.25.17 If f(d)=0 in Th.4.1.2.5.16, then d is called a root (or zero) of f(x).

For every f(z)eD[x], x—d is a factor of f(x) iff deD is a root of f(x).

This is generalized as follows:

Th.4.1.25.18 If f(x)eD[x] and deg f(z)=mn, then f(x) has at most n distinct roots in D.
(Cf. Prob. 17.)

In general, many properties of the set of polynomials in a single indeterminate
(or variable), as studied above, may be extended to the set of polynomials in several
indeterminates.

Let D[x] be, as before, an integral domain of polynomials in x over an integral
domain D, and if an indeterminate y, independent from z, is to commute with all
elements (i.e. polynomials) in D(x), then D[y[z]] (or D[z][y]) denotes the set of
polynomials in y which have, as their coefficients, polynomials in 2. As such, Diyjx]}
actually forms an integral domain (c¢f. Supplementary Problem 4.30) and is more
simply written as Dz,y], which initiates a further generalization Dizy, x5, . .., 2.,
which ultimately denotes an integral domain of polynomials in 7 indeterminates
X,T2. 2 %0y €80 [(X1,%2,. . ., &) € D]x1,2s,. . ., 2]

Th.4.1.25.19 If f(xy,x2,...,2a) € D|@1,2s,. . .,2,], then it has the following form:
A gt ok + o0+ A tmasbm. .. 1k

where AieD and a.,b;,... . kiel*, i=12,...,m. (Cf. Prob. 18.)
As can be readily verified, f(xy,2s,...,2.) =0 iff each coefficient A;= 0, and

f(®1,22,. . ., 20) = g(21,®,...,2x) iff f and g have the same coefficients in D. Other
properties of D[x1,2s,...,2:] can be obtained likewise (cf. Supplementary Problems
4.27-31).

Df. 4.1.25.20 The sum of the degrees of the indeterminates in a term is called its dimen-
sion, and a polynomial is called homogeneous, of dimension =, if every term of the
polynomial has the same dimension n. (Cf. §5.2.1, Prob. 24, §5.2.2, Prob. 5, etc.)

Example:
3x — 2y + 7, xt + x iz, — wl, x® + xy® + 2* — Bayz

are homogeneous polynomials of dimension 1,2, 3, respectively.
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1.

Solved Problems

Prove Th.4.1.2.5.6.
PROOF:
R1 and R6 are given by Df.4.1.2.5.4-5 themselves, which in turn verify R2 and R5.

Let p(x),q(x),r(x) ¢ R{z], where p(x) = Eam, qla) = Ebw rx) = Saxt, i=0,12,...1,
i=012,...;m k=0,12,...,m. Then: *

R3: zero polynomial, i.e. z(x) = 200&.
R4: (p(x))™' = —plx)

(- p@ + (—p@) = §mf + §(—ai)xf = ;(a«ﬁ-(—ai))x‘ = §0xi = 2(x))
RT: p@)(g@r@) = (2 aixi)((JE bia')(Z eeat)) = (2 aia)( 3 (M bjer)a")
(2.3 b)) = 302, (LF b))
(( 2 ab)a)(Seat) = (pg@)r@

iti=r

Il

il

R8: p(x)(g(x) + r(®) = (Eaixf)(z b + Zena?) = (2 elbit )

E(( 2 a,b) + ( aice) e = (gaix")(; b,—x") + (Eia,-xi)(g cea®)
p(x)q(x) + pla)r(x)

itk =71

Likewise, (p(x)+ q(@))r(x) = p(x)r(z) + qle)r(x).

Hence R[x] is a ring.

Prove Th.4.1.2.5.7.
PROOF:
Given p(x) and gq(x) as in Prob. 1 above,

p@a@ = (Sae)(She) = B( 3 ab) = I( 3 bo) = d@p

iti=k jti=k

Hence, with this multiplicative commutativity, R{«] is a commutative ring.

If a ring R is with unity e, then the ring R[z] of polynomials over R is also with unity.
PROOF:
The unity of R[x] is ex®, since, for any p(x) e R[x],

() = ()(Saat) = Sleada™™ = Sane* = p)
and likewise, (p(x))ex® = p(x).

If a ring R is without zero-divisors, so is the ring R[z] of polynomials over E.
PROOF:

Suppose that R[x] has zero-divisors, which implies that there exist some f(x),9(x) e R[x] such
that f(x) #0, g(x) # 0, and yet f(x)+g(x) = 0.

But, since f(x) = Ealx < 0, i=0,1,...,m, and g(x) = Eb,-xf #< 0, j=0,1,...,m, imply

anx® %= 0 and bmx™ # 0, which in turn imply axbmx**™ # 0 (." ai,b;e D). Hence, by Df.4.1.2.5.5,
f(x)g(x) = 0, contradicting the initial assumption: f(x)g(x) = 0. Hence it is not the case that R[]
has zero-divisors.

Second proof (in terms of “degree”). Assume the same as above; then degf(x) = n #* 0 and
deggx) = m = 0 (cf. Df.4.1.2.5.11), which imply deg (f(x)g(x)) = n+m 5 0, contradicting the
assumption that f(x)g(x) = 0 which implies degf(z) = 0 or degg(x) = 0 (cf. Prob. 8 note, below),
j.e. deg (f(x)g(x)) = n -+ m.

Hence it must be the case that R{x] contains no zero-divisors.
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Prove Th.4.1.2.5.8.
PROOF:

By Prob. 1-2 above, the set R[x] of polynomials over a commutative ring R is a commutative ring,
and by Prob. 3 and 4, R{x] over a ring R with unity and without zero-divisors is a ring with unity
and without zero-divisors, which implies, by Prob. 1 of §4.1.2.2, that the cancellation law holds for
both B and E[z]. Hence R[%] over an integral domain R is also an integral domain.

Conversely, if R[x] is an integral domain, then a complex C[z], of R[], which consists of all
polynomials of the form e¢:2° cie B, is a subdomain of R[x], since c1x°c22x°e C(x) implies

i’ + ex® = (¢1+ e2)x® & Clx) and e’ e’ = (e162)2®"° = (cica)a e Clu)
including 02°,1x° ¢ C[x].

Furthermore, the mapping F: F(c) <> ci® is evidently 1-1. Hence the set R, to which any of
¢; belongs, is an integral domain.

Prove Th.4.1.2.5.10.
PROOF:

If a(x),b(x)e D[] and a(x) b(x), by hypothesis, then e(x) = a(x) — b(x) # 0 and degec(x) = 0
(cf. Prob. 8 below). But Th.4.1.2.5.18 (cf. Prob. 17 below) then implies that ¢(x) has at most » roots,
which implies that D has more than n elements, since D is infinite. Hence there must exist some de D
such that ¢(d) = 0, implying that a(d)+ b(d). Hence the mappings, of D into D, defined by a(x) and
b(x) are distinct, completing the proof.

Th. 4.1.2.5.10 does not hold for a finite integral domain D’.
PROOF:

Since D’ is finite, let di,ds,...,dne D’ and construct a(w),b(x),e(x) e D'[x] such that

a(x) = (@~d)(x—ds) - (x — dn) and b(x) = a(x) - c(x)
where ¢(x) # 1. Then, for any die D', 1 ={=p,
ald) = b(d) = 0

vielding the identical mappings, of D’ into D’, by a(x) and b(x), which completes the proof.

Note. In general, a(x)=b(x), ie. afx)—b(x) = e(x) = E cix = 0 if either all ¢ =0 or

a(x),b(x) e D’[x] where D’ is a finite integral domain. The latt;r follows from Th. 4.1.2.5.18, since,
if D’ is not finite, there will be some remaining values other than di, 1=i=mn, of x for which ¢(x)+#0.

Prove Th.4.1.2.5.12.

PROOF:

(i) Since, by hypothesis, f(x) = Sa:ix* 0, i=0,1,.. on, and g(x) = Fbjai = 0, j=0,1,...m,
N 7

it follows that a. 0 and b. 0, and that a.* b0 since a,bje D. Hence anbnx**™ 0, which
is, by Df.4.1.2.4.5 itself, the term of the highest degree in f(x)g(x), and it immediately follows
that deg (f(x)g(x)) = n+m = deg f(x) + deg g(x).

(if) Since, by hypothesis, degf(x) = degg(x) and f(x)+ g(x) = 0x*, it follows at once from
Df.4.1.2.4.4 that n=m and deg (f(x) + g(x)) = m = deg g(x) = m.

Note. deg (f(x)g(x)) = deg f(x)+ deg g(x) does not always hold unless, strictly, f(x),9(x) & D[],
since otherwise a.b. can be zero without either factor being zero (cf. Th.4.1.2.2.4). Thus in the
residue class modulo 4, f(x) = 3+ 2x and 9(x) = 5+ 22 give degf(x) =1 and deg g(x) = 2, yet
deg (f(x)g(x)) = 2(+3), since f(x)g(x) = 15+ 10x + 6x=.

In D[x], then, deg (f(z)g(x)) = 0 iff degf(x) = 0 or degg(x) = 0, and deg(f(zx)+ g(z)) = 0
if degf(x) =0 and degg(x) = 0.

Prove Th.4.1.2.5.15.
PROOF:
(i) If g(x) = 2°, then evidently
fl) = g@)f(x) + 0

Le. q(x) = f(x) and r(x) = 0%, proving the theorem.
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(ii) If f(z) <g(z), then again
fle) = g(x)+0+ f(=), 0= f(x) < g(x)
where q(x) = 0x* and 7(x) = f(x), proving the theorem.

(iii) If f(x) > g(x) or degf(x) = deg g(x), where deg g(x) = 1, then proof is carried out by induction
as follows.

Let f(z) = Ja:x’, i=0,1,...,m, and g(z) = > bja’, 7 =0,1,...,n, where the last term is
i i

z", by hypothesis; then, by the initial assumption, m =n =1, Now assume that the theorem
holds for every polynomial f(xz) of degree k <m, and let

flle) = f@ — 9(2)* ana™™" 6}

Then f'(z) has degree k < m, since the term of highest degree in g(x)* ana™ " is am2™, g(x) being
monice, which cancels ana™ in f(x). If, for some ¢’'(x),r(x)e D{x],

flie) = g@)g'(x) + r(2), = r(x) = g(x) (2)
then, substituting (2) in (1),
fle) = glx)+(q'(®) + anx™ ") + 7(x), = r(z) < g(x) (3)

where q(z) = ¢'(x) + anxz™ " and r(z) = r(x), again proving the theorem.

Furthermore, the assumption that ¢(x) and r(x) are not unique, i.e,,

flx) = glx)glx) + r(x), = r(x) < g(x),
and flo) = gx)g'(z) + r'(2), = r'(z) < g(x)
will imply (¢'(x) — g(x))g(x) = r(x) — 7'(x) 4)

If r(z)—+'(x) # 0, then (¢'(x)— q(x))g9(x) = h(x) # 0, which, however, is impossible, since it
implies deg h(x) = g(x) while deg (r(x) —'(x)) < degg(x). Hence it must be the case in (4) that
r(@)—2(x) = 0, in which case r(x) =+'(x) and consequently q(x) = ¢’'(x), completing the proof.

10. Find the quotient and remainder in D{x] of 2% — 54x®+212%—3x +4 divided by = —5.
Solution:
By the “long division” process,

20 + 102® — 42+ + 2 = q(x)
gx) = x—5) 2" — B+ 21’ —3x+ 4 = flx)
2% — 102t
10" — 54
10x* — 50x°
—d4x3 + 2122
—42% 4 20x?
x? — 8x
x? — by
20+ 4
22 — 10
14 = r(x).
Or, more simply, by “synthetic division”,
2 0 —54 21 -3 4 |5
10 50 -20 5 10
2 10 —4 1 2 14

In either case, 2x°®—b4a®+ 2122 —3x+4 = (x—5)(2x*+ 102" — 4 + 2 + 2) + 14.

11. Express the following polynomial a(x) in x as a polynomial in x —3:

2% — 3zt + 222 — 6 — 11
Solution:
Repeating synthetic divisions,
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1 —3 0 2 —6 —11 (3
3 0 6 0

1 0 0 —11
3 9 27 87

1 3 9 29 87
3 18 81

1 6 27 110

1 3 27

1 9 54
3

1 12

Hence a(x) = (x—38)°+ 12(x — 3)* + 54(x — 3)* + 110(x — 3)*> + 87(x —3) — 11.
Second solution. Let #—3 = y; then z = ¥+ 3, and
alr) = a(y+3) = (y+3)0°— 3y+3)*+ 2y+3)— 6(y +3) — 11
= ¥® + 12y* 4 54y® + 11042 + 87y — 11
= (¢—3)° + 12(x — 8)* + b4(x — 3)° + 110(x — 3)* + 87(x — 3) — 11

Note. The reasoning behind the first method runs as follows: Let «—3 = y and a(x) = py*+
qy*+ry* + sy + ty + u; then w is the remainder when a(x) is divided by y, where the quotient, i.e.
a(x)/y, is py*+ qy® +ry*+sy+t, and ¢t will be the remainder when a(x)/y is further divided by y.
Repeat the process, finding t,s,7,9,p successively.

12. Prove Th.4.1.2.5.16.
PROOF:
Since, by Th.4.1.2.4.13, there uniquely exist q(x),r(x) e D[z] such that

f@) = (x—d)g(x) + r(x), 0=1r) <(x—d)

it follows that either r(x) =0 or degr(x) =0, and that, in either case, r(x) =d'eD, and f(d) =
(d—d)g(d) + d’, i.e. d’=f(r), completing the proof.

Second proof. Let f(x) = S’ and f(d) = S ad, i=0,1,...,m; then, by the binomial formula,
fo) — fld) = Baw' —Jad = Ja—d) = Jale—d@ "+ a"2d+ ... + d*-Y))

Hence f(x) — f(d)

It

(z—d)g(x), where q(x) = b2, j=0,1,....n~1; or f(x) = (¢ — d)q(x) + f(d).

13. If (2 —d)|f(x), where f(x)= > aix’, i=0,1,...,n, then d]a..
PROOF: i
By Th.4.1.2.5.16, f(d) =0, i.e.,
a+tad+ - +a.d” = 0

ie. a0 = —(md+ -+ a.d?) = —d(a1+ .- + a,d*"!). Hence d | ao.

14. Factor: 2*—2x%*+3x —2 = f(x).
Solution:
By Prob. 13, d|2 if (x—d)|f(x); hence d==1 or *2. Checking, f(1) = 1—2+3—2 = 0
and f(—2) = 16~8—6—2 = 0. Hence f(x) = (x —1)(x + 2)g(x), and g(x) is then found by the
method of Prob. 11, i.e. by repeating the synthetic division:

1 0 —2 3 —2 L1
1 1 -1 2
1 1 —1 2 0 =
-2 2 -2
1 -1 1 0

Hence g{x) = 2*~x+1, and z*— 222 +3¢x—2 = (x—1)(x + 2) (x> — x + 1).
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15. If (22— &) | (ax*+ba’ + ca®+dx +e), where ¢#0, then ad®+d% = bed.
PROOF:
Let f(x) denote the given polynomial; then, by hypothesis,

fle) = aet+ b + ¢ +de+ e )
and f(—e) = aet* — be® + ¢ —de + e 2)
Hence ae* +e? +e = 0 (3)
and b +de = 0 4)

Since ¢+ 0, it follows from (4) that be> = —d and b%"* = d?, which are substituted in (3) multiplied by
b, viz., ad®—bed+b* =0 or ad®*+ b’ = bed.

16. Find the necessary and sufficient condition that (x —d)*|f(x), where
fle)y = 2D aix’, i=01,....n

Solution:
By synthetic division,

an An-1 An-2
and and? + an-1d
an and+an_1 andz—i-an_;d—%-a,._z
ay ao &
Wnd™ ' @p—rd**+ -+ azd and"+ an-1d*" 4 ... +and

Cnd” Tt @ d” P F - Fadtar @ud" @ d* Pt and a0
Hence f(x) = (x —d)g(x) + f(d) where
gx) = x4 (@nd F au-)a P+ s (@dT G d TR+ aad ),
and the necessary and sufficient condition that (x —d)® | f(x) is, then, f(d)=0 and g(d) =0, ie.,

and” ! + (@ud + au-)d" 7+ oo+ {(@ud"T A G d?TP -t acd +ad)
= na.d" '+ n—1Dan1d"*+ - +ax = 0

17. Prove Th.4.1.2.5.18.
PROOF:
1) If » =0, it is then evident that f(x) has no root, satisfying the theorem.

(i) If n=1,say f(x) = ao+ aix, a1+ 0, then f(x) may or may not have a root. Thus flx) =1+ 2z,
x eI, has no root, while if it has a root d, then, by Th. 4.1.2.4.16,

flx) = (x—d)g(=)
where, obviously, g(x) = @i, and d is the only root, since if there exists another root, say d'#d,
ie. d—d # 0, then

fd)y = (d—dygx) * 0,
revealing that d’ is not a root of f(x). Hence f(x) has at most one root if deg f(x) = 1.

(iii) Assume that every polynomial of degree k—1, k>1, has at most k—1 roots, and let f(x)
be any polynomial of degree k.

If f(x) has no root, then the case is brought back to (i).
If f(x) has a root d, then again, by Th. 4.1.2.5.16,
flx) = (z—d)g(x),

where degg(x) = k—1 and, by the initial assumption, g(x) has at most n —1 distinet roots.
Furthermore, any root d’ of f(x) distinct from d is again a root of g(x), since

fd) = (d—dyg(d) =0
implies g(d’) =0. Hence f(x) has at most k distinet roots.

In general, therefore, any polynomial of degree n has at most n distinct roots, completing the
proof.
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18. Prove Th.4.1.2.5.19.
PROOF:

Consider, first, the set D[xi, xz] of polynomials in two indeterminates xi, 2, where each element is a
polynomial in . over D[xi]; i.e. if f(21,2) e D[#,2:], then

f@, ) = as(@)a) + ai(@)ey + - + amlx)a? 1)
where each term is again a polynomial in x, over D, i.e.,
ai(x) = @i+ agal + .-+ aimim;"", 1=0,1,...,m, and ayeD, j=0,1,...,0 2)
Since D[x:] C D[xs, 22|, where the operations in D[x:] are preserved in D[xi, 2], (1) and (2) are
now combined as follows:
flayx) = Ao + Asxa? + o + Apzim gym 3)
where A:eD, myai,bielI*, ©=1,2,...,m, and there are no similar terms, i.e. terms different only by
their coefficients, in (3). For, if A:xfi x';i and A,»x‘l'fx:f are similar, then a: = a;, i =bj, and
Axlizli + Ajzpay = (At A ol
combining two like terms into one.

Likewise, if f(x1,%2,...,@) & D[®1,®s,. . .,%.], i.e. f is a polynomial in . over Dixys,. . . ,#n-1], then

F@y 2o, o 2n) = 0@, 2, ., Bam)&D + @a(®n, By L, e )2 o+ A (R, X, L B )T 4)
where ai(@e, 2y .., Tamy) = Agatw)l, . 'wil—l + o+ Agalial L ali (5)

and again, since D{xy,%s,...,%u-1] C D[#1,2,. . .|, where the operations in Diwx:] are preserved,
substitute (5) in (4), combining similar terms, and

f@n oy ) = Awgimloah + o+ Aaimaln . abn (6)
where AieD and aub,... kiel*, i=12,...,m, completing the proof.

Note. It was presumed throughout the proof that D[xy, 22, ...,2.] is an integral domain, which
can be readily proved (cf. Supplementary Problems 4.27-4.31).
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§4.1.3 Noncommutative Rings

4.1.3.1 SFIELDS and QUATERNIONS

Df.4.1.3.1.1 A ring is called a sfield (or skew field, or quasi-field, or noncommutative
field, or division ring), denoted by F'*, if it contains more than one element and, for
every ae F*, a0, the equation ax =b has a solution for any be F*.

This definition suggests a reason for calling F* a division ring, which also may
be defined as a ring with unity and with a multiplicative inverse for nonzero elements
(cf. Prob. 2-3).

For example, any set which forms a field forms a fortiori a sfield; as is obvious
in Df.4.1.8.1.1, any sfield is an integral domain, although not conversely, since the
ring I of all integers is an integral domain, yet definitely not a division ring.

Sfields are, by definition, noncommutative; hence fields may be defined as follows:

Df.4.1.3.1.2 A field is a commutative sfield.

In the language of Df.4.1.2.4.1, a sfield is then a set which is a module, i.e. an
additive Abelian group, with identity 0 and also a multiplicative group except for 0,
satisfying distributive laws under addition. It is exemplified by the following
definition.

Df.4.1.3.1.3 The set Q of quaternions (or Hamilton quadruples) consists of the elements of

the form a = a1+ ax+ asf + adk

where the a,, »=1,2,3,4, are real coefficients, which are commutative with 4,7,k and

which obey associative and distributive laws, and the following operative rules define

L1,k @ ==k = -1
it = -k, kj = -1 th=-—j

(cf. §3.2.4, Prob. 10, and §3.2.5, Prob. 23). The a, are sometimes called the coordinates
of a, which is then more simply denoted by a quadruple (a1, a2, as, as), or even more
simply: (a.), r=1,2,3,4.

Df. 41314 Two quaternions a=(a,) and b=(b), r=12,34, are equal iff a,=b,.
Df.4.1.3.1.5 Addition and multiplication in Q are defined as follows:
a+b = (a1+as+asj+ak) + (bs+ bai + bsj + bak)
= (al + b1) + ((lz + bz)’L + (a3 + b3)] + (a4 + b4)k
a-b = ((l1b1 — Q2b2 — azbs — a4b4) + (a1b2 + a2by + asbs — a4b3)i

+ (@1bs — @zbs + asbr + @ab2)j + (@1bs + a2b3 — asbe + asbr)k

and, for any real number c,

cd = ac = car+ cast + casj + cask

The prescribed multiplication reveals at once the noncommutativity: a- b = b-a.
(Cf. Prob.5.)
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Th.4.1.3.1.6  Addition and multiplication in @ are associative. (Cf. Prob. 4.

Df. 4.13.1.7 The conjugate @ of a quaternion @ = ai+axi+ asj + ask is defined to be
@& = ar— ax — asj — ask.

Manifestly, @ = 2a:—a, and the conjugate of the conjugate of @ i1s ¢ itself
(cf. Prob. 6). Also, as can be readily verified (cf. Prob. 6), multiplicative commuta-
tivity holds for a quaternion and its conjugate, the product of which produces a
real number, defined as follows:

Df.4.1.3.1.8 The product of @ and @, called the norm of d, is denoted by N(a).

In general, the norm, a real number, of the product of two quaternions equals
the product of their norms (cf. Prob. 9).

Th.4.1.3.1.9 If N(a)+0, then d@ has a multiplicative inverse ¢! in Q. (Cf. Prob. 10.)
This theorem prepares for establishing Q as a noncommutative field, viz.:

Th. 4.1.3.1.10 The set Q of quaternions forms a sfield. (Cf. Prob. 11.)

Because of the noncommutativity, the automorphism of Q takes a specific form:
ded and beob/, where a,d,b,0':Q, imply ab <o b'a’ (cf. Prob. 12). Such
an automorphism is called an anti- (or reciprocal) automorphism.

In analogy to the absolute values of complex numbers (cf. Df.5.1.3.5), their
counterpart in @ may be also defined as follows:

Df.4.1.3.1.11 The absolute value of a quaternion a is denoted by |@|, representing

@] = |ar+aditag+ak] = Vai+al+a+a
(Cf. Supplementary Prob. 4.33.)

Solved Problems

1. A sfield F* has no proper divisor of zero.
PROOF:
Suppose that a,beF*, where a0, b+ 0; then, by Df. 4.1.2.3.1, there exists xe F* such that

ax =b and also y e F* such that x = by, i.e,
aby = ax = b

which implies, by the same definition, ab =0, proving that a produet of nonzero elements of F*
cannot be zero, or what is the same, that the vanishing of a product in F* entails at least one zero
factor.




Sec. 4.1.3] NONCOMMUTATIVE RINGS — SFIELDS AND QUATERNIONS 177

2.

A sfield F'* is a ring with unity.
PROOF:
Let a,ee F*, a0, e+ 0, such that ae=a; then ae® = (a¢)e = ae, which implies e*=e.

Furthermore, for any element b of F*, (b —be)e = 0 and (b— eb)e = 0, which implies be = eb=1b,
proving that e is the unity of F*.

Every nonzero element of F'* has a multiplicative inverse.
PROOF:

By Df. 4.1.2.3.1, there exists ¢ F* such that ax = e, where x # 0 and a,ee F'*. Then, by the same
definition,

(xa—e)x = xax —exr = w(ax) —ex = xe—ex = 0
which implies xa —e = 0, ie. xa = e, proving that z is the multiplicative inverse a™' of a.
Addition in @ is both associative and commutative.
PROOF:
If a,b,c¢ Q, then

a+ b+2 = (a1t ait+asj+ak) + ((bit )+ (b2t ex)i+ (bs+ es)f + (ba+ cak)

= (ai+bitc) + (@t+batec)i + (@as+bs+e)i + (as+ bs+ ca)k

= ((Gd + b1) + (az + bz)’l: + (aa + ba)j + ((M + b4)k) + (Cx + e2t + Caj + C4k) = (d + T)) + ¢
and @+ b = (a1+b) + (a2t b)i + (as+bs)j + (as+ bo)k

= (bita) + (betazxi + (bst+asz)j + (batadk = b+ a

Multiplication in @ is associative, but not commutative.

PROOF:
If a,b,é¢ @, then

(ay + @l + asf + a;k)((blcl — bacs — bacs — bacs) + (bicz + baes + bscs — b463)7:
+ (b103 — baes + bscy + b402)j + (b1C4 + baes — bse: + b461)k)

=
S
<>
)
<
Il

= (a1(bie1 — bacs — bses — bacs) — az2(bice + beci + bsca — bacs)
— as(bics — bacs + bsey + bsce) — as(bies + bacs — bscz + bacy))
+ (ai(bscs + bacy + bsca — bacs) + a2(b161 — bacs — bscs — b4C4)
4 as(bics + bres — baca + bact) — as(bics — bacs + bsct + bacs))i
4+ (ai(bics — bacs + bscs + bacz) — az(bics + bacs — bsea + bacy)
+ (ls(bl(h — beca — b303 — b464) -+ a4(b102 + baci + bscs — b403))j
+ (ai(bies + bacs — bsca + bacy) + az(bics — baca + bser + bacz)
— aa(b;m + bacy + bsca — b463) + a4(b101 — bacs — bacs — b4C4))k

= ((a/lbl — azhs — asba — (l4b4) + (a1b2 -+ a2b1 + axb4 - ¢l4b3)’i + (arlba - llzb4 + azibl + a«ibﬂ)j
-+ (a1b4 + azba — a3bs + a4b1)k)(01 + et + Caj + 04’{1)

= (ab)e
but ba = (b1a1 — bsas — bsas — b4a4) + (blaz + baay + bsas — b4a3)1:
+ (bxas ~ bsas + bsas + b4a2)j + (b1a4 + batts — bsas + b4a1)k

= (a1b1 — Q2bs — a3b3 - a4b4) + (alb + asb — aab + (14b)i
+ (Udb + asb + ash — a4b)j + (a1b — ab + asb + a4b)k

i
(<)l

=

Note. The noncommutativity is actually an immediate result from 1ij 7 ji, jk = kj, ki ik.
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10.

Prove (i) @ = 2a,—d, (i) (@) =a, (i) 6@’ = @a.
PROOF:

(i) Since @ = a1+ asi+ asj +ak and @' = a1 — azi— asj — adk,

201 — @' = 201 — (@ —ai—asf—ak) = ar + asi + asf + ak = @
() @) = (m—ai—af—ak) = ar— (—a)i— (—as)j — (—adk = @
({ii) @@’ = (a1t a2i+ asj+ ask)(@: — a2i— asj — ask)

(Gdax + aza: + asas + (l4a4) + ((ll(—az) + aza1 + aa(_(M) — a4(_aa))i
+ (a1(—as) — ax(—as) + asar + as(—a2))j + (@1(—as) — as(—as) + as(—az) + aaa)k
= a}+ a4+ ai+ ai
Likewise &'a = a2+ ai + a} + ai.

Hence ad’ = a’a.

@by = ba.
PROOF:
E’d' = (b1 — bt — bsj — bqk)(lh — ast — (sz - 0/4k)
= (0141 — (=b2)(—a2) — (—bs)(—as) — (—bs)(—as))

+ (bi(=a2) + (=bs)as + (—bs)(—as) — (—bs)(—as))i

t (bu(—as) = (=ba)(—aq) + (—bs)as + (—ba)(—az))j

+ (b1(“a4) + (—bz)(—as) - (—'bs)(_az) + (—b4)(l1)k
= (biar — b2z — bsas — baas) — (bias + bea; — bzas + baas)i

- (b1a3 + beas + bsas — bqaz)j — (b1a4 — beas + baas + b4a1)k
= (@1b1— ashs — asbs — @sbs) + (—(a1bs + a2b: + asbs — asbs))i

t (—(@ibs — a2bs + ashi + asbs))j + (—(aibs + a2bs — ash: + asbi))k
= (ab)

N(@b) = N(@)N(Q).
PROOF:
Applying Df. 4.1.8.1.8 twice, Prob. 5, Prob. 7, and Df.4.1.3.1.5 successively,

N@b) = (ab)(ab) = abb'@d = aN(®)a = a@'N(b) = N(@)N(b)

@b =0 implies @=0 or b =0.
PROOF:
Multiplying both sides of the given equation ab’,
ab(ab)’ = 0(@b)’ = 0
while, by Prob. 8, @b(ab)’ = N(@b) = N(a)N(b). Hence
N@N@®) = o

which implies N(@) =0 or N(b) = 0, since both N(a) and N(b) are real numbers. But if N(a@) = 0,
then ai-+af+ai+a} = 0, which implies a1 = a: = a3 = @y = 0, yielding @ = 0.

Likewise b =0 if N(a@) = 0 and NG =0, completing the proof.

Prove Th.4.1.3.1.9.
PROOF:

Since the multiplicative identity in @ is 1, ie. 1+i+j+k or (1,1,1,1), and, by Df.4.1.8.1.8 and
Prob. 6, (iii), N(a) = a@’ = a’q, it follows that @+ 0 implies

a@/N@) = a@N@) = N@/N@G = 1
Hence ™' = d@'/N(d), completing the proof.
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11. Prove Th.4.1.3.1.10.
PROOF:
Q is a ring, since it satisfies R1-8 as follows:
Q1 = R1, by Df.4.1.3.1.5.
Q2 = R2, by Prob. 4.
Q3 = R3, since 0+ 0i+0j+ 0k = (0,0,0,0) = 0.
Q4 = R4, since a+(—a) = (@) +(—a) = (ar—a.) = 0 = (—a@) +a.
Q5 = R5, by Prob. 4.
Q6 = R6, by Df.4.1.3.1.5.
Q7 = R7, by Prob. 5.
Q8 = R8, since (b + &)

(@1 + @2t + asf + ask)((b1 + ¢1) + (b2 + ¢2)i + (bs + ¢5)j + (bs + ea)k)
= (ai(b1+ e1) — ax(bs + c2) — az(bs + ¢3) — aa(bs + ¢4))
+ (al(bZ + Cz) + (l2(b1 +¢) + as(b4 + 64) - a4(b3 + Ca))i
-+ (al(ba + 63) - (th(bq + 64) + aa(bl + 61) -+ a4(b2 + Cz))j
+ (al(b4 + 04) + az(bs + 03) - (a3(bz + 62) + a4(b1 + C1))k
= ((aibi — asbs — asbs — asbs) + (a1b2 + asb: + asbs — asbs)i
+ (a1bs — azbs + asbs + asbs)j + (a1bs + a2bs — asbs + asbi)k)
+ ((@1€1 — @262 — @3C3 — AaCq) + (@162 + @3¢1 + AzCs — AaC3)i
B + (ai1cs — @z26s + ase1 + asC2)f + (@164 + @263 — ascz + asci)k)
= ab+ac
and likewise (@ + b)d = aé + bé.
Furthermore, by Prob. 10, Q satisfies F9-10 although it fails to yield F11 (cf. Prob. 5 above).
Hence Q is a noncommutative field, i.e. sfield, completing the proof.

12. Set up a 1-1 correspondence between the set @ of quaternions and the set @’ of their

conjugates.
Solution:

Since d@,be@ and a',b'e¢@ imply a correspondence

ae>d and be b,
it follows from Df. 4.1.8.1.5,7 and Prob. 5,7 that
atb e a+b and @*h < bed (+ a-b)

Since obviously @’ c Q, the isomorphism between @ and @’ is an automorphism (which, more
specifically, embodies an antiautomorphism through the multiplicative noncommutativity exemplified
as above).

4132 MATRICES

Df.4.13.2.1 Vectors (or hypercomplex numbers) over a ring R, denoted by «,8,..., are
the n-tuples (or n-uples) of elements a;, b;, ..., 1=12,...,n, of R, viz,

a = (al, aq, .. .,an) = (ai), ,3 = (b1, bz, ey bn) = (bi),
where o = g iff ai=b;, and for every re R,
ra = (ra,ras, ...,ra.) = (ra;), called scalar multiplication, and
a+ B8 = (@i+by, as+bs, ..., an+Dbn) = (ai+bi), called vector addition.
Each of a; is called a component of «, and since n is explicitly finite in this con-
text, the n-tuples are called finite vectors of order n. A set of such vectors is called
a vector (or linear) space over R, denoted by V(R), or more explicitly V.(R), which is

then called an n-dimensional vector (or linear) space (cf. Df.4.1.3.2.7 below) if it
satisfies the following theorem.
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Th.4.1.3.22 A vector (or linear) space over a field ¥, denoted by V(F) or more simply V,
is a module, i.e. an additive Abelian group, viz.,
V1-5 = R1-5,

with the following additional properties:

V6. Forevery ac¢F and acV, aacV.

V7. Forevery abeF and afeV, (i) a(a+pB) = aa+ag, (ii) (@ +b)e = aa+ ba.
V8. Forevery a,beF and a«cV, (i) (ab)a = a(be), (ii) la = a. (Cf. Prob. 1.)
Example:

F(F), ile. a field F' over itself, obviously satisfies V1-8 and is certainly a vector space; so is R(R),
i.e. the set R of real numbers over the set R of rational numbers, as can be readily verified (cf. Prob. 3).

Also, @, the set of quaternions, is obviously a vector space over the field B of
real numbers, in which sense it may be represented by Q(R); its elements, quaternions,
are then regarded as vectors (or hypercomplex numbers) of order 4, or 4-dimensijonal
vectors. Real and complex numbers (cf. Df.5.1.2.10 and Df.5.1.3.1), then, may be
considered 1-dimensional and 2-dimensional hypercomplex numbers (i.e. vectors) re-
spectively, evidently satisfying Df.4.1.3.2.1.

As in other algebras (of groups, rings, ete.), a subspace of a vector space V is a
complex of V, which is itself a vector space, satisfying Df.4.1.3.2.1; it is articulated
by the following theorem.

Th.4.1.3.23 A complex U of a vector space V is a subspace of V iff aa + bg ¢ U for
every a,beF and eBeU. (Cf. Prob. 5.)

Example:

Va(F) in itself is a subspace of V.(F); so is the zero subspace, the sole element of which is the
zero vector, o = (01,0, ...,0x). As is obvious in this example, the meet UNnW of any two sub-
spaces U and W of a vector space V is again a subspace of V (cf. Prob. 8); so is their linear sum,
defined by {a+8} for any «e U, Be W (cf. Prob. 8).

Df.4.1.3.24 A linear combination in V.(F) is a sum
a = Ciay1+ Coaz+ ... + Crax = zcmi, 1=12,... )k, where 1=k=n

for every cie F and aie Vo(F). The vectors «; are called linearly independent over F
iff «=0 implies ¢;=0 for every c;eF; otherwise, they are called linearly dependent
(cf. Df. 5.3.1.11).
Example:

a1 = (1,0,0), a2 =(0,1,0), a:=(0,0,1) in Va(f»’) are linearly independent, since ¢:(1,0,0) + ¢:(0,1,0) +
¢s(0,0,1) % (0,0,0) for any nonzero e, e, ¢se R, while g, = (2,1,1), B2=(1,-1,1), Bs=(5,4,2), say, are
linearly dependent, since 3(2,1,1) — (1,—1,1) — (5,4,2) = (0,0,0).

Th.4.1.3.25 The set S of all linear combinations of any set of vectors a«; in a vector
space Va(F) is a subspace of V.(F) and is called the subspace spanned (or generated)
by ai. (Cf. Prob. 7.)
Example:

The subspace spanned by a single nonzero vector «; is the set S; of all scalar products caq,
which may be geometrically represented by the straight line through the origin; the subspace spanned
by two non-collinear vectors a: and a; is the plane through ai, as, and the origin.

Th.4.1.3.2.6 The vectors ajas, ..., axe Va(F), 1=k=mn, are linearly dependent iff some
ai, 1=1,2,. . )k, is in the subspace S spanned by the remaining vectors. (Cf. Prob. 9.

Stated otherwise: any set of »n vectors in Vam(F), n>m, is linearly dependent;
hence the following definition.
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Df.4.1.32.7 The set of vectors ¢, 1=i=mn, is a basis of the subspace S of V.(F) if it
forms a linearly independent set which spans S, and the dimension of S is the num-
ber of elements in a basis of S.
Example:

e, =(1,0,0,...,0), &, =(0,1,0,...,0), ..., £,=1(0,0,0,...,1) form a basis of V.(F), the dimension of
which is %, while (1,0) and (0,1), say, form a basis of a subspace V:(F') of V.(F); the zero subspace is
considered to have no basis, since the zero vector alone is a linearly dependent set. In general, any
two bases of a finite dimensional vector space have the same number of elements (cf. Prob. 10).

The concept of the n-tuples ordered in one way in V is now expanded to those
ordered in two ways, viz.:

Df. 4.1.32.8 A rectangular array of elements (or entries, or coordinates) of a field F,
having m rows and n columns, is called an m by n matrix A over F, denoted either
compactly by A=(ay), 1=12,...,m, j=12,...,n, or more explicitly,

a1 a1z Ain
(223521 L., Q2

A = " (1)
Am1 Am2 Amn

where ai;e F', which designates the element in the i-th row and the j-th column and
is sometimes called (¢, 7)-th element of M.

A as such may represent m vectors ai,as, ...,am 0f Va(F), i.e. the elements

Qit, Qiz, . . ., Qn of the 4-th row of A corresponding to the components ai, @i, ..., %n
of ai. Or more directly, a single row
[an Az ... ain] (2)
is itself a 1 by » matrix, and a single column
[¢5F]
a2
(3)
o

is an m by 1 matrix, called a row matriz (or row vector) and a column matrixz (or
column vector) respectively and sometimes referred to simply as vectors.

Note. The brackets in (1),(2),(3) may be replaced by parentheses or double
straight lines on each side of the array.

Df. 41329 Two m by n matrices A =(ay;) and B=(by), i=12,...,m,j=12,...,m, are
equal iff Aij = bij.

If m=1, the case is reduced to two row matrices, or vectors of order n, where
(ay)=(by), 7=12,...m, iff ay;=>by (cf. Df.4.1.3.2.1); likewise, (a1)=(bs) implies
ain=by, 1=12,...,m, and conversely, if n=1, i.e. A and B are column matrices, or
vectors of order m.

Df.4.1.3.2.10 The vector addition and the scalar multiplication of Df.4.1.3.2.1 hold for
matrices; viz., given two m by n matrices « = (ay), 8 = (b;), and any element ce F, it is
defined that

ca = c(ay) = (cay), called scalar multiplication, and
a+pB = (ay) + (by) = (ay+by), called vector addition.
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Example:
If ¢=2, and if A and B are 2 by 3 matrices, say,

A = [3 2-1] B = [1-2 7]
4 -3 1 3 2 -1

then cd = 24 = [6 4_2J and A+B = [3+1 2o2 S14T) [_4 06
8 —6 2 4+3 3+2 1—-1] " {7 -1090
Hence the following theorem, which is an immediate result from Df.4.1.3.2.10,
articulating the relation between matrices and vectors:

Th.4.1.3.211 The set M of all m by » matrices over F is a vector space over F under
addition and scalar multiplication. (Cf. Prob. 12.)

This theorem is in fact intuitively evident from the considerations of row and
column matrices in Df.4.1.3.2.8.

Also, as can be easily verified (cf. Prob. 11), addition is both associative and
commutative in M, while multiplication, defined as follows, is not.

Df.4.1.3.2.12 If a matrix B has the same number of rows as a matrix 4 has columns,
then B is said to be conformable with respect to A (and in general not conversely),
yielding their (matrie) product AB (and in general not BA), defined by the following
row by column multiplication, called matrix multiplication:

AB = (ay)(by) = (X auby), 1=12,...p j=12,...r
k

where the summation au bx;, k going from 1 to ¢, is feasible as A is a p by ¢ matrix
and B is a ¢ by r matrix, i.e. B is conformable with respect to A.

It follows at once that A is not conformable with respect to B in this context,
that is, unless it happens that p = r; even then, it seldom if ever follows that AB = BA,
since it does not always follow that > awby = X buax; even if p=qg=r (cf.

k k

Df.4.1.3.2.13). Commutativity, then, does not belong to matrix multiplication, al-
though associativity does if conformability is assured (cf. Prob. 17).

Example:
If A=(ay)is a 3 by 2 matrix, B = (b;;) a 2 by 2 matrix, then
air Q12 by b anbi + aizbar @bz + a2 bss
A = Q21 Qg2 |, B = [bu bu:]’ and AB = @21b11 + A2 b2 @21 biz + A2 ba
31 Qa2 2 Da 31 b + asbar @z biz + a2 ba

while, because of conformability, BA cannot even exist in this case. Since AR is here a 3 by 2
matrix, however, multiplication can be further carried out likewise, yielding (AB)C, if C is a 2 by n
matrix, for any natural number n; the product ABC is then a 3 by » matrix (cf. Prob. 17).

If A is a 1 by » matrix and B an n by 1 matrix, their product AB is a 1 by 1
matrix, viz.,

b
b

AB = Jau s ... Q] | - = [aubu + aiba + ... + an bni)

Lbnl
which is called the inner (or scalar or dot) product of A and B as vectors; as such,
it may be written more simply as AB = (a;b;) for A =(a;) and B=(b), i=1,2,...n.
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Df.4.1.3.2.13 A matrix is said to be square if it is n by 7, having the same number of
rows and columns.

Df.4.1.3.2.14 The transpose of an m by n matrix A= (a;;), denoted by A7, is the n by m
matrix B = (b;), where by=a; 1=12,...,m, j=12,...n.
Example:

If A is a 2 by 3 matrix, then

a1 21
A = (ay) = [:a“ Gz am] and AT = (ap) = ‘:an Q22

Q21 Qa2 Q23 @13 o3

Th.4.1.3.2.15 If two matrices A and B are conformable with respect to each other, then
(AB)T = BTAT. (Cf. Prob. 22.)

Df.4.1.3.2.16 The elements a; of an m by n matrix A are called (principal) diagonal
elements, and if a;= 0 for i+ 7, then A is called a diagonal matrizx.

The diagonal elements as such may be defined as the elements which do not
change their relative positions under transposition; e.g. an and a@s in the example
of Df.4.1.3.2.13 are unchanged by transposition.

Df.4.1.3.2.17 A matrix A = (ay) is called a diagonal matrix if its elements off the diagonal
are all zero, i.e. a;; =0 for i+#7; it is called a square matriz of order n if it is an
n by n matrix, having the same number of rows and columns, and a scalar matriz
if it is square and furthermore ai;=¢, ce F. In particular, if a;=1, A is an identity
matriz, denoted by [1], and if as =0, it is then obviously a zero matriz, denoted by [0],
every element of which is zero.

Zero matrices are not limited to square matrices, since any m by » matrix may
have all zero elements; moreover, the set M of all m by n matrices contains zero-
divisors, since the product of two non-zero matrices may be a zero matrix, e.g.,

_[abd _ [0 b _ ooy _
A‘[oo]*O’B‘[O—a]%O’ but AB—[OOJ_O

Hence canecellation cannot be carried out in .

Df.4.1.3.2.17a The determinant |A| of a square matrix A = (a;) of order n is a polynomial
in a;; of the form
a1 Qa2 e Q1n
Aoy Q22 ... Q2n n
1Al = - 21 €itig iy (Tigt Wig - - - Wjn)
................ ~=
An1  An2 Ann
_ 12 ... n — 1 : N ;
where €5, = i i = P represents n! permutations, 71,72, ...,7n
1 2 e n
being 1,2, ...,7n in some order, yielding p=1 if p is an even permutation and p=-—1
if p is an odd permutation (cf. Df.3.1.1.16).

Example:
If A is a matrix of order 2, then

a1 A1z
Q21 Q22

Al =

€12@11022 + €21021@12 = 1vanae + (—1)'11211112 = Q11022 — Q21012




184 PART 4 — ALGEBRA OF RINGS [CHAP. 4.1

The fundamental properties of determinants, with which the student is already
familiar through College Algebra, are all deducible from this definition (cf. Prob. 23-29).

Note. €;;,...; = 8;> " is the generalized Kronecker delta.

3l In

Df.4.1.3.2.18 The cofactor of the element a; of a square matrix A = (a;) is denoted by
Ajij, which is stipulated by the following equation

Al = X asdy
which is summed either by ¢ for fixed j or by j for fixed ¢ (cf. Prob. 35).

Example:
If A is a square matrix of order 3, then

din A1z Q13
Q21 Q22 Q23
a3 A3z Q33

4] = e =

€123011 Bo2 033 + €132@11 32023 T €218Q21 Q12033 + €231 Q21Aa2 iz + €312031@12023 + €321 Gay Goa s

Q11022033 — A1103des — Q21012033 T Q21ds2liz + A31Q12@23 — A31Uz2013

a11 (@22 33 — Q32 (lza) + a2 (a32 Qia — Qi2llaz) + s (axz Q22 — g2 (lla)

Az Q13
Az O23

Az A13
A3 033

Q22 Q23
O3z Qas

+  au + an

= Q11

where the cofactor Az of as, for instance, is (#32a13 — ar2as3) or what is the same —(dtizass + dazdus),
either of which may be given in a determinant form, as is quite obviously the case. Hence the
cofactor is more conveniently defined in terms of determinants as follows:

Df. 4.1.3.218a If A; denotes the (n—1) by (n— 1) submatrix, called a minor, of an n by n
matrix A = (a;) obtained by deleting the i-th row and the j-th column of A, then

Ay = (-1)H |4,
is called the cofactor of a;; in A.

In the example given directly above, then,

lA[ - E 2531 An, 1= 1,2,3,
i
= audu t andyu + aslAa = (—D)'landu 4+ (—1)**lawAn + (—1) ey Ay
[¢2 a: a a
— i 22 (23 - an a1z Q13 4+ am a1z Qi3
A3z Q33 a3z 33 Qzz de23

which of course yields the same result as above. It must be emphasized, however, that the cofactors
other than 4., viz. Au, Ai, Ay, Asj, As; yield, in this case, five other ways to evaluate |A| (cf. Prob. 35

note).

Df.4.1.3.2.19 The adjoint of a square matrix A = (ay) is also a square matrix, denoted
by A*, of the form (A;)T, where A;; is the cofactor of ai;.
In this matrix, then, each element is itself a determinant (cf. Prob. 37). A* is

thus found through two steps, first by finding the cofactors (in determinants with =
signs) of all elements of A to form a matrix with the cofactors as its elements, then

by transposing the matrix.

Df.4.1.3.220 A square matrix A is said to be nonsingular if |A| - 0.

Another definition of nonsingularity, viz. in terms of the inverse of A, is also
available, anticipating the following theorem.
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Th.4.1.32.21 If |A] #0, where A is a matrix of order n, then there uniquely exists a

square matrix B of the same order such that AB = BA =[1], where B = A*/|A]
(Cf. Prob. 39.)

After this theorem, then, A may be said to be nonsingular if there exists B such
that AB = BA =[1], i.e. if there exists A™! for A.

Th.4.1.3.2.22 The set A of all square matrices of order n forms a noncommutative ring.

(Cf. Prob. 42.)

The set A is sometimes called a total matric algebra (over a ring R or a field F)
of order n, which is to satisfy Df.4.1.3.2.1, and as such constitutes a division algebra
(over R or F) if it satisfies, furthermore, Th.4.1.8.2.21 in addition to Df.4.1.3.2.1.

Solved Problems

Prove Th.4.1.3.2.2 in terms of Df.4.1.3.2.1.
PROOF:
Let a,beF and a8,yeVa(F), ie. a=(a), B=(b), y=1(c), i=12,...,n; then, by Df.41.3.21,
V. a+8 = (@) + (b)) = (ait+bi) e Vo(F)
V2., at+(B+7Y) = (@) + {(b)+ () = (@) + (bite) = (ait+bitecy)
= ((@it+b)+e) = (m+db)+y = («a+8)+7v
V3. o = (0:) e V.(F), called the zero vector (of order n).
V4. a ' = (—a) e V.(F), since ata?=a 'ta=(ai~a) = (0:) =o
V5. a+ B8 = (@)+ () = (ai+b) = (hita) = B+a
V6. aa = ala) = (aa)e V. (F)
V.. @ alea+B) = al(a)+ (B)) = alai+b) = (alait+ by) e Va(F)
(ii) (@+b)a = (a+b)a) = ((a+ b)a) € Va(F)
V8. (i) (abla = (ab)(a:) = (aba) = (a(ba:)) = a(ba:) = a(ba)
(ii) le = L(a) = (1*a) = (@) = a

If aeF and «eV.(F), then (i) 0+a = o, (ii) (—@)a = —aa = a(—«), (iii) do =o.
PROOF:

(i) By V6, 0+a = 0{a) = (0=a)) = (0)) = o. (Note. 0 in 0+q is a scalar, i.e. 0e F, while o on the
other side of the equation is a vector, i.e. oe Vu(F), viz. o = (0:) = (01,04, ...,04), the zero
vector, where each of O; is 0; cf. Prob. 1, V3.)

(ii)y By V8, (—a)a = (—a)(@:) = (—aa:) = ((—1)aa) = (—1)(aa:) = (—1aa = —ae.
Furthermore, by V6, —aa = (—aa) = ((—1)*aa) = (a(—1)a) = a(—(a:)) = a(—a).
(iii) As in (i), a0 = «(0:)) = (a0:) = (0y) = o, by V6,3.
Second Proof. Since a = a+ o for every ae V(F), by V3, it follows from V7, (i) that aa = a{a+o) =

aa + ao. Hence, adding —aa to both sides of the equation, (—ae)+aa = (—aa)+aa+ao, ie.
o = o+ ao, Viz. 0 = a0, by V3, completing the proof.
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Prove that R(R), where R is the set of rational numbers and R the set of real numbers,
is a vector space.
PROOF:

Let a,beR and qB,yeR, then obviously «= (ai), B=1{(b), y=1(c:)), where i=1, and a,8,y
satisfy V1-5, since V1-5 = F1-5 in this context. Furthermore, since the product of two rational
numbers is again a rational number and the product of a rational number and a real number is a
real number, a,b,e,8,y satisfy also V6-8. Hence R(R) is a vector space, of order 1.

Note. It is similarly proved that F(F) is also a vector space of order 1.

If L is the set of all functions which are solutions of the linear differential equation
¥y —4y +3y = 0 1)
where ¥ is a function of x, then L is a vector space.

PROOF:
If abeR (as in Prob. 3) and fi(x),fx(%), fo(x) ¢ L, satisfying the equation (Z), then, from the
theorems of the Calculus:
V1. fux) + falz) ¢ L, S,ince (fi@) + fo(2))" — Afu(®) + fo®)) + B(fi(x) + fo(x)) = () () — 4f, () +
3fi(@)) + (f,) () —4f () + 3fs(x)) = 0

V2.  fi(x) + (folx) + fs(x)) = (fulx) + f2(x)) + fa(x), which follows from V1
V3. 0eL, since 0/ —4+0+80 = 0
V4. (filx)) ™ = —fil®)eL, i=1,2,..., since fi(w) + (—fi(x)) = 0

V5. fi(x) + fo(x) = faz) + fi(x), which follows from V1
V6. afi(x)eL, since (afi(2))” — 4afi(®)) + 3(afux) = a(f] (x) —4f,(x) + 3fu(x)) = 0
V7-8 follow immediately from V6.

Hence L is a vector space over E.

Note. In actual context, each of fi(x), 1=1,2,..., is of the form ae*+ be*, abe R, since e*
and e* are linearly independent (cf. Df. 4.1.3.2.4).

Prove Th. 4.1.3.2.8.

PROOF:
If U is a subspace of V(F), then aa+ b8 ¢ U by V2,6.
Conversely, if aa+ b e U for every a,be F and a,8c U, then o+ B¢ U, since la+18 = a+ 8,

and also 0e U, since aa+ 08 = aaceU. The other properties of V1-8 are consequently satisfied.
Hence U is a subspace of V(F).

Note the similarity between this theorem and Th. 4.1.1.7 or, further back, Th.3.2.1.2. Note, also,
that aa + b3 embodies linearity at one stroke, combining the effects of V6-8.

Prove, or disprove, that the following sets of real functions defined on 0 =2 =2 are
subspaces of the vector space of all such functions:

(i)  Fri all functions f such that f(1) = 3f(2),
(ii) Fa all functions f such that f(z) = f(x—1) for all x,

(iii) F'3: all polynomials of degree 5.
PROOF:
By Th.4.1.3.2.3,
(i) F: forms a subspace, since fi,f:eF:1 implies fi(1) = 8f1(2) and f:(1) = 3f2(2), which in turn
implies fse F'. such that f; = fi(1) + fa(z) = 3fu(2) + 3f2(2) = 3(f1(2) + f(2)) = 3f+(2).
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(ii) Likewise, fi,fzeF. implies fieF: such that fa(x) = fi@)+fax) = fulx—1)+fole—1) =
fs(x — 1), and F: does form a subspace.

(ili) F's does not form a subspace, since fi,foeFs, ie. f1 = E_aix‘ and f. = zbix‘, 1=0,1,...,5,

does not always imply fseF3 such that fs = fi+f: = S e, i=01,...,5; eg. if fi = —fs,
then fs = fi+f. = 0, which is definitely not a polynomial of degree 5. (Note. F3: all
polynomials of degree less than 5, including 0, however, is a subspace, as can be readily verified.)

Prove Th. 4.1.3.2.5.
PROOF:

By Df.4.1.3.2.4, the elements of S are of the form Eaim, 2 biai, ete., where 1=1,2,...,k for
1=k=n. Hence, for any rs,teF, ' ¢

T(Eaiai) + 8(2 bwu) = 27‘(1401; + E_Sbim = z(rai+8bi)ai = ztiaiSS

where t; = ra;+sb;, 1=1,2,...,k. Hence, by Df. 4.1.3.2.4, S is a subspace of V.(F'). (Cf. Prob. 5 note.)

The meet of any two subspaces, say U and W, of a vector space V is again a subspace
of V; so is their linear sum, defined by {«+ 8}, for any «eU and BeW.
PROOF:

(i) Since the meet M = UNW contains all vectors which belong to both U and W, o,8¢M implies
that a4+ 8e M, aae M, bgeM; in short, aa+ b8 ¢ M. Hence, by Df. 4.1.3.2.4, M is a subspace
of V.

(i) The linear sum, by definition itself, at once satisfies Df. 4.1.3.2.4, proving itself to be a subspace
of V.

Prove Th.4.1.3.2.6.
PROOF:
If ai,a, ...,ax are linearly dependent, then, by Df. 4.1.3.2.3,

a = ara1 + Gzaz + - + axaxr = 0 1)
where at least one of a;, 1=1,2,...,k, is not zero. Hence, for any a:# 0, (I) is changed to
agiei = —(a1a1 + @202 + - + Gi—1@i-1 F Givr@ier T o0 F Grar)
i.e., ai = biays + braz+ - + bicrai-1 + Biviaier + - + buan
where b; = —aj'a;, for fixed i and 7 = 1,2,...,+—1,i+1,...,n.

Conversely, if a: is spanned by other vectors than itself, i.e.,

a = Crax + craz+ - + Ci-1ai-1 + Civrait:s + -0+ Cear
then ciar + czaz + - + ci—rai-y (-1)0& + Civ1aivr1 + -+ Gk = 0
proving that the vectors a:;, 1=1,2,...,k, are linearly dependent, which completes the proof.

10. The basis of a finite-dimensional vector space is an invariant.

PROOF:

Let the finite-dimensional vector space be V.(F), and assume that V.(F) has two bases of m and =,
say o = (a, a2 ...,am), B = (81,82 ...,Bx), and a8 € V.(F). Then m =n, since a spans Va(F),
and B, consisting of base vectors, is linearly independent. Likewise n = m, since g also spans V.(F),
and « is linearly independent. Hence m = m, completing the proof.
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11. Addition is associative and commutative among matrices of the same order.
PROOF:
Let A,B,C be of the same size, say m*n, ie. 4 =(ay), B=(by), C=(e;), where i= 1,2,...,m,
7=12,...m; then, by Df. 4.1.3.2.10,

A+ B+C) = (ay) +(da)+ () = (ay) + (byt+ey) = (aiy+ by+ey)
= (eitby)tey) = (a+by)+(e) = (A+B)+C
and A+ B = (aij) + (bij) = (afij + bq) = (bij + aij) = (bij) + (aij) = B+ A4

completing the proof.

Note that the proof has been carried out, as in Prob. 1 above, on the strength of the additive
associativity and commutativity of as, by, ¢;;, which are any three elements of a field F, where
additive associativity (F2) and commutativity (F5) evidently hold.

= A

Prove Th.4.1.3.2.11.
PROOF:

Let a,beF and A,B,CeM, ie. A=(ay), B=(by), C=(cy), where i=12,...,m, j=12,...n;
then V1 and V6 are already given by Df.4.1.3.2.1 itself, and alsoV2 and V5 by Prob. 11. Further-
more:

12

V3. Additive identity is the m by » zero matrix, O, viz.

00 . 0
0 0

0 = (Oij) -
00 ... 0

V4. Additive inverse —A = (—ay) for every AeM, since A+ (—4) = (—4)+ A = 0.
V7. a(A +B) = a((aij) + (bij)) = (l(aij) + a(bij) = aA + aB
(a+b)A = (a+b)ay) = alay) + blai) = ad + bA
V8. (ab)A = (ad)(ay) = (abay) = (a(bay)) = a(blay)) = a(bA)
14 = lay) = (1eay) = (ay) = A.
Hence M, satisfying all of V1-8, is a vector space over F'.

18.Given 4 = |1 9] and B = [01], verity 4B~ BA.

PROOF:
By Df.4.1.3.2.12, -

AB = |1 o03[01 1.0+ 01 1+1+40°0] _ 01J
0 —-1j[10 0:0—1+1 01— 1-0 -1 0
o1]ft o 01 +1+0 0:0—1-1] _ Jo -1
BA = = =
and [1 o}[o —1] [1-1+0-0 1-0—0-1] [1 0}

Hence, by Df.4.1.3.2.9, AB + BA.

Note. This example alone is already enough to establish the non-commutativity in M, since a
single counterexample is sufficient to disprove a theorem.

121 10 —4 —1
4. Given A = |342| and B = |-11 5 0|, verify AB= BA.
1382 9 -5 1
PROOF:
-3 1 ¢
As in Prob. 11 above, by Df. 4.1.3.2.11, AB = { 4 -2 -—1:| = BA.
-5 1 1

Note. Commutativity, therefore, holds sometimes in M; it may even hold on all occasions with
respect to some matrices (cf. Prob. 38 below), although it cannot be said about all matrices, as was
proved by Prob. 13.




Sec.

15.

16.

17.

4.1.3] NONCOMMUTATIVE RINGS — MATRICES 189

Given A = [a a] prove that there exists no matrix X such that AX=F,

where E = [1 0:\ = [1].

01
PROOF:
Assume that there exists X, ie. X = [c (fi:l , such that
e
AX = [a aj‘ c d _ afc+ e) a(d+f)] — 10 - E
b bile f b(c+e) a(d+f) 01

Then, by Df.4.1.3.2.9, it must follow that -

(i) alct+e) =1 (iii) blc+e) = 0

(i) a(d+f) =0 (iv) bd+fH) =1

hold simultaneously. This leads to a contradiction, since (i) implies a+ 0, which implies, by (ii),
d+f = 0, which in turn implies b(d+ f) = 0, contradictory to (iv). Hence there exists no X such
that AX = E.

Note. As will be seen below (cf. Prob. 38-39), the non-existence of such a matrix X is simply due
to the singularity (cf. Df. 4.1.3.2.20) of 4, whose determinant is obviously 0 (cf. Prob. 25).

Given A = [g Zz] and B = [_C_Cfl fee:l, prove that they are zero-divisors

(i.e. nilfactors), viz. AB=0 when A #0 and B #0.
PROOF:

AB = a*cd —acd acce —acce — [00 = 0
[b'cd—bc'd bece — bcre 00

Note. AB+ BA in this context and also BA 0, as can be readily verified.

Matrix multiplication is associative, if conformability is assured; i.e. A(BC) = (AB)C
if A,B,C are pbyq, qbyr, r by s matrices respectively.
PROOF: .

Let A = (an), B=(by;), C={(ci), where h=12,...,p,1=12,...,¢, i=12,...,r, k=12,...,s; then

A(BC) (ahi)((bij)(c,-k)) = (am)(? bij Cjk) = ; Qhi (szij Cjk) = ; g Qni bij Cik

= 12(2 an bi)ep = (12 anbi)ew) = ((@n)(bi))en) = (AB)C

Note. Square matrices are always associative under multiplication, since conformability is always
assured for them. The conformability alone, however, does not always guarantee associativity, since
infinite matrices are always conformable to each other, but it is not always the case that A(BC) =
(AB)C; e.g.,

1111 ... 1-1 0 0. 1111
0111 0 1-1 0 1111
ABC) = |0011 0 0 1 -1 1111
0001 0 0 0 1 1111
1111 . 0000
1111 0000
= {1111 # (o000 = (AB)C
1111 0000




190 PART 4 — ALGEBRA OF RINGS [CHAP. 4.1

18. If AB = BA, then (AB)" = A"B~.
PROOF:
If n=1, then (AB)' = A'B', since it is the given hypothesis itself.

If n =2, then, by the associative law proved in Prob. 15 (which holds here because of the
conformability assured by the given commutativity),

(AB)) = (AB)(AB) = (ABA)B = (AAB)B = (A’B)B = A*BB) = A’R’
In general, if (AB)* = A*B*, then
(AB)**' = (AB)<(AB) = A*B*AB = AXB“A)B = A%B* 'BA)B = A*B*"'AB)B
= A¥B**BAB)B = A¥B*2ABB)B = ... = A*AB*B = Ak+1Bk+1

Hence, in general, AB = BA implies (AB)" = A"B".

19. Matrix multiplication is distributive under addition, if conformability is assured; i.e.
A(B+C) = AB+ AC if A is a p by ¢ matrix and B and C are q by r matrices; also
(A+B)C = AC+BC if A and B are p by ¢ matrices and C is a ¢ by r matrix.
PROOF:

(i) By Df.4.1.3.2.10,12, A =(ay), B=(bx), C=(ci), where i =12,...,p, i =12,...,q, k= 12,...r,
implies

AB+C) = (aiy)((b) + (cit)) = (@) + cju) = E @i (bje + c) = JEaij b + Jzaij ¢, = AB + AC

(ii) Likewise (A + B)C = AC+ BC.

Note. Distributive laws hold unconditionally for square matrices, since conformability is always
assured for them.

20. If A and B are square matrices of the same order, find (A + B)? and (4 + B).
Solution:
By Df. 4.1.3.2.12 and Prob. 18,
(A+B? = (A+BA+B) = A+BA+(A+BB = A*+ BA + AB + B
and (A+By = (A+BXA+B) = (A*+BA + AB + B%(A + B)
= A®+ BA* + ABA + B®A + A*B + BAB + AB* + B3

Note. The binomial coefficients (or Pascal’s triangle) cannot be introduced here, because AB # BA
in general.

21. If A and B are two m by n matrices over F, then (AT)" = A and (aA+bB)T = aAT + bBT
for every a,beF.
PROOF:
i @AD"= (@) = (0)" = (ay) = A, where i=12,...;m, j=1.2,...m.
(i) (aA +bdB)T = (alay) + b(b:))" = (aay+ bbiy)™ = (aasu+ bbs)
(aaﬁ) + (bbn) = a(aﬁ) + b(b]‘[,) = a(aij)T + b(bij)T = aA"+ bBT

where 7 and j are summed as above.

22. Prove Th. 4.1.3.2.15.
PROOF:

Since A and B are conformable in both directions, let A be an m by n matrix and B an = by m
matrix, ie. A =(ay), B=(b;), where i=12,...,m, j=12,...,m. Then, by Df. 4.1.3.2.12, 14,

AB)" = ((@)b)” = (Zaybs)’ = (Zbyas)" = (3 buas) = (bu)(as) = BTAT
7 1 3
where X aijby = 3 bija; because of commutativity in F', and also (E bi; a,-i)T = (2 bi; aﬁ), because
3 i j j

of the specific conformability assumed at the start, due to which the interchange of 7 at both ends of
S b a4 brings forth 3 by gy itself, completing the proof.
j i




Sec. 4.1.3] NONCOMMUTATIVE RINGS — MATRICES 191

23. If A is a square matrix, then |AT| = |A]|.
PROOF:
Let A be of order n, ie. A = (aij), 4,7=1,2,...,n; then AT = (a;) and, by Df. 4.1.3.2.17,

n n
At = El Eiin - dn (Fiyt Bjgz -+ Qjn) = 21 €1ine - -in (@1j; B2jp + -+ Cnjy)
3= i=
N
= 2 ei1iz  in (arill Qg2 -« a‘»"") = iA1
i=1

since the summation by j has exactly the same effect as the summation b_y_ 1, both going from 1 to =,
and the interchange of i and j does not affect the transposition, ie. e€1'2 "' =€, .. ;. which is
quite obvious from the definition of permutation.

Note. The only difference, a superficial one, is that the first (by %) is summed row-wise and the
second (by j) column-wise, which cannot affect the final result as long as A is a square matrix; e.g.,

Q11 Q21

ATl =
a1z Q22

12
= €'guan + €'apan = ?auan + Slanc = IAl

Hence a determinant may be summed over either row or column subscripts, yielding the same
result.

24, If B is a matrix obtained by interchanging two rows (or columns) of a square matrix A,
then |B| = —JA|.

PROOF:

Let A be a matrix of order n, ie. A = (ay), i, =1,2,...,n, and interchange two rows, say ir-th
row and %+~th row, where k=12 ..., and r=0,1,...,n—1; then by hypothesis and
Df. 4.1.3.2.17,

1Bl = geiliz"‘ik+r"‘ik"'in (@it Qiga ++ @iy kotr o Qigke *+» Qigm)
= (-1 DS L IR TR R (i1 Qg2 + - Wil =+ Quy ke - Qi) = (—1)]A] = —]A4|
i=1
25. If two rows (or columns) of a square matrix A are identical, then |A|=0.
PROOF:
If B is a matrix obtained by interchanging two identical rows (or columns) of A, then B = A,
which implies |B| = |A|, since the interchange of the identical rows (or columns) yields the same

matrix A. On the other hand it follows, by Prob. 24 above, that the interchange of two rows (or
columns) yields, ipso facto,

Bl = —|4]
where |B| =|A| in this context. Hence |A| = —]A|, ie. 2|A| =0, which implies |A| =0, com-
pleting the proof.

26. If B is a matrix obtained by multiplying every element of one row (or column) of a
square matrix A by a constant ¢, then |B| = c|A]|.
PROOF:
Let the i-th row be multiplied by ¢; then, by hypothesis,

" n
|B] = S ettty (Biyt b - by -+ biga) = _lfiliz"'i"'”i" (Qigt Qiga -+ CQigke * -+ Wipn)

i=1 i
= S ik @i Gigs -+ ik -~ - @iyn)
= 6(2 €1i e i (@i Qg - - gk -+ ai"n)) = ¢lA]
27. If A is a square matrix of order n, then [cA| = ¢ |A].

PROOF:
By Prob. 26 (or directly by Df.4.1.3.2.17),

[ed] = Jelay)] = [(cay)|

n n
= E €12 in (Cdipr €y - CAiyn) = 2 e iy (@i Qg2 v+ Qi) = " IAI
i=1 i=1
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28. If B is a matrix obtained by adding to each element of a row (or column) of a square
matrix A a constant multiple of the corresponding element of another row {or column),
then |B| = |A].

PROOF:
By hypothesis and by Prob. 25,

n
|B| — EEiliz.‘.iT“.iS..-in (bill bi22"' bi,r"' biss... binn)
. .
— E P S R (aill Qige -~ (ai,r+ caiss) S Qige ainn)
n
= E eittar i g iy (ailx Qigz *** Qi =+ Qigs =+ a/i"n)

n
+ 2 R L (aill Qi+ Cigs *+ Qigs *** Wipn)

n
= |4 + c(zeiliz...is...is...in (aillaiZZ"'aiss"'aiss"'ain’n))

Note. For example: |B] = Z’IEZiz' = Z’::’ + ZZ' = k‘(cl Z’ + gg’
= ko + [20) = 14
i d[ 4]

29. If A,B,C are three square matrices of the same order and are identical except for
their respective k-th rows (or columns), where the k-th row (or column) of C is the
matrix sum of the k-th rows (or columns) of A and B, then |C| = |A|+ |B.
PROOF:

Let the order of A,B,C be n; then, by hypothesis and Prob. 28,

Icy = > i i i, (€31 Ciga +++ Cigke + ++ Ciyn)
= E elrle i iy (Cigt Cipa + - (@i + D) <<+ €iym)
n n
— 2 eiriar - ik e vip (Cill Cigz * " Qigk - Ci,,n) —~+ 2 ebtfar s dge - iy (cill Cigz -+ bik,c o Cign)
i i=1

n
— 2 eiatar i iy (aill Qigz ** Bigghe ainﬂ) +- E ehiter - i iy (bill bi22 bikk binn)
i=1

i=1
= |4] + |B]
Note. TFor example: atad b+d _ |ab]| , |a ¥
¢ d c d c d
30. If D+ 0, where
ai11 Q2 Ain
D = 21 Qo2 Aon
An1 On2 Ann
then n vectors a1 = (@11, s, ..., Q), a2 = (A21,Q22, ..., 02m), ..., an = (@nts Anz, . . «» Qun)
are linearly independent.

PROOF:
If D50, then the following » simultaneous linear equations

k1 X1 + Gk Xz + o0 F Qe Xk = dx, k=12,...n

are found, by the so-called Cramer’s rule (cf. College Algebra), to have = solutions of the form:
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dir Q12 ... Quk-» &1 Qi+ ... Qin
A1 Q22 ... Q-1 Az O2k+n) ... Q2n
An1 An2 ... Qagk-1 On Onk+1) ... Onn
Xk =
D
and 1 = % = — %, =0 iff ¢, = az = - = ax = 0. Hence Ziar+ Zzaz+ -+ + Tnaw = 0 iff
Xy = X2 = = x, = 0, which by Df.4.1.3.2.4 proves ai,az ...,an to be linearly independent.

31. The simultaneous linear equations of the form

A1 X1 + Qigs + ... + ankn = O, 1=12,...,n (1)
have solutions other than z1=x:= ... =2, =0 iff D =0, where
aip A1z ... Qin
D = a21 A2z Q2n
An1 On2 Ann
PROOF:
In Prob. 80, 1 = %2 = --- = 2, = 0 iff D0 and a1 = a2 = --- = a. = 0. Hence it follows at
once that D = 0 if there are solutions other than «; = %2 = --- = 2, = 0 when a1 =a: = --- = . = 0,

which is exactly the hypothesis given at the start.
Conversely, if D = 0, then by induction:
(i) @uxi =0 implies solutions other than 0, since D = |au| = 0 implies that x: may take non-zero
value. Likewise the equations
anxr + azrs = 0

A%y + dazxa = 0

have solutions other than 0 if D =0, as can be readily verified.

(ii) In general, let at least a1 # 0 (since all au=0, 1=12,...,n imply outright that there are
solutions other than 0), which changes the first equation of (1) to

au(xx + (am/an)xz + o+ (am/au)xn) = 0 (2)
by which the equations of (I) are changed to
arX = 0
anX + baxs + bogxs + --- + baata = 0 (3)
a1 X + bn2®2 + bps®s + - + bunn = O
where X = x4 (a12/a11)x2 + .+ (aln/(ln)xn and
bij = Qij — (151((11]'/(1/11), ’l:,j = 2,3,. A (2
Since it was assumed that a.;# 0, it follows immediately from (2) that X =0, by which (3) is
changed to
b22 x: + bea s + + b2n e = 0
................................. (4)
bua e + basws + - + bk = 0

But, by hypothesis and from (3),
a1 Q2 ... Gin an 0 ... 0
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*32.

33.

which implies that, since a:; # 0,
D o= | = 0 (%)

which, together with (4), implies by induction that D’=0 entails solutions other than 0 for
the equations of (4). Hence, by induction, D =0 implies solutions other than 0 for the equations
of (1), completing the proof.

If yi(x), ya(x), . . ., yn(x) are solutions of
(D™ + @ (@YD + o+ gy = 0 (1)

over an interval, then y1(x), y2(2), .. .,¥a(x) are linearly independent iff W(x) - 0, where
W(zx) is the so-called Wronskian, viz.,

Y1() Y2(x) cee Yn(@)
¥, (2) v ... Yl(2)

yl(n-—l) (x) yz(n—l) (x) . yr(ln—l) (x)

W) =

PROOF:

If yi(x),y2(x), ..., y«(x) are linearly independent, then y = ciy:(®) + coyn(w) + -~ + CnYa(x) is
obviously the general solution of (7). Hence it must be possible to satisfy arbitrary initial conditions,
which directly imply simultaneous linear equations for ei, cs, ...,cs, the determinant of which is
W(x0), where W(xo) # 0, since the equations can be solved for ey, es, ..., C.

Conversely, if W(x)+ 0, the functions yi(x), :=1,2,...,m,, must be linearly independent; for,
otherwise, diyi(@) + daye(x) + - + dayul®) = 0 2)

for some suitable constants di, i=1,2,...,n, not all of which are zero, implying that (2) can be
differentiated (n--1) times to

diyj(x) + day(x) + - + doyalx) = 0

................................................ 3)
Ay (@) + YT @) + e+ dy V@) = 0

where the d’s must satisfy n homogeneous equations of (2) and (2), which is possible, by Prob. 31, iff
di=dy = ... =d. =0, contradicting itself.

The functions wi(x), i=12,...,n, are thus linearly independent.

If A and B are square matrices of the same order, then |AB| = |A]|B|.
PROOF:
Let A= ((lij), B= (bij), and C= (cij) = (E ik bkj) = AB, 'i,j,k - 1,2,. Y2 then, by Df. 4.1.3.2.17,

n n n
R ( p Qigky bkll)( E Qigk, bk22) o ( p Qiykey bkn")
1 Ky =1 kp=1 Ky =1

nM;

lc] =

.

n

i (BB S (e, br) sy Bras) - (@i b))

i=1 ky=1 ky=1

M=

]

The first summation being over ¢'s, it applies only to a:«, r=1,2,...,n, and the order of summation
may be interchanged, viz.

n n n n
IC[ = 2 2 (R E ( E €hia e iy (ailkl Qigkey * " Qiyky ))bkll bk22 T bknn
klzl k2:1 kn:l i=1
n
where D = 3 éifa - in (@igky Bige, -+ Qige,) is the determinant of a matrix, the columns ke, r=12,...,n,
i=1

of which are in fact those of A and also, by Prob. 25, D=0 if k. =k, rs=12,...,n. Hence

n n

S - 3Sbp = S Fikckn IAI
k=1 k=1

ky=1 ky=1
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since the non-zero terms of the total summation are only those for which the set of ki, ks, ..., k. is
some ordering of 1,2,...,n. Hence
icy = > ki ok, IAlbkll biyz *++ bgn = |A] Eeklkz"‘kn b1 brge - b = 1A| ‘B]
k=1 k=1

Given =1 and 22+ +1 = 0 (i.e. x is the cubic root of 1), evaluate D? where

1 z x® x®
x x® 2% 1
x> 221 x
21 x 2«2

D =

Solution:
By Prob. 33,

1+x+a2*+1 z+1+22+1 224+ et+a*+x 14+2+1-4+ 2
z+1+22+1 2?2+ +1+1 1+22+1+«x x+ 2+ x + 2?
2tata22+a 1+2°+14+2 x+1+1+ 2 2+1+x2+1
1+x+1+a* oto2f+oeta® 224+1+2+1 1+1+42°+2

11 -2 1 1 0 0 0
11 1 -2 1 0 3 -3 0 1 -1
= |2 1 1 1| = 2 3-3 3| = 21| 1-1 0
1 -2 1 1 1 -3 3 0 -1 1 0

If Ai; is the cofactor of ai; of a square matrix A = (ai;) of order =, then
2 aijAu = |A|Si and 2 ai; Ar; = |A| i
i=1 i=1

1
where 1,7,k = 1,2,...,n, and 8; is the Kronecker delta, viz. ;=1 or 0 according as
1=7 or i+ ] respectively.

PROgFf'Ollows directly from Df. 4.1.8.2.18 and the definition of the Kronecker delta that if j+# k, then
g ayds = [Aldx = 0
and if j =k, then o
iéaiink - ,.éai"Aif = |Al8; = [Al<1 = |4]

which is equivalent to
EGiinj - |Al, 7.,_7: 1,2,...,n
i.e. Df.4.1.3.2.18 itself, verifying the validity of the first formula.

The second formula can be validated likewise, completing the proof.
Note. For example, A = (ay;), 1, =1,2,3, implies

Al = 1EauAu = andAu + anAsn + andas
= izaizAiz = aprdin t+ 6:2An + andin
= 12 asAis = oA+ apsdss + asdas
= anUA;,- = andu + anrzdp + ands
= anZjAzj = Az + a2A + Ao
= Jzangs,- =  qauds + axds + azdss
ta 12”’“‘4"3 = andiz + ands + anda, ete,
# Jzaz,-/h,- =  andg + anAzx + andas, ete.
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36. If D= }aijl, then D* ' = ]Aij’, ,7=12,.. ..
PROOF:
Since D = |ay| = |a;|, by Prob. 25, it follows from Prob. 33 and Prob. 35 that

Qi Q21 ... QOm An A ... A

- Q12 Q22 ... On2 As As ... Az

sl |4l =0 L
Oin A2n ... QOan Am A ... Ann

audAy+ asAa+ - + a1 Am a11A12+a21A22+ cort Gn1 Ane a11A1n+a21A2n+ R TV
At @Ayt oo+ el aizAn+ aln+ - + Onz Az e 1z A 1t A2 Aon + - - + an2 A

Aindi + Gonda + - - + A alnA12+a2nA22+ oot G A cee @At @A+ - + G Ann

2 air A E it A S aindin D 0 0
i=1 i=1 i=1
= 2 at2A11 2 a;zAiz 2 (llem — 0D 0 - D
i=1 i=1 i=1 =
2 andi 2 amde S tinAim 00 D
i=1 i=n i=1

Hence D|A1]| - Dn, ie. [Aij[ = D3,

37. Find the adjoint A* of A = (ay), 4,7 = 1,2, 3.

Solution:
By Df.4.1.3.2.18-19,

An An Ay (—l)lﬂéu (—1)2*+1 A, (_1)3“{431
A* = (A4y) = A Asn A = (—1)”2412 (—1)2”@22 ("1)3”/_132
A A As (V1) A (—1)*%2 A (—1)%*% A

Q22 Q23 _ Q12 Qi3 A1z Q13

A3z 33 Q32 0Os33 Q22 Q23

- _ | @21 Q23 A iz _ | @1 Qi3

(22T 211 @31 O3a3 d21 Q23

Q21 Oag a1 Qi A Uiz

A31 Q32 | ast asz Gz1 Q22

38. If A* is the adjoint of 4, then AA* = A*4 = |A].

PROOF:
By Prob. 35,
AA* = (ay)(Ay) = (kg awdi) = (485 = [A](8y)
811 812 ... O1n 10 . 0
= IA| 821 822 ... Om - [a| 01 ...0 _ ‘A| [1| _ !AI
Snlanz ....... ; .ﬂ; 00 ...... 1

Likewise, A*A = [A|, i.e. A*A = AA* = |A|.
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39. Prove Th. 4.1.3.2.21.

40.

41

42

.

PROOF:

By Prob. 38, AA* = A*A = |A|]l], ie [1| = A(A%*/|A]) = (A*/|ADA if [A[#0. Hence
B = A*/|A| such that AB = BA = |1], ie. B=A""

A-! is unique; since if there exists C, C # B, such that AC = CA = [1], then C= i =@A1A)C
—A-1(AC)=A'|l|=A'=B.

1 1 1
Find |A|, A*, and A7, given a square matrix: A = | -1 3 -2
-4 -6 3
Solution:
3 —2| | 1 1 11 ]
—6 3 —6 3 3 —2
1 — -3 —9 =5
1A = 26, and Ax = —_i ‘z _i :1)) - _i _; = 1m 7 1
18 2 4
-1 3| 111 11
L —4 —6 -4 —6 -1 3
-3 —9 =5
Hence A~! = A*/|[A] = 1/26-| 11 7 1
18 2 4
If A and B are nonsingular, then

() (AB)* = B*A*,  (ii) (AB)'=B 1A~

PROOF:
(i) By Prob. 38, AB(AB)* = |AB]| |1], which implies, by Prob. 33,
A*AB(AB)* = A*|AB|1]|
which in turn implies
|A|B(AB)* = A*{A||B|
from which it follows, dividing both sides by [A]| =0,
B(AB)* = A*|B|

Repeating the process, B(4AB)* = A*|B| - B*B(AB)* = B*A*|B| - |B|[1(AB)* = B*A*|B| -

(AB)* = B*A*.
(ii) Likewise, (AB)"*AB =|1| - (AB)"'ABB~' =|[1|B™" ~ (AB)'All| = B! > (AB)"'AA™" =

B-1A-' > (AB)"'|l| = B'A~' > (AB)™' = B'A"". (Or what is the same, AB(AB)™" = |1
> (AB)™' = B 'A"')

Note. Both results can be readily generalized to
(i) (A1d:2... A" = AFA} .. A, (if) (A1A:...A)"" = AJALL AT

if A, A, ...,A. are nonsingular.

Prove Th. 4.1.3.2.22.
PROOF:
A satisfies R1-8 as follows: R1-5, by Th. 4.1.3.2.11; R6, by Df.4.1.3.2.12; R7, by Prob. 17; RS, by

Prob. 18. Since multiplication is not commutative in A(cf. Df.4.1.8.2.12), A is thus a noncommutative
ring. .



Chapter 4.2

“Subrings
“§4.2.1 Subrings in General

Df.4.21.1 A ring X is said to be embedded in a ring Y if Y contains a subring X’
isomorphic to X. Y is then called an extension (cf. Df.5.3.1.5) of X.

In general, a set S is embedded in a set R if S is a subset of R while the operative
rules for the elements of S are the same whether these elements are considered in
S or R.

Example:

As in Th. 4.1.2.8.8, the integral domain I of all integers can be embedded as a subdomain in a
field @, each element of which is a quotient of integers of I; cf. also Th.4.1.1.10-11.

Th.4.21.2 Any ring R can be embedded in a ring R’ with unity. (Cf. Prob. 1.)

Such an embedding theorem as above is to prove the existence of an algebraic
structure with prescribed properties which contains a substructure isomorphic to a
given structure, as is exemplified in the following theorems.

Th.4.2.1.3 The set M of all multiples of the unity 1 of an integral domain D is a minimal
subdomain of D. M is then isomorphic to the set I of all integers if D has charac-
teristic zero while it is isomorphic to the set I’ of integers modulo p, a prime, if D
has characteristic p. (Cf. Prob. 2.)

This theorem may be slightly modified into the following form:

Th.4.2.1.4 A field F; of characteristic zero contains a subfield F'{ isomorphic to the field
R of rational numbers, and a field F» of characteristic P, a prime, contains a subfield
F isomorphic to the ring P of integers modulo p. (Cf. Th.4.1.2.3.8, and Prob. 3
below.)
This theorem implies that every field contains a unique subfield which contains
no proper subfields; i.e. every field contains one, and only one prime field (cf.
Df.4.1.2.4.2b and Supplementary Prob. 3.25).

The prime field can be defined to be the meet (or intersection) of all subfields
of a field F, since the intersection of any number of subfields is again a subfield,
which is no doubt the smallest (cf. Prob. 4 below); the only prime fields of F, are
then the field R of rational numbers and the field P of integers modulo p.

Th. 4.2.1.5 For every integral domain D there exists a field @ containing a subdomain
D’ isomorphic to D (cf. Th.4.1.2.3.8), which is the set of all quotients of the form:
a’/b’, where a’,b’eD’ and b #0. (Cf. Prob. 5.)

Th.4.2.1.6 If F is a field which contains a subdomain D’ isomorphic to an integral

domain D, then the set F’ of all quotients of the form: a”’/b”, where a”,b”eD”,
b 70, is a subfield isomorphic to @, obtained by Th.4.2.1.5. (Cf. Prob. 6.)

198
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The results, obtained by Th.4.2.1.5-6 (and Th.4.1.1.11), make it now self-evident
that every integral domain D can be embedded in a field, and actually is contained
in a quotient field @ which is the smallest field containing D. If D is here equated
to be the domain I of integers, then the field R of rational numbers can be actually
constructed from the integers simply by defining R to be the quotient field of I
(cf. §5.1.1, Prob. 1-4).

Solved Problems

Prove Th.4.2.1.2.
PROOF:

Let I be the ring of integers and R’ be the cartesian product (cf. Df.2.2.2.3) of I by R, ie.
R' = IXxR = {(a,b)}, where acl, beR, and (ai,b:) = (as, b)) iff a1 =a. and by =b;, where ael
and b;e R, 1=12,....

Define, then, addition and multiplication in R’
R'1: (@1, b1) + (@2, b2) = (a1 + az, bi+ b2)
R'6:  (as, bi){as, b:) = (aiaz, aibs+ azbi+ biby)

Other properties in R’ are then found as follows:
R2:  (ay b)) + (a2, b2) + (a3,b5) = (a1t (azt as), bi+(b2+b3)) = ((ar+a2)+as (bit+ b2) + bs)

= (a1, b1) + (a2, b2)) + (as, bs)

R'3:  (0,0)
R'4: —(a1, b)) = (—a1, —by)
R’5: (al, bl) + (az, bz) - ((lx + az, b, + bz) = (az + a, b + bx) = (a2, bz) + (al, bl)
R'7: (a1, b)((az, b2){(as, bs)) = (a1, bi)(a:as, azbs + asb: + babs)
= (al(azaa), al(((lzba + asbs + b2b3) + b1(a2a3) + b;(azba + ash: + bzba))
= ((@1@2)as, (01a2)bs + (@:bs + asby + bib2)as + (a1b2 + azbi + bib2)bs)
= (asas, aibs + @by + biba)(as, bs) = (a1, b1)(as, b2))(as, ba)
R'8  (an, bi){{az, bs) + (as,b3)) = (a1, bi)(az+ as, ba+ bs)
= (au(az + as), ai(be + bs) + bi(az + as) + bi(bz + b3))
= (@02 + aias, (aibz+ aibs) + (a201+ ashy) + (bibz + bibs))
= (alaz, a:1b: + asb: + ble) + (alas, aibs + asb: + b1b3)
= (a1, bi)(as, b2) + (a1, b1){as, bs)
Likewise, ((al,bl) + (az, bz))(as, ba) = ((74, bx)(as, ba) + ((l2, bz)(aa, ba)
R'10: (1,0)

Hence R’ is a ring with unity.
Now, let a subset of R’ be Ri, whose elements are of the form (0, b); then, since
0,b1) + (0,b2) = (0,bi+bs), (0,5:)(0,b:) = (0,b1b2), 0 = (0,0), —(0,b) = (0,—by)
R} is a subring of R'.

Furthermore, the substitution b = (0,b;) sets up a 1-1 mapping: b;<> b/, which reveals an
isomorphism of R into R{. Hence R is now embedded in R’.

Note. As is evident in the above context, the set I of integers is also embedded in R’, since the
mapping: a: <> (a:,0) is an isomorphism of I into a subring R; of R’.
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2. Prove Th.4.2.1.3.
PROOF:
() Let M be the set of all multiples of the form = -* 1, nel, of the multiplicative identity 1 of the
integral domain D. Then it immediately follows that a- 1, b+1 e M implies
a*l+b-1 = (@+b)+1eM, (a-1)(b-1) = (ab)-1c M,
01 = 1eM, —(a*l) = —aq+1eM

Hence M is a subdomain of D.

Furthermore, since any subdomain D’ of D must contain 1 of D, and since D’ is closed
under addition, D’ must contain all multiples of 1. Hence McD’, proving that M is the least
subdomain of D.

(ii) Let H be the homomorphic mapping of I onto M, ie.
H: Hmnm)-> n-1l, nel

Then, if D has characteristic zero, H is a 1-1 mapping of I into M, since a*1 = b+1, a=b,
implies {(a—b)*1 = 0, which in turn implies a—b=0, ie. a= b, since the characteristic of 1
itself is zero. Hence M is isomorphic to I.

(iii) If D is of a prime characteristic p, then it is first to be proved that, for every a0, a+*1 = 0

implies p]|a.

Since p is a prime, (p,a) = 1 or p, ie. by Df. 4.1.2.2.18,

(p,a) = rp + sa, rsel

But, if a*1 = 0, then (pa)*1 = (rp)*1+ (sa)-1 = »(p- 1) + s(a*1) = 0, which implies
(p,a) =p, since 1+#0. Hence pla.

It is to be proved, secondly, that the mapping F, viz.

F: F({n}) © n-1

where nel and {n} is a subset of the residue class modulo p, is 1-1, i.e. that a+1 = b1 iff
{a} ={b} (mod p).

If {a} ={b} (modp), then a—b = p-q, qel, ie. (@=bd)+1 = (p+gq)+*1 = q+(p+1) = 0,
which implies a<1 = b-1.

Conversely, if a+1 = b1, then (a—b)*1 = 0, and since, by Df.4.1.2.219, a—b = p+q
for some ¢el, it follows, by Df.4.1.2.2.20, that a1 = b+1 implies {a} = {b} (mod p).

Furthermore, since {a}+{b} < (a*1)+(b+1) and {a}+{b} < (a+1)+(b+1), the
mapping F' is an isomorphism of M into the residue class I’ modulo p, which verifies that I’ is a
subdomain of D of characteristic p.

This completes the proof.

3. Prove Th.4.2.1.4.
PROOF:

Since F' is a fortiori an integral domain, the set I of integers is the least subfield of Fy, by
Th.4.2.1.3 above. Also n™'e F; for every nel, n+0, since F; is a field. Hence F'; contains a subfield
F{ isomorphic to the quotient field @ (cf. Th. 4.1.2.3.7), which in turn is isomorphic to the set R of
rational numbers (cf. Th.4.1.2.3.9). I being the least subdomain of Fi, R is then evidently the least
subfield of F';.

The rest is proved by two isomorphisms: F.<«>D and P<I', D and I' being defined by
Th. 4.2.1.3 above.

4. The meet of any number of subfields of a field F' is again a subfield of F.
PROOF:

Let M =nS, ¢=12,...,n, where any of S; is a subfield of F; then M contains, by definition,
all elements which are contained in any of S;, where all of F1-11 are satisfied, again by definition.
Hence M contains 0 and 1, and if a,beM, then a+b, —a, a*b, a"'e M, satisfying Df.4.1.2.4.2a.

M is thus a subfield of F.
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5. Prove Th.4.2.1.4.
PROOF:

Since Q has already been proved, by Th.4.1.2.3.7, to be a field, let D’ be a subset of @ whose
elements are of the form (a, ¢), where acl and e is the unity of D. Then the mapping M:

M(a) <> (a,¢)
is an isomorphism (cf. Th.4.2.1.3,ii) of D’ into D.
Hence D’ is an integral domain.

Furthermore, D’CQ implies a'/b’eQ, where ¢ ,b'eD’ and b’ +*0, and moreover, since any
element (a,b) £ Q is the solution (a,e)/(b,e) of an equation (b,e)(x,y) = (a,e) in D', every element of @
is a quotient of the form a'/b’.

6. Prove Th.4.2.1.6.
PROOF:
Since, by hypothesis, D is isomorphic to D'’ CF, let the isomorphism be defined by the mapping M,
for every aceD: M(@) <> a” ¢ D"

Then the mapping M’, defined by
M'((a,b)) < M(a)/M(b) < a'/b" e F’

for all (a,b) £ Q, is also an isomorphism, viz. of F’ into Q, where F’ is obviously a subfield of F.

*§4.2.2 Ideals

Df.4.2.2.1 An ideal I in a ring R is an additive subgroup of R with the closure property
that ael and re R imply ar,racl.

Since ar=ra in a commutative ring, the first definition may be modified as
follows:

Df.4221a An ideal I in a commutative ring R is an additive subgroup of R with the
closure property that ael and reR imply arel (or what is the same, rael).
Example:

The set E of even integers in the ring I of integers is an ideal (cf. Prob. 3); so is the set M of
all multiples of an integer, say 5, in I, or indeed the ring I in I itself, as can be verified without
difficulty.

It must be emphasized, however, that these two definitions yield no ideals other
than those in a (commutative) ring; ideals in an algebraic number field, for instance,
are defined otherwise.

Ideals in a ring in general may be defined also in terms of cosets (cf. Df.3.2.2.2),
viz.

Df.4.2.2.1b An ideal I is a subring of a ring R if 7ICI and IrCcI for every reR.

If ideals are defined by this definition, then the following definition of ideals
becomes deducible, viz.

Th.4.22.2 A complex C of a ring R is an ideal iff (a—b),ar,ra ¢ C for every a,beC
and reR. (Cf. Prob. 2.)



202 PART 4 — ALGEBRA OF RINGS [CHAP. 4.2

Df.4.2.2.1b and Th.4.2.2.2 can be simplified, like Th.4.2.2.1a, if R is defined to
be commutative. Since a ring is not always commutative under multiplication, how-
ever, it is possible, though seldom practiced in the following pages, to consider one-
sided ideals as follows:

Df.4.223 An ideal I is a left-ideal if acl and reR, as in Th.4.2.2.1, imply only rael,
and a right-ideal if they imply only arel. Ideals in a commutative ring are then
called, in the same context, two-sided ideals or, as below, simply ideals.

The concept of one-sided ideals is not superfluous, since it may be employed, for
instance, to characterize sfields (cf. Supplementary Prob. 4.58).

As has already been observed, the whole ring R, like J in the first example, is
always an ideal, just as any group is a subgroup of itself. Of rings as such, the
whole ring R and the minimal ring 0 are specially defined as follows:

Df.4.224 The whole set R and the set 0 of the zero element alone of a ring R are called
the tmproper (or trivial) ideals, while all other ideals are called proper. Of the two
trivial ideals R and 0, the latter is sometimes called the zero ideal and any other
ideal a nonzero ideal.

These trivial ideals may not be literally trivial, since they may be able to charac-
terize some important sets, e.g.

Th.4.225 A sfield F* has only the two trivial ideals; so does a field F. (Cf. Prob. 7.)

More significantly, the ring I of integers also has a special name for its special
role in the theory of ideals, viz.

Df.4.22.6 The ring I of integers is called the wunit ideal, denoted by (1), if it is to be
considered an ideal in I itself or generally in a commutative ring R with unity; i.e.
I=(1). (Cf. Prob. 8-9.)

I is obviously an ideal generated by the unity itself, and every element of I is
thus a multiple of 1. More generally, the set M of all multiples of an integer =,
denoted by (n), is also an ideal in I (cf. Prob. 4-5); hence the following definition.

Df. 4.23.7 An ideal, each element of which is a multiple of an element a of a commu-
tative ring R with unity, is said to be generated by a, called a principal ideal, and
denoted by (a).

I is thus a principal ideal, which is further characterized as follows:

Th.4.22.8 Every ideal in I is principal. (Cf. Prob. 5.)

This theorem is actually a restatement of the Division Algorithm for integers,
and the similar algorithm for polynomials over a field F (ef. Th.5.3.1.2) will yield
a similar theorem:

Th.4.229 Every ideal in the domain F(x) of polynomials over a field F is principal.
(Cf. Prob. 6.)

Since ideals in a ring are not always principal, the rings of Th. 4.2.2.8-9 are in a
class by themselves, viz.

Df.4.22.10 A commutative ring R is called a principal ideal ring if R has the property
that every ideal in R is a principal ideal.
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Besides I and F(x), given above, there are of course other principal ideal rings;
e.g. the ring obtained by the following definition:

Df. 42211 A ring E is called Euclidean if a nonnegative integer #(a) can be assigned
to ae E such that (i) #(ab)=1#(a) for be E and ab+0, and (ii) there always exist
q,re E such that b = ga+r, for any a+0,b ¢ E, where either #(a) > #(r) or r=0.

E is a principal ideal ring (cf. Prob. 9), which is in fact an analog of the Euclidean
Algorithm (cf. §4.1.2.3, Prob. 31), generalized to arbitrary rings.

Since the principal ideal (¢) generated by an element a of a ring R generally
contains all elements of the form ra + na, where r,ae R and nel (cf. Prob. 8 below),

a natural extension is the ideal (ai, @2, ...,az) in R generated by the finite number

of elements a1,@s,. . .,0, ¢ B, which is the set of elements of the form E ari + Y amn,
T 7

i,j=12,...,m, where rieR and njel. The elements a0z ...,a. are then said

to form a basis of the ideal. (The principal ideal (a) is thus, in this context, an
ideal with a basis consisting of only one element a.)

This is further generalized by the sums and products of ideals, defined as follows.

Df.4.2.2.12 The (direct) sum of any two ideals A and B is the set {a:+b;}, where aicA
and b;e B, and the product of A and B is the set {ZSaib;}, 1=1.2,...,m; i=12,...n

In general, then, two ideals A and B in a commutative ring B generated by bases
A = (a1,02, ...,am) and B = (by,bs, ..., bs), imply that their sum is of the form
S aiwi + 3, bjy;, where the basis is
T 7

(al,...,am)+(b1,.-.,bn) - (al,-..,am,bl,...,bn)
and their product is of the form (X aixi)(zb,-yj), where the basis is
i j

(al, . eny am) * (bl, ey bn) - (albly albz, . ey ambn—l, ambn)

Solved Problems

1. An ideal I in a ring R is necessarily a subring of R.
PROOF:

Since I is an additive subgroup of R by Df.4.2.2.1, ael implies a—a = 0el, 0—a = —acl
and a+b =a—(—b)el.

Furthermore, by the given closure property, a,b ¢l implies ab,ba ¢ I.
Hence, by Df.4.1.1.7, I is a subring of R.

2. Prove Th.4.2.2.2.
PROOF:

(i) If (a—b)eC and ar,ra € C for every abeC and reR, then it immediately follows, from
Th. 4.1.1.7, that C is a subring of R.

Hence rCCC and CrcC for every reR, which proves, by the second definition of
Df. 4.2.2.1, that C is an ideal.

(ii) Conversely, if C is an ideal in a ring R, then, by Prob. 1 above, it is necessarily a subring of R,
which implies (a — b),ar,ra ¢ C for every a,beC and reR, completing the proof.
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The set E of even integers, which is evidently a group under addition, forms an ideal
in the ring I of all integers.
PROOF:

Let a,bceE, where a¢=2a’ and b=20 for every a'b'el; then a—b = 2¢—20 =
2(a’—b') e E. Also, for every rel, ar = ra = 2ra’c E. Hence, by Df. 4.2.2.2, E is an ideal.

The set M of all multiples of an integer n, denoted by (n), is an ideal in 1.
PROOF:

For every a,beM, where a=na’ and b=ub" for any ab'el, a—b = na —nb =
n(@’—b)e M, and also for every mel, am = ma = n(a'm) e M.  Furthermore, (n) is an additive
subgroup of I, since 0 = n+0¢(n) and —a = —na = n(—a) e (n). Hence (n) is an ideal in I.

The ideal (n), of Prob. 4, is the only ideal in I.
PROOF:

(i) Assume that a non-empty set L, Lcl, is an ideal in I; then L must have at least one element,
say 0, which, however, at once implies that L = (0). If L has only one element other than 0,
say 7, then manifestly L = (n).

(ii) Assume that L has more than one nonzero element, then L contains some positive integers
("." Lcl, by hypothesis; i.e. L is a ring and contains some additive inverses), where n may denote
the least positive integer in L. If m is any other integer in L, then, by Th. 4.1.2.8, there exist
qre L such that

m = mneq + 7, =rn

Since L is an ideal and me L, ie. reL and ne+*qe L, it follows that. m—n+q = reL and
that » =0 and m = n + g, » being the least positive integer such that » < n. Hence, again, L = (n).
(i) and (ii) exhausting the cases, the proof is complete.

It must be noted that the theorem above, stated in terms of “principal ideals”, yields
Th. 4.2.2.8. Note, also, that all ideals in I are thus unit ideals.

Prove Th.4.2.2.9.

PROOF:

(i) Let F’ be an ideal in Flx], and let F’ =0, viz. the ideal consisting of 0 alone; then, as in
Prob. 5, (i) above, F’=(0), viz. the principal ideal generated by 0, i.e. zero polynomial over F.

(i) Let F’'+40 and g(x) be a non-zero polynomial of the least degree in F’; then, for every
f(®) e Flx], there exist q(x), 7(x) ¢ F[z] such that, by Th. 5.3.1.2,

fl@) = g@)q(x) + r(@), 0 = degr(zx) < deg g(x)

ie. 7)) = f(x)—g(x)q(x), which implies () =0 since degr(x) < deg g(x). Hence
flx) = g(x) g(x), ie. f(x)e(g(x)), proving that every f(x)eF[x] is contained in the principal
ideal (g(x)). Hence F'C(g(x)).

Furthermore, g(x) ¢ F/, ie. (9(x)) CF’. Hence F' = (9(x)), proving that every ideal in
F[x] is principal.

Prove Th.4.2.2.5.
PROOF:

(i) If A is an ideal in a sfield F*, then either A = (0) or A = (0). If A5 (0), then let ac A
and a0, which implies, by Df. 4221, e 'a = 1eA, which in turn implies, by the same
definition, b+*1 = be A for every beF*. Hence A = F*, completing the proof.

(i) The proof of (i) ean be repeated, a fortiori, for a field F.
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8. If R is a commutative ring with unity and I the set of all integers, then the set S of all
elements of the form ra+na, where a,7e R and nel, is a principal ideal (a).
PROOF:

Let s1,s:¢S, where s = ra-+ma, s = 70+ naq, and r,r:e R, nyn:el. Then S is an
ideal in R, since S is evidently an additive subgroup of E and furthermore s8:—8 = (ri1—r2)a +
(mi—m)a = ma+mnwa = 88 and, for any ReR,

rs1 = rra+ma) = (pritrm)e = ra + 0ca = sieS

S is also a principal ideal (a), since R has a unity ¢ and

ra +na = ra+ nlea) = (r+ne)a = r'a, reR

9, Every Euclidean ring is a principal ideal ring.
PROOF:
Let E be a Euclidean ring and I an ideal in E.

If I is the zero ideal (ef. Df.4.2.24), it is trivially principal, and if it is not, then there must
exist nonzero elements in I, one of which, say a, may be chosen such that #(a) > 7(c) for ¢g¢I. Then,
by the following reason, I is exactly the principal ideal generated by a.

Since E is given as a Euclidean ring, b = qa+r for every bel and some g¢,re¢E imply that
either 7i(a) >#(b) or r=0. The latter follows at once, however, since %(a) has already been made
minimal. Hence b =ga, implying that every element b in I is thus a multiple of the generating
element a and that IC(a), while (a)Cl, since acI. Hence I = (a), completing the proof.

*84.2.3 Quotient Rings

Df.423.1 If R is a ring and M an ideal in R, then the set Q of elements of the form
r +m, for a fixed element 7 R and every me M, is called a residue class (or remainder
class) in R.

The set Q, viz. r + M, is evidently a coset in terms of an additive group, just as
9Gi, g€ G, is a coset in group theory (cf. Df.4.2.2.2). In the same sense, two residue
classes 71+ M and 7.+ M, where ri,7: ¢ B, may be interpreted in terms of modules
(i.e. additive Abelian groups) and considered equivalent, viz. 71 =7 (mod M) iff
ri—7r2e M. (Cf. Prob. 1.) This is a generalization of congruences, formulated in terms
of ideals as follows.

Th. 4.2.3.2 If R is a commutative ring, M an ideal in R, and every a,b,c,de R, then a=1>
(mod M) and ¢ =d (mod M) imply (i) at+c =b+d (mod M), (ii) ac=0bd (mod M),
and (iii) ar = br (mod M) for any reR. (Cf. Prob. 2.)

This theorem indicates that residue classes function in rings in analogy to groups
(Th. 3.2.6.8-9). The analogy becomes closer still when the cosets, i.e. residue classes,
in a commutative ring R, which partition R into non-overlapping complexes of R
(ef. Th.3.2.2.6), actually form a ring.

Th. 4.2.3.3 The set Q of residue classes of an ideal 4 in a commutative ring R is a ring.
(Cf. Prob. 3.)
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It is but natural at this juncture to call the set Q of Df.4.2.3.1 a quotient ring,
analogous to a quotient group, since an ideal 4 in a commutative ring R is a normal
subgroup of the additive group of R, which implies, as has already been seen, that
the elements of R can be separated into cosets of 4 in R, viz. residue classes of R
modulo A, an ideal. Hence the following restatement of Df.4.2.3.1.

Df.4.2.3.1a The residue class Q of elements of the form r+a, for a fixed element reR,
a ring, and every aeA, an ideal in R, is called a quotient ring (or factor ring),
denoted by R/A.

This notation is plainly in accordance with the quotient group G/G: of G by G;
(or what is the same, the factor group of G: in G) in group theory (cf. Df.3.2.5.2),
where G; is a normal subgroup of G.

The analogy goes further, as is obvious in the following theorems of homo-
morphisms.

Th.4.23.4 The set S of elements mapped onto zero in any homomorphism of a ring R
is an ideal in R. (Cf. Prob. 6.)

This theorem, as well as others below, articulates a functional similarity between
normal subgroups in a group (cf. Th.8.2.5.8) and ideals in a ring, even up to the
“kernel” (cf. Df.3.2.5.9) of homomorphism, which is S in the above context, just as
C in the following theorem:

Th.4.23.5 If a homomorphism H of a ring R onto a ring R’ is a mapping of a complex
C of R onto the zero element of R’, then C is an ideal in R and R/C is isomorphic
to B’. (Cf. Prob. 7, and also cf. Th.3.2.6.18.)

Sometimes, parallel to proper and improper ideals, homomorphic images may be
classified as follows:

Df.4.2.3.6 A homomorphism which maps a proper ideal in a ring or the whole ring
onto zero is called proper; otherwise, it is called improper.

It follows at once, then, that a sfield F* or a field F has no proper homomorphic
images, since F'* or F has no proper ideals (cf. Th.4.2.2.5).

* * * * *

In relation to quotient rings, two special types of ideals may be studied separately.

Df.4.23.7 An ideal P in a ring R is called a prime ideal if abe P implies either aeP
or beP.
Example:

The principal ideal (3) is prime, since abe(3) implies that ¢ or b must be a multiple of 3,
while (10) is not prime, since e.g. 20 & (10), yet 20 = 4+5 implies 4 ¢ (10) and 5¢(10).

Th.4.2.3.8 The quotient ring @ =R/P, where P is an ideal in a commutative ring R

with unity, is an integral domain iff P is prime. (Cf. Prob. 8.)
Example:

The quotient ring R/{10} cannot form an integral domain, since some nonzero elements such as
(2 (10)) and (5 + (10)) may turn out to be zero-divisors (since (2+ (10))«(5+ (10)) = 10+ (10) =
(10)).

As a matter of fact, every element which is neither zero nor prime (cf.
Df.4.1.2.3.12) in an integral domain, where the unique factorization theorem (ef.
Th.4.1.2.3.17) holds, generates a nonprime ideal (cf. Supplementary Prob. 4.57).
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Example:

The ideals (3), (5), (7),ete. are all prime in I; so is (x*+2) in R{x}, of polynomials over the
field R of real numbers, although it is not a prime ideal in C{x}, of polynomials over the field C of
complex numbers, since x*+2 = (x + V2i)(x — V/2i) is certainly not a prime element in C{x}.

The concept of prime ideals may be further articulated through maximal ideals,
defined parallel to maximal normal subgroups (cf. Df.3.2.7.1).

Df.4.239 An ideal M in a ring R is called maximal if an ideal M’ which properly con-

tains M cannot be properly contained in E.
Example:

The principal ideal (4) in the ring I of integers is not maximal, since (4) is properly contained
in (2), which in turn is properly contained in (1) =1I; the principal ideal (3), however, is maximal,
since it is properly contained only in (1) =1.

Th. 42.3.10 The quotient ring Q = R/M, where R is a commutative ring with unity

1.

and M is an ideal in R, is a field iff M is a maximal ideal in E. (Cf. Prob. 10.)

Solved Problems

Given an ideal M in a commutative ring R and 7i,72¢ R, prove that r, =7 (mod M)
iff ri—ry is in M.
PROOF:

Since any ideal, say M, in a commutative ring B satisfies the definition of a normal subgroup
(cf. Df.3.2.5.3) under addition (i.e. instead of “°” or “*” multiplication under which Df.4.2,5.3 is
defined), and since, by Df.4.2.3.1, a residue class modulo an ideal M can partition R into disjoint
cosets of M in R, the cosets are now given under addition, i.e. of the form r,+ M, where r; is any
element of RB.

Furthermore, since «G:=bG: in a subgroup G: of a group G (under multiplication), to which
a and b belong, iff a~'beGi, or what is virtually the same in this context, iff ab 'eG; it can be
translated in terms of addition, viz. ¢ +G; = b+ G; iff a— b e Gi.. Translate, then, G: in G into M,
an ideal, in B and a,be G into 7,72 ¢ R, and the proof is complete.

Note. For example, M = (2) in a ring C of complex numbers of the form a + bi, where a,bel and

i=1/—1, implies the following four distinct residue classes, viz. (2), 1+ (2), i+ (2), 1+i+(2), all of
which may be represented by their general form a+ bi = ¢+ di (mod (2)), where 0=c,d <2,

Prove Th.4.2.3.2.
PROOF:
(This is merely a restatement of Th. 3.2.6.8-9 in terms of modulo ideals (instead of integers).)

() Since, by hypothesis, (¢ —b),(c—d) ¢ M, it immediately follows that (a—b)+(c—d) =
(a+c)—(b+d) e M, ie. a+c¢ = b+d (modM).

(ii) Since, as above, (a—b),(c—d) e M, it follows that c(a—bd),(c—d)b ¢ M and c(a—b)+
(c—d)b = ac—bd e M, ie. ac=bd (modM).

(iii) (@—b)e M implies (a—b)reM for every recR, which in turn implies ar—bre M, ie.
ar = br (mod M).
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Prove Th. 4.2.8.3.
PROOF:

The two binary operations in the set @ of residue classes are defined, for an ideal A in a com-
mutative ring B and a,b,ce R,

Ql: (a+A) + (b+A4) (@+b) + A (mod A),
Q6: (a+A)*(b+4) (@*b) + A (mod A),
both of which are well-defined, since a¢+A4 = ¢+ A and b+A4 = d+ A imply ab+A = ed+ A

Il

(i.e. ab—cde A, since a = ¢+« and b d+a, zx'eA, imply ab = (ct+a)(d+a) = ed+
(cx’ +dx +2xx') = ed+ 2" ¢ A).
Q2 (a+A) + (b+A)+(c+4) = (a+A4A) + (b+e)+4) = (a+(b+e)) + A

= ((e+bd)te)+ A = ((a+b)+4) + (c+4)

= ((at+A)+(Bd+A) + (c+ A)
Q3: A
QL —(at4d) = (-a)+ 4
Q5 (a+A4)+(Bd+A) = (a+b)+A = (b+a)+ A = (b+A)+ (a+4)
Q7: (a+A)(b+A)c+A) = (a+A)be+A) = albe) + A = (able + A

= (ab+A)c+A) = ((a+A)b+A)(c+A4)
Q8 (a+A)B+A)+(ctA) = (a+A)(b+e)+A4) = alb+te)+ A = (ab+ac) + A
= (ab+A) + (ac+A) = (a+A)b+A) + (a+A)ct+ A)

which completes the proof.

There exists an isomorphism between the set I of integers and the residue classes of
I[x] modulo M, where I[z] is a polynomial ring over I while M is an ideal (x—1), con-
sisting of all elements of the form a(x)(x—1) for any a(x)e I[z].

PROOF:

Since f(x) = (x—1)g(x) + f(1) for any element f(z)eI[x], by Th.4.2.2.9, it follows at once
that  f(x) = f(1) (mod (x —1)), where obviously f(1)el, which implies that an integer may
determine a residue class.

Furthermore, every integer represents a distinct residue class. For a=b5 (mod (x — 1)), i.e.
a—be(x—1), implies «a —b = (x —1) g(x), which in turn implies deg (¢ —b) = deg ((x —1) q (x)) > 0
unless g¢(x) = 0. Hence it must be the case that gq(x) =0, which implies a—b = 0, ie a=25.

Thus two elements of the residue classes of I{x] modulo (x—1), say e+ (x—1) and b+ (z—1),
are distinct, which consequently yield two distinct mappings: e+ (x—1) <> o and b+ (x— 1) & b.
This mapping is isomorphic, since

e+ @—1)+@b+(2x—1) = (a+b) (mod(x—1) < a+b,
(@+ (@—1)+(b+(@—1) = ab (mod(x—1)) < ab

which completes the proof.

Note. The residue classes of I[x] modulo M, the ideal (x —1), is by Df.4.2.3.3 a quotient ring,
of course, and may be denoted by I[x]/(xz — 1), which is thus isomorphic to I. Cf. Prob. 5 below.

The quotient ring I[z])/(2>+1), where I[z] is a polynomial ring over I and (x%+1)
denotes an ideal in I[x], is isomorphic to the field C of complex numbers.
PROOF:

Parallel to Prob. 4 above, every polynomial f(x)eI[x] is now expressed in the form

flx) = (4 1)g(x) + bx + a, abel

which implies that every integral pair (a, b), analogous to every integer & in Prob. 4 above, may be
proved likewise to determine a distinct residue class.

Thus two elements of the quotient ring Ifx|/(x2+41), say a+br+qx)(**+1) = o and
¢+ da+ ¢'(x)(&* + 1) = b’, are distinct, and a+bx = o/ (mod (22 +1)) and ¥ = ¢+ de (mod (x?+ 1))
establish the desired isomorphic mapping of I[x]/(x*+ 1) into C, since a+ bx (mod (x2+ 1)) <> (a,b)
and c¢+ bx (mod (x*>+ 1)) <> (¢,d) imply the isomorphic mappings M and M’
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M: (a+bx)+ (ct+dx) = (a+¢) + (b+d)x (mod (x*+ 1))
o (a,b)+(c,d) = (a+b)+(c+d) = (ate)y+(b+d)i = (at+e,b+d)eC,
M: (a+bx)-(c+dx) = ac+ (ad+ be)w + bdx? = ac — bd + (ad + be)x + (bd(x® + 1))
= (ac—bd) + (ad + bc)x (mod (x* + 1))
< (a,b)+(c,d) = (a+bi)e+di) = (ec—bd) + (ad +be)yi = (ac—bd, ad+be) e C,

completing the proof.

Prove Th.4.2.3.4.
PROOF:

Let H be the given homomorphism; then, by hypothesis,
Hi) = o

for every scS, SCR, where H(R) =R’ and o'¢ R’. Hence, for every re R, si,::¢ S,

and

since, by hypothesis, H(s)) = H(s:) =

H(rs) = H@#H(s:)) = H(@)+o = o
H(slr) = H(S1)H(7‘) = o' H(T) = o
H(si—s:) = H(s;) — H(s) = o —o = o

c\

Hence, by Df.4.2.3.2, S is an ideal in R.

Prove Th.4.2.3.5.
PROOF:

By Th.4.2.3.3, B/C is a ring and, by Th. 4.2.3.4, C is an ideal in E.
Now let H r+C-= ¢

for every re R and H(r) = #'. Then, since C is an ideal, i.e. a normal subgroup of B under addition,
the mapping H can be proved to be 1-1, analogous to Th. 3.2.6.18, viz. two distinct images:

H(ri+C) © r, and H(@r:+C) < 1,

where ri,meR, v+ C,72+C Cc R/C, and r,r;eR’, imply

H((n+C) + (r+C) = H@pitrn+C) < (mt+rn) = 7 +rn = Hr+C) + Hir+C)

and

H(@#+C)*» (r: +C)) = H@w:+C) & (rm) = r/*r; = H@r+C)+ Hr:+C)

Prove Th. 4.2.3.8.
PROOF:

@)
(i)

If R=P, then R/P =(0), which trivially proves the theorem.
If R+ P, then R/P contains at least two classes, viz. « + P and b+ P, where abeR.

Now, if R/P is an integral domain, then ¢ and b can be chosen in such a way that abe P,

which implies (¢ +P)}o+P) = ab+P = P, meaning the product of the two classes zero,
which in turn implies that, since R/P is here an integral domain, one of the classes is zero,
i.e. either a+P = P or b+ P = P, or what is the same, in the notation of congruence:

a=0 (modP) or b=0 (modP).

Hence either ae P or be P if abe P, which immediately implies, by Df.4.2.3.7, that P is a
prime ideal in R.

Conversely, if (a4 P)(b+P) = P, where P is a prime ideal, then ab+P = P since
(a+P)pb+P) = a+ b+ P, which implies ab=0 (modP), which in turn implies ¢=0 or
b =0 (mod P), since P is a prime ideal; thus abe P implies ae P or be P. Hence either a + P = P
or b+ P = P, proving that a + P or b+ P must be the zero element of P if the product of
a+ P and b+ P is zero. Hence P must be an integral domain, completing the proof.
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9. The mapping H: R—> R/A, where R is a ring and A an ideal in R, is homomorphic.
PROOF:

and

Let H: r > r+ A, for every re R; then, for any a,be R and a+A, b+B C R/A,
at+b > H@+b) = a+b+A = (a+A) + (b+4) = Ha) + H(b)
a*b~> H*b) = ab+A = (a+A)b+A4) = Ha)H(b)

Hence R — R/A is a homomorphic mapping, completing the theorem.

10. Prove Th. 4.2.3.10.
PROOF:

*4.1.

“4.2,

4.3.

44.

4.5.

4.6.

)

(i)

If M is a maximal ideal in R, a commutative ring with unity, then M cR implies that R’ = R/M
has at least two classes and, by Prob. 9 above, there exists a homomorphism H: R - R’, where
ab,...eR and a,b’,... e R’ such that o = a+M,b = b+M,..., and of course o = o+ M.

Now, to find the property of F11 (cf. Df.4.1.2.4.1) in E’, let o/ # 0/, which implies a3 M
(since ae M implies @’ = a+ M = M = o, contrary to the assumption). Furthermore, M
being a maximal ideal and a¢ M, any ideal generated by M and ¢ must be the whole ring R
itself, which implies that » = ab+m, for every re R, where be R and me M. Since » is to
denote any element of E, including the unity e of R, it follows that ¢ = ab -+ m, i.e. e=ab (mod M)
or what is the same: (e+ M) = (a + M)(b+ M), which is equivalent, by mapping through H, to
e’ = a'b’, establishing F11 in R’.

Conversely, if M is not a maximal ideal in B when R’ is a field, there must exist an ideal N
such that MCNCR. Then, let meM (and m 'e R, R’ being a field) such that m¢ N, which
implies that, R’ being a field, there exists an element @’ ¢ R’ such that a'm’ = b’, where b’ is an
arbitrary element in R’. Hence, by the mapping H, am=b (mod M), which evidently holds since
MCN. But then meM; hence am =0 (mod N), ie. b=0 (mod N), which implies be N for any
be R, which proves that N = R, thus implying that M is a maximal ideal if R’ is a field.

Supplementary Problems
Part 4

The set of N1-4 (Peano Axioms) of Df.4.1.2.3.1 is categorical (or complete); i.e. any set which satisfies
N1-4 is isomorphic to the set N of natural numbers.

The set of N1-4 (Peano Axioms) is independent; i.e. none of the four axioms among N1-4 is deducible
from the other three.

Addition in N (cf. Df. 4.1.2.3.2) is well-defined; i.e., for every a,b,ce N, the binary operation a+b = ¢
is always possible in N and ¢ is here uniquely determined.

Multiplication in N (ef. Df.4.1.2.3.3) is well-defined; i.e., for every a,b,ce N, the binary operation
of a*b = ¢ exists in N, determining ¢ uniquely.

Subtraction, ie. the inverse operation of addition, in N is well-defined; i.e., for every a,b,ce N,
a—b = ¢ is feasible, determining ¢ uniquely, iff a > b.

If M is a complex of the set N of natural numbers, then M contains a number a such that ¢ = b
for any beM.
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47. Let I be the set of all integers and S be a set which contains the set N of natural numbers; then
I =S iff every element of S is defined by a difference between two elements of N.

48. 'The set I of integers is unique except for the sets isomorphic to I; i.e. every minimal ring containing
the set N of natural numbers is isomorphic to I.

49. If a ring R contains the set N of natural numbers, then R contains also the set I of integers.
4.10(a). The set I of integers is an integral domain, the unity of which is 1eN.
(b). The order of I coincides with the order of N.

4.11. The following theorems hold in N:
(1) For every a,beN, a < b+1 implies a = b.
(ii) For every a,bymne N, (ab)" = a"b", a™a" = a™*", and (a™)" = a™".

Gii) 1" = 1.

412. If (x,y),(y,x),(2,2) ¢ J, then
i @y + e = 0.
i) (x,y) + (2 = ()
(iit) (z,y¥)(z,2) = (z,2).

4.13. The linear Diophantine equation ax + by = m, where a,b,n,2,yel, has a solution iff (a,b) | n.

414. If p is a prime and neither p|a nor p|b, then pfab, and if p|(a—b), then p*|(a®—b?) and
P {(a+ by —ar—b).

415. If @ and b are relatively prime, i.e. (a,b) =1, then (¢ +b,a—b) =1 or 2.
416. For every neN, a = b (mod m) implies a" = b" (mod m).

417. If p is a prime and @? = b® (mod p), then a = b (mod p) or a = —b (mod p).
4.18. If p is a prime and pfa, then ¢*' =1 (mod p).

4.19. If none of ai;, i=1,2,...m, is divisible by 2, then
i) (ma:...an—1)/2 = X(a:—1)/2 (mod 2),

(ii) ((@1az...an)*—1)/8 = 2 (a2—1)/8 (mod 8).
4.20. Given 28x = 8 (mod 44), find «.
421. Find « if 3x =1 (mod 8) and 4x = 3 (mod 11).

4.22. Solve for z in the following simultaneous equations:

x =1 (mod 6), x = 4 (mod 9), z =7 (mod 15)

4.23. If the characteristic of a field F' is a prime p, then for every a,be F,
G (a+br = a?+ b, (i) (@a—b) = a*+ b7, (i) (@+at+. - +ta) = ai+azt+ . +d.

424. Every field contains one, and only one, prime field in itself.
4.25. The characteristic of an ordered field is always zero.

*4,26. 'Th.4.1.2.5.19 holds conversely.
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PART 4 - ALGEBRA OF RINGS [CHAP. 4.2

A polynomial in wi, s, ..., %, represented by the expression of Th.4.1.2.5.19 vanishes iff A, = 0,
i=12,...m.

(@1, 22, .., ) = g(21, 22, .oy @a) in D{wy, 22, ..., %a) iff the terms which constitute f coincide as a
whole with those which constitute 9.

If flen®s,...,20) g (2,22,. . .,2) = 0 in Diwi,xs,. . .24, then fF(@,22,...,2.) =0 or g, xs,. . . ,2.) = 0.
D[x1, 22, . . .»%x) of Th.4.1.2.5.19 is an integral domain.

In Dfxy, @, ..., 24, deg (f(w1, s, . . %)) = m and deg (g9(x:, @, . . %)) = n imply

deg (f(ws, &2, ..., %) g (X1, %2y ..., 20) = M+ 0.

If i=v—1, then

N P A O 26

By Df. 4.1.3.1.11 it follows that, for every d,b ¢ @,
@ lal=0, and la| =0 iff a=0.

() |a+B = |a+ bl

(ii}) |@-d| = |a] |B|.

are quaternions.

Find vectors z, y, z which satisfy the following equations:

(i) 2(-1,3,1) — 2z = (3,4,5).
(i) 3(2,6,1) + 3y = (6,5,4) — y.
(i) a+20+2 = 4(z—a) + 5a — 4(z—b).

Determine whether the following vectors are linearly independent or not: (1,2,7), (—2,5,4), (—1,4,5).

Any finite-dimensional vector space over a field F is isomorphic to V.(F).

If A = [;“ g} and f(x) = #* — (¢ + d)x + (ad— be), then F(A) = 0.

Find a matrix X which satisfies the following equation: [g i:} X = [0].

a 0 0
Find a square matrix X such that AX = XA, where A = [0 b 0} .
0 0 ¢

If A is nonsingular, then
M) A7 =114], i) (A™) =4, (i) (A7) = (A, (iv) (A"H* = A/|AL

If A and B are two square matrices of the same order, then

[AB™| = |B'A| = [A"B| = |BA"| = |A||B|

If A and B are two square matrices of the same order, then
i AD* = 4"7,
(ii) A*B = BA* if AB = BA.
(iii) (4%)* = AjA|~2
(iv) (4%)71 = A/|A|
12 3
Find [A[,A*, |A*],A" ' given A = liZ 5 8}.
38 11
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4.44.

4.45.

4.46.

447.
4.48.
4.49.
4.50.
4.51.
4.52.
4.53.

*4.54.

*4.55.

*4.56.

* 457,

* 4.58.

0 12
PFind ([I] —AX[]+A)7}, given A = [—1 0 3]
-2 -3 0

If A is nonsingular and B is a matrix of the same order as A, there uniquely exist two matrices X
and Y such that AX=B and YA =B and that AB=BA implies X =Y.

If the sum of a finite number of the unity e in F is not zero, then the prime subfield of F is
isomorphic to the set R of rational numbers.

If I is the ring of integers and E the ideal of even integers, then I/E is a ring.

The ideals (10,6) and (6,4) are principal ideals in I, generated by 2; i.e. (10,6) = (6,4) = (2).
Prove, in terms of cyclic groups, that every ideal in the ring I of integers is principal.

If R is a commutative ring with unity and M is a maximal ideal in R, then M is a prime ideal.
Every Euclidean ring contains a unity element.

The integral domain F(x) of polynomials in x over a field F' is a Euclidean ring.

A field is a Euclidean ring.

If () and (b) are two nonzero principal ideals in an integral domain D, then («) =(d) if ¢ and b
are associates in D.

If ¢ and b are two nonzero elements in a Euclidean ring R without zero divisors, then either
7ilab) = fi(a) or 7i(ab) > 7i(a) according as b is a unit or not.

If a principal ideal ring R is also an integral domain and contains a prime element p in itself such
that p|ab, where a,bc R, then pja or p|b or both.

If D is an integral domain in which factorization is uniquely feasible, then every prime element
in D generates a prime ideal.

A ring with a nonzero identity is a sfield iff it has no proper right (or left) ideals.



Part 5— Algebra of Fields ’

Chapter 5.1

Number Fields
§5.1.1 Rational Numbers

Df.5.1.1.1 The rational numbers are the elements of the set R isomorphic to the field Q
of quotients, defined by Th.4.1.2.4.7; the set R as such is called the rational number
field.

R is unique as the minimal field of all fields which contain the integral domain 7
of integers (¢f. Th.4.2.1.3-4 and Prob. 2-3 below); K as such contains no proper
subfields which contain I. Hence the following alternative definition:

Df.5.1.1.1a The rational number field R is the minimal field which contains the ring I
of integers.

Stated otherwise, any field which contains I contains also R (cf. Prob. 4-5). R is
further characterized by the following theorem:

Th.5.1.1.2 R is a prime subfield of a field F, containing no subfield other than itself; i.e.
R, in itself, is a prime field. (Cf. Prob. 5.)

Since the other prime field of F is the field P of integers modulo p, i.e. I, {or I/{p}),
as has been proved by Th. 4.2.1.4, every field is then a (simple) extension (cf. Df.5.3.1.5)
of either R or I,.

Th.5.1.1.3 There exists no isomorphic mapping other than automorphism in R, which is
in fact of only one kind, viz. the identity automorphism, which maps every element
of R into itself. (Cf. Prob. 6.)

Such a mapping may be considered an order-automorphism if R is ordered, as in
the following theorem:

Th.5.1.1.4 R is an ordered field (cf. Df. 4.1.2.4.11) iff a/b >0 implies ab >0, where a,bel
and b+0. (Prob. 7-8.)

Since the quotient form may be replaced by the ordered-pair form of {a,b) or
the inverse form of ab~', the theorem may be stated in terms of the latter: R is an
ordered field iff (a,b) >0 (or ab~!>0) implies ab >0 for every (a,b)e R (or ab e R).

Th.5.1.1.5 If ¢ and b are any two distinct rational numbers, say « < b, then there exists
a rational number ¢ such that a <c¢<b. (Cf. Prob. 9.)

The set R, satisfying this theorem, is said to be dense, which is an important
concept in analysis, where the density of a set of elements relative to an order
relation plays a significant role. The order in R is also articulated in the following
theorem:

Th.5.1.1.6 R is an Archimedean ordered field (cf. Df.4.1.2.4.12). (Cf. Prob. 10.)

214
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In addition to the fundamental operative properties of the quotient field @ (cf.
Th. 4.1.2.4.6), which of course hold for R, some other properties of R, which in turn
hold for @, are as follows:

Th.5.1.1.7 For every a,b,c,d,a’,b’ ¢ R,

(i) 0<1V/aiff 0<a.

(i) a>b and ¢>0 imply a/c > b/c.

(iii) a>b>0 and ¢’ >b">0 imply a/b” > b/a’.

(iv) a,b,c,d,a’/,b” > 0 and a/b > c¢/d imply a/b > (a’a+b’c)/(a’b+b’d) > c/d.
(v) aeR,i=12,...,n, implies E az>0.

(vi) aybieR, i=12,...,n, implies (X (a:by))* = (T a?)(Tbi). (Cf. Prob.11-13.)

These properties hold for any ordered field F, as a matter of fact, and Th.5.1.1.7
will be carried into the field B of real numbers, for instance, without any modification.

The following progerties, which are the immediate results of Th.5.1.1.4-5,7, also
hold for both R and R:
(vii) a/b <c/d iff abd? < b2cd.
(viii) 0<1/b<1/a if 0<a<b.
(ix) 0>1/a>1/b if 0>b>a.

There are, of course, many other similar and deducible properties (cf. Prob. 12).

Th.5.1.1.8 For every a,b,c,d,a’,b’,¢’,d’ ¢ R, a/b=c¢/d and «’/b’=c¢’/d’ imply

1.

(i) (ab’ +a’b)/bb’ = (ed’ + c'd)/dd’, (ii) aa’/bb’ = cc'/dd’
(Cf. Prob. 15.)

Solved Problems

A complex R’ of the set R of rational numbers is isomorphic to the set I of integers
iff there exists a 1-1 mapping f of R’ into I such that, for any z,y¢l,

i) flz+y) = fl=)+ f(y),

(i) flxy) = f(@)f(y),

(iii) x>y implies f(x) > f(y).

PROOF:

Let every element of R’ be of the form 1/a, where ael; then any element p/q, p,gqel, of R
will be contained in R’ iff q/pel, since 1/(p/q) = q/p.

Now let the mapping f be defined by
f: f(a) = 1/a, for every acl
Then xel © x/l=f(x)eR’ and yel < y/1=f(y)eR’ imply
(i) cxtyel © flxt+ty) < fle)+ fly) = (x+y)/1l e R,
(i) zyel < flxy) < fl@)f(y) = 2y/1e R,
(fi) x>y © fl@) > fly) < «/1>y/1,
which completes the proof.

Note. f in this context is evidently an order-isomorphism (cf. Th, 4.1.2.3.8).
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2. A field F' containing the set I of integers is a minimal field, in fact, the set B of
rational numbers itself, iff every element of F is of the form p/q, pv,qel.
PROOF:
If F contains I, and if every element of F is of the quotient form, then, by Th. 4.2.1.3-5, F' is
a minimal field @, coinciding with R.
Conversely, assume F to be a minimal field. Then any field A, every element of which is of
the quotient form, satisfies the following properties of @ or R (cf. Th. 4.1.2.4.6): given b,d # 0,
(i) a/b=c/d iff ad = be,
(ii) (a/b) = (c¢/d) = (ad = bc)/bd,
(iii) (a/b)(c/d) = ac/bd,
(iv) (a/b)/(c/d) = ad/be.
Hence A is a subfield of @ or B and also, by Prob. 1, contains 1, iie. A=R, completing the proof.

3. Any minimal field which contains I is isomorphic to Q or R; i.e. the rational number
field R is unique except for its isomorphs.
PROOF:

Let A and A’ be two minimal fields containing I individually; then, by Prob. 2 above, all elements
of A and A’ are of the quotient form. Now, if a mapping of A into A’ is defined to be

fo fla) =y
for every « =a/b and y = a/b, where the choice of a and b is arbitrary, then, by the property (ii)
of Prob. 2 above,
(1) f@)=a/b=y and fl@')=c¢/d=y" imply f(z)+ f(z') & y+ ¢
Likewise, by the property (iii) of Prob. 2,
o) fl2") © y-y
Hence f is an isomorphism, completing the proof.

4. Any field A which contains the set I of integers contains the set R of rational numbers.
PROOF:

Since the meet of any number of subfields of a field F is again a subfield of F (cf. §4.2.1.1, Prob. 4),
the meet of all subfields of A containing I is a subfield containing I, which in turn is contained in
any subfield containing I. Hence A must be a minimal subfield, thus isomorphic to R, by Prob. 3.

5. Any field A of characteristic zero contains one, and only one, subfield B, which in
turn is isomorphic to the rational number field R.
PROOF:

Since the characteristic of A is zero, any integer a0 implies ae+ 0 for eed; also bel and
a#b imply o —b # 0 and ae—be = (a —b)e # 0. Hence the mapping f of I into A, a<>ae, is 1-1;
moreover, it is isomorphic, since x <> xe and y <> ye for every x,yel imply

zty < f@)+fly) <> zetye = (x+ye
and wry © f(@): fly) © (xe)(ye) = (vy)e )

Likewise, for any rational numbers x,y ¢ B, where x = a/b and y = ¢/d,

rty © fl@)+fly) © zetye = (x+ye
and xry © f() fly) © (we)(ye) = (xy)e (2)
since xze+ye = (ae/be) + (ce/de) = ((ae)(de) + (be)(ce))/((be)(de)) = (ad + be)e/(bdle = (x+y)e
by (ii) in Prob. 2 above, and

(xe)(ye) = (ae/ce)(ce/de) = ((ae)(ce))/((be)(de)) = (ac)e/(bd)e = (wxy)e

by (iii) in Prob. 2. Hence, by (1) and (2), A contains B, which is isomorphic to R.

Furthermore, if a subfield B’ is contained in A and also isomorphic to R, B’ = B, because there
exists no isomorphism in R other than the unique identity automorphism, which is the following
theorem (Prob. 6 below).
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6.

10.

Prove Th.5.1.1.3.

PROOF:
Let f be the mapping of R into E, hence an automorphism f: a < a’, where a0’ eR. It follows,
then, that a'-e¢’ = &’ for every a’, since a*e¢ = a for every a. But, by F9, the unity is unique,

which implies ¢ = e (or 1'=1).
If a is an integer, then
o =1U4+1+... 41V =14+1+...4+1 = a
which means that the automorphism a <> a’ implies a’ =a. Likewise (a/)' = (a7!)’ since a'(a™')' =
1’"=1=aa"!, and also 0/’ =0, and —a’ =(—a)’, verifying that e<>a’ implies a’ =a for every
integer «.

If, more generally, a is a rational number of the quotient form, say a=p/q, p,gel, and if
f: p/q © (p/q)’ is an automorphism, then

o = (plg) = p'lg = plg = a
since it has already been established that p <> p’ and ¢ <> ¢’ imply p=p’ and ¢ =¢  for every p,qel.

Hence it follows here again that a <> a’ implies @ =a’, verifying that E has no automorphism
but the identity automorphism.

Prove Th.5.1.1.4.
PROOF:

If a/b = c¢/d for every a,b,e,de I and b,d # 0, then ad = be, by Prob. 2, (i), which implies abd?® = b%cd,
where obviously b%,d® >0 (cf. Th.4.1.2.2.9), which in turn implies that e¢d has the same sign as b%cd
just as ab has the same sign as abd®. Hence a/b >0 and a/b =c¢/d imply c¢/d > 0, verifying that equals
of positive elements are positive.

Conversely, Df.4.1.2.2.5 is satisfied in this context, since for every « =a/b and y =c¢/d, where
a,b,c,d are defined as above,

(i) >0 and y >0 imply «+y > 0; for x+y = (ad+be)/bd > 0 since (ad+ be)bd = (ab)d®+
(ed)b®> > 0,
(ii) x>0 and ¥y >0 imply zy > 0; for xzy = ac/bd > 0 since (ac)(bc) = (ab)(cd) > 0, and
(iii) > 0 excludes the alternatives of £ =0 and = <0.
Furthermore, by Prob. 1 above, the order of positive fractions coincides with that of special

fractions of the form a/1, which in fact represent integers, where a/1>0 iff a1 >0, com-
pleting the proof.

The ordering in Th.5.1.1.4 is unique.
PROOF:

Assume that there exists the second mode of ordering, which does not change the sense of
positiveness. Then « =a/b >0 iff ab>0, since a/b>0 implies b*(a/b) > 0, i.e. ab>0, and con-
versely, ab > 0 implies a/b > 0; for, otherwise, —(a/b) = 0, ie. b%(—(a/b)) =0, which implies —ab =0,
contradictory to the assumption. Hence the theorem must follow.

Prove Th.5.1.1.5.
PROOF: :
Since a < b, it follows at once that a+a < a+b, ie. 2a¢ < ¢+ b, which implies a < (a + b)/2.

On the other hand, ¢ < b implies a+b < b+ b, i.e. a+ b < 2b, which implies (a+ b)/2 < b. Hence,

combining the results, ¢ < (¢ +b)/2 < b, which implies the existence of ¢ = (a+ b)/2 such that
a<e<hb.

If x=a/b and y=c/d, a,b,c,de N, then there exists n, neN, such that nx > y.
PROOF:
By Prob. 2, (i), n(a/b) > ¢/d iff n(ad) > be, which is always the case, however, since n can be

always equated to 2bc. Then, by hypothesis, ad=1 and n(ad) = 2be(ad) = 2ad(be) > be, ie. nxr>y,
completing the proof.
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11. For every a,b,¢,d,a’,b’ ¢ R,
(i) 0<1l/eciff 0<e.
(ii) a>band ¢>0 imply a/c>b/c.
(iii)y a>b>0and a’>b">0 imply a/b’>b/a’.
PROOF:

[CHAP. 5.1

1) This is merely a special case of Th.5.1.1.4 where substitution is carried out as a =1 and b=c.

(ii) Since ¢ >0 implies 1/¢ >0, by (i) above, and since a—b > 0, by hypothesis, it follows from
Th.5.1.1.4 that (a— b)(1/¢c) > 0, i.e. (a/c)— (b/c) > 0 or what is the same: a/c > b/e, which

was to be proved.

(iii) Since aa’>bb’ >0 and a’b’ >0, by hypothesis, it follows from (i) above that aa’/a’b’ > bb'/a’b’,

ie. a/b’ > bla’'.

Second Proof. Since a’—b’' > 0 and o’b’ > 0, by hypothesis, which implies 1/a'd’ >0 as in (i)

above, it follows from Th.5.1.1.4 that (a'—b')/a’b’ = 1/¥) —(1/a’) > 0, i.e.
implies a(1/b’) > b(1/a’), since a > b, by hypothesis. Hence a/b’ > b/a’.

12. If a,b,c,d,a’,b’ ¢ N and a/b>c/d, then

a/b > (a’a+bc)/(@b+bd) > c/d
PROOF:

1/8’ > 1/a’, which

Since a/b<c¢/d, b,d>0, by hypothesis, it follows that ad—bc < 0. Hence o’,b’ > 0 implies

(i) (ad—be)a’ = ada’ —bea’ = ada’ + ¢db’ — cdb’ — bea’

= d(aa’+cb’) — c(ba’ +db’) > 0, 1ie. (a’a+ be)/(a’b+ b'd) > ¢/d, and

(ii) (ad—be)d’ = adb’ — beb’ = adb’ + aba’ — aba’ — beb’

= a(ba’ +db’) — blaa’ +¢b’) > 0, ie. a/b> (a’a+ be)/(a'b+ b'd).

Hence, combining the results of (i) and (ii),
a/b > (da+bc)/(a’db+b'd) > c/d
Note that this is merely an explicit form of Prob. 9 (Th. 5.1.1.5).

13. For every aiy,bieR,i=12,...n,
i ar=0,
@) (T (aby)’ = (2 a)) (2 0D).

PROOF:

(i) Let ai=a:/y;, where x,y:e ] and y, # 0; then (a:)? = (2)%/(y:)? > 0 since x%, 4} > 0 by Th.4.1.2.2.9,

and a}=0 iff :=0. Hence

Sat=0, i=12,...,n
(ii) (g a?)(? bf) — (1/2) {2 ; (aib; — a;by)? L,i=12,...n
= (Za)(30) - (FFTatn)2 - (302 + ST @hady
(Sa)(Sw) - (SaS0)2 — (3302 + () Sb)
B @d)(Z@b)) = (S@by),

Il

e, (2ladyy = (Za})(3w2) - (1/2)§§(aibj—ajbi)2 viz. (2 (b)) = (2 a)(Z63)-

Note. (ii) is in fact the generalized form of the (Cauchy-)Schwarz inequality (sometimes called

Buniakovsky’s inequality), which can be employed for the set B of real numbers without any

modification.
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14. For every a,b,cel, (a/b)+(a/¢) = a/(b+c) implies that =0 or b®+bc+c> = 0,
and that a =0 in an ordered field.
PROOF:
(i) Since (a/b)+ (a/¢) = (actab)/be, it follows from hypothesis that (ac+ ab)/bc = a/(b+c¢) or
(ac + ab)(b+ ¢) = abe, by Prob. 2, (i) above, which implies a(b*+ be+ ¢*) = 0.
Hence the necessary and sufficient condition for the identity at issue is that =0 or
b2+ be+ ¢ = 0.

(ii) If the identity is in an ordered field, however, then b%*+ be+ ¢® # 0, since b,c % 0, by hypothesis,
which implies b*+bc+c¢2 = (b+c¢)>—bec > 0 (" (b+e¢)? > 2bc > be since (b+ ¢)2—2be =
b2+ ¢ > 0). Hence the alternative: a =0, completing the proof.

15. Prove Th.5.1.1.8.

PROOF:
(i) Since a/b=c/d and a'/b'=c’/d’, i.e. ad =bc and a’'d’ =b’¢’, by hypothesis, it follows that
@b +a'bydd = (ab)dd) + (ab)dd) = (ad)(b'd) + (bd)(@'d)
= (be)(b'd’) + (bd)(b'c) = (ed + c'd)bb’

Hence (ab’+ a’b)/bb’ = (cd’ + c'd)/dd’.
(ii) Likewise, (aa’}(dd’} = (ad)(a'd’) = (be)(b'¢’) = (bb')} cc').
Hence aa’/bb’ = ce’/dd’.

§5.1.2 Real Numbers

Df.5.1.2.1 A proper complex S of the set R of rational numbers, viz. SCR, and S+#R,
is called a Dedekind cut (or D-cut, or more simply, cut),
(1) if seS and reR such that r<s imply reS, and
(ii) if seS implies 8" > s for some s’ ¢ S.
Example:

Any nonempty subset T of R, defined by 7' = {t| te R < re R}, is a D-cut, called a D-cut at r;
T as such may be denoted by T.. T, then, is a cut at 3, designating the set of all rational numbers
less than 3, which may be pictorially represented by a segment T in Fig. 5.1.2.a below:

-3 —3/2 0 1 2 3
] | | L ] ]
! ] 1 ! ! i
s_‘_ 7
Fig.5.1.2a

The other part of the line, denoted by 7’ above, is evidently the complement (cf. Df.2.3.3) of T,
designating the set of all rational numbers which are not in T, viz. T’ = {t]teR = 3cR}. T as
such may be denoted by T3 in this context, and in general, T’ = {t] teR = reR}.

It is also pictorially evident in the same context that, given a cut 7, some mem-
bers in T must be quite close to some numbers in T”. This fact, intuitively obvious,
is formulated in the following theorem:

Th.5.1.2.2 There exists an element s of a cut S such that s+7rc S for any positive
rational number r. (Cf. Prob. 1.)
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Since a cut is a set, a collection of cuts is a class, denoted by C, in which addition
and multiplication are defined as follows:

Df.5.1.23 For every A,BCC, and for every ac A and be B,
(i) AUB = {a+b} forevery acA, beB;
(ii) ANB = {a-b)} for every a,b>0 or a,b <0;
= {~a-b} forevery a>0and b<0 or a<0 and b> 0
= {0} for every a=0 or b=0.

Note. {0}, as will be seen below, is a cut at 0, and as such may be denoted by 0*
or even more simply by 0 if no confusion is to result.

Th.5.1.24 The join (or sum, as is often called) of two cuts A and B of the class C,
defined as above, uniquely defines a cut which belongs to C itself; so does the meet
(or product) of A and B. (Cf.Prob. 2,12)

This is evidently the closure property of binary operations in C, from which an
algebra of cuts as a special algebra of sets (cf. §2.3.1-3) can be developed, verifying
associativity, commutativity, etc. As a matter of fact, these joins and meets of
cuts satisfy all the properties of F1-11, proving C to be a field (cf. Prob. 18), which
is also ordered, as is exemplified in the following theorems:

Th.5.1.2.5 Given two members A and B of C, A is less than B, i.e. A<B, iff A is a
proper subset of B, iie. ACB and A>*B. (Cf.Prob.9.)

Transitivity follows at once, as can be readily verified (cf. Prob. 11), as well as
trichotomy:

Th.5.1.2.6 Given any A,BCC, one and only one of the following three cases holds:
(i) A<B, (ii) A=B, (iii) A>B. (Cf.Prob.12))

Once order is introduced in C, a subclass of C is first verified to be order-isomorphic
to the rational number field R on the strength of the following theorem and definition:

Th.5.1.2.7 Given any A,BCC, where A<B (or dually, A> B), there always exists a
cut C in C such that A <C < B (or A > C > B). (Cf Prob. 20.)

Df.5.1.2.8 The third cut C in Th.5.1.2.7 is called a rational cut, and if a rational number,
say 7, is explicitly assigned to the cut, it is then denoted by C, or more simply by r*.
Example:

Co or 0* designates the cut at 0.

The class C* of rational cuts, however, cannot exhaust the class C; i.e. there
exist cuts other than the cuts at rational numbers. There are many, in fact infinitely
many, and indeed uncountably (cf. Df.2.1.13) infinitely many gaps between rational
cuts, even though Th.5.1.2.5 allows the cutting at rational numbers to go on ad
wmfinttum. Infinite as it may be, the whole set of rational numbers is still countable
(cf. §2.1, Prob. 12).

The cuts which are not rational do exist, individually exemplified by such irra-
tional numbers as /2 (cf. §2.1, Prob. 4 note); such cuts, then, may be called irrational
cuts, the existence of which in general is assured by the following theorem:
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Th.5.1.29 If A and B are two mutually exclusive sets of rational numbers (or what is
the same, two disjoint classes of rational cuts) such that every rational number is
either in A or in B, but never in both, and a<b for every acA and beB, then
there exists either a leap whenever A has the largest number and B has the smallest
or a gap whenever neither A has the largest number nor B has the smallest. (Cf.
Prob. 23-25.)

Between rational numbers (or cuts), therefore, there always exist discontinuities,
either as leaps or as gaps, which are then to be filled by irrational numbers (or cuts).
The class C* of rational cuts is thus a subclass of the class C of cuts, which contain
both rational and irrational cuts, yielding the real number field as follows:

Df.5.1.2.10 An ordered field isomorphic to the class C of cuts is called the real number
field, denoted by R (or R*), each element of which is called a real number.

In terms of rational numbers, a real number is further characterized by the
following theorem:

Th. 5.1.2.11 Every real number is the l.u.b. (or sup. (cf. Df.2.4.1.6)) of a set of rational
numbers. (Cf. Prob. 28.)

Example:

\/E = Lub. (1.4,1.41,1.414,1.14142, ...), which may be considered also in terms of glb. (or
inf. (cf. Df.2.4.1.7)), viz.

V2 = glb(l.5, 1.43, 1.415, 1.4143, ...)
which yields the dual of Th.5.1.2.11, viz.

Th.5.1.2.11a Every real number is the g.lb. (or inf.) of a set of rational numbers.
(Cf. Prob. 28.)

In the same fashion, then, the D-cut in general may be defined also in terms of
lower and upper bounds, viz.

Df.5.1.2.12 A (Dedekind) cut S in any ordered field F uniquely determines a pair of
proper complexes L and U of F such that

(i) L is the set of all lower bounds to every ue U, and
(i) U is the set of all upper bounds to every le L.
Since Th.5.1.1.5 or its equivalent, e.g. Th.5.1.2.7, can be readily generalized to

the existence of a rationgl number ¢ or a real number d such that e <e¢<b or
a <d<b forevery a,beR (cf. Prob. 26-27), Th.5.1.2.11 is also generalized as follows:

Th.5.1.2.13 If A is a set of real numbers bounded from above, then there uniquely exists
a l.u.b. s such that

(i) a=s for every ae4, and
(ii) there exist some numbers, say a’, in A such that a—p < a’, where p is any
positive number. (Cf. Prob. 29.)

As is but natural in view of its relation to Th.5.1.2.11, this theorem also has its
dual:

Th.5.1.2.13a If A is a set of real numbers bounded from below, then there uniquely
exists a g.1.b. £ such that

(i) b=t for every acA, and

(if) there exist some numbers, say o/, in A such that &’ < a+p, where p is any
positive number. (Cf. Prob. 29.)
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R as such is also Archimedean ordered, viz.

Th.512.14 If abeR* (ie. a,beR and a,b>0), then there exists nel* such that
na>b. (Cf. Prob. 30.)

The Archimedean ordered field R is further characterized by its completeness
(cf. Prob. 42), in the sense of the following definition:

Df.5.1.2.15 (Axiom of Completeness). An ordered field F is called complete if every com-
plex of F' having an upper bound has a lL.u.b. and every complex of F having a lower
bound has a g.l.b.

Hence R is now known to be an ordered and complete field; in fact, B is the only
complete ordered field (to which, of course, some fields may be isomorphie, cf. Prob.
44-45).

* % * * *

As has already been explicit in Th.5.1.2.13-14, the set R of real numbers may be
defined in terms of Cauchy-Cantor sequences, the development of which may be con-
sidered more analytic and less algebraic than that of Dedekind cuts. It begins with
infinite sequences in general.

Df.5.1.2.16  An infinite sequence is a (single-valued) function: f(n) = a., where ane F,
the domain (cf. Df.2.2.2.6) of which is the set N of natural numbers.

The function f is then prescribed by the correspondence of a unique value or
term of the sequence to a positive integer, viz.

lea, 2ea2, ..., noan, ...,

where the nth term @, is sometimes called the general term of the infinite sequence,
which itself is then represented by {a.}. Unless stated otherwise, sequences will
mean infinite sequences in the following pages.

Df.5.1.2.17 A subsequence of a sequence S = {a.} is a sequence A, denoted by {@n,}, rep-
resenting @n;, an, ..., where n; <m, < ... in the original order of S.
Example:
1/8,1/5, ... is a subsequence of a sequence 1/2,1/3,1/4,1/5,1/6, ...

Df.5.1.2.18 The sequence S = {a.} is said to have the limit a, denoted by lim a, = a,

or more simply lim a, = @, iff corresponding to any natural number p there exists
a natural number m =m(p) such that |a.—a| < p whenever m <n. If S has the
limit a, then it is said to be convergent (to a); otherwise it is divergent.

Example:

1,1/2,...,1/n, ... converges to 0, since |axn—a] = [1I/n—0| = 1/n, and since 1/n <p whenever
1/p<mn; ie. m(p)=1/p in this example.

As can be readily verified (cf. Prob. 81-33), the alteration of a finite number of
terms of a sequence S has no effect on convergence or divergence or limit, which is

always unique if S converges, and any subsequence of a convergent sequence S
converges to the same limit of S.

Df.5.1.2.19 A sequence S={a,} is bounded iff there exists a positive number b such
that |a.| <D for any neN.

Stated otherwise, S is bounded iff all of its terms are contained in some finite
interval; e.g. any convergent sequence is bounded (cf. Prob. 34).
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Df.5.1.2.20 If {a.} and {b.} are two sequences, the sequences {a.+b.}, {@.—b.}, and
{a.bn) are called their sum, difference, and product, respectively; if furthermore
b, 0, the sequence {a,/b.} is their quotient. In particular, sums and products may
be extended to any finite number of sequences.

As can be verified without difficulty (cf. Prob. 36-40), the sum (or difference or
product or quotient) of two convergent sequences is again a convergent sequence, its
limit being the sum (or difference or product or quotient) of the respective limits.

Df.5.1.2.21 (Cauchy’s Convergence Condition). A sequence S= {a.}, a-.eF, is a Cauchy
(-Cantor) sequence (or simply C-sequence) if corresponding to a positive number peF
there exists a natural number m=m(p) such that |a.—a.] < p whenever m <u
and m <w.

Example:
Given a sequence:

sn = 1—(1/2)+ /38— /) + -+ 1)"Yn+ ..
u > v implies
s —8] = w+1) — U(w+2)—1/(v+3) — - < 1/(v+1)
Hence, if m is so chosen that m +1 > 1/p,

I8y — 8] < 1/(m+1) < p when uv>m

The sequence thus converges, obviously to a number between 1 and 1/2, since

s8n = (1—1/2) + (1/83—1/4) + ... = 1 — (1/2—1/3) — (1/4—1/5) — -

The field F, to which any of a. belongs, is still the rational number field R (or
its isomorphs), since the real number field B has not been defined in this context;
once defined, however, Df.5.1.2.21 will be stated in terms of B without any modifica-
tion except that a.e R.

Th.5.1.2.22 Any convergent sequence in F is a C-sequence. (Cf. Prob. 41.)
This theorem and others (cf. Prob. 42) lead to the following theorem and definition:

Th. 5.1.2.23 An ordered field F which contains R is Archimedean ordered iff every element
of I is the limit of a sequence {a.}, where a.c K. (Cf. Prob. 43.)

The real number field R is thus defined in terms of sequences.

Df.5.1.224 The complete and Archimedean ordered field is called a continuum, and the
real number field is a continuum R which contains as a subfield the rational number
field R.

It must be remembered that the continuum R has a cardinal number o(R)=c
(or the so-called “aleph one”, cf. Df.2.1.16).
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Solved Problems

Prove Th.5.1.2.2.
PROOF:

Since r¢ S’ implies that 0+re S’ (. 0c A, as A has already been defined to be non-vacuous),
the theorem is trivial if reS’.

Let r¢8’; then re 8, since SUS’ = R (cf. Df. 2.3.3). If a is a fixed element of S’, then, by
Th. 5.1.1.6, there exists ne N such that nr > a, which implies nreS’, since nr¢S’ would imply nreS
and consequently a e S, contradictory to the present assumption.

Now, since there exists at least one element, viz. n, the subset of N which contains n is not
empty; also, since n>1 ("." n=1 implies ler = reS’, contradictory to the assumption), it follows
that (n—1)re S, which implies (n—1)r+r e S, ie s = (n —1)r, completing the proof.

Note. This theorem holds also conversely (cf. Prob. 2 below).

The join of two cuts A and B of C is again a cut in C.
PROOF:

Let AUB = C; then C is a proper complex of R, since A %0 and B +# @ imply AUB = C # @,
and since A R and B # R imply that there exist o’,b’ ¢ R such that a’¢ A and b ¢ B, which in turn
imply «'+b'¢ C, ie. C+#R. Furthermore,

(i) IfreR and a+b = ¢, where acd, beB, ceC, such that r <e, then reC, since r < ¢=a+b,
ie. r—a < b, which implies r—ac B, ie r = a+ (r—a) and consequently » ¢ AUB = C.
(i) If a+db =ceC, where acA and be B, then there exists de A such that d > a, since A is a cut
(ef. Df.5.1.2.1,1i); this implies d4+b > a4+ b =¢ and d+b = ¢ ¢ C, ie. ¢/>c¢ and ¢'C.

Df.5.1.2.1 is thus satisfied with respect to C; hence C = AUB is again a cut, completing the
proof.

Note. As is explicit in (ii) of the proof, the condition (ii) of Df.5.1.2.1 can be more simply stated:
S contains no largest rational.

If C. is a cut at x, where z ¢ R, then
CrUCy = Cr+q
where p,ge R (cf. Df.5.1.2.8).
PROOF:
If a+beCy+C, where aeC, and beC,, then ¢ <p and b <gq, which imply o+b < p+q.
Hence a+be Cpiq ie. CoUC, C Cpug

Conversely, if c¢eCp+q such that ¢ < p+ q, then (p+q)—e¢ = d, where obviously deR*.
Hence ¢ = (p+q) —d = (p—(d/2)) + (¢ — (d/2)), where p—(d/2) <p and ¢—(d/2) < q, which imply
p—(d/2) e C, and ¢q— (d/2) e Cq, ie. ¢ &€ Cp+ Cy which implies Cp+, C CpUC,.

Combining both results, C,UC, = Cp+,.

Addition in C is associative and commutative.
PROOF:
If C., Cy,C. C C, then by Prob. 3,

(i) CaU(ChUC) = CoUChic = Cutvsor = Ciatmie = CosvUCs = (CUCh) U C
(i) CaUCs = Casp = Cp+a = CrUCl.

If A,LBCC and A<B, then AUC < BUC for every CCC.
PROOF:

Since A < B, there exists a ¢ R such that ae B and a¢ A. Choose, then, be R such that a <b and
be B; then, by Prob. 5, there exist ¢,ds R such that d—¢ = b—a, ie. b+c¢c = a+d, where ceC
and d ¢ C, which implies

b+e¢e BuC 2)
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On the other hand, a¢# A and d¢ C imply that a+d=b+c¢ > e+f for every ecA and feC,
which implies bt+ec¢ AUC @)

Hence, by (1) and (2), AuC < BUC.

Note. Th.5.1.2.5 is taken for granted here, which is to be proved in a different context (cf. Prob. 9);
within the frame of this proof, then, Th.5.1.2.5 may be considered a definition, without falling into a
vicious circle.

If ACC, then there uniquely exists BCC such that AUB = 0*.
PROOF:
Since AUB; = AUB:, where B:+ Bs, is a direct contradiction to Prob. 5, there is at most one
such B to be considered in the following.
Let B be the set of all rational numbers a¢ such that —a is an upper bound of A, but not the
smallest number. Then B is a cut, since B* @, B# R, and
(i) weB and b <a, where beR, imply —ae A and —b > —a, so that —b is an upper number of A,
but not the smallest, which implies b e B, satisfying Df.5.1.2.1, (i); and
(ii) @eB implies that —a is an upper number of A, but not the smallest, so that there exists ce B
such that —¢ < —a and —c ¢ A, which imply —b < —d < —a (cf. Th.5.1.1.5), where d = (a+¢)/2,
such that —d is an upper number of A, but not the smallest; hence d >a and de B, satisfying
Df. 5.1.2.1, (ii).
Furthermore, if p ¢ AUB, then there exist e A and re B such that p = ¢+ r, which implies
—r¢gA, —r>q, ¢+r <0, and pe0*
Conversely, if pe0*, then p <0 and, by Prob. 4, there exist gc A and r¢ A, where r is not the
smallest upper number of A, such that r—¢ = —p, which implies, since —re B, that
p = g—r = q+(-r)e AUB
Hence AUB = 0*.

Note. Notationally, B may be written as —A in this context, ie. AUB = AU(—4) = 0* It
should be emphasized that —A cannot be replaced by A’ (the complement of A4; cf. Fig. 5.1.2.a) in this
specific algebra of sets.

If A,BCC, then there uniquely exists CCC such that AUC = B.
PROOF:

As in Prob. 6, it follows directly from Prob. 5 that there exists at most one such C, since C:% C:
implies AUC: # AUC..

Let C = BU(—A) (cf. Prob. 6 note above); then, by Prob. 4,

AUC = AU(BU(—4)) = AU((—A)UB) = (AU(—A))UB = 0*UB = B

If A,0¥CC, then AUO0* = 0*UA = A.
PROOF:

Let aeAU0*; then a = b+c¢ for some beA and ce0* (i.e. ¢<0), which together with
b+c¢ < b implies that b+ce A, ie acA.

Hence AUO*C A (1)

Conversely, if ae A, then there exists de A, where de R and d > a, such that ¢ = ¢ —d, which
implies ¢<0, ¢ce0* and a = ¢+d, so that a e AU0*

Hence A C AUo* @
Hence, by (1) and (2), A = AuU0*, where AUO* = 0*UA by Prob. 4; thus AU0* = 0*UA = A.

Prove Th.5.1.2.5.
PROOF:

If BCA, then every be B implies be A and there exists a4 such that a¢ B, ie. ae B’. More-
over, if there exist ¢,de A such that a < ¢ <d, then —ce—B ("." ae B’). Hence d —¢ is a positive
rational number in the ecut A — B, iie. (A—B)C C and A > B.

Conversely, if A>B, ie. (a+b)e(A—B) where acA and b<—b" for some b’ eB’, then
a>—b>b (. a+b >0 and b < —b’) such that a¢ B, which together with a e A implies A += B.
Furthermore, ¢ < b’ for every ce B; hence ¢ < a, which together with ¢ A implies BCA, completing
the proof.
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10. Transitivity holds in C.

11

12

13

14

PROOF:
Let A,B,CCC, where A < B and B <C; then, by Prob. 9, 4+ B, B=C, and ACB, BcC, from
which it follows that ACC (cf. Th. 2.1.5) and that A # C (cf. Df. 2.1.8).

Hence A < C, which completes the proof.

Second Proof. Since A < B, there exists a ¢ B such that ae B, but a¢A. Likewise B < C implies
be R such that beC, but b¢B. Since ae B and b¢ B imply a <b, and this, together with a¢A, in
turn implies b¢ A, it immediately follows that be C, but bgA.

Hence A < C.

Note. The relation in C, however, is neither reflexive nor symmetric, as can be readily verified.

Prove Th.5.1.2.6.
PROOF:

Let A+ B and also A < B; then there exists some acA such that acB’. This implies b<a
for any be B, which in turn, by Df.5.1.2.1, implies that BCA.

Likewise, A % B and A +B dually imply ACB, from which it follows, together with the first
result, that A < B and A% B imply A = B, completing the proof.

If A,BCC, then ANB CC.
PROOF:

Let A > 0* and B > 0%, which imply A+ ® and B+ @; hence ANB = @. Also AnB # R, since
there exist some a’¢ A and b’'¢ B such that a <a’ and b< b’ for every ae A, and be B, which implies
that there exists a positive rational number «'db’ ¢ (ANB) such that ab < a'b’ for every abe (ANB).

Furthermore, (i) if ce R such that 0 < ¢ < ab, where abe¢ (AnB) as above, then ce (ANB),
since ¢/a < b implies ¢/ae B, and since ¢ =a(c/a).

Also, (ii) there exists a1 A such that a; > a, since 4 is a cut. (Or, for the same reason, there
exists bie B such that b; > b.)

Hence aibe (ANB) (or abie (ANB)) such that a:b> ab (or ab; > ab).
Df.5.1.2.1 is thus completely satisfied with respect to ANB; hence ANB C C.

It is proved likewise that ANB C € for (i) A>0* and B<0* or A <0* and B> 0% and
(ii) A = 0% or B = 0%,

Multiplication in C is both associative and commutative.
PROOF:
For every ac A, be B, ce C, where a,b,c >0 and ABCccC,
i) AnBNC) = An{be} = {abo)} = {(ab)c} = {ab}NC = (ANB)NC, and
(ii) ANB = {ab} = {ba} = BNnA.
It is proved likewise if (i) a>0, b >0, ¢<0, (if) ¢>0,b5<0,c¢>0, (iii) a>0, b<o0, ¢<0,

(iv) @<0,85>0,¢>0, (v) a<0,b>0, <0, (vi) a<0,5<0,e>0, (vil) ¢a<0,b5<0,¢<0, and
(vii) a=0o0r b=0or ¢=0.

Distributive laws hold in C.

PROOF:
For every aeA, beB, ceC, where A,B,CCC and ab,c> 0,
a(b+c) = ab + ac
which implies that every positive element of 4 N (BUC) is a positive element of (ANB) U (AnCQC).
Hence AN (BUC) C (ANB) U (ANC) (1)

Conversely, if » ¢ (ANB) U (ANC), it follows from above that » = s+ t, where scA N B and
te ANC, which implies s=a:b and t=a¢, where aa,02:e A, say a; = a: = a. Hence

r = aib+ me = ab+ac = alb+e)

which in turn implies r ¢ 4 N (BUC), since a(b +e) e An(BUO). Every positive element of
(ANB) U(ANC) is thus also an element of A N (BUC), ie.,

(ANB)U(ANC) C An (BUC) (@)
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From (1) and (2) it follows that AN(BUC) = (4 nByu@AnC).

As in Prob. 13, other cases (e.g. 4 > 0%, B> 0%, C <0*, etc.) can be treated likewise, arriving
at the same conclusion.

Similarly, (AUB)NC = (ANC) U (BnC), which completes the proof.

15. If 1* =S, is a D-cut at 1, then ANS; = A for every ACC.
PROOF:

Since the case of A =So is trivial, let A > So; then ANS: = {ar}, by Df.5.1.2.3, (ii), where ac A
and 0 < reR < 1. Hence ar < a, which implies are A4, i.e.

AnS, . c A (1)

Conversely, since A is a D-cut, ae A implies some be A such that ¢ < b, which implies a ¢ ANSy,
and also be AnNS;, since b=b(a/b), where 0 < a/b <1. Hence

A Cc AnS, 2)

It follows, then, from () and (2), that AnS, = A.

Note. AnS; = SiNA = A, since multiplication in C is commutative.

16. If A-! is defined to be a set which consists of every element a of R., i.e. a rational
cut at x, such that a <1/b for some be A’, then A~! is a D-cut.
PROOF:

Since ce A implies ¢ < b for every beA’, it follows that 1/¢>1/b for every be A’; hence ce A
implies 1/¢¢ A™', which yields A~ R. Also, by hypothesis, A~ (.

Furthermore, (i) ae A~! and d < a, where de R, do imply de A", and (ii) there exists no largest
element in A%, since a < 1/b for some be A’ implies, by Th.5.1.2.2, the existence of a rational number
r such that @ < r < 1/b, which in turn implies r £ A~}, satisfying Df.5.1.2.1 completely.

Hence A~' is a D-cut.

17. Prob. 16 above implies that ANA-1 = A71NA = 1%,
PROOF:

If ae A, where A > 0%, and be A~%, then, by Prob. 16, there exists some a’¢ A’ such that b <1/d/,
which implies 0 < ab < a/a’ <1, ie. abel*. Hence

ANA~! = 1% )

Conversely, if ae A, where A > 0% as before, and ce1* such that 0 <¢<1, then 1—¢ > 0
and (1—¢)a > 0, which by Th.5.1.2.2 imply some de A such that d+ (1 —¢)a = ¢’ for some a’'c A4’
Also, evidently, a <a’ and d </, which imply

0 <ad—d=(@{1A—-¢a < 1—c¢)d
i.e. o —d+ca < (1—¢)a +ca = o
which implies ca’ < d, i.e. o’ < d/e, which in turn implies ¢/d <1/a’. Hence c/de A", ie. ¢=bd for

some beA~!, which implies ¢e AnA~! But then, by the initial assumption, ¢ is an arbitrary
positive element of 1*; hence
1*CAnA™! 2)

Hence ANA~! = 1*, by () and (2) and also, by multiplicative commutativity in C,
AnA—! = A™'ndA = 1*

18. C is a field.
PROOF:

F1 for C is assured by Prob. 2, and F2,5 by Prob. 4. Furthermore, F3 is satisfied by 0*, and
F4 by Prob. 7.

F6 for C is proved by Prob. 12, F7,9 by Prob. 13, and F8,10,11 by Prob. 14,15,16,17 respectively,
which exhaust the properties of a field.

Hence C is a field.
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For any a,beR and S.,S,CC, S.<S, iff a <b.
PROOF:
If a <b, then aeS:, but a¢S.. Hence S, < Ss.

Conversely, if S. < S,, then there exists ¢e R such that ce Sy, but ¢ S., which implies a = ¢ < b,
ie. a < b, completing the proof.

Prove Th.5.1.2.7.
PROOF:
Since A < B, there exists ac R such that aeB, but a¢ A. Take, then, ce R such that a <e¢ and

ce B. This implies S, < B, since ce B and c¢S:. Also A< S, since aeS,; but acA. Hence, letting
S,=C, A<C<B.

Note. If A and B are explicitly defined to be rational cuts, this theorem is virtually equivalent
to Th.5.1.1.5. On the other hand, if A and B are merely defined to be contained in C, as is stated in
the theorem, they can be irrational as well as rational. Hence the theorem as such is equivalent to

the following form: There exists a rational number between any two distinct real numbers (cf.
Prob. 26 below).

For any cut 4, ac A iff S, < 4.
PROOF:
Since a ¢ S, for every ae R, it follows at once that S. < A4 if acA.

Conversely, if S. < A4, then there must exist be R such that be A and b¢S.. Hence a = b, which
together with be A implies ae A, completing the proof.

Note. This theorem has proved that every cut A, representing a real number x, is the set of all
rational numbers y such that y < x (cf. Prob. 28 below).

If ACC and reR*, then there exist pe A and q¢A, but qeR, such that ¢ is not the
Lub. of A, and that ¢q—p = r.
PROOF:

Let aeA and a. = a+nr, n=0,1,...; then, by Th.5.1.1.6, there uniquely exists an integer m

such that a.ecA4 and an+1¢ A, If an+: as such is not the Lub. of A, then the substitution P=an
and ¢ = am+1 verify the theorem.

If am+1 is the Lub. of A, then the substitution P = ant(r/2) and ¢ = smis+ (#/2) verify the
theorem.

In either case the theorem is verified, exhausting the cases, and the proof is complete.

If A and B are two sets of rational numbers such that every rational number is either
in A or in B, but never in both, and that a <b for every ae A and be B, then there
exists a case where A has the largest and B has not the smallest.
PROOF:

The partition of R defined by hypothesis yields the following four exclusive and exhaustive cases;
(1) A has the largest number and B has not the smallest.
(i) A has not the largest number and B has the smallest.
(iif) A has not the largest number and B has not the smallest,
(iv) A has the largest number and B has the smallest.

The first case, then, is to be proved first. Suppose that B contains the smallest number, say b,
while a <10 for every acA; then

10 < (104+8)/2 = »
since be B. Hence r¢ A. Also
(10+8)/2 = + < b

since 10 <b. Hence r¢ B, contradictory to the initial assumption that every rational number, in-
cluding » in this context, is either in 4 or in B.

Hence B must not contain the smallest number if 4 has the largest.

Note. The case (ii) can be proved likewise, while the case (iii) is proved by Prob. 24 below, and
the case (iv) by Prob. 25.
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Given 4 and B as defined in Prob. 23 above, show that A has no largest number and
B has no smallest.
PROOF:

Let B be the set of all rational numbers b such that 2 < b® and A be the set of all rational numbers
a such that ag B. Then A is evidently a D-cut, since a <b for every aeA.

If, say, a? = 2, where a = p/q for some p,g eI such that (p,q) =1, then p* = 2¢*, which implies that
p and ¢ are both even numbers (cf. §2.1, Prob. 4 note), contradictory to the assumption. Likewise
2 =2 faces a similar contradiction.

Hence neither a?=2 nor b*=2,

Furthermore, take a rational number ¢ such that 0 <¢<1 and ¢ < (2—a%)/(2a+1), where a
is assumed to be the largest in A such that ¢*<2. Let b = a+¢; then a<b, and

b = a*+ 2atce < a*+(@2atl)e < a+((2—a) = 2

which implies be 4, contradictory to the assumption.

Hence A has no largest number.

Likewise, if b is assumed to be the smallest in B such that 2 < b%, take de R such that

d = b— ((b>2—2)/2b) = (b/2) + (1/b)
which implies 0 <d<b and
2 = b2 — (b2—2) + (b2 —2)/2b)* > b — (b*—2) = 2

which implies de B, contradictory to the assumption. Hence B has no smallest number.

Thus neither A has the largest number nor B has the smallest.

If A and B are defined as in Prob. 23, it is impossible that A has the largest number
and B has the smallest.
PROOF:

If A has the largest number, say a1, and B has the smallest, say a., and if, by hypothesis, the
field is limited to B (or what is the same, the class of rational cuts only), then the density (cf.

Th. 5.1.1.5 for R and its equivalent, Th.5.1.2.7, for rational cuts) of R allows the existence of ase R
such that a, < a3 < a.

Hence the case (iv) that A has the largest number and B has the smallest is an impossibility in R,
thus yielding a leap between A and B.

There exists ce R such that a <c<b for every a,beR.
PROOF:

There are three cases to be considered: (i) both a and b are irrational; (ii) a is rational and
b irrational; (iii) a is irrational and b rational.

(i) If a and b are irrational cuts, yielding two pairs of disjoint classes A:, 4. and B, B: respec-
tively (as in Th.5.1.2.9), then there exist rational numbers in B; which are not in Ay, since
a < b by hypothesis. Hence, if ¢ is one of such rational numbers, it follows immediately that
a<ec<hb

(i) If a is irrational and b rational, then (& + b)/2 is also irrational. For, otherwise, it must be
rational, say r = (a + b)/2, where re R, which implies 2r —b = a, contradicting the closure
property of rational numbers. Thus, (a + b)/2 being irrational, the problem is now very much

the same as (i), viz. 0 <c< (@tby2 < b
(iii) Likewise, if a is rational and b irrational,
a < (a+b)/2 < ¢ < b

which completes the proof.

There exists an irrational number de R such that a <d <b for every a,beR.
PROOF:

As in Prob. 26 above, there are three cases to be considered, and also an additional case, viz.
(iv) both a and b are rational.
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If both a and b are irrational, then (a+ 5)/2 = ¢ may be either rational or irrational. If ¢
is rational, however, (¢ + ¢)/2 and (¢ + b)/2 must be irrational as in Prob. 26; hence

a<(a+bd)/2=c<(at+e)/2=d<b or a<(@+b)/2=c<(c+b/2=d <b
If ¢ is irrational outright, then it follows at once
a < d{ord) < b
If o is irrational and b rational, then (a+ b)/2 = d is also irrational; hence
a < d<b
If a is rational and b irrational, the case is exactly the same as (ii).

If both @ and b are rational, then take V2, which has already been proved to be irrational
(cf. Prob. 24 above), so that

Ve/n < b—a

where ne N can be made large enough to establish the inequality. Since a + (\/2/2) is obviously
irrational, it follows at once that

e < a+(V2/n) < b
completing the proof.

28. Prove Th.5.1.2.11.
PROOF:

29.

In the context of Prob. 26, let R: be the set of rational numbers ¢ such that ¢=b for a given

real number b. Then, by this assumption itself, b is an upper bound of Ri:. Also, since it has
already been proved by Prob. 26 that no smaller real number (a, in Prob. 26) can be an upper bound
of R, b must be the l.u.b. of R, which completes the proof.

Note. The dual (Th.5.1.2.11a) can be proved likewise, starting with a=¢ in the same context

and ending with the conclusion that a is the g.lb. of R,.

Prove Th.5.1.2.13.
PROOF:

@)

(ii)

Let R, be the set of all real numbers 2 such that = < &’ for some a’eA, and R, the set of all
other real numbers. Also, let B; and R. be the sets of all rational numbers in B; and R, respec-
tively. This implies that the rational number field B is now divided into two disjoint sets of
E: and R: by a cut at, say, s. Then, by Prob. 26, there exists re R such that a <r <s for
any ac R such that o <s.

Hence r¢ Ry, which in turn implies ac E,.

Likewise, if be R such that 8§ <b, thex_1, by Prob. 26 again, there exists s’¢ R such that
s<7'<b. Hence ' ¢R;, which implies b ¢ R..

Hence there does exist a number se R such that ae R, implies @ <s and be R, implies s < b.

Conversely, s as such is actually the lu.b. which satisfies (). For, if not, by assuming
te A such that s <t, the following inequality

s < u = (s+8/2 < ¢t

establishes a contradiction that ue Ry and ue R, both of which follow from the result obtained
above.

Furthermore, s is unique. For, if both s; and 82, say s1<8s, are to satisfy (i), ss may be
assumed by Th.5.1.2.7 such that

81 < 83 < 8
which implies a contradiction that s;e R, (" s3<s») and sse R: (*." 81 < s3).
Assume, contrary to the conclusion to be drawn, that ¢¢ A such that s—p < ¢ for any p> 0.
Then the inequality
s—p < v =s5—(p/2) < s

implies v e R, since R, by hypothesis is to contain any x such that z < a’ for some a’ e A, while

the same inequality implies v ¢ R, since R, has already been proved by (i) to contain any number
less than s.
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Hence the initial assumption is evidently a contradiction, which thus proves (ii) to be valid.
Note. The uniqueness of s may be reaffirmed by (ii). For, if both s and g’, say s <g¢g’, are to
satisfy (ii), then let s’'—s = p’, and
s < w=238—@®/2 <3¢
introduces a contradiction, since the inequality may be viewed in terms of s and (i), which imply all

a¢ A such that w < a, while the same may be viewed in terms of s’ and (ii), which imply all aec A
such that w <a.

It must be also noted that the dual (Th.5.1.2.13a) can be similarly proved with a very slight
modification of Th.5.1.2.13, as is but natural for a dual.

Prove Th.5.1.2.14.
PROOF:
Prob. 26 has already verified the existence of re R such that o' <r <a <b for any o' ,a,beR.

Also, as is quite obvious, there must exist s¢ B such that b <s. But then, by Th.5.1.1.6, there exists
nel* such that nr >r. Hence

na > mr > 8 > b, ie. ma > b
which completes the proof.

If {a.} and {b.) are two sequences and if p and ¢ are two positive integers such that
Op+n = bg+n for any meN, then the two sequences either both converge to the same
limit or both diverge.

PROOF:

If {a.) converges to a, then every neighborhood of a contains all but a finite number of the terms
of {a.}, i.e. all but a finite number of the terms of {b.}. Hence the alternation of a finite number of
terms of a sequence cannot have any effect on the convergence.

The same is true in the case of divergence, since the two sequences either both have the same
infinite limit or neither has an infinite limit.

Note. The proof presumed the term “neighborhood” to be intuitively self-evident, but it can be
more strictly defined as follows:

If x is a given point and p >0, then the open interval (x —p, x + p), sometimes denoted by
N(x; p) or N(z), is called a neighborhood of x as center and of radius p.

The neighborhood can be similarly defined in the space of two or three dimensions or more
generally of n-dimensions.

Any subsequence of a convergent sequence converges, and its limit is the limit of the
original sequence.
PROOF:

Let the convergent sequence be {a.}, the limit of which is ¢. Then, since every neighborhood of o

contains all but a finite number of the terms of {a.}, it must contain all but a finite number of the
terms of any subsequence.

Hence any subsequence of {a.} must converge to a, the limit of {a.} itself.

The limit of a convergent sequence {a.} is unique.
PROOF:

Suppose lima. = a and lima.=>, where a+*b. If, however, the neighborhoods of a« and b
are made so small that they have no points in common, then each must contain all but a finite number
of the terms of {a.}, which is evidently a contradiction. Hence a = b, which proves the uniqueness
of the limit.

Second Proof. Since a#b, |a—b] > 0, and also |a—b|/2 > 0. If lima. = b, then there must
exist p,ge N such that [en—a| < la—b|/2 and |a.—b] < |a—b]/2 for all n>p and »>gq. Hence

la—b] = |(@—an) + (@—b)| = |a—ax + [@ga—b] < [a—b|/2 + |a—b|/2 = |a—b]

ie. |a—b| < |a — b}, which is inconsistent. Hence the limit must be unique.
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Any convergent sequence is bounded.
PROOF:

Let the given sequence be {a.}, where lima.= a, and take a specific neighborhood of a, say
the open interval (¢ —1, @+ 1). Then, since this neighborhood contains all but a finite number of
the terms of {a.}, a suitable enlargement of the neighborhood will contain the remaining terms.

Hence all terms of the sequence is now contained in some finite interval, which makes the sequence
bounded, by Df.5.1.2.19.

Given two sequences A = {a,} and B = {b.}, the convergence of A and lim (@n—ba) = 0
imply the convergence of B and also

lima, = limb,
and conversely.

PROOF:

Let lima. =a and p>0. Then, by hypothesis, there exist p,qge N such that lan—a| < p/2 for
all n>p and |a.—ba] < p/2 for all n>q. Hence

[ba—a] = [(ba—an) + (@a—0a)] = |bu—ad + |@a—a] < p/2 +p/2 = p
which implies, by Df. 5.1.2.18,

lima., = lim b,

The converse is logically equivalent to Prob. 36 below.

The sum (or difference) of two convergent sequences is a convergent sequence, and
the limit of the sum is the sum of the limits.
PROOF:

Let the two sequences be {a.} and {b.}, where lima.=a and limb. =5, and let p>0. If meN
is chosen to be so large that the following inequalities can be simultaneously held for any = > m:

lan—a| < p/2 and |b.—b] < p/2
then, by the triangle inequality [cf. Th. 4.1.2.2.13, (1,
[(@nxb) — (@xb)| = |(an—a) = (ba=b)| = law—a] + |ba—b] < p/2+p/2 = p
Hence, by Df. 5.1.2.18,
lim (@n*b.) = lim a. = lim b.

Note. The result can be readily generalized to the sum (or difference) of any finite number of
sequences (cf. Supplementary Problem 5.4).

If {a.} is a convergent sequence, and if {ba} converges to 0, then {a.b.} converges to 0.
PROOF:

Since {a.} is bounded, there exists %keI* such that laz| =k for all neN. Let p>0, and take
me N so large that [b.| < p/k for n>m. Then, for n>m,

|anbn =0 = |anbal = laa|*|ba] < (p/k)k = p
Hence, by Df.5.1.2.18, lim a.b. = 0, which completes the proof.

The product of two convergent sequences is again a convergent sequence, and the
limit of the product is the product of the limits of the two sequences.
PROOF':
Assume as in Prob. 36; then
@by — ab = (an—a)bs + (b.— b)a

where, by Prob. 37, both sequences (a. — a)b. and (b,— b)a converge to 0 (. lim(an—a) =0 and
lim (b» — b) = 0 by the initial assumption).




Sec. 5.1.2] NUMBER FIELDS — REAL NUMBERS 233

39.

Hence, by Prob. 36-37,
lim (a.b.) = ab = (lima.) * (lim bx)
Note. Like Prob. 36, Prob. 38 can be readily generalized to the product of any finite number of
sequences. Furthermore, the proof itself can be carried out independently of Prob. 37, viz.:

Second Proof. Since lima. = @ by hypothesis, there exists pe N such that [a.— al <1 for all

n > p, which implies

laal = J(an—a)+a| = |aa—a| + o] < 1+ g
Let o’ be the largest of |ai|, Jas|, ..., |asl, 1+ la], and also o’ +1 = ¢; then ¢ >1>0, which implies
lax| < ¢ for all n. Hence the sequence {a.} is bounded.

Furthermore, choose d suitably, so that d > |b}, say d = |b|+ 1, which implies d>0. Since
lima. = a and limb. = b by hypothesis, there exist s,t ¢ N for p >0 such that |a.—a| < p/2d and
|bn—b] < p/2d for all n>s and n>t. Hence

|@nbn—abl = [(Gnbn—awb) + (axdb—ab}| = |a.bs—a.b| + [a.b— abd]
= |au| |ba—b| + |b|la.—a| < d(®/2d) + d(p/2d) = p
Hence, by Df.5.1.2.18,
lim (@nbs) = ab = (lim a.)(lim b.)

The quotient of two convergent sequences, where the denominators and their limits
are not zero, is a convergent sequence, and the limit of the quotient is the quotient
of the limits of the sequences.
PROOF:

Assume as in Prob. 36; then

an/bn = (ax)* (1/b2)
and the proof is complete, by Prob. 38, if it is proved that
lim 1/b, = 1/b, ie. lim ((1/8,) — (1/b)) = lim ((b — ba)/b) * (1/ba)) = 0

Since the sequence {(b — b,)/b} converges to 0, by Prob. 37 and the initial assumption, the proof
is then complete if the sequence {1/b.} is proved to be bounded. But, since b+ 0 by hypothesis, two
neighborhoods of 0 and b can be chosen such that they have no points in common, and since {b.}

converges to b by hypothesis, the neighborhood of b contains all but a finite number of the terms of
{b.}, which in turn implies that the neighborhood of 0 may contain only a finite number of these terms.

Furthermore, since b, 0 for all e N, there must exist a smaller neighborhood of 0 which
excludes all terms of {b.}. If this neighborhood is the open interval (—p,p), where p >0, then for

all neN, b = p, ie |1/bd = p
which implies that {1/b.} is bounded, completing the proof.

Note. As was possible in Prob. 38, the proof above may be carried out without resorting to
Prob. 37, viz.:

Second Proof. There exists se N such that |b.—b| < |b}/2 for all s <=. For, if not, there exists
te N such that t<s and |b] = |b|/2, which implies

] = |(b—b)+b:| = |[b—b + |b] < [b}/2 + [b]/2 = |b]
ie. |b] < |b|, which is absurd.
Hence there must exist se N such that [b.] > |b|/2 for all s <mn.

Furthermore, by Df. 5.1.2.19, the sequence {a.} is bounded as it is convergent. Hence there exists
reR* such that |a.] <7 for all neN.

Finally, since lima. = a and limb. = b, there exist t,t’ ¢ N such that |a.—a] < p|d|/2 for all
t<n and |b,—b| < pb*/4r for all t' <n, which together imply

|am/bn'_ a//b| - |(anb—abn)/bnb‘ = I(anb—anbn) + (anbn_abn)l/lbnbl
= |@nb — @Gubal/ |bab| + |@aba— abal/bab] = [au| |b— bal/|bub] + lan—al/]b]
< r(rd*/an)/((b]/2) [b]) + (plbl/2)/[B] =

which in turn implies, by Df. 5.1.2.18,
lim (a./bs) = a/b = (lim a.)/(lim b,)
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If lima. > limb,, then there exists meN such that a,—b, > p, where p >0, for all
n >m, and conversely.
PROOF:

Let a>b and p = (a —b)/3 > 0; then, by hypothesis, there exist s,te N such that lan—al < p
and |[bn—b| < p for all n>s and n>¢t. If an—b, = p, then

a—b = (a—a.) + (@an—by) + (ba—b) < p+p+p = 3p = a—0»
ie. a—b < a—b, which is absurd.
Hence a.—b, > p for all n <n’/, where n’ is the smaller of s and £

Conversely, if a.—b. = 0 for all #>n’, then a<b implies the existence of p >0 and seN
such that b.—a. > p > 0 for all n>s. Let n>n' and > s; then a.=b. and yet b. < a., which is
again absurd.

Hence it must be the case that a =b, which completes the proof.

Prove Th.5.1.2.22.
PROOF:

Let the given sequence be {a.} and lima., =a. Then there exists meN for any peF, where
p>0, such that |a.—a|l < p/2 for all n>m. If s>m and t>m, then by the triangle inequality
(cf. Prob. 36 above),

-

lam—@a| = [(am—a) — (@n—a)| = |am—a] + lan—a] < p/2 + p/2 = p
Hence, by Df. 5.1.2.21, {a.} is a C-sequence.

Note. This theorem may hold even for some divergent sequences if the Axiom of Completeness
(cf. Df.5.1.2.15) is to be ignored. E.g. a sequence of rational numbers converging to V2 (an irrational
number) does satisfy this theorem, but does not converge within the field of rational numbers itself.

The concept of limits and C-sequences in an ordered field F can be applied to a sub-
field F” of F iff F is Archimedean-ordered.
PROOF:

Assume that F is not Archimedean-ordered; then, by Prob. 30, there must exist an element ae F
such that n = a for some ne N, which implies » <n = g, je. r<a, for every re R, since the rational
number field R is Archimedean-ordered (cf. Th. 5.1.1.6). If a is multiplied by 1/ar >0, then 1/a <1/r,
ie. 0<1/a <b, where 1/r = beR*. Now, let 1/a = p > 0; then [t/e—1/d] > p for any
cdeF and ¢+ d. Hence there does not exist »’e¢ N such that |[1/e—1/d| < p for every e,d>n'
if F is not Archimedean-ordered. That is, say, a rational sequence {1/n}, n =1,2,..., which evidently
converges to zero, is a C-sequence in R (which is of course a subfield of F), and yet does not converge
in F, which is absurd.

Hence F must be Archimedean-ordered.

Conversely, if F is Archimedean-ordered, then the convergence of a C-sequence, lima.=a, is
assured in F’ if the same holds in F. Since F is Archimedean-ordered, there exists ze N such that
n>1/p, ie. 0 <1/n =p’ < p, where p'cR, hence p'e F'. Then, since lima.=a in F’, there must
exist n'e N such that |a.—a] < p’ < p for every n<n’.

Hence lima.=a in F, which implies lima. =a in F’ iff the same holds in P, completing the
proof.

An ordered field F, which contains the rational field R, is Archimedean-ordered iff
each element of F is the limit of a rational sequence.
PROOF:
Let ae F, where a is the limit of a rational sequence {a.}. This implies the existence of ke N
such that |ax—a] < 1 and
a = o = [(@—a) tax] = |o—a + |ax] < 1+ |as

where evidently 1+ |ax] £ R, by the initial assumption. But then, since B is an Archimedean-ordered
field (cf. Th. 5.1.1.6), there exists ne N such that n > 1-+|ax. Hence n>a, which implies by
Df. 4.1.2.412 that F is Archimedean-ordered.
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Conversely, if F is Archimedean-ordered, then there exist s,te N for any ne N and any acF
such that
s(l/n) > a and t1/n) > —a, ie. (—)(1/n) <a

which implies that the set M of integers, in which 7r(1/n) =a for every reM, is bounded above.
Hence M must contain the largest integer m such that

min = a < (m+1)/n
ie. 0=a— (m/n) <1l/n

Let m/n=a.; then, since there exists n'¢ N such that n’ >1/p for pe F* (i.e. pe F and p>0)
and
lan—al = a—ax < I/m < /0 < 0

for every n>n'.

This implies lima. = a for every aeF, completing the proof.

If R and B’ are two real number fields, there exists one, and only one, order-isomorphism
M (cf. Th.4.1.2.3.8) of R into R’, in which the rational number field R is one and the
same.
PROOF:

Since R is Archimedean-ordered, it follows from Prob. 43 that there exists a rational sequence,
say {a.}, such that lima. = a for every a ¢ R, which implies that {a.} is a C-sequence in R. Hence,
by Prob. 42, {a,.} is also a C-sequence in the rational number field R, where of course RCcR and
RCR'. Since R’ is also Archimedean ordered, by hypothesis, {a.} is a C-sequence in R’, too, and
consequently lim a. =&’ for o' e R’, where o’ is independent from any specific choice of the rational
sequence {a.} for the following reason:

If there exists a rational sequence, say {b.}, such that lim b, = @, then lima.=1limb. in R
and R, which implies lim (@»—b.) =0 in R and likewise in R’ which in turn implies limea. =
lim b. = &'.

If f is the mapping of R into R’, i.e. o' = f(a), then lima. = a, where acR, entails a.=a for
every ne N. Hence f(a) =a or f(a') =a’; i.e. B is not affected by the mapping f.

On the other hand, if lima.=a and limb,=0b where a#b in R, then lim (@n—bs) # 0 in

R’, which impl_ies lim_am #*limb, in R, ie a = fla) * f(b) = b or a’ +* b’ in R. Hence the
mapping f of R into R’ is 1-1.

Furthermore, for the same mapping f,

f(a + b)

I

fima. + limb,) = f(lim(a,+bs)) = lim f(a.+ ba)
lim (f(@n) + f(bn)) = lim f(as) + lim f(ba)
flima.) + f(limb,) = f(a) + f(b)

Il

and likewise
fla=b) = fla)-f(b)
Hence the mapping f is an isomorphism,

The mapping is also an order-isomorphism. For, if
lima. = ¢ < b = limb.

in R, then there exists #»’ ¢ N such that a.< b, for every n > %', which implies that lim a.<lim b. in
R’, by Prob. 40, i.e.
= fla) = f(b) =

But a b, as the above implies f(a) # f(b). Hence a < b implies a’ < b’, which completes the proof.

The mapping f, defined by Prob. 44, is unique.
PROOF:

Assume g to be also an order-isomorphism of R into R’. Then g maps the subfield R of R into
a rational field R’ contained in R’, which cannot be affected by the mapping, as was proved by Prob. 44.
Hence R' =R, i.e. g(r) =17 for every re R in R.
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If f+ g, then there must exist an element ae B such that o = fla) #= g(a) = .. Say &' < ¥’;
then let b —a’ < 1/n, where neN. This implies

min = o < ¢ = (m+1)/n
for some meN, i.e., o < e=(m/n)+1m) < o+ B ~a) =¥
But ce R and, by Prob. 44, ¢ = f(c), which implies f(d) = o' < ¢, while ¢ = g(c¢) implies
g(d) = b < ¢ = g
ie. b’ <e¢, which is contradictory to o’ < ¢ < ¥,
Hence it must be the case that f =g, completing the proof.

_Note. This theorem thus assures the uniqueness of the real number field R, but the existence
of K is revealed nowhere within the frame of the theorem. It can be constructed in concreto, of
course, on the strength of Th.5.1.2.11 and Th. 5.1.2.22, which Cantor himself used for the construc-
tion of R.

§5.1.3 Complex Numbers

Df.5.1.3.1 A complex number z_is an ordered pair (or Hamilton’s number couple) of
the form (x,y), where z,y¢ R, the real number field, obeying the following binary
operative rules: for every a,b,c,decR,

(i) (a,b) +(c,d) = (a+¢c, b+d),
(i) (a,b):(c,d) = (ac—bd, ad+ be).
The former, z, of the pair (x,y) =z is sometimes called the real part (or component)

of the pair, denoted by R (z) or Re (z), while the latter, y, is called the imaginary part
(or component), denoted by I(z) or Im(z), since (x, ¥) may be replaced by its equivalent:

x +1y, where i=1/—1.
In this definition the knowledge of i is taken for granted, in particular the
following property:

Df.5.1.3.1a  For every (a,b)eC, (a,b) =a+ib =0 iff a=0 and b=0. (Cf. Prob. 1 note.)

Stated otherwise, for every ae R and every ibe C,_a and b are linearly independent
(cf. Df.4.1.8.2.4); viz. ax +1iby = 0 for every z,yeR iff 2=y =0.
It must be noted that Hamilton’s quaternions (or quadruples, cf. Df.4.1.3.1.3) are
capable of subsuming complex numbers (i.e. Hamilton number couples), viz.
(a,b) + (¢,d) = (a,b,0,0)+(¢,d,0,0) = (a+¢ b+d,0,0)
(a,b)* (c,d) (@,0,0,0)(¢,d,0,0) = (ac—bd,ad+be,0,0)

While quaternions form only a sfield, however, complex numbers form a field, viz.:

Th.5.1.3.2 A set C, each element of which is of the form defined by Df.5.1.3.1, forms
a field. (Cf. Prob. 1.)

Df.5.1.3.3 The field C, established by Th.5.1.3.2 is called the complex number field.

The field C is evidently embedded in the sfield @ of quaternions, as has already
been pointed out above; so is the real number field B embedded in C (cf. Prob. 2-3),
with the following clear-cut provision:
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Th.5.1.34 The complex number field C is not ordered. (Cf. Prob. 7.)

Here can be drawn a line of demarcation between R and C, to which every
operative property but the order of R can be carried over. It must be remembered,
too, that C is isomorphic to the quotient ring I{x}/(x*+1) (cf. §4.2.3, Prob. 5, and
also Prob. 5 below). As will be seen later (cf. Th.5.2.1.19), C is actually isomorphic
to B{x}/(x?*+1).

Also, as the student has already been introduced
through College Algebra and Trigonometry, C is iso-
morphic to the so-called complex-plane (or the Gauss-
Argand plane, or to be more historically exact, the P
Wessel-Argand-Gauss plane), where the orthogonal
axes X (the real axis) and Y (the imaginary axis)
through the origin O (cf. Fig. 5.1.8.a) correspond to
the real and imaginary parts of complex numbers;
viz. a point P in the plane 1-1 corresponds to a complex 0
number: z = z +1y. Fig. 5.1.3a

Y

Df.5.1.3.5 A complex number z = x +4y is uniquely determined by the polar coordinates
r and 6, where r is the distance between O and P (cf. Fig.5.1.3.a) and ¢ the angle
from the real axis to the segment OP, such that

r = |z| = Vait+y? 6 = argz = tan=!(y/x)
The polar coordinates r and 6 in this context are called the absolute value (or modulus)
and the argument (or amplitude), respectively, of the complex number 2.

It immediately follows that = = rcosé¢ and y = rsind, hence 2z = rcosf +
irsin @ (or more concisely, z = rcis¢), and that there exists an isomorphism between
(r,6) and (»,y) under rational operations, as can be readily verified through the
familiar de Moivre’s theorem, viz..

Th.5.1.3.6 (by de Moivre). If nel, then
(reis)® = 7r"cis(nb)
(Cf. Prob. 9.)

The triangle inequality (cf. Th.4.1.2.2.13) as well as the Schwarz inequality
(cf. Prob. 19 below) also holds in C with a slight modification, i.e. in terms of moduli:

Th.5.1.3.7 If 21,22 C, then

a1 = [22] = Jer—2] = J2] + 2]
(Cf. Prob. 12.)

From the theory of equations (cf. Prob. 21-30 below) and others, two complex
numbers differing only in the signs of their imaginary parts are specifically defined
as follows:

Df.5.1.3.8 For every z +iy = ze C, the conjugate of z, denoted by 2, is = — iy =2%2¢eC.
Directly from this definition there follow (i) |2|= 12|, (ii) 22=2?|, which is some-
times called the nmorm of z, (iii) 2=z, (iv) 21 +22 = & +2, (V) 21°22 = Z1* %, (cf.
Prob. 13-14), which also establish the following theorem:

Th.5.1.3.9 The mapping V: 2<%, where z,2¢C, is an automorphism. (Cf. Prob. 32.)
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Note, also, that each real number maps into itself through V, which can be
repeated, yielding the following result.

Th.5.1.3.10 The double mapping V2 is an identity transformation (cf. Df.2.2.2.16).
(Cf. Prob. 33.)

Note. An isomorphism is sometimes called an nvolution (cf. §2.4.2, Prob. 5) if,
when applied twice, it has the effect of an identity transformation; V, then, is an
involution in the above context, where, geometrically, it is merely a reflection of z
in the X-axis, as is quite obvious in the location of z with respect to z.

Of some elementary mappings of the complex plane into itself, the following
transformation has particularly interesting properties.

Df.5.1.3.11 The mapping f defined by the linear fraction of the form
W = f(z) = (az+b)/(cz+d)

where ad—bc »# 0 and a,b,c,deC, is called the Mébius (or lLinear or homogrephic)
transformation. (Cf. Prob. 34-39.)

Th.5.1.3.12 The set M of all Mébius mappings forms a transformation group. (Cf.
Prob. 40.)

Note. M represents some familiar transformations, of infinite varieties, e.g.
(i) translations when w = z+b (ie. a=d=1, ¢=0); (ii) rotations when w =az,
a =cisy, ¢ being the angle of rotation; (iii) dilations when w=az, >0 and a+1;
(iv) inversions when w = 1/z, etc.

Solved Problems

L. e+ = c+id, where a,b,c,deR and i=1/—1, if a=c and b =d.
PROOF:

If a=c and b =d, then simply by substitution (cf. MTh.1.1.1.9) a+1ib = ¢+ 4d.

Conversely, if a+4b = c¢+id and also b=d, then ib=1id, which immediately implies, by
hypothesis, a =e¢. If, however, a+1ib = ¢+id while b+#d, then i = (a—e¢)/(d— b), which implies
isfe, since a,b,c,de R. But i¢ R, by the definition of i itself.

Hence, in either case, a+ib = ¢+id implies a =¢ and b =d.

Note. If the concept of “linear independence” (cf. Df.4.1.3.2.4 and also Prob. 3 below) is pre-
sumed in this context, it follows at once that (@—¢)+i(b—d) = 0, which implies a =¢ and b=d,
and conversely.

2. Prove Th.5.1.3.2.
PROOF:
The set C' does satisfy all the properties of a field (cf. Th. 4.1.2.4.1), viz. for every (a,b),(c,d),(e,f) £ C:
Cl1,6. By Df.5.1.3.1 itself.
C2. (b)) +((c,d)+(ef)) = (a,b)+ (cte, d+f) = (at+ct+e,b+d+f) = ((atc)+e, b+d)y+phH
= (a+e, b+d) + (e.f) = ((¢,b) + (c,d) + (e.f)
C3.  (0,0. (. (@b)+(0,0) = (@ +0,b+0) = (a,b).)
C4.  —(a,b) for every (a,b)e C
€ @b+ (—(ab) = (a,b)+(—a,—b) = (a—a, b— b) = (0,0) = (—(a,b)) + (a,b).)
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C5. (ab)+(cd) = (@a+e,b+d) = (¢c+a,d+b) = (cd)+ (a,b).

C7.  (a,b){(c,d)e,f)) = (a,b)(ce —df, cf +de) = (ace— adf — bef — bde, acf + ade + bee — bdf)
= (ace — bde — adf — bef, acf — bdf + ade + bce) = (ac — bd, ad + be)(e.f)
= ((a,b)(c,d))(e.f)

C8. (a,b)((c,d) + (e.f)) (a,b)(c+e,d+f) = (ac+ ae— bd— bf, ad+ af + be + be)

(ac — bd + ae — bf, ad + bec + af + be)

= (ac—bd, ad + be) + (ae — bf, af + be) = (a,b)(c,d) + (a,b)(e,f)
Likewise ((a,b) + (e, d))(e,f) = (a,b)(e,f) + (c,d)e,f)-

c9. (1,00 (. (&,5)(1,0) = (@*1—b+0,a0+b1) = (a).)

C10. (a,b)"! = (a/(a®+ b%, —b/(a®+ b*). (Cf. Prob. 3 below.)

C11. (a,b)(c,d) = (ac—bd, ad+ be) = (ca—db, ¢b+da) = (¢,d){a,b)

It

I

Given (a,b)(x,y) = (¢,d), where (a,b),(c,d), (z,) ¢ C and not simultaneously a=0, b=0,

find (z,¥).
Solution:
By Df.5.1.3.1 and hypothesis,
(a,b)(z,y) = (ax— by, ay+ bz} = (c,d) or (ax — by) + i(ay + bx) = ¢+ id

where, by definition, a,b,c,d,x,ye R, which implies (ax — by), (ay + bx) ¢ R. Then, since any real
number and i=v/—1 are linearly independent (cf. Df.4.1.3.2.4), i.e. px+ig #* 0 for any nonzero
p,q,x ¢ R, it follows that ax — by = ¢ and ay +bx = d
Hence, solving these equations simultaneously for x and v,
x = (ac+ bd)/(a®+ b?), y = (ad— bec)/(a®+ b?)
Note. A direct verification yields

(a,bX(ac + bd)/(a? + b?), (ad — be)/(a® + b2))
= ((a’c + abd — bad + b%)/(a® + b?), (a*d — abe + bac + b2d)/(a® + b%)) = (c,d)

and if (¢,d) = (1,0), then evidently
(x,y) = (a/(a®+ b?)), —b/(a® + b?)
verifying C9-10 in Prob. 2 above.

The real number field R is embedded in the complex number field C.
PROOF:

Let a<>(a,0) and b<> (b,0), where a,be R and (a,0),(b,0) ¢ C’; then
(a,0) + (b,0) = (a+b,0) ©& a+ b and (a,0)* (,0) = (¢*5,0) <> a*b

which proves an isomorphism of B into a subfield C’ of C, where every element of C’ is uniquely of
the form (z,0) for every zeR.

Hence R is now embedded in C.

The real number field R and ¢=1/—1 form a minimal field containing R, i.e. the com-
plex pumber field C, iff every element of C is uniquely of the form x +%y, where

zye R,
PROOF:

Assume that C contains a subfield B which consists of B and j=1/—1. Then, since ©#=j*=—1,
it follows that G+NE—5) = 2—if+ji—j* =0
which implies i4+j7 = 0 or i—j = 0, ie. i==*j, since, by Df.51.2.4.1, C is not to contain any
zero-divisors. Hence ze¢ B, where 2z = x+iy = x*jy, if zeC, and conversely, which evidently

implies B = C, proving that C is a minimal field.
Conversely, if C is a minimal field, then every element of C is uniquely of the given form z + uy.
For, if a,beC, where a = x +1iy and b = z’+14y’, then, by Prob. 1 above and Df.5.1.3.1,
(i) x+iy = o' +iy if x=2 and y=y;
() (+iy) +(@+@) = (@+2)+iy+y)
(iil) (x+dy) - (& +y) = (2’ —yy') + i(xy + z'y).
This completes the proof.
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6. The complex number field C, except its possible isomorphs, is unique.
PROOF:

Let C and C’ be two complex number fields, where i=i¢=v—1 if 1eC and Ve C’. Then, by
Prob. 5, every element of C and C’ is to be uniquely of the form ¢+ 1y and x +14'y respectively,
where z,y ¢ B, which thus implies the 1-1 mapping f of C into C’.

Furthermore, if 24,226 C, where z: = a+1b and 2 = ¢+ id, then f(z1)) = a+14'b, flzs) = e+1i'd
fertz) = fllat+idb) + (c+id)) = f((a+e¢) + i(b +d))
= (@t +7b+d) = (@+b) + (c+7d) = fle)) + f(zz)
Likewise f(z1°2:) = f(z1) * f(22).

Hence f is an isomorphism, which maps ¢ into ¢ and e into a itself for every aeR. This
completes the proof.

>

and

7. Prove Th.5.1.3.4.

PROOF:
Assume that C is ordered. Then, by Th. 412,29, i+#0 implies >0, contradictory to the
definition: # = —1 < 0.

Hence C cannot be an ordered field.

8. [Express the following complex numbers in their respective polar forms:
() =144, (i) —2-34, (iii) o/\/3—1
Solution:
i) Since, by Df.5.1.8.5, z = ¢ +iy = —1+414, ie o=—1 and ¥ =1, in this context, it follows at
once that r = |z| = V(—1)?+ 1% = /2. Furthermore, ¢ = argz = tan™!(y/x) = tan~!(-—1),
ie. ¢ = 3r/4+ 2kr or, taking its principal value, § = 3r/4, since cos ¢ = ——1/\/§ and sing = 1/\/5.
Hence 2z = V2cis (37/4).
(ii) Likewise, » =1/18, which implies cos¢ = —2/v/13 and sing = —3/V13, which in turn implies
6 = 2kx + (7 + tan™*(8/2)) or, taking its principal value, ¢ = r + Tan~! (3/2).
Hence z = /13 cis (r + Tan~!(3/2)).
(ili) Likewise z = (2//3) cis (—x/3).

9. Prove Th.5.1.3.6.
PROOF:
Let 21 = ricis6: and 22 = racis 6:; then

Ziza = 7Ticisércracis8: =  27a(cos 61 + i sin 6:)(cos 82 + i sin 82)
= 7172((cos 61 cos 82 — sin 61 sin 62) + i(sin 61 cos 82 + cos 6: sin 62))
= 7ire(cos (014 65) + isin (614 62)) = 7175 cis (01+ 62)
and in general, by induction, for 2 = 7 cis 81, 2: = 7 cis 82, ..., Zn = Ty ciS 6a,
R1Z2--+%n = 7r1CiS@1°r2CiS02 - *TaCiSOn = ri72--Ta cis @1+ 62+ - -+ 64)
If 2=2=...=2z,=2 then n=9:=... =7, =7 and 6; = 6: = --. = 6, = ¢, which imply
2" = rcis (ne)

which proves the case for nel™.
On the other hand, if —neI~, then, since
(cis8)~' = 1/(cis6) = (cos8 — isin6)/(coss + sin 6) = cos¢ — ising = cis(—9)
it follows at once that, applying the first result,
(cis6)™" = ({cis)™H)* = (cis (—6))* = cis (—ne6)
which completes the proof.

Note. n =0 implies the trivial case 2° = # ¢is0 = 1.
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10. Th.5.1.8.6 holds also for fractional values of n.

PROOF:
Let
w = s = VE m
so that w is a solution of
wh = ()
Then, by Df.5.1.3.5,
w = Rcise and 2z = rcisé (3)
From (2), (3), and Prob. 9 above,
w"® = Rrcis(ng) = recisé

which implies
R* = and mne = 6 =2ks, where k=0,1,2,...
ie. R =%Y7r and ¢ = (6 = 2km)n, k=012,...
which then entail, by (3),
w = Vrcis (6 = 2kr)/n)
and, by (1),
2Un = (rcis@)V* = r'"cis((¢ = 2kx)/n) 4)

where cos ((8 = 2kz)/n) and sin ((6 * 2kr)/n) have the same values for two integers k differing by a
multiple of #, since they are of course periodic. Hence (4) yields exactly = distinet values for z'", viz,,

Vz = rVcis (8 = 2kr)/n), k=0,12,...n—1 (5)
Hence, by Prob. 9 above and (5),
Zmr = ™ cis (m(9 = 2kw)/n) 6)

for every m,ne I, which completes the proof.

11. Find all roots of (i) V1 and (ii) V1 +4.

Solution:
(i) By Prob. 10, 1¥*=1, =0, and
V1 = cis(kz/n), k=0,12,...,n~1
which exhausts the n roots of unity. (Pictorially, they coincide with the vertices of a regular
polygon of n sides inseribed in the unit circle, with one vertex of the polygon at z=1.)
(if) Since 1+1¢ = \/E cis (z/4), it follows from Prob. 10, (5), that

VIti = V2 cis ((+/4) + 2kx)/3), k=0,1,2

Hence the three roots are:

wy = 2V8 ¢is (7/12), we = 2Y° cis (3n/4), ws = 2V° cis (177/12)

12. Prove Th.5.1.3.7.
PROOF:

Let 21 = a+ib 7 0 and z: = ¢+1id # 0, and also let O
denote the origin. Then, if O,z;, and z; are not collinear,
0, z1, 22, and z: + 22 are the vertices of a parallelogram (cf. Fig.
5.1.3.b), where |21| and |z:| are two sides of the parallelogram and
|: + 22| is a diagonal. That is, |21, |22/, and |21+ 2| are three
sides of a triangle. Hence %2

|21+ 22| < as] + |2s] @)
and iff argz = argz.,
|21 + 25

21+ 22

I

lza] + |z (@) @

Combining (7) and (2),
lei+ 2] = fad| + |2 3) Fig.5.1.3b
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which immediately implies |21+ (—22)] = |2i| + [(—22)| = |21] + |22], i.e.
l2s — 22| = |z + |2 )

Furthermore, from (3), |z1] = |zi— 2+ 2 = |2, — 2] + lz2], ie.
2] = |2 = [o1— 2 )

Combining (4) and (5),
sl = 2] = o1~z = || + |2
which completes the proof.

If either 2: =0 or 2: =0 or if z: =2z, =0, the case is obviously trivial, yielding the same result.

Second Proof. A direct computation yields
Va+e+b+dPf = Vaa+ b + Vot
which is evidently true, since, by squaring both sides of the inequality,
(atef+(b+d)? = a®+ b+ e+ &+ 2@+ b)) + &)
ie. ac+bd = V(a*+ 0% + &)

and, squaring again,

a*c® + 2abed + b2d® = a2 + a¥d® + b2 + bid?
ie. (ad—bd)®* = ¢
which of course holds, since a,b,c,defl. Hence
lzst 2| = Jou| + |2

The rest can be proved likewise.

13. If 2,y C, then
) 2+y=4+g, (i) s—y==&—7, (i) z-y=2a-9, (iv) 2/y = 4/j, where y 0

Let 2 = a+1ib and y = ¢+id; then

) Tty = (a+ey+ib+d) = (@at+ec)—ib+d) = (@—1b) +(e—id) = &+73.
(i) Likewise z—y = & — 3.
(iii) x*y = (ac—bd) + lad+be) = (ae—bd) — i(ad + be) = (@a—ib)(c—id) = &-7.

(iv) Likewise «/y = #/9. (Or, directly from (iii), it follows that #-(x/y) = y-(x/y) = 2 and
that, dividing both sides by 7 #0, */y = &/7.)

14. If z,yeC, then
(1) |of = |2, (i) %= |f>, (i) |z y| = |z| |y, (iv) lc/y| = |x|/ |y], where y+0
PROOF:

(i) Let x = a-+14b; then # = a—ib and, since J#] = (@*+ 8)"2 and |2 = (a® + (—b)®)"2, it follows
at once that |x| = |#|.
() =2 = (a+ib)a—ib) = a®+b = ((@+b)) = |of

(iii) |e-y| = |(ac—bd) + i(ad+ be)| = ((ac— bd)? + (ad + be)®)v?
= (a%" + a’d® + b + BAd?)2 = (a? + b2 (c? + 2
= |2 |yl
Second Proof. By (ii) immediately above, |z - Y= )@ y) =xrysEoG=ax+F Yoy =
lz]>« |y*, and since |x+y| =0, |a| =0, and lyl =0, it follows that |x+y| = |z|¢|y|.
Note. |wixe: - aa| = || [ws| ++-|2a], for every miuxe,... 2ne C, evidently holds as a general-

ized result of (iii).

(iv) |o/y] = |((ac+ bd) + i(ad ~ be))/(c? + )} = V(ac+ bd)® + (ad — be)*/(c* + d?)
= V@ + )@+ d)/(E+d) = Vet eVeE+d = | / |yl

Second Proof. By (iii), |y||x/y| = |ylzly)| = |#|, and, dividing both sides by |y|+ 0,
|2/y} = |x| /|yl
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15.

16.

17.

18.

If |21 =|oe|=... = |zx) =1, then
|z1+2e+ .. +2za| = [Van+ 1z + ... +1/24]
PROOF:
Since, by Prob. 14, (i), 121} = |21 and evidently also
lzi+ 22| = |2+ 2
(or 21 = a;+1iby and 22 = @+ b, imply 21 = ai—ibi and 2z = az—ib;, which in turn imply

21t R = ((ld + az) + i(bx + bz) and 21+ 2; = (a/x + az) - ’i(bl + bz), ie. |Z1 + Zzl = ((a1 + 0/2)2 + (b1 + bz)z)l/2 =
|21 + 22]), this result can be readily generalized to

ler bzt o +za) = [t at o+l
Since, by Prob. 14, (ii), and the initial hypothesis, |z:1> =212 =1, it follows at once that z: = 1/z:.
Likewise 2: = 1/22,...,2» = 1/2.. Hence

lzi+ 2+ cov d 24 = | 121+ 1/z2 4+ + -« +1/2.]

If 2,yeC, and if |x|=1 or |y|=1, then

[@+y)/1+Ey)| =1
PROOF:
Let |x| =1; then, since x% = |2|*=1, i.e. # =1/, it follows that
z+y = (Ux)+y = 1+ay/z
(x+y)/1+zy) = (1+2/B)/1+zy) = 1%
l+y)/L+zy)| = |V/x| = 1]E = U] = 1

The same result is obtained likewise by assuming |y|=1, which was a part of the initial
hypothesis.

If 2eC, where z = a+1ib, then (i) 2=2, (ii) 2+2 = 2Re(z), (iii) 2—2 = 2Im(2),
where Re (z) and Im (z) are the real and imaginary part of z, respectively (cf. Df.5.1.3.1).
PROOF:

(i) % = a—1ib, by hypothesis and Df.5.1.3.8 itself. Hence Z = (a—1ib) = a+1ib = z, ie. Z==z.
(ii) z2+2z = (a+1ib) + (@ —1ib) = 2a = 2Re (2)

(ifi) z—2 = (a+1ib) — (@—ib) = 2ib = 2Im (2)

If z,yeC, then (i) |z +y|* = [« +|y>+2Re(xy), (i) [x—y* = |2+ |y[>—2Re(xy),
(iii) |z +yP2+|x—y? = 2(|x]>+|y]), where Re(x#) denotes the real part of zy (cf.
Df.5.1.3.1).

PROOF:

(i) By Prob. 13, (i), and Prob. 14, (ii),

eyt = @+y)lety) = @+E+H) = a2 +yg+ i+ oy

where, by Prob. 14, (i), z& =|x|?, y7 = |y|?>, and, by Prob. 18, (iii), Prob. 17, (i), and Df.5.1.3.8,
Zy = &+y = %y, which implies, by Prob. 17, (iii), Zy +x§ = «§ + 27 = 2Re (x7). Hence

le+yl* = |2[* + [y|* + 2Re (x9) )]
(ii) Likewise, going through similar steps as above,
le—yl* = [=| + |yl — 2 Re (x7) @
(iii) Adding (Z) and (2),
lz+yl* + le—yl* = 2] + [y} 3

which completes the proof.
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19. For every ax,bxeC, k=12,...n,

T bl = (T lawt) (T o)
PROOF:
Let d e C such that

ae = dbeto, k=12,...n )
Then |axl* = axdx = (dbx+ cx)(dbx+ &) = [d|? |bul* + |ex|* + dbuc + dbidr. Hence
Zlaf = (a2 + Slal + AT b + AT bre) 2
and, from (1) itself,
%akbk = d%bki’k + Ekbka = ol%lbk[2 + gbka 3
If every b« is not to vanish all simultaneously, and if d is to satisfy
gakbk = d% |2 4)
then, by (3), Ek beer = 0.
Hence, by (2),
Sla = jarSio + 3ol

Multiplying both sides of the equation by 3 |bx/?,
k

(BlalYF o) = 1 (F ) + (Flob)Eok) = (Sl = |Faobl
by (4). The equality holds evidently iff
(Bl Pr) = o0
ie. either X |b* = 0 which implies by=bs=--- = b, =0, or %Ickl2 = 0 which implies ¢;=¢; =
k
*+»=c¢,=0. (The latter also implies, by (1), ax = dbs.)

Second Proof. If the inequality has already been proved to hold with respect to real numbers
(cf. §5.1.2, Prob. 13), i.e.,

(Zlad B} = (Zlat)(Zloel?), k=12,... @)
then, since
| Sacbe] = Slasl b, e | Sabelt = (3 lae] [Baf)y? (@)
it immediately follows from (1), (2), and transitivity that
Sabl = (Slaf)(S o)

which completes the proof.

20. If |a| <1, then |(z—a)/(1—d7)| <1, =1, > 1 according as l2/<1,=1,>1.

PROOF:
Since
lz—al? — 1l —@P = -a)z=a) — 01— az)(l—dz) = (z—a)z—a) — (1—az)(l —a3)

= @—1D)(1—ad) = (2]?—1)(1— |aP)

and since, by hypothesis, Ja| <1, ie. 1—[a*> > 0, it follows that le—a?~1—az> < 1, =1, > 1
according as |2]*<1, =1, >0.

Hence [z—af* = [1—az’, ie. |(z—a)/(1—d2)| =1 according as [z| =1, completing the proof.
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21. Two numbers z and y, whose sum as well as product is real, are either both real num-
bers or conjugate complex numbers.
PROOF:

Let a,be R; then any two numbers x and y, where ¢ +y = a and xy = b, are in fact the roots
of the following quadratic equation

t—at+b =0

=

where the roots are either both real numbers if a*—4b = 0 or conjugate complex numbers if
a?—4b < 0, ie.

x = (a/2) + i(V4b—a?/2) and y = (a/2) —i(V4b— a*/2)

Second Proof. Let ¢ = a+1b and y = c¢+id; then
x+y = (a+e)+idb+d) and =zy = (ac—bd) + i(ad+ be)

which by hypothesis implies both b+d = 0 and ad+bc = 0, from which it follows that b= —d
and bla—c¢) = 0. Hence either b =0 or a=¢ if b+ 0, which implies that either b=d=0 or a=c¢
and b=—d. If b=d =0, then evidently x =a and y =¢, i.e. zyeR, and if e =¢ and b= —d, then
z,yeC and ® =9 or y = £, which completes the proof.

22. If a is an imaginary root of the equation: z"—1 = 0, then
l1+a+a*+ ... +a"* =0

PROOF:

Since z"—1 = (z—1)(z*"'+2" "2+ -+- +z+1), and since a is a root of the equation and evi-
dently a—1 % 0,

(a—1)a" '+a?+---+a+l) =0
implies at once that
at+ae P+ +add+at+l =0

which completes the proof.

23, If ree R and exeC, k=0,1,...,m, then (i) X rvck = X, rube, (ii) ¢® = (€)* for every ceC

and neN.
PROOF:
(i) Generalizing Prob. 13, (i),
FiciF racaF - F raa = Tt 120+ rc F Talk
But, by Prob. 183, (iii),
Ti€L = F1C1, 7T2Cz = ¥382, ..., TnCn = TnCn

where 7« = 7%, since r.e E. Hence

S ek = S reée

(i) Let x =y in Prob. 13, (iii); then 2* = (&)?, and likewise «® = z’x = #*+& = (2)’% = (£)°. Since
both e C and ce C, x and ¢ are interchangeable; hence, by induction,

o = (&"

which completes the proof.
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24.

25.

26.

27.

28.

If f(xr) = X axa*, k=0,1,...,n, where ace R, then
k —_
fz) = 1(3)
for every zeC.
PROOF:

Since f(z) = %akz", it follows, by Prob. 23, (i), (ii), that

f@) = a2+ az' F o Fanr = P+ mB e ans
@@+ ai(D + -+ + an(d) = F(2)

which completes the proof.

If, as in Prob. 24 above, f(x) = X axx*, k=0,1,...n, where ace R, and if f(z) = a +1b,
k

where a,beR, then f(3) = a—ib.
PROOF:
Since f(z) = a+1ib, it follows at once, by Df.5.1.3.8, that f(_z) = a+tib = a—1ib. But, by
Prob. 24, f(z) = f(3). Hence
f(2) = a-—1b

If a complex number 2 is a root of the equation

fx) = X aak = 0 (1)
k
where ax e B, then Z is also a root of (1).
PROOF:
Since z is a root of (1), by hypothesis, it follows from Prob. 25 above, that
fz) = a4+ = 0 (2)

where a,be R. Since the real part and the imaginary part are linearly independent, (2) implies that
a =b =0, which in turn implies, together with Prob. 25,

fz) = a—1ib = 0
completing the proof.

If weC is a root of the equation:
f(e) = ; ez =0, k=0,1,...,n (1)
where z is the indeterminate of (1) and cxeC, then % is a root of the equation
9(z) = % éz* = 0

PROOF:
Since f(x) =0, it follows from Prob. 26 that f(#) =0, which in turn implies, by Prob. 24,
__ f® =W =0
ie. fu) = eou’ + e + -+ +eu® = G+ GEt + - 4+ Git® = 0

Hence, by substitution [and Prob. 17, (i}],
f@) = @’ +&u' 4+ -+ + U = Gud + Eul o + Gut = g@) = 0

which proves that @ is a root of g(z) = 0.

Find the roots of the equation 22> = ¢ +ib, where a,be R and b <0.
Solution:
Let z = x + iy; then, by hypothesis,
(x+iy) = a+1ib, ie x*—y2+ 422y = a -+ ib 1)
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which, by Prob. 1, implies
i -9 =gq () 22y = b : (2)

Squaring (i) and (ii), then adding them,

(@*+y?)? = a4+ 8% e 22+ y* = (a*+b)” 3)

From (3) and (2), (i),
# = (@+)+a)f2, ¥ = (@) - a2 *)
ie. @ = @@+ )2+ a)/2)M, oy = =(((@*+ ) — a)/2) ®)

since the right sides of the equations of (4) are both non negative.

In general, since x and y must satisfy (2), (ii), as well as (3) and (2), (i), zy and b must have the
same sign if 5= 0. Hence the square roots of a +ib are

(i) p+ig and —p—ig if b>0,
(ii) p—ig and —p+ig if <0,
where p = (((a2+ b%)Y* + a)/2)? and q = (((a*+ bH)V? — a)/2)'~.
Note. b =0 implies that
(i) ==y=0if a=0
(i) z==Va if a> 0, since (a*+ b2 = a, implying by (4) that x = =Va and y =0.
(iii) z==iV—a if ¢ <0, since (a*+ b?)"* = —a, implying by (4) that x =0 and y = *V—a.

29. Find the roots of the quadratic equation 722+2sz+t = 0, where r+0 and 7,s,teC.
Solution:
Let 8’ =s/r and t' = t/r; then, by hypothesis,

2+ 22+t =0, ie (+8)? = -V 2)
which implies, by substituting z = x +1iy, 8’ = b+ b, ' = c+ ic’,
((x +dy) + (b+ib')2 = (b+ 1) — (¢c+ic))

ie. ((x +b) + i(y + b)) = (b>—b"—c) + i2bb' — ')
Then, introducing two sets of substitutions:
x+b = u, y+b = (2)
b2—b%—¢c = p, 2bb' — ¢ = ¢q 3)
it follows that
(u+1)?: = p+1ig 4)

which reduces the problem to Prob. 28, since (4) is of the form of Prob. 28. Hence, taking similar
steps as in Prob. 28,

u = =(((P*+ A+ p)/2)2, v = (P + ) — p)/2)”
and mo= bE (DR Y= b= (@) - )/

30. The roots of the quadratic equation: 22+2s+t = 0 are not conjugate to each other if
s¢R or t¢R.
PROOF:
Suppose the given equation has the roots z: and z: which are conjugate to each other. Then,
by Prob. 17, (ii), and Prob. 14, (ii),

z21i+2: = 2R(z1) = 2R(z2), and =ziez: = |zf? = |20°

On the other hand, since 21+ 2. = —2s and zi°2z. = ¢ (cf. Prob. 21 above), it must be the case
that —2s = 2R(z;) and t = |z:)?, ie. se R and teR, contradictory to the initial hypothesis.

Hence neither z1 =2, nor 2z:=Zzi.
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31.

32.

33.

34.

The quadratic equation with complex coefficients:

Z+2a+ia)+b+iy = 0 (1)
where a# 0 and a’ +# 0, has at least one real root iff
b2 — 4aa’d’ +4a% = 0 (2)
and has pure imaginary roots iff
—b? + daa’¢’ + 4a%¢c = 0 (3)

PROOF:
(i) Let z=7r, where re R; then, substituting » in (1),
4+ 2a+ia)r+b+ib = 0
Le. (P+2ar+b) + i2a'r+b) = 0.
Hence, by Prob. 1, it follows that
™+ 2ar+b =0 and 2adr+b =0
from which r is cancelled to yield (2). The converse also holds, as can be verified by taking the

steps in reverse.

(ii) Let z=1iu, where u¢ R; then, substituting ¢« in () and taking similar steps as in (i) above,
(3) is duly obtained. The converse holds likewise.

Prove Th.5.1.3.9.
PROOF:
Let 21,2, C, and 2z, > 2y, 2: <> %, where %, = V(21) and 2:= V(z:). Then, by Prob. 13, (i), (iii),
zZ1tz © Vit z) = V()4 V() < 2143
21°22 € V{(zivz) = V() + V() < 21v%

which implies that V is an isomorphism. Furthermore, since 21,2 ¢C by Df.5.1.3.8 itself, V is an
automorphism, completing the proof.

Prove Th.5.1.3.10.
PROOF:
Since ze C implies Z =2, by Prob. 17, (i), it follows that 21,2, ¢ C implies, by Prob. 13, (i),
Zitzm © VNiatm) = zitan=5tn = Vi) + Vi) © zitn
and likewise, by Prob. 13, (iii), and Prob. 17, (i),
Zivz: > Vzivz) = VHz) e Vi22) © 2122

Hence V? is evidently an involution.

If ad —bc # 0, where a,b,c,deC, then the linear transformation f (cf. Df.5.1.3.11)

w = f(z) = (az+b)/(cz+d) (1)
defines the inverse transformation f! of f, viz.
2 = f"Yw) = (—dw + b)/(cw — a) @)

PROOF:

Solve (1) for z, and (2) immediately follows. Furthermore, since the coefficients of (2) are
obtained by merely changing a and d of (Z) into —d and —a respectively, the original condition remains
valid throughout the transformation, viz.

(—d)(—a) —be = ad —be # 0
f~ ((az -+ b)/(cz + d))

(a((—dw + b)/(cw — a)) + b)/(c((—dw + b)/(cw — a)) + d)
= w.

Note. f~'f

I
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35.

36.

37.

Likewise ff™!

f((—dw + b)/(cw — a))
(—d((@z + b)/(cz + d)) + b)/(c((a + b + b)/(cz + d)) — a)

= Z.

Hence the identity transformation I is defined by w =z, viz.
w=1Iz) =2 or z=Iw) =w

which is a special case of the linear transformation with e =d+ 0, b=c=0.

If a+d =0 for w = f(2) = (az + b)/(cz +d), then z= f(w).
PROOF:
Since w = (az + b)/(cz + d), by hypothesis, i.e.

czw +dw—oaz—b = 0 (1)
the left-hand side of the equation (1) is symmetric with respect to z and w if a+d = 0.
Hence w = f(z) implies z = f(w).

Second Proof. Solve (1) for z, substituting e =—d and d=—a, and 2z = (b—dw)/(cw—a) =
(aw + b)/(cw +d) = f(w).

The Mobius transformation w = f(z) such that f(f(z)) =%, is exhausted by two, and
only two, functions: w=z and w = (az + b)/(cz — a).
PROOF:

Since, by Df.5.1.3.11, f(z) = (az -+ b)/(cz + d), it follows that, by direct substitution,

f(f(2) = (a((az+ b)/ez+d)) + b)/(c((az + b)/(cz+d)) +d) = =z
by hypothesis. Simplify the equation, and
(a+d)ez* —~(a—d)z—b) = 0
which implies a+d = 0 or ¢z2? —(a—d)z—b = 0. If a+d = 0, i.e. d=—a, then
w = f(z) = (az+b)/(cz—a)
and if ¢22 —(a—d)z2—b =0, then ¢c=a—d=5b =0, ie.
w = f(2) = z

completing the proof.

If z is linearly mapped into w which in turn is linearly mapped into w’, then the
double mapping is also linear.
PROOF:

Let

w f(z) = (az+ b)/(cz+d), where ad—bc #* 0

gw) = (@w+b)/(cw+d), where a'd —b'c # 0

’

and w
Then, by substitution,

w = g(fz) = (a'((az+ b)/(cz + d)) + b)/(c'((az + b)/(cz + d)) + d')
= ((ad’ + cb')z + (ba' + db"))/((ac’ + cd’)z + (be’ + dd’))

[

which is evidently of the form of linear transformations, where also
(aa’ + cb')(be’ +dd’) — (ba’ + db')ac' +cd’) = (ad—be)(a'd’—b'¢’) # 0
Hence the outcome of successive linear (i.e. Mébius) transformations is again linear.

Note. In this context, ad—bc = 0 and a’d’—b’¢’ ¥ 0 may be called the determinants of the
mappings f and g respectively. The determinant of the double transformations, i.e. the product, of
f and g, is also the product of the determinants of f and g, as has already been shown above.
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38. Mobius transformations are not commutative.
PROOF:
Let the mapping of f and g be linear with respect to z, i.e.

2t = f(z) = (az+b)/(cz+d), where ad—bec * 0
and 22 = g(z1) = (@z+b)/(c'z2.+d'), where a'd'—b¢ +* 0

Then, as in Prob. 27 above,
z2 = 9(f(z)) = ((aa’ + cb)z + (ba' + db"))/((ac’ + e¢d)z + (be’ + dd’)) (1)
where (ad — be)(a’d’ — b'¢’) # 0, while

2 = g(z) = (a’z+b)/(c’z+d), where a'd—b'¢’ # 0
and 2’ = f(@') = (a2’ +b)/(cz’ +d), where ad—bc # 0
imply similarly
2" = f(g(z)) = ((@'a+c'b)z + (b'a+ d'b))/((a'c+ 'd)z + (b'ec + d'd)) @)

Hence, in general,
2 = g(f(z) + flgr) = 2"
i.e. Mobius transformations are not commutative.

Note. a,b,¢,d and &',b’,¢’,d’ are interchanged in (1) and (2), which implies that the transforma-
tions are commutative iff a=a’, b=0b', c=¢’, d=d’, which is rather trivial.

39. Mobius transformations are associative.

PROOF:
Let, as in Prob. 38,
21 = f(2) = (az+b)/(cz+d), where ad—bec 7= 0
22 = g(z) = (@’z1+b)/(c’z1+d’), where a'd —b'¢’ # 0
23 = h(z2) = (@”22+b")/(c""2:+d""), where a”d’—b"'c"" #* 0

Then, by Prob. 37, either

zs = h(z) = hlg(z1)) = h(g(f(2))) = h(gf(2))
or 2 = h(z2) = hlg(z1)) = (hg)(z) = (hg)f(2)

and in either case, 23 = hgf(z), i.e.
2z = ((@”(aa’ +cb’) + b (ac’ + ed’))z + (a’(ba’ + db’)))
/((c"(aa’ + cb’) + d'’(ac’ + ed’))z + (" (ba’ + db’) + d''(bc’ + ad')})

where  (ad — be)(a'd’ — b'c’)(@”’d” — b"’¢’) #* 0, which establishes the associativity: h(gf) = (hg)f
in Mébius transformation.

40. Prove Th.5.1.3.12.
PROOF:
The closure property (G1) has already been established by Prob. 37, and the associativity (G2)
by Prob. 39 above. As for the identity (G3), it is defined by the transformation I: w = f(z) ==z
(cf. Prob. 34 note), and the inverse (G4) is obtained by Prob. 34.

Hence the Mobius transformations form a transformation group.




Chapter 5.2

Polynomials Over Fields
§5.2.1 Irreducible Polynomials

Df.5.2.1.1 If for every f(x),g(x)e F[x], where F[z] is an integral domain of polynomials
in an indeterminate z over a field F, there exists h(z) e F[z] such that f(x) = g(x) h(x),
then g(x) is said to be a divisor (or factor) of f(x). Conversely, if g(x) is a divisor
of f(x), then f(x) is said to be divisible by (or a multiple of) g(z), denoted by g(x) | f(x)
(cf. Df.4.1.2.3.9).

Example:

Fflx) = 2°—1 is a polynomial in x over a field, say, the complex number field C, and
fx) = 2°—1 = (g—D(a* +a*+ 22+ 2+1) = g(x)k(x), where f(x) is evidently divisible by (or a
multiple of) g(x) = x —1; conversely, g(x) is a divisor (or factor) of f(x).

This definition is merely an outcome of extending Th.4.1.2.5.15; namely, D[x]
(or I[z]) there is extended to F[x] here, which is more evident in the following
Division Algorithm.

Th.5.2.1.2 Given f(x),9(x)e F[x], where g(x)+0, there uniquely exist q(z),7(z) ¢ F[z],
called the quotient and remainder of f(x) divided by g(x) respectively, such that
flx) = qx)g) + r(x), 0= degr(x) < degg(x)

where degr(x) and degg(x) denote the degrees of 7(x) and g(x) respectively (cf.
Df.4.1.2.5.11). (Cf. Prob. 7.)

Example:

3ut —5a? + 35— 2 = (x — 2)(Bx* + 22 + 20 + 7) + 12, where g(x) = (x—1), qlo) =82+ 2>+ 22+ 7,
and 7(x) = 122° manifestly, degr(x) =0 < degg(x)=1.

This theorem, like Th.4.1.2.5.15, has the following immediate result:

Th.5.2.1.3 (Remainder Theorem). For every f(z)e F[x] and re R,

fl@) = (x—=")g(x) + f(7)
where g(x)e Fix]. (Cf. Prob.8.)

Example:

f(x) = 3x*— B5x*+ 8x — 2 implies, by Th.5.2.1.2, f(2) = f(x) — (x — 2) g(x) = (Bx* — 5a* + 3w — 2) —
(x — 2)(82®* + x2+ 2¢ + 7) = 12, i.e. the remainder of f(x) divided by (x — 2) is obtained by Th. 5.2.1.3,
viz. f(2) = 3(2)*—5(2)*+3(2)—2 = 12.

This theorem makes the following self-evident:

Th.5.2.1.4 (Factor Theorem). For every f(x)eFlx] and reF, f(x) is divisible by z—7,
i.e. f(x) has a root 7, iff f(r)=0. (Cf. Prob. 8 note.)

Also, parallel to Th.4.1.2.5.18, there follows at once:

Th.5.2.1.5 If f(z)eF[x] and deg f(x) =n, then f(x) has at most n distinct roots in F.
(Cf. Prob. 14.)

This theorem leads to the unique factorization theorem (cf. Th.4.1.2.3.17) in F
through the following definitions and theorems.

251
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Df.5.2.1.6 A monic (cf. Df.4.1.2.5.14) polynomial d(x)e Fx] is the g.c.d. (i.e. greatest
common divisor) of f(x)#0 and g(x)+0, where f(x), 9(x) e Flz], if d(x)|f(x) and
d(x)|g(x), and if c(z)|f(x) and c(z)|g(x) for every c(x)eFle] imply c(x)|d(x).
(Cf. Prob. 15.)

Th.5.2.1.7 If d(z) is the g.c.d. of f(x) and g(x), defined as above, then there exist
a(x), b(x) e F[x] such that

dlz) = a(@)f(x) + b(x)g(x)

where d(x) is the monic polynomial of least degree in this form of linear combina-
tion (cf. Th.4.1.2.3.17). (Cf. Prob. 18-21.)

Df.52.1.8 If the g.c.d. of f(x),g9(x) e Fl|x] is 1, they are then said to be relatively prime
(cf. Df.4.1.2.3.15), and any polynomial p(x) e Flx] of positive degree is called prime
(or irreducible) over F if it cannot be expressed as a product of two polynomials of
positive degree over F.
Example:

x*+1 and «*—2x—3 are relatively prime (cf. Prob. 20), and «*+1, «®*—5, ete. are (indi-
vidually) prime, i.e. irreducible, over F.

Th.5.2.1.9 (Unique Factorization Theorem). Any polynomial f(x)e Flz], degJ(x) >0, can
be expressed as a product:

a(pa(@))" (p2())™ - - - (pul))™ (D)

where a is the leading coefficient of f(x) and p(x)™, k=1,2,...,u, are monic prime
polynomials over F. The expression (D) is unique except for the order of the factors.
(Cf. Prob. 23.)

This theorem may be readily generalized with respect to several indeterminates;
viz. the unique factorization holds in any domain D(z1, %2, ...,2:] of polynomials in
Z1, &2, . .., Tn OVer a domain D if the theorem holds in D. In this context D is called
a unique factorization domain (or a Gaussian domain).

Df.5.2.1.10 A polynomial with integral coefficients is called primitive if the g.c.d. of
the coeflicients is 1.
Example:

x®* — 1 is primitive while 4x — 8 is not. In general, the product of any two primitive polynomials
is again primitive (c¢f. Prob. 25). Also:

Th.5.2.1.11 (by Gauss). If a polynomial with integral coefficients is reducible in the
rational number field R, then it can be expressed as the product of two polynomials
with integral coeffitients. (Cf. Prob. 26.)

On the strength of this theorem, there follows a theorem, which is the simplest
of some irreducibility criteria depending on the divisibility properties of the coef-
ficients, viz.:

Th.5.2.1.12 (by Eisenstein). If f(x) = Zaxa*, £=0,1,...,t, where arel such that a;=0
(mod p), p a prime, and a-1=a;2= - =a, (mod p), ao=0 (mod p?), then f(z) is irre-
ducible over E. (Cf. Prob. 27.)

Stated otherwise: a polynomial f(x) = Baxz*, k=0,1,...,t, is irreducible in R
if there exists a prime p which is a divisor of all the a’s except a., and if p2 is not a
divisor of ay.
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It goes beyond the present context, however, to find more general methods for
determining the irreducibility over R of polynomials over R in general.

The concept of irreducibility or reducibility may be readily extended to the
polynomials over the real number field R or the complex number field C, as in the
following theorems:

Th.52.1.13 If f(x), where degf(x)>2, is a polynomial with real coefficients, then it is
reducible over R. (Cf. Prob. 33.)

Th.5.2.1.14 If f(z)#0 is a polynomial with real coefficients, it is uniquely factorable
into afi(x) fa(x) - - - fa(x), where @ is a real constant and each of the fi(z), k=1.2,...,7n,
which has real coefficients with leading coefficient 1 and of degree 1 or 2, is irre-
ducible over R. (Cf.Prob. 34.)

Th.5.2.1.15 Quadratic polynomials over C are reducible over C. (Cf.Prob. 36.)

Th.5.2.1.16 The only prime polynomials over C are the polynomials of the first degree.
(Cf. Prob. 37 and Th.5.2.3.10.)

The unique factorization theorem, together with the concept of irreducibility, is
also an underlying principle in the theorems of partial fractions which are indispens-
able, for instance, in integral calculus.

Df.52.1.17 Every element of the quotient field Q[x] of polynomials in x of the integral
domain F[z] is of the form: a(z)/b(x), which is called a rational form over F.
Example:

(2% + 1)/4(x2 + 1) is evidently a rational form over F, where (2x+1),4(x*+1) & Flux].
It is not the case, however, that any set of rational forms constitutes a quotient
field of polynomials, since, to be a field at all, it must satisfy the following theorem.

Th.5.2.1.18 A set F[z]/{f(x)}, i.e. Fz] modulo f(x), of rational forms, where F[z] is an
integral domain of polynomials over a field F, is a field itself iff f(x) is a prime
polynomial over F. (Cf. Prob. 38.)

It is presumed, of course, that the following two binary operations are well-
defined here for every a(x),b(x)e F|x] and some f(x)eF|x],

(i) {a(z) +b(x)} = {a(2)} + {b(x)} (modf(x))
(ii) {a(z) - b(x)} {a(2)} - {b(z)}  (mod f(x))
which are patterned after the operative rules for residue classes in general (cf.
Df.4.1.2.3.18 and Th.4.1.2.3.19-21). F[z]/{f(x)} as such obviously contains a sub-

field isomorphic to the field F' (cf. Prob. 39), in particular to C, expressed in the
following theorem:

I

Th.5.2.1.19 The quotient field R[x]/(x?+ 1) is isomorphic to the complex number field C.
(Cf. Prob. 40.)

Parallel to Th.5.1.2.7, the quotient field Q[x] in general yields the following
theorem:
Th.5.2.1.20 If f(x),9(x) e F[z] and (f(x),g(x)) =1, then there exists a(x)eF[x] such
that
2 a(@)/(f(x) g(x)) = (a(@)b@)/f(2) + (a(x)c(x))/9(x)
where b(x),c(x) £ F[x]. (Cf. Prob. 42.)
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Stated otherwise: a rational form over F, the denominator of which is the product
of relatively prime polynomials f(x) and g(x) over F, can be expressed as a sum of
two quotients, the denominators of which are f(z) and g(x) respectively. The rational
form is then said to be expressed as a sum of partial fractions. This leads to:

Th.5.2.1.21 A rational form a(x)/b(x) over F' can be expressed as a sum of partial frac-
tions of the form: ¢(x)/(p(x))*, where p(x) is a prime polynomial over F, (p(x))* is a
divisor of b(z), and deg ¢q(x) < degp(x). (Cf. Prob. 44.)

Example:
(e + 4o+ 2+ 50— 8)/(x* —1) = wx/a®+ 2/(x—1) + 3/(x+1) + (x — 2)/(x*—1). (Cf. Prob. 45.)

The prime polynomials p(x) over F in this theorem must be the prime polynomials
of the first or second degree if F is to be regarded as R in particular, since this is
what Th.5.2.1.13 dictates. This conclusion is a key to the proof in the Calculus that
every rational function is integrable in terms of elementary functions.

Solved Problems

1. If f(x)eF[x], then f(x) is divisible by itself (i.e. a multiple of itself).
PROOF:
Since 1 = & = g(x) ¢ F[x] such that

fl@) = f(x)-1
the theorem follows directly from Df. 5.2.1.1.

2. If f(x),9(x)e Flx] such that f(x)|g(x) and g(x)|f(x), then
f(x) = cg(x), dege=0,
where ce F and ¢+0.

PROOF:
By hypothesis and Df. 5.2.1.1, there exist ¢:(x) and ¢:(%) in F[x] such that
f@) = qu(x) g() (5))
and 9(x) = qx(w) f() (2)

Substitute (2) in (1), and
@) = @) (g:(x) fl@)) = q:i(=) galx) f(z)

ie. @)1 — qax) g2(x)) = 0 3)
Since F[x] is an integral domain (cf. Df.5.1.2.1) which by definition cannot contain zero-divisors, it
follows from (2) that

flx) = 0 (4)
or qi(x) gx(x) = 1 %)

If (1) holds, then g(x) =0 and the theorem is trivially true. If (2) holds, then by Th. 4.1.2.5.12,
deg qi(z) = deggxx) = 0
ie. qi{x) q2(x) = ¢, where degec=0, completing the proof.
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3. If ceF, then cz°|f(x) for every f(x)e F|x].
PROOF:
If f(x) = Sarx®, k=0,1,...,n, then
’ flx) = cEk(ak/c)w" = eg(x)
where g(x) = Ek (ax/c)x*. Hence, by Prob. 2,
c=cx® | f(x)

4. If f(x), g(x), k(x) € Fx] such that g(x)|f(x) and h(x)|g(z), then h(z)|f().
PROOF:
By hypothesis and Df.5.2.1.1, there exist ¢i(x) and g:(x) in F[z] such that

fl®) = qux) g(x) @
and g(@) = qa(x) h(z) 2)
Substituting (2) in (1),

f@) = qux)(gx) M(x)) = qs(x) k(=)

where g¢s(z) ¢ F[x]. Hence h(z) | f(x).

5. If fu(x),f(x), 9(x) e F[x] such that g(x)|fiu(x) and g(x)|fx(x), then g(z) | (f1() = f2(x)),
and in general, if fi(),f(x), ..., f2(2), g(x) e F[x] such that g(x)|fi(x), 9(2)|f=(2), ...,
g(x) | fa(x), then g(x) | (fi(x) = fa(x) = - - - = fo(x)).

PROOF:
By hypothesis and Df.5.2.1.1, there exist qi(x) and g¢:(2) in F[x] such that
filx) = qux)g(®) and  fi(x) q2(x) g(x) (1)
which immediately implies
fi(x) £ fo(x) = glx)(qu(x) * gx(w))
where ¢i(%) * q2(x) = gqs(x) e Fx]. Hence g(z) | (fi(x) = f2()).
In general, this result justifies the assumption:

g9(x) | (fil@) * folx) = - -+ * fulw))

qs(x) g(x)

which implies, by induction,
g(x) | ((fr(®) £ falx) = -+ = ful(@)) £ fr+1 (2)
which justifies the final conclusion:
g(®) | (fulx) = fa(m) = -+ - = ful))
which completes the proof.

Note. The final result may be further generalized, by Prob. 2 above, as follows: g(x)]|fi(x),
g(x) | fa(x), ..., and g(x)| fa(x) imply g(x) | (E Cefa(x)), i=1,2,...,n, where cic F, ¢; 0, and fi(x)e F[x].

6. If fi(2),f(x),9(x) e Flx] such that g(x)|fi(x), then g(x)|fi(x) f2(x), and in general, if
f1(x), f2(x), . . ., fa(x), g(x) e Flz] such that g(x)|fi(x), then g(x) | fi(x) f2(x) - - - fa().
PROOF:

By hypothesis and Df.5.2.1.1, there exists ¢(x) e F[x] such that fi(x) = q(x) g(x), which implies
fi(x) f2(x) = q(x) g(x) fa(w), i.e.

g(x) | ful=) falx)
Likewise fi(#) = g(x)g(x) implies fi(x) fa(x) - fule) = g(®) g(x) folx) - -~ ful@), i.e.
g(@) | fi(@) fal) - - falx)

which completes the proof.



256 PART 5 — ALGEBRA OF FIELDS [CHAP. 5.2

7. Prove Th.5.2.1.2.
PROOF:
Let f(x) = 3 a:af, i=0,1,...m, and g(x) = Eb,-xf, 7=0,1,...;m. Then, if m=n, multiply
i i

9(x) by anx"~™/b,, and subtract it from flx) itself, i.e.
f@) — (@n2*™"/bn) g(x) = fi(x) 1)
where the term of the highest degree in f(x), viz. a.x", has now disappeared, ie.,
fi®) = ana™ + @u-rx™t 4 oo do,

where a., 5 0 and n: <n. If the degree of fi(x) is still greater than or is equal to that of g(«x), then
take a similar step to reduce the degree, viz.,

fu®) — (ama™™"/bn) g(€) = fa(s) @

and if the degree of f.(x) is still greater than or is equal to that of g(x), a finite number of similar
steps may be taken such that

fl@) — (@ma™e™"/bn) g(x) = r(x), k=2 ®
where either r(x) =0 or 0 = degr(x) = deg g(x).

Substitute (1) in (2), and take the similar steps, viz. generally substituting (k — 1)-th equation
in (8), and it follows that
f®) — q(x) g(x) = r(x)

where g(®) = .2 ™/bm + @ @1/ b + -+ + @u @™ ™/b,.. Hence
f@) = q@)g@) + r(x), 0= degr(zx) = degyg()
which completes the first part of the proof.

As for the uniqueness of q(x) and r(x), its denial must face a contradiction. For, if there exist
q1(x) and 7i(x) such that

f@) = @@ glx) + rfx), 0 = degrix) = degg()
then q(@) glw) + r(@) = qux) g(x) + )
i.e. 9(2) (g(x) — qu(®)) = mi(x) — r(x)

where gq(x) # qi(x) implies 7(x)# ri(x), which in turn implies deg (g(x)(g(x) — gqu(x)) > m while
deg (ri{x) — r(x)) = m, contradictory to the initial assumptions.

Hence it must be the case that g:(x) = ¢(x), which implies ri(x) = r(x), establishing the uniqueness
of q(x) and 7(x).

8. Prove Th.5.2.1.3.

PROOF:

Since degg(x) = deg(x —7) = 1, the remainder () in Th.5.2.1.2 must be of the degree less
than 1, i.e. degr(x) =0. Thus »(x) in this context may be denoted by a constant ¢, ce F, and

fle) = (@—r)el®) + ¢ @)
Substitute = r in (1), and
fr)y = (@—7r)g@r) + ¢ ie ¢ = f(r)
in terms of which (1) is changed to:
fl@y = (x—r)glx) + f(r) (@

completing the proof.

Note. From (2) above it follows at once that
fle) = (@—ng), ie (x—7) | flx)
if f(r) =0, and conversely, establishing Th. 5.2.1.4.
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9.

10.

11.

Divide f(z) by (x—a)(x—b), and find the remainder.
Solution:
(i) If a =19, then f(») is to be divided by (x — a) twice. Hence, by this hypothesis,
fle) = (@—a)g@) +r 6]
and gx) = (x—a)g'(x) + 7' (2)
Substitute (2) in (1), and
fle) = (x—a)’g'lx) + r@—a) + r 6))
Also, by Th.5.2.1.3, it follows from () and (2) that
r = f(@ @)
which implies, by (2),
g(x) = (flx) — fl@))/(x —a) %
and also, from (2),
r = gla)

Hence the remainder is

re—a) +r = (x—ajgla) + fla) (6)
where g(a) is computable by (5).

(i) If @+ b, then, by Th. 5.2.1.3,

f®) = (z—a)xz—0)qx) + r) 0]
where r(x) may be replaced by cx + d, since g(x) in this context is of the second degree, viz.,
fle) = (x—alz—b)q®) + (cx+d) ®
Since (8) is an identity, substitute a, then b, in (8), and
fla) = ca+d and f(b) = ¢b+d 9)

from which ¢ and d are readily eliminated, i.e. by solving (9) simultaneously for ¢ and d; thus
a = (fla)— f(b)/a—b) and b = (af(b) — bf(a))/(a—b)
Hence the remainder in this case is

r(@) = (f(a) = f(b))x/(a—b) + (af(b) — bf(a))/(a—b)

The remainder of the division of f(2%) +xg(2?) by 2?—a, where f(x),9(x) ¢ Flz], is
f(a) +xg9(x).
PROOF:

Let the quotients in the divisions of f(t) and g(t) by ¢t —a be qi(t) and q:(f) respectively; then,
by Th.5.2.1.3,

fy = (t—a)qu(t) + fl@) and g@) = (t—0a)ed) + g@) @
from which it follows, replacing ¢ by x? in (1), that
fl@®) = (2®—a) qu(=®) + fl=), g(@") = (" —a)q:(z”) + g(=") @
from which it follows, by adding f(«x?) and x g(«?), that
f@)) + 2g(@®) = (2" —a)(qu=’) + = q2(?)) + fla) + xg(a) 3

which proves the remainder to be f(a) + x g(a), completing the proof.

Prove that (x—1)?|f(x) if f(x) = na"*'—(n+1)z"+1.
PROOF:
By hypothesis,
flx) = nz"*'— (n+ D"+ 1 = ng™xz—1) — (2" — 1)
= (w—Dna” — (" '+ 2+ ---+1) = (x—1)g(x)
where (x —1) | g(x), since g(1) = »(1) — 1+1+---4+1) = 0. Hence (x—1)*| f(x).
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12. If g(x)|f(x), where f(x) = ax®+3ba?+3cx+d and g(x) = ax®+2bxr+c, then f(x)
and g(x) are of a perfect cube and a perfect square respectively.
PROOF:
If, by hypothesis, g(x) | f(x), then, by Th. 5.2.1.4,

ax® + 3ba* + 3ex +d = (ax®+ 2bx + e)(x + k)
where ke F, must be an identity. Hence, comparing the corresponding coefficients of 3, %2, %', x°,
3b = ak+2b, 3¢ = 2bk+e¢, d=ck
ie. b =ak, ¢ = bk =ak? d=ak? which yield, by substitution in the original equations,

fl) = a(x®+ 3ka®*+3k*xc+ k%) = alx+kP = alx+ (b/a))?
g@) = a(e®+2kx +k*) = alx+k? = afz+ (b/a))?

completing the proof.

13. If f(x) = Yarx* = 0, k=0,1,...,n, has n distinct roots 71,7s,.. .,¥n, then f(z) can
k

be expressed in the factored form f(x) = au(@ —r)(x —12)- - - (x — r2).
PROOF:
It follows directly from Th.5.2.1.4 that if 7 is a root of f(»)=0, then (x—r)|f(x) such that
f@) = (x—r)fi(x) (1)
where fi(x) is of degree (n —1) and of the form @.a" '+ bo_za™ 2+ -+ + by
Conversely, if f(x) has the factor x — 4, then 7, is evidently a root of f(x).

Furthermore, if r; is also a root of f(x) and % 7 such that

fr =0 (2)
then, substituting (2) in (1),
(re—r)fa(rs) = 0 &)
which implies fi(re) =0 ("." r2— 7y # 0), which in turn implies that (x —r2) | fi(x), viz.,
fz) = (x—ro)fa(x) )

where fi(x) is of degree (n —2) and of the form @2 %+ ¢.-32"" 2+ +-- + co. Substitute (4) in (1),
and @) = (@= )@= r)fia)
verifying that (x —7)(x —7:) | f(x), where r. and r: are two distinct roots of f(x).
Hence, repeating the same process,
f@) = anlx—ri)le—r) - (x—ra) (%)
if f(xz) has » distinet roots 71,7z, ..., 7n.

Note. As a matter of fact, the factorization of (5) is unique, as will be verified by Th.5.2.1.9
(cf. Prob. 23 below).

14. Prove Th.5.2.1.5.

PROOF:
Since f(x) is of degree n, by hypothesis, it follows at once from Prob. 12 that if it has % distinct
roots 71,72, ...,7. then

fl@) = aul@—ri)@—r): - (x— ) ()

Suppose, however, that f(x) has n-+1 distinet roots, say 7.+: in addition to the original n roots
74,72 .. .,7a. Then, substituting x =r.+, in (), it follows that, by Th.5.2.1.4,

f(?'n+1) = a("'n+1 - 7‘1)(7'"+1 - 7'2)' . '(’V‘n+1 - Tn) = 0
which is contradictory to the assumption that 7wi177:, Tese15% 72, ..., Frt1 7= T

Hence f(x) cannot have more than n distinct roots, which completes the proof.
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15. Prove the Euclidean Algorithm (cf. §4.1.2.3, Prob. 31) with respect to Flz], viz. f()
and g(x), where f(z),g(x)e F[x] and f(z)-0, g(x)=0, have a g.c.d. d(x) e F[x].
PROOF:

Let deg f(x) = deg g(x); then, by Th.5.2.1.3,

fl@) = gqlx)g@) + rx), 0= degr(x) = degg(x) @
If r(x) =0, then a g.c.d. of f(x) and g(x) is g(x) itself.
If #(x) # 0, then apply the division algorithm of Th.5.2.1.3 to g(x) and r(x), and
g@) = @@ r@) + rlx), 0= degri(z) = degr(®) 2)
If ri(x) =0, then »(x) itself is a g.c.d. of g(x) and r(x), hence a g.c.d. of f(x) and g(x).
If ri(x)+ 0, then the algorithm must be repeated, viz.,
ri®) = @qAx)ri(z) + 7(x), 0 = deg r:(x) = deg 7ri(x) 3)
and in general,
re(®) = Qa2 (@) e () T T2 (), 0 = deg 7k+2(2) = degri+1(x) 4)
until it reaches the last stages,
T2 {(x) =  qu(2) ra-1(x) + ra(2), 0 = degr(x) = degr(x) )
and Ta—1(&) = @n+1(x) ra(x) (6)

where the remainder is finally zero, in which case g.+1(x) may be at least a polynomial of degree 0,
say ax’e F', which certainly divides every f(x) for f(x)e F[x]. Hence, by (1)-(6), it follows that
(f(=), g(x)) (g(@), (@) = (r{x),m(x)) =
= (rk(x), Tr+1 (x)) =
= (Pa-2 (@), ra-1(®)) = (ra-1(®), alx)) = 7al2)

ie. ru(x) =d(x) is a g.c.d. of f(x) and g(x).
Note. Since (f(x),9(x)) = di(x) and (g(x),7(x)) = do(x) imply da(x)|{di(x) and du()|de(x)

in the context of (Z) and (2) above, di(x) and dux(x) are associates, by Df.4.1.2.3.12, and differ only by
a factor, say, ce F.

16. Find a g.c.d. of z3+22—2 and «®+ 222 3.

Solution:
22422 —2 | 2+ 222 -3 [ 1
2+ x2—2
-1+ —2 | @+l
3 —x
22+ax—2
x? -1
x—llxz—l rx+1
x?—x
r—1
x—1

0
Hence ((«®*+a2—2), (x3+222—3)) = 22— 1.

Note. As is quite obvious, the algorithm may be carried out in the form of synthetic division,
as in Prob. 17 below.
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17. Find a g.cd. of 23— 22— 2+ 1 and z*—322— 2z +4.

Solution:
By Prob. 15,
g(x) 1 -1-1 1 1 0 -3 -2 14 fx)
1 2 -3 1 -1 -1 1
-3 2 1 1 -2 -3 4
-3 —6 9 1 -1-11
r1(x) 8 —8 -1 -2 3 ()
+8)— -1 1
1 -1 -
-3 3
—3 3
0

Hence ((«®*—a*—2+41), (a*—30*—22+4)) = « — 1.

18. Prove Th.5.2.1.7.
PROOF:
By hypothesis and Th. 5.2.1.3,

If

fla) q(x) g(x) + r(x)
ie. @) = flx) — q(x) g(x) ()
from which, and by Prob. 15, (2), it follows that
@) = 9(@) = qu@)r(x) = g(x) — G@)(f@) — q@) g(x)) = (~q:(®)) (@) + 1 + qx) g:(2)) g(x)

Assume, then, that the equation

ra(®) = sa(x) f(x) + ta(x) g(x) 2)
is valid up to the ith repetitive process, viz.,
ri{x) = six) flw) + tlx) g(x), 1=0,1,...i<k 3

where (1) above is evidently the case of (3) for 1=0, letting r(z) =ro(x), so(w) =1, to(x) = —g(x);
(2) may be considered likewise. Hence, in general, by (3) above and Prob. 15, (4),

Te-2() = re-1(2) qu () + 7i(x) (4)

and solving (4) for 7«(x) and substituting the values for rx-1(x) and 7c-2(x) as given by the induction
hypothesis of (2), it follows that

(@) = —qe()(sk-1(x) f(@) + te-1(x) g(x) + (sk-2 (x) F(@) + tes (x) g(x))
= (—ge(®) sk-1(®) + sk—2(2)) F(®) + (—qu(w) te—1(x) + ti-2(x)) g(x)

where (—qu(®) sk—1(x) + sk—2(x)) and (—gqx() te-1(2) + te-2(x)) may be replaced by alx) and b(x)
respectively, and in the same general term, r«(x) may be replaced by d(x), by hypothesis, viz.

dx) = a(@) fx) + b(x)g(x)
which completes the proof.

19. Given f(x) = 2*—82?—22—4 and g(x) = 2®— 22—z +1 (as in Prob. 17), find a(x)

and b{x) such that z-1 = a@)f(z) + b(z)g(@)

Solution:
Let f(x)=fo and g(x) =f1; then, by Prob. 15,

fo = fiqi+ fs, f1. = faqz+ fs, fo = fsqs
where g1 =2 +1, fu=—2*—22x+3, = —2x+3, fs=8r—8 (cf. Prob. 17 above), which implies
fa = fi=frge = fi— (fo—fiqd@e = —foqe + 1l + q1q2)
ie. 8r —8 = (x—38)fle) + (1 — (x+ 1)(x — 3) g(x)
which immediately yields the required equations.
a(x) = (x—3)/8 and b(x) = (—«®+ 22+ 4)/8
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20. Given f(x) = 2*+1 and g(r) = 2*—2x—3, find a(x) and b(z) such that a(x) f(x) +

21.

22.

b(@) gl@) = 1.
Solution:

Since, by the Euclidean Algorithm,

22+1 = (*—20—38)+1 + (2x+4) and 2—2r—3 = (Qr+4)((x—4)/2) + 5

it follows immediately that

5 = (@*—2x—3) — Qre+4)(c—4)/2 = (*—2¢—3) — ((«*+1)— (22 — 22 — 3))(x — 4)/2

= —(@2+1(x—4)/2 + (x®—2x—3)(1 + ((x — 4)/2))

or 1 = (4—2)/10)x*+1) + ((x—2)/10)(x* — 2% — 3)

which implies that
a(x) = (4—x)/10 and b(zx) = (x—2)/10

If d(x) = (f(z),g(x)) and if a(x) and b(x) such that
dizy = a(@)f(x) + b(x)g() (1)
are already known, then any a’(x) and b’(x) such that
di) = da(z)f(z) + b'(x)g(x) (2)
are given by the following relations:
a(x) = a@) — u@)t() and b'(x) = bx) + ux)s(x) (3)

where s(x) = f(z)/d(x), t(x) = g(x)/d(z), and u(z) is an arbitrary polynomial in Flx].
PROOF:
From (1) and (2),

fle)e(x) —a'(x)) = g(x)(d'(x) — b(x)) 0]
Divide (4) by d(x); then, by hypothesis,

s(x)(a(x) — ¢'(x)) = H)(b'(x) — b(x)) (5
Since (s(x), t(xr)) = 1, by hypothesis, which in turn implies s(x) | (t(x)(b’(x) — b(x)), it follows that,
for some u(x)e Flx], b(x)—b(x) = u(wx)s(x), and, consequently, a(x)—a'(x) = u(x) t(x), which

yields (3).
Conversely, if (3) holds, then

a'(x) f(z) + b'(2) g(x) flx)a(x) — ulx) t(x)) + g(x)(b(x) + u(x) s(x))
a(x) fx) + b(@) g(x) + (s(x) g(x) — t(x) f(x)) ulx)
d(z) + (d(x) tx) s(x) — d(x) s(z) t(x)) u(x)

d(x)

o

which completes the proof.

Note. According to this theorem, all other possible sets of a’(x) and b’(x) in Prob. 20 are given
as follows:

a'(x) = (4—x)/10 — (x*— 2 — 3) u(x), b(x) = (x—2)/10 + (x4 1) u(z)

for some u(x) € F'[x].

If h(x)e F[z] is irreducible and divides the product f(x)g(x) of f(x) and g(2) in F[z],
then k(x)|f(x) or h(x)|g(x).
PROOF:

Assume h(z) } f(x). Since h(z) is irreducible, by hypothesis, there are no other divisors of h(x)
but its associates (cf. Prob. 15, note) or units of F, which implies (f(x), h(x)) = 1, which in turn

implies, by Th. 5.2.1.7,
1 = alx) flx) + bx) h(x) 6]
for some a(x), b(x) = Fiz]. Multiply (1) by g(x),
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9@) = a(x) f(=) g(x) + b(x) h(x) g(x) (2)
which implies that, since h(x) | f(x) 9(x) by hypothesis, h(x) must be a factor of both sides of (2),
viz., h(x)|g(x).

On the other hand, if R{x) }/ g(x), then a similar reasoning yields h(x) | f(x), which completes
the proof.

Note. This theorem is readily generalized to the case of an irreducible polynomial p(x) with
respect to n polynomials fi(x), fo(x), ..., fa(x).

Prove Th.5.2.1.9.
PROOF:

If f(x) is irreducible, then the theorem is already complete as such.
If f(x) is reducible, then let
flz) = fi(x) f2() (2)

where evidently deg fi(x) < deg f(x) and deg fx(x) < deg f(x), which implies an induction that such
a decomposition as (1) may be repeated, yielding polynomials of degree less than deg f(x), viz.,

f1@) = cg1(®) g2(x) -+  go(®)  and  fa(®) = dhi(@) ha(e) -+ - he(x) (2

where ¢,de F, and gi(x), i=1,2,...,r, and hi(x), j=1,2,...,3, are monic irreducible polynomials over F.
Hence, by (1) and (2),

flo) = ¢dgi(@) ga(x) -+ gu(@) ha(®) ha(@) + -+ ho(@) = a(pa(a))™s (Pa(a))™s - - -+ (pul@))™ 3)

where c¢d = aeF, which is the leading coefficient of (x) in decomposition, and pi(x)™, k=1,2,.. . u,

may be any of gix) and hi(x), some of which may be identical, thus yielding the exponents niel,
k=12, .. u, where obviously 1 = g, = deg f(x).

Furthermore, the decomposition of (%) is unique. For, if there exist two decompositions for
f(), viz.,

fl@) = a(py(@))™ (pa(@))™s -+ - (Pul@))™ = b(ga(x))™ (ge(@))™ - - - (gul))™ 4)

then @ = b, since these prime polynomials are monic. Also, since any of the p’s, say pi(x), is prime,
i.e. irreducible, (4) implies that pi(x) must divide some of the ¢’s, say qi(z). But, both being monic
and prime by the initial assumption, their quotient cannot but be the unity of F; hence pi(x) = q1(x).
Dividing (4) by this common factor and a, there follows from (4):

(D))" (pa(@))™ -+ + (pu(@))™ = (ga(@))™ (gs(2))™s - + + (qulz))™
where similar steps of elimination may be repeated such that
Pix) = qu®@), o) = @e(x), ..., pule) = qu(x) (%)

can be established, although the order of the factors may not be the same as in (5). In any case,
except for the order of the factors, the decomposition of (8) is thus unique, which completes the proof,

f(x) = 2*+ 93+ 2y is irreducible in the complex number field C.
PROOF:
If f(x) is reducible, then it must have a linear factor, viz.,

fle) = 22+ ¢ + 0y = (x + ay + b)(x® + ey + dy® + ra + sy + t) )

where a,bedrsteC. Let x=0; then ¥ = (ay+ b)(dy*+ sy + t), which implies ad=1 and
b =s=1t=0; likewise ¥ =0 implies » =0. Hence (1) is equivalent to

#® + Y+ wy = (w+ay)(xt+ cxy + dy?) 2)

which is a contradiction, since the right-hand side of (2) is homogeneous while the left-hand side is
not. Hence, contrary to the initial assumption, f(®) must be irreducible, which was to be proved.
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25.

26.

The product of two primitive polynomials is again a primitive polynomial.
PROOF: ’
Let f(), g(x), h(x) be polynomials such that

flz) = glx) h(x) 03]

where flx) = gakxk, E=01,....t,
glx) = Eib.-x‘, i=0,1,...,7, 2

hx) = ?cjx", i=01,...,8,

and awbiciel, abcs# 0, such that ¢t = r+s. Then, by direct multiplication, the relations among
the coefficients of f(x), g(x), h(x) are found to be:

ae = br Cs,
at-1 = br-16s + bres-,
ae—2 = br-zcs + b.—1¢s-1 + bres-g,
as = boes + biCs—1 + - 3
az - boCz + b161 + bzco,
ax = boe1 + bico,
Qo = boco
thus in general
ar = boCk + bick-1 + - + br-161 + boCk (4)
where b; =0 and ¢;=0 if i>r and j>s, allowing the following alternative of (4):
Gmin = bmCn + bm-1Cnt1 + ++ + bmt1n-1 + bmi2Ca-2 + - (5)
Let, by hypothesis, g(x) and h(x) be primitive, i.e. (br,br—1,...,b0) =1 and (¢s,Cs-1, ...,C0) = 1,
and assume, contrary to the desired conclusion, that (a¢@c-1,...,a0) * 1. Then there exists a

prime number p which is a divisor of all the a’s, implying that both g(x) and h(x) must have at
least one coefficient that cannot be divided by p, since g(x) and h(x) are given as primitive polynomials.
Let, then, b. and ¢. be of the smallest subscripts of g(x) and h(x) such that p )Y bw and p £ ¢s, where
obviously m;m=1. But, then, it follows from (5) that p|bmc., hence p|bm or p | cay since P | am+n,
Bust1, bm+2, . o) Cut1, Cnss, ... This contradiction yields (as,a:i-y, ...,a40) = 1, which completes the
proof.

Prove Th.5.2.1.11.
PROOF:
If f(x) is given, then by hypothesis,
f(x) = g(x) h(z) (1)

where g(x), h(x) ¢ R[x] and deg g(x),deg h(x) = 1. If, furthermore, » and s are the least common
denominators of the coefficients of g(x) and h(x) respectively, then

g'(x) = rg(x) and R (x) = sh(x) (2)
which together imply
rs f(x) = g'(x) h'(x) (3

where g'(x) and h/(x) are polynomials with integral coefficients. Now, if each of a,b,c¢ represents
the g.c.d. of f(x), g(x), h(x) respectively,

fle)a, 9"(x) = g'(x)/b, R"(x) = W(x)/e (4)
are primitive, by Df.5.2.1.10, and so, by Prob. 24, is their product:
g" @) R (x) = (g'(x)/b)(h'(x)/e) = (f(x)/a){ars/bec)
by (3) and (4). Hence
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ars/be = 1 (%)
which implies, by (3), (4), (5),
fw) = g'(x) K(@)/rs = bg"(x) ch(x)/rs = (be/rs) g"'(x) K'(x) = ag"(x)h'(x)

where ag”(x) and h”(x) are evidently polynomials with integral coefficients, whose degrees are the
same as those of g(x) and h(x) respectively. This completes the proof.

27. Prove Th.5.2.1.12.
PROOF:
From Th.5.2.1.11 it follows that

fx) = g(x) h(x)
where g(x) and h(x) are also polynomials with integral coefficients and deg g(x), deg h(x) = 1.

Let f(x), g(x), h(x) be represented as in (2) of Prob. 25 above. Then, since plas and p* f ao,
by hypothesis, it follows that either p | bo or p|es, but not both. Assume, say, p /by and p| ¢o; then,
in the equation of a; = beci+ bico in (3), it follows that p | ci, since p tai, ples, and p ¥ bo. Like-
wise p|¢: in a2 = bocs+ biei + bzco, and in general

as = bocs + bics-1 + ---
yields p|e¢s-«, which finally, at the end of a finite number of similar steps, yields p| ¢, which at
once implies p | a., contradicting the original assumption.

Since the conclusion is dually the same for assuming p | by, it must follow that f(x) is irreducible
in R, completing the proof.

28. If p is a prime and f(x) = &* 142>~ 2+ ... 4 p + 1, then f(x) is irreducible in R.
PROOF:
Since, by hypothesis, (z—1)f(x) = 2?—1, let x = y+1; then yfly+1) = (y+1)*"Y ie,

fy+1) = yp7' + ,Ciy ™ + Gy ® + v + Cpony + »Cr—1 (2)

where ,C. = p(p—1):--(p—r+1)/r!, which is of course divisible by p.
Assume that f(x), i.e. f(y + 1), is reducible in E. Then, by Prob. 26, there follows:

fly+1) = gly+Dry+1)
where g(y + 1) and h(y + 1) are polynomials with integral coeflicients, which is a contradiction, since
P1sCr, p f oCo (. sCo=1) and PN Co-1 (7 ;Cooi=1p) in (7). This implies, by Th.5.2.1.12, that
fly + 1), ie. f(x), is irreducible in E, completing the proof.
Note. The transformation of f(x) into fly+1) by « = y+1 above is fully justified; for in
general, by Prob. 26, a(x) = b(x) ¢(x) implies a(x +1) = b(x + 1) ¢(x + 1), and a(x+1) == b'(x) ¢'(x)
implies a(x) = b'(x — 1) ¢’(x — 1). Hence a(x) and a(x + 1) are simultaneously reducible or irreducible.

29. If a(x),b(x) € F[z], where a(x) 0 and b(x) is irreducible over F, and if a(x) and b(x)
have a root in common, then there exists ¢(x) e Fx] such that a(x) = (b(x))" c(x), where
neN, and b(x) and ¢(x) have no root in common.

PROOF:

Let d(x) e F[x] be a highest common factor of a(z) and b(x) in Fl«]; then, by this assumption,
every root of a(x) and b(x) is a root of d(wx), and also deg d(x) = 1, since a(x) and b(x) do have a
root in common by hypothesis. Now, also by hypothesis, b(x) is irreducible over F, which implies
that b(x) has no factors in F[x] except its associates and constants. Since degd(x) =1, d(z) must
then be an associate of b(x), which implies that b(x) itself must be a factor of a(x). Hence a(x) =
(b(w)) c(x), meN representing the highest power of b(x) which divides a(x), for some c(x)e F(x).

Furthermore, since c(x) / a(x) in compliance with the stipulation with respect to % in the above
context, b(x) and ¢(x) cannot have any root in common, which completes the proof.
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30.

31.

32.

33.

34.

If f(x)eF[x] has real coefficients such that f(®) = (x—(a+1ib))"g(z) for some neN
and some g(x)e F[z], where a,b ¢ B are not simultaneously zero, then

flx) = (@ — (@+1ib))"(z — (@ —1b))" 9(x)
PROOF:

Let A{x) = (x— (¢ + b)) (& — (e —ib)) = x*—2ax + o’ + b where h(x) has evidently only real
coefficients and, having no real root, is irreducible over K. Then, since f(x) and h(x) have the
common root a -+ ib, it follows immediately from Prob. 29 above that, for some neN and some

g(@) e Flz], f@) = (@) gx) = (& — (a+ib)" (& — (a—ib))" g(=)

which completes the proof.

If f(x) = «*+ 8x®+ 6x%+ 122 + 8 is known to have a root —2i, then find all roots of f(x).
Solution:
Since —2i is a root of f(x), i.e. (x—(—2%9) | f(z), it follows from Prob. 30 that (x —29) | f(x).
Hence (x + 29)(x — 2i) | f(x), and by division
flr) = @+ +3x+2) = (x+29)«— 2+ 1)+ 2)
which yields all four roots of f(x): —2i,2i,—1,—2.

Determine @ and b in f(x) = 2*—6x2+ax+b such that f(x) has a root 1—iy/5, and
then solve f(x).
Solution:

Since Prob. 30 dictates that f(x) must have also 1+4/5 as a root, f(x) must be divided by
(oc—(l—i\/g))(x—(l—l-'i\/g)) = x?~2¢+6 = g(x). Divide f(x) by g(x), i.e.

1 — 4
1—2+6;1—6 a b
1 — 2 6
— 4 a—6 b
— 4 8 —24
a—14 b+ 24

which implies a—14 = b+24 = 0, ie. a=14 and b=—24. Hence
flx) = «® — 6% + 14z — 24 = (v —4)(x* — 22+ 6)
which yields 4 and 1 * iV5 for the roots of f(x).

Prove Th.5.2.1.13.
PROOF:

Since the fundamental theorem of algebra (cf. Th.5.2.8.9) assures the existence of a root, say a,
for f(x), it follows at once, from Th.5.2.1.4, that (x —a) | f(x).

If a e R, it implies ipso facto that f(x) has a factor with real coefficients.

If aeC, say a = ¢+ id, then, by Prob. 30 above,

(@ — (¢ +id)) (@ — (c —id)} | flx)

where the factor has real coefficients.

In either case f(x) has thus a factor, say g(x), which has real coefficients and, of course,

deg g(x) = deg f(x), where deg f(x) > 2. Hence f(x) is reducible over R, completing the proof.

Prove Th.5.2.1.14.
PROOF:

The first part of the theorem follows directly from Th. 5.2.1.9, an(_i the second from Th.5.2.1.13,
which, stated otherwise, concludes that a prime polynomial p(x) over R implies deg p(x) = 2.

(Th. 5.2.1.14, then, merely yields the combined effect of both Th.5.2.1.9 and Th. 5.2.1.13.)
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35.

36.

37.

Quadratic polynomials over R are prime iff their discriminants are negative.
PROOF:

Let f(x) = ax®*+ bx + ¢, where a,b,c e B, which yields the discriminant of f(x): D = Vb% —dac;
then, since
f®) = alg—r)z—r) = alx — (=b+ Vo> — 4ac)/2a))(x — ((—b — V/b® — 4ac)/2a))
it follows that D <0 implies 7,7 ¢ B. Hence f(x) is irreducible over B if D < 0.

Conversely, if f(x) is prime over R, it must be the case that D <0, since both D>0 and D=0
imply 71,72 ¢ R, in which cases fgx) is evidently not irreducible over R. Hence, by the law of trichotomy,
the irreducibility of f(x) over R implies D < 0, completing the proof.

Prove Th.5.2.1.15.
PROOF':

Let the quadratic polynomials over C be represented by f(x) = ax®+ bx+c¢, where ab,ceC;
then f(x) = a{x —r)(x —rs), where ». and 7, are two roots of f(x) and are of the form

re = (=b + Vb*—4ac)/2a, = (=b — Vb* = 4ac)/2a @)

which are complex numbers (cf. §5.1.8, Prob. 28-29). Thus the first-degree factors of f(x) with
complex coefficients do exist, and this defies any irreducibility over C of quadratic polynomials over C,
which completes the proof.

Note. ri=r; if V/b®—4ac = 0, parallel to the case where f(x) is defined over R (cf. Prob. 35
above).

Prove Th.5.2.1.16.
PROOF:

The fundamental theorem of algebra (cf. Th. 5.2.3.9) implies that f(x)e C(x) of positive degree
has a root ce C. Hence, by Th.5.2.1.4, f(x) = (¢ —c)g(x), where degg(x) = n—1 if deg f(x) = n.
It is evident, then, that f(x) cannot be prime over C if deg f(x) = 2, which completes the proof.

Prove Th.5.2.1.18.
PROOF:
Once the binary operations for F[x]/{f(x)} are defined, viz. as follows:
{afz) + b(x)} = {a(@®)} + {(b(=)} (mod f(x))
{a(x)  b(®)} = {a(@)} - {(b(x)}  (mod f(x))
for every a(x), b(x) € F[x], it follows readily that
{a(@)} + {b(x)} = {b(=)} + {a(x)} (mod f(x))
{e@)} - {b(x)} = {b(x)} * {a(x)} (mod f(x))

ete., satisfying D1-11 one after another (cf. Df. 4.1.2.2.1) with {0} for D3 and {1} for D10. The
residue class Fx]/{f(x)} is thus an integral domain.

Furthermore, if f(x) is a prime polynomial over F, then, by Th. 5.2,1.7, there must exist some
a(x), b(x), g(x) & F[x] such that

a(x) flx) + b(x)g(x) = 1
where g(x) % 0 and (f(x), g(x)) = 1, which implies

b(x)* g(x) = 1 (mod f(x))
ie. {g(x)} - {b(x)} = {1}

which in turn implies the existence of a multiplicative inverse of g(x).
This establishes F10 (cf. Df.4.1.2.4.1) for the integral domain Flx]/{f(x)}, which is thus a field.
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Conversely, if the residue class F[x]/{f(x)} is a field, then f(x) must be a prime polynomial over F.
Or, what is the same, if f(x) is not a prime polynomial over F, Fiz]/{f(2)} is not a field; in fact, it is
not even an integral domain. For, if f(x) is not prime over F, then f(®) = fi(x) fx(x), where
deg fi(x) < deg f(x) and deg fa(x) < deg f(x), which evidently imply fi(x) ¥ f(z) and fa(x) } f(x),
ie. {fi(x)} == {0} and {f:(x)} » {0}, while
{fi@)}  {Fo()} = {fulx) fo()} = {f(x)} = {0}

which defies D11 (cf. Df. 4.1.2.2.1). Hence the class F[x]/{f(2)} is not an integral domain, let alone a
field, if f(x) is not prime over F. This completes the proof.

The residue class F[z]/{f(z)}, defined in Prob. 38 above, contains a subclass which is
isomorphic to F'.
PROOF:
Let G be the set of all elements of the form: {a}, where ac F, of the residue class F[z]/{f(x)},
which has been proved to be a field (cf. Prob. 38 above). Then the mapping
M: {a}ea

is a 1-1 mapping of G into F, since {a} = {b} iff {a}={b} (mod f(x)), which in turn holds iff a=02.
Also, {a}€>a and {b} < ¥ imply

My {a}+{b} (modf(x)) < a-+d

M,: {a}*{b} (mod f(x)) © a*b

verifying the mapping M to be an isomorphism of G, a subclass of the given residue class, into F.
This completes the proof.

Prove Th.5.2.1.19.
PROOF:

Since #?*+ 1 is irreducible over the real number field R, the quotient field R/{z*+1} is, by
Prob. 38 above, to form a field.

Furthermore, since 2>+ 1 is a quadratic pglynomial, every element of I-B[x] is congruent modulo
22+ 1 to a linear polynomial, say rx +s, r,se R, uniquely. Hence the elements of the quotient field
F(x)/{x*+ 1} is a residue class {rz +s}.

Since {ro+s} = {re}+ {8} = {r}-{x}+{s} (mod (x*+1)), by Df 412318, let {rjer,
{z} © =z, and {s} <>, as in Prob. 39 above. Through this procedure it is now possible to express

each element of the quotient field uniquely in the form of rx-+s, of which two binary operations
may be defined as follows:
(rix+s)+(rex+s:) = (ri+r)x + (81+8s)
(riz+s)e(raxts) = rrz®+ (ris:+r8:)x + 818

)

Since {x*+1} = {0} ("." mod («*+ 1)) in this context, i.e. #*+1 = 0 after the 1-1 mapping prescribed
above, it follows that x* = —1, which in turn implies

(rix+8) s (rex+82) = (s182—7172) + (r18:+ 18z

Replace, then, x by %, and the operative rules of () with respect to the quotient field are readily
mapped, through 7, < b, r.<>a, sy <>d, s <>¢, into:
(@a+1ib) + (c+1id) = (a+¢)+ i(b+d),
{(a+1ib) * (c+1id) = (ac— bd) + ad+ be)
or, what is the same,
(a,b) + (c,d) = (a+ec, bt+d), @
(a,b) * (¢c,d) = (ac— bd, ad+ be) )
which is strictly in accordance with the operative rules for the complex number field C (ef. Df. 5.1.3.1).

Hence, by (1) and (2), the quotient field R[x]/{x2 + 1} is now proved to be isomorphic to C, completing
the proof.
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41. If a polynomial a(x) of positive degree is an element of a domain F[x] of polynomials
over a field F', then a field F” which contains F exists such that a(x) has a root in F”.
PROOF:

If there exists no root in F of a(x), then let F’ = Flx|/{b(x)}, where b(x) is a factor of a(x),
which is of degree at least two and is prime over F (cf. Th.5.2.1.18). If, as in Prob. 40, the residue
class {«} is replaced by i, where ic F”, then b(?) =0, which in turn implies that the element i of F’
is a root of b(x), hence a root of a{x), which may be considered a polynomial over F’ in this context,
since FCF’. A field containing F thus exists, in which a(x) has a root.

If a(x) has a root in F from the very beginning, the theorem is trivially true, since it merely
implies F/ =F.

Note. If a(x) contains a factor of degree at least two and irreducible over F’, then the process
prescribed above may be repeated, viz. constructing a field F”/, where F'CF’, and in general, a
field F™, where FCF™ and a(x) dissolves in F(x) into linear factors.

42. Prove Th.5.2.1.20.
PROOF:
Th. 5.2.1.7 has already established that there exist b(x), c(x) e F[x] such that
b(x) g(x) + e(x) flw) = 1 (1)
if f(x),9(x) ¢ F[x] and (f(x), 9(x)) = 1. Since evidently f(x)#0 and g(x)#0 in this context,
divide () by f(x) g(x) and multiply (1) by a(x) e Fx], yielding
a@)/(f(@) g(x)) = (a(x) b@)/f(x) + (alx) e(x))/g(x)

which completes the proof,

43. If the denominator of a rational form a(x)/b(x) is expressible as (d(x))", r=0,1,2,.. . n,
then the rational form is expressible as a sum of partial fractions of the form
cn—r(2)/(d(x))7, where deg c-(z) < deg (d(x))".

PROOF:

Since b(¥) = (d(x))" by hypothesis, divide a(w) first by d(x), which yvields, by the division
algorithm, @) = qz)d@) + ra(a) )
If deg qo(x) = degd(x) in (1), then divide go(x) by d(x) again, and

o) = @@)d@) + ri2) (2
Combine () and (2), and
a@) = q)d@) + rix) dx) + rox) 6))

If deg qi(x) = deg d(x) in (3), then the same process may be repeated again and again until, by
induction, a(x) is finally of the following form

@) = gu-1(@)(d@))" + ra-r(@) @) 4 e+ ri(x) d(x) + 7o
which may be rewritten, replacing gn-1(x) by cu(x), ro-r(x) by ¢a-+(2) in general, and 7o by co(x), as
follows: a@) = ou@)(d@)" + a1 (@)@ + o + exfx) d(x) + colz) )
Divide (4) by b(x) = (d(x))", and let (d(x))® =1; then
a(@)/b(x) = ex@)/(dx))° + ea-s(@)d(@) + -+ + eufx)/(d(x)*t + cof)/ (d(x))™
= gc,._,(x)/(d(x))f, r=01,...n (5)

which completes the proof.

44. Prove Th.5.2.1.21.
PROOF:

To generalize Prob. 43, decompose b(z) of the rational form a(x)/b(x), as above, into a product
of monic prime polynomials, and, combining equal prime polynomials together,

b(@) = bo(pu(®))"t (pa(x))™2 - - - (polw))™r @)
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where meN, k=12,...,r. Since any two distinct monic prime polynomials in (Z), say pix) and
pi(x), 3,5 =1,2,...,r, are relatively prime, so are their powers (pi(x))™ and (p;())™.
Now, let one of the prime factors of () above, say (p«(x))", play the role of (d(x))* in the initial
context of Prob. 43 to accomplish the factorization of b(x). Then a(x)/b(x) will be rendered in terms
. of partial fractions, each with a denominator of the form (ps(x))™, through the procedure similar to
(3) and (4) in Prob. 43. The final step, similar to (5) in Prob. 43, will then complete the proof.

45. Decompose f(x) = (x°+42® + a2+ 5x — 3)/(x*— 1) into partial fractions.

Solution:

Taking the step () of Prob. 43,

flw) = « + (da®+2*+ 62— 3)/(x*—1)
Since z*—1 = (x— 1)(x + 1)(x*>+ 1), it follows, by Prob. 43, that
(da® 4+ 52+ 6~ 3)/(x*—1) = A/(x—1) + B/(x+1) + (Cx+ D)/(a®+1)

ie. 4+ x> +6x—3 = A@+DE*+1) + Blx—10*+1) + (Cx+ D)x— (= +1) (1)

Substitute x =1 in (); then 44 = 8, i.e. A =2. Substitute, likewise, # =—1 in (1); then —4B = —12,
ie. B=3. Substitute these results in (); then Cx-+D = —x+2. Hence

fle) = =+ 2/w—1) + 8/(x+1) — (x—2)/(x*+ 1)

Second Solution. From (1) above,

4+ 22 +62—3 = (A+B+C)a2* + (A—B+Da* + (A+B—Cx + (A—-B-D)
which implies
A+B+C = 4, A—-B+D =1, A+B—-C = 8, A—B-D = -3
Solving these linear equations of order 4 simultaneously, we obtain A =2, B=3, C=—1, D=2,

(Cf. Prob. 46, 47 below.)

Third Solution. Substitute £ =1+ in (I); then —4i—1+4+6i—3 = —2(Ci+ D), which implies
i—2 = —Ci—D, ie. C=—1 and D=2. This, together with the substitutions # = *1 which yield
A =2 and B =3, brings forth the same result. (Cf. Prob. 48 below.)

46. Decompose f(x) = (2% —2z2+ 8z — 5)/((x —2)(x —1)®) into partial fractions.
Solution:
By Th.5.2.1.21,

fley = A/(x—2) + B/(x—1)® + C/(x—1)* + D/(x—1)
ie. =2+ 8x—5 = A@—1® + (x—2)(B+ C(x—1) + D(x— 1)) 1)
Substituting # =2 in (7), we obtain A =1. Substituting A =1 in (Z) and simplifying,
x+2 = B+ Clx—1) + D(x—1)* 2)

Substitute 2 =1 in (2); then B=3. Furthermore, comparing the coefficients of #* and z, it
follows that D=0 and 1 = C—2D, ie. C=1. Hence

flxy = 1/(x—2) + 3/(x—1)* + 1/(x —1)*

47. Express f(x) = 1/(z*+1) as a sum of partial fractions over the real number field R.
Solution:
Since z*+ 1 is reducible to (x”+\/§x+1)(x2—\/§x+1) over R, it follows from Prob. 43 that

f®) = (Ax+B)/(=* + V2x+1) + (Cx+ D)/(2® — V2x + 1) (1)
i.e., after simplification,

(A+O%* + (—V24A +B+V2D)x* + (A—V2B+C+V2D)x + (B+D) = 1 2)
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which yields, after comparing coefficients,
A=1/2V2, B=1/2, C=-1/2V2, D=1/2
which thus allows f(x) to decompose itself into

f@) = @+V2)/2V2 (@@ +V3x+1) — (2 —V2)/2V2 (&* — V2x + 1)

Second Solution. Substitute x = —x in (1) above, and
f(==) = (-Az+B)/(a*~V2zr+1) + (—Ca + D)/(x* — 2z + 1)

Compare (8) with (1), and it follows that, since the decomposition of f(x) must be unique, C =—A4
and D = B, which implies

fl@) = (Az+B)/(=*+V2x+1) — (Ax — B)/(z* —V2z + 1)
i.e. (Az+B)@*—V2x +1) — (Av—B)a*+V2z+1) = 1 4)

Substitute 2 =0 in (4), and B =1/2 resulits; compare the coefficients of x? terms, and —2\/§A +
2B =0, ie. A= 1/2\/§, results, yielding the same decomposition as above.

48. Decompose f(x) = 1/((x —1)2(x2+1)?) over R.

Solution:

By Th.5.2.1.21,

fle) = A/fe—1)* + B/(x—1) + (Cx+ D)/(x*+ 17 + (Ex+ F)/(x*+ 1)

ie. (#*+1*(A+Bx—1) + (x—1)*(Cz+D) + (Ex+ Fyx*+1) = 1 1)

Substitute # =1 in (1), and A =1/4 results; substitute z = in (1), and

E—1)*(Ci+Dy = 2C — 2Di = 1
from which C=1/2 and D =0. Substitute these values in (1), and
4B(x*+1) + 4(Ex+F)(x—1) = —x — 3 (2)

where x =1 is substituted to yield B=—1/2 and z =i is likewise substituted to yield £ =1/2 and
F =1/4. Hence

fle) = 14@—1)* — 1/2(x—1) + «/2(x*+1)* + (22 + 1)/4(x*+ 1)

§6.2.2 Symmetric Polynomials

Df.5.2.2.1 A polynomial f(@y, 2 ..., 2.) is called symmetric if it remains unchanged by
any of the n! permutations of the indeterminates L1, &2, oo .y L.
Example:
abe(a+b+c), a*+b*+c?—ab— be—ca, a®+ 6>+ ¢® + 3abe, (a*+ b+ ) — (e +b-+e), ete.,
are symmetric polynomials with respect to a,b,c. (Cf. Prob. 1-2.)

It is evident in the context of Df.3.1.2.8-9 that Df.5.2.2.1 may have an alterna-
tive form:

Df.5.22.1a A polynomial (@1, %2, ..., 2) is symmetric if it is invariant under the
symmetric group of all permutations of its subscripts. (Cf. Prob. 17.)

Some symmetric polynomials are of specific forms, defined as follows:
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Df.52.22 The elementary symmetric polynomials are:

$1(T1, X2, . .., Tn) = TrtH Tzt o + &,

Sa(Ty, Toy -y Bn) = a2+ BTy T o+ Eadn + Ty oo ZaZat oo F Tnoa T,
83(.’131, T2, .. .,xn) = X1XeX3 + T1XaXs + - + Tn—2Tn—1%n,

s, X2, s Xn) = Xyt + Xn—i+1Tn—1+2" " " Tn,

Sa(1, X2, . . ., ZTn) = T1d2 L.

Example:

a+b+e, ab+ be+ca, and abc are the elementary symmetric polynomials of a,b,c.

Since si(1, X2, ..., %s) represents the sum of all the products formed by multi-
plying any i of the indeterminates i,z ..., %, it follows at once that s: is sym-
metric with respect to i, 2, ..., 2. For, since s is the sum of the products of the
n indeterminates taken i at a time, it is the same as the sum of the products of
Ljyy Ligy -+ .+, Ty, taken i at a time, where 71,72 ...,J» are the numbers 1,2,...,n in

some order.

As can be readily verified (cf. Th.5.2.3.4), the elementary symmetric polynomials
of Df.5.2.2.2 reveals an important relation between the roots and coefficients of a
polynomial, viz.,
(—l)isi =8 = (—1)i an-i/an, 1= 1,2,. R (1

if %1, %, ..., %n are the roots of the equation
f) = @y + @Gy '+ - tay +a = 0
since, by hypothesis,
) = aay—a)Y—22) - (Y—2n) = @y + Siy" Tt 4+ Sy A+ o0 F S

The meaning of the “elementary” symmetric polynomials is quite self-explanatory
in the so-called Fundamental Theorem on symmetric polynomials:

Th.5.2.2.3 Every symmetric polynomial in &, %2 ...,%.» over a field F' can be written
as a polynomial over F in the elementary symmetric polynomials of Df.5.2.2.2:
$1,82, ...,8. (Cf. Prob. 11 and Prob. 13.)

Example:
a® + b® + ¢®, which is of course symmetric in a,b,¢, can be expressed in terms of the elementary
symmetric polynomials of Df.5.2.2.2, viz.
a® + b3+ ¢® = sP— 3818+ 385 = —S; + 3515 — 35,
(Cf. Prob. 8 and Prob. 12.)

Th.5.2.24 If f and g are symmetric polynomials in z, s, ...,%s, SO are f+g, fg, and
¢f (or cg), where ¢ is a constant. (Cf. Prob. 3.)
Example:
Xy + X3 + %3, X122+ X1xs + 22203, and x12225 yield other symmetric polynomials such as (x:+ 22+
x3) + T1daws, (@1 + %2+ X)T1 X223, C(L1%z + X123+ Zaks), CL122X3(Xr + T2+ Xa) (X122 + X125 T X223), etc.
As is obvious in this example, addition and multiplication can be repeated, and
Th.5.2.2.4 may be stated more generally, readily justified by induction:

Th.5225 If fi,f2 ...,fm are symmetric polynomials in %, %z, ..., %, SO are their sums
and products. (Cf. Prob. 4.)

Generalization in a different direction yields:
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Th.5.2.2.6 If fi,f,...,fn are symmetric polynomials in i, %, ...,%, and if g is a
polynomial in ¥, ¥, ...,¥m, then 9, fo oo fm) = B(Z1, 22, .. .,%n) 18 a symmetric
polynomial in zi,x,, ..., .. (Cf. Prob. 6.)

Symmetric polynomials play a significant role with respect to the concept of
functional independence, defined as follows:

Df.5.22.7 The polynomials fi,fs, coofm o in xy, s, ..., 2, are said to be functionally
dependent over a field F if there exists a polynomial g(¥1,¥2, ...,¥m) * 0 in F such

that g(flyf%---;fm) =0

Otherwise, the polynomials are said to be functionally independent over F.

Example:
fir=wxx, f = 2?4+ 22, and f5 = x;—«; are functionally dependent, since 4fi—-fi4 52 =0,
viz. there exists, in this context, g¢(fi, f2, fs) = 4yt —yi+ 2 =

Th.5.22.8 The elementary symmetric polynomials of n indeterminates are functionally
independent over any field which contains none of the indeterminates. (Cf. Prob. 16.)

Solved Problems

1. Express the symmetric polynomial
f@,y,2) = (y+2)(yz+a)(ex+y)

in terms of elementary symmetric polynomials.

Solution:
Multiply f(x,y, 2) by xyz, and by Df. 5.2.2.2,

xyz * f(x,y,2) = (wyz+ 2°)(eyx + o?)(zzy + ¥2) = (s3+ 29)(ss + y*) (83 + 2?)
= 8§+ (@ + y? + 282 + (a2 + y?2® + 2228 + xtye?
where, however,
Y+ = (ty+2)?— 2cy tyztax) = 82 — 2g,
Y+t + 2% = (wytyztex) — 2w ty+ 2)wyz = s — 23183
Hence
ssf(x,y,2) = 83+ (s:— 2s,)82 + (82 — 23183)8s + s?
which implies
fl2,9,2) = 8]+ (52— 282)s5 + (82— 28183) + 84

2. Factor 2+ 9% + 28 — (x +y +2)%.
Solution:
Let fley,2) = ©*+9y°+ 22— (¢ +y +2)% then fleyy,z) =0 if x=—y. Hence (x+y) | f(2,y,2),
and consequently, (y + z) | f(z,y,2) and (z+ ) | f(®,y,2), since f(x,y,2) is symmetric in x,Y, 2.

Furthermore, let
Pyt —(rtyt2? = ka+y)y+2)(z+x) 1)

Then, since both sides of the identity (I) are of the same degree, k must be a constant, which is
quickly determined by substituting 2 =% =1 and 2=0 in (1), viz. k=-3. Hence

f@y,2) = =8+ y)y +2)(z+2)

which is the desired result.
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3.

Prove Th.5.2.2.4.

PROOF:
If i1, ...,1. represent arbitrary rearrangements of 1,2,...n, then by hypothesis,
@iy Xigy + o 25 Xiy) = f21, 22, .00, Z0)
g(xip Ligy o v vy win) = g(xlr L2y -0 vy xﬂ) (1)
which together imply
f(xip Ligy + vy min) + g(xip Ligy o v oy xiﬂ) = f(xl, X2y 00 ey xn) + g(xl, X2y 00 ey xn) = h(ah, L2y o0 vy xn)

proving that f+ g is symmetric.
The product f+g is proved likewise, by the identities of (1), to be symmetric.

If, in particular, g(xi, @z, ...,%.) = ¢ (or f(®y, %2, .. ., %) = ¢), it follows at once from the first
part of the proof that ¢f (or ¢’g) is symmetric.

Prove Th.5.2.2.5.
PROOF:
Since Th. 5.2.2.4 has already proved the case for n =2, assume that Th.5.2.2.5 is valid up to the
case n =k, viz.,
i@, Tig, « -, 0) + fol®iy, @iy, o0, ®0,) o0 fe(@i 0, -, @)

= f1(®1, X2, ..., %n) + fol@, Xe, o .y ®a) v A frlin, X2, .., B0)

= g(x1, %2, ..., %)
which is symmetric in %1, %2, ...,%.. Then, by Th.5.2.2.4,
g(xil, Ligy v v oy xin) + fk+1 (xil, Ligy + v -y xi,,) = g(xl, X2y ooy ocn) + fk+1 (x1, X2y o0y xn)

which is again symmetric. Hence the proof is complete by induction.

The case of the products is proved likewise.

5. Factor (x+y+2)° — (@ +4°+2%).

Solution:

Let flzye) = (+y+2)°— (x®+y°+ 2%, which is evidently a homogeneous symmetric poly-
nomial of degree 5. As in Prob. 2 above, f(x,4,2) is readily found to have a factor (x+y) and,
consequently, also (¥ +z) and (z+x). Hence f(x,y,2) has a factor (x+y)(y+2)(z+=), which is
symmetric, of course. Hence, by Th.5.2.2.4, it follows that the remaining factor of f(x,y,2) must be
also a homogeneous symmetric polynomial of degree 2, viz.,

fla,4,2) = (@ty+e)P—x*—y* —2°

= (x+ Yy + 2)(z + z)(a(x® + y* + 2%) + b(xy + yz + 2x)) (1)
where o and b are constants. Substitute x =y =1,2=0, and also x =y =2z =1 in (), and
30 = 2(2a + b), 240 = 8(3a + 3b)

respectively. Solving them simultaneously for a and b, « =5 =5. Substituting in () and
simplifying,

(xty+2° — @+y°+2) = blx+yly+)(zta)e*+y*+2°+ay+yz+22)

Prove Th.5.2.2.6.
PROOF:
By hypothesis,
GG Y, o Ym) = D Bigiy i GRYEYim)
where the a’s are complex numbers and the summation notation denotes the sum of all the indicated
products, the 7’s being any non-negative integers subject to the condition: 0 = &1+ é+ - +im = m.
Then, likewise, o .
R(2s, @2y ooy ®n) = D gy i (Fi1 200 fim)

which implies, by Th.5.2.2.4-5, that each term of the summation, ie. diis-- i, (fifz---f»), is sym-
metric. Hence, again by Th.5.2.2.5, the sum of all the symmetric polynomial terms is also symmetric,
completing the proof.
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If fo,fi,...,fmn are polynomials in ai,s, .. .y %n-1, and if
9(®1, X2, ooy Tn—1,Z0) = fo + Zufi + -0 + an fm

is a symmetric polynomial in i, @, ..., %, then each of the fi ©=20,1,...,n—1, is
symmetric in 2y, 2, ..., ZTo-1.

PROOF:
Since g is symmetric in xi, %s, .. ., xn, by hypothesis, it follows, as in Prob. 4 above, that
gy, %oy oo B, ) = gy, Ty, -, iy 1y Tn) (1)
where 41,4, ...,%.-1 is an arbitrary arrangement of 1,2,...,n—1 just as 4,4,...,%.-1,% is an
arbitrary arrangement of 1,2,...,n. Hence, by (1) and hypothesis,
@, @, o Bty %) = fo A+ @afi o + @ fa
= fol®, ®ey ..., Xact) + Bafi (X, Xy ooy Lnm) F - oo
+ 27 fo (1, 22y ..., B0—1)
= folwi, @iy, ..., i) + wofrlas, xiy, ..., Ti,_) + e
+ a2 ful®y, iy, oo, By y)

which implies, by Th. 5.2.2.5, that each of
filiy, iy, ooy @) = filws, s, .. ., Tamy), i=0,1,...,m

is symmetric, completing the proof.

Note. The second hypothesis is not limited to this problem; as a matter of fact, it is a theorem
which directly follows from the definition of polynomials in »n determinates (cf. Supplementary Problem
4.28-29).

Express the sums of powers

Pn = P +ap+ - +27, m=12...,n1
in the elementary symmetric polynomials of Df.5.2.2.2.
Solution:
Since, by Df.5.2.2.2,

f@) = (@—x)(@—m) (x—2) = " + Sia" ' + Sxt? 4 ... + S. 1)
where S:= (—1)'s;, i=1,2,...,n, s being the elementary symmetric polynomials, it follows from the
Calculus that

F@/fe)y = Y@w—wx) + Vw—2) + -+ + 1/(x— ) (2)
where f/'(x) is the first derivative of f(x). Rewrite (2), and
Py = f@)/@—w) + f@)/(@—a) + -+ + f@)/(@— ) ®
and, by actual division, each term of the right-hand side of the equation (3) is found to be of the form
F@/(@—a) = @' + fi@)2"? + fa(@)am ™ + e+ fao (@), i=12,...m 4)
where fi(xi) = wi+ 81, fo(x)) = 22+ Sia: +Ss, and in general,
fite) = & + Siait + Sei™ + -0 4 8, i=12,...n—1 (5)
which is the coefficient of ax"~i~1,
Replace x; in (4) successively by each of «, %2, ..., % and, substituting all of the results in 3),
i) = nx" ! + (P4 nS)e"? + (P:+ P1S1+ nS)a»=3 + ...
+ (P;+ Pj-1Si + PisSe + -+ - + nSpani=t 4 ... (6)

while, by (7) and the Calculus,
flle) = ma™ '+ = DSi2" 2 + (=28 2" % + -+ + 282z + S._s )
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Hence, by equating the coefficients of the like powers of x in (6) and (?),

PL+S = 0,

P, + P,Si + 28 = 0,

P3 + PzS1 + Plsz + 3S3 = 0,

Poot + PusSi + Pu-sSe + <+ + PiSaz + =11 = 0 8)
which yields, e.g.,

P, = =8,

P, = 8 — 28,

P; = -8+ 85:8: — 38,

P. = Si— 48'S, + 45.:8: + 28; — 48,

Ps = —S° 4 BS'S: + 55:8: — 5S1S: — 5S1S: + 58:8: — 585

and so on, iterating the process, up to P.—:, each of which is now expressed in terms of the elementary
symmetric polynomials, as was desired.

Note. The equations of (8) above are the so-called Newton’s formulas in the theory of equations.

9. Given f. = (z"+y"+2v)(x"y"+y"z" +2"x") — 2"Y"2", prove that f: divides f. if n
is odd.
PROOF:

If n is odd, then f. vanishes at the substitution of x=—y. Hence (x+ Yy + 2)(z+ x) divides
fo if m is odd, since f. is evidently a symmetric polynomial of degree 3n in 2,y,2. But, in particular,
f1 is a symmetric polynomial of degree 3 in x,y,z, which therefore must be of the form

fi = ez +y)y +2)(z+x)

where ¢ is a nonzero constant. Hence f,| f., completing the proof.

10. Prove, by Prob. 9, that 1/(a+b+¢) = (1/a) + (1/b) + (1/c) implies
/(@ +br+cv) = (1/a)"+ (1/b)" + (1/e)*

if » is odd.
PROOF:
Since, by Prob. 9,
Ffila, b, 0)/(abela+b+e) = la + 1/b + /e — 1/(a+b+e)
it follows that fi(a,b,¢) =0 if 1/a + 1/b+ 1/c = 1/(a+b+e¢). But, likewise,
Fala, b, 0)/(@be™ (@ + b+ ¢v)) = (Ha)* + (1/b) + (Ue)" — 1/(a"+bd"+ ")

where fa(a,b,¢) = 0 if » is odd, as has already been proved in Prob. 9. Hence, if » is odd,

1/(a*+ b +¢") = (1/a) + /o) + (/o)

11. Prove Th.5.2.2.3.
PROOF:
(i) Limit the case, first, to two indeterminates i, %, and their elementary symmetric functions are

8 = x1+xz, 82 = %1%z (1)

Given a symmetric polynomial in @i, s, say f(%i, x2), it can be rearranged in powers of i,
yielding

fle,x) = Aol + Aa—q2i™' + --- + Ao 2)

where Ag, Aa-1,...,A0 are polynomials in x.. If 22 in (2) is replaced by si—2:, which is

justified by (1), then f(xi, x:) becomes a polynomial in «: alone, viz.,
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fle, @) = Byxb + Bo_yz?™ ' + +++ + By = glxa) (€3]

where By, By-1,...,Bs are polynomials in s1, which are all arranged in powers of x..
Now divide g(u) = Byu® + Bo—1u®™ '+ -+ + B, by h(u) = 4 — s;u + 85, and then, by

where C and D are polynomials in si,s: in a manner that satisfies Th.5.2.2.4-5. Since g(x1) =
fle,22) and A(x) =0, u=w, in (4) implies
fle,22) = Cxi + D

where »: and 2, may be interchanged, since C and D are by definition not to be affected by
such an interchange. Thus
Cey +D = Cxy, + D
which implies
C(Qh—‘wz) =0
which in turn implies, since neither x: nor . is zero, that C must be zero. Hence
fle,2) = D

viz. the symmetric polynomial f in w;, %: is now given in terms of their elementary symmetric
polynomials.

Since the case for two indeterminates is now verified, assume that the theorem is valid up to
the case of n—1 indeterminates.

If &, ts, ..., t.—; are the elementary symmetric polynomials of the n —1 indeterminates
L2, X3, ..., 2Zn, then
$1 = x + tl,
82 = a1t + t2,
Sn-1 = Zitu-z + ta-y, (5)
and conversely,
ty = —X: + 8,
t2 - {1}? — x18 + 82,
ot = DM@ w e e (<1 s ©)
Let f(zi, 22, ...,2.) be symmetric in w1, 2, .. +» %+, and arrange it in powers of i, as in (i),
yieldin
& f@n@e, o) = Agw? + Aurail 4 oo+ Ao @)
where A, A.-1,...,Ay are symmetric polynomials in a3, ..., %, which can be expressed as
polynomials in ¢, ¢, ..., t.-1, since the theorem has been assumed to be valid in the case of n — 1
indeterminates.

Also, because of the relation between (5) and (6),
e, 00, 0. 20) = Bya? + Booixb™' 4 - + By = g(x1) 8)

where By, By-1,...,Bq are polynomials in 81,82, ...,8.-1, since Ao Ac-1,...,4, in (?) can be
expressed as polynomials in x,81,8s, ...,8.—1 while t1,%, ...,tu-1 are replaced by their ex-
pressions through wxi,s:,8s, ...,8n-1.

Divide, then, g(u) = Bou® + Bo—1u® '+ -+« + B, by h(w) = u" — s1u™ ' + gaur" — <.« 4
(=1)"ss, and, by Th.5.2.1.2,

gw) = hw)q@) + Co-ru”' 4+ Cucour™? + -+ + G ®

where Cu-1,Cu-s, ...,Co are polynomials in 81,82, ..., 8» Wwhich comply with Th.5.2.2.4-5. Let
u=2 in (9); then, since h(x:)) = 0, it follows that

f(xl,xz,...,xn) = Cn~1-%‘;l_1 + Cn-2x;'v2 + -+ Co 10
(

where 2, and s, s, ...,2, may be interchanged as in (i), which implies the following identities
in @, 2, ..., 0.
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Coc18™ ™" + Cocza?™® + ++- + Co — flay, %2, ...,%2) = 0,

Cac18™r + Ca—eal™® 4+ -0 + Co — flwn, %2 ... %) = 0,

Co128 0 + Cozal™® 4+ <o + Co — f(xy, 22 ...,20) = 0,
which in turn implies that

Cr-1u™™ ! + Cacsur™?2 + +++ 4+ Co — flwr, %2, ...,%z) = 0
for u = @1, s, ..., %« This is possible, however, iff

Cpn-1 = Ca-za = -+ = Ci =0 and Co’—f(x1,902,...,90n) =0

viz. f(x1, %2, ..., %) = Co, where Co is of course a polynomial in terms of elementary sym-
metric polynomials of §i1,8s, ...,8.. This completes the proof.

Note. Other proofs are also available for this theorem, but the proof, stated above, is the most
well-known; it was first given by A. Cauchy. An alternative form of the theorem may be observed
in Prob. 13 below.

12. Express f(i1, &2, &) = (&1 + &2)(x2 + @3)(xs + x1) in terms of the elementary symmetric
polynomials of Df.5.2.2.2.

Solution:

Since f(x1, 22, %s) is manifestly symmetric, Th.5.2.2.3 may be applied step by step.
Arrange f in powers of x;, and

flxy, 22, 23) = (22+ xs)xf + (w2 + 23)%x1 + oms(e + *3) (2)
Since the elementary symmetric polynomials of i, 2, 23 are
s1 = 21+ x2+ ws, 82 = X1%: + XXz + waxy, 83 = X1X2%s3
substitute in ()
Xz + 23 = 81— X1 and Xexz = B} — 81X T+ 82
and arrange it again in powers of x:; then,

@, 22, 25) = —a + 5,22 — s281 + 8182 = g(x1)

Now, divide g(u) = —uP+s;u*—ssu+s18. by h(u) = w®— s1u®+ s;u — 83, yielding the re-
mainder: $:18;—ss. Hence, by Th.5.2.2.3, f(x1, %2, %3) = 8182 — 8.

13. Every rational integral symmetric polynomial of the roots of an equation
fx) = a"+ Sian ' 4 Sea" 2+ s+ Seax + S = 0 (1)

is expressible in terms of a rational integral polynomial of the coefficients of (1).
PROOF:
(i) Let, as in Prob. 8,
Po = i+ g+ -+ oy, P, = ab+al+ -0 + )
where 1,%s, ...,%. are the roots of the equation (I).

If a5 b, then, for two indeterminates 2, and x»,

PoPp = a*® 4 af%b 4 oo 4 22 4 oatal + @lal + o0 = Pars + Data)
i.e. Exix‘; = PoPy, — Pasy (2)
expressing the double symmetric polynomial in terms of the single symmetric polynomials
P,, Py, Putb.

If a=b, then xjx) = x’:x‘;, which implies
p wiw, = 2 ) wd
which in turn implies

> xtul = (P — P2a)/2 G
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Since both (2) and (2) express the homogeneous symmetric polynomial as a rational integral

polynomial of the Pi, where ke N, and since the Newton’s formulas (cf. Prob. 8) yield the P&

as rational integral polynomials of the S’s, the theorem is now verified up to the case of
symmetric polynomials in two indeterminates L1, X2.

(ii) Assume that the theorem holds up to symmetric polynomials in m indeterminates X1, %2, ..., L

viz. any homogeneous symmetric polynomial, each term of which involves m roots, can be
represented as a rational integral polynomial of the P.. Since, by this assumption,

Ex:m;xf,. = x';x';x‘,’n + x';x;xfn + o0+ wplx‘;"'m‘:n+
and P, = ] + 2 + 00 + a?
where a,b,...,p are all distinct and also q #*a,b,...p, it follows that
P, atad - a? = Sartagle e + Savalte - +
+ Sajalc-antt + Sagalanel,, “)

revealing that the symmetric polynomial Ex‘;x';---x,”nx; +1 of m+1 roots can be expressed in
terms of homogeneous symmetrie polynomials, each term of which involves m roots, and one
such symmetric polynomial multiplied by P,. Hence the symmetric polynomial in m+1
indeterminates can be expressed as a rational integral polynomial of the P, and thus, by
Prob. 8, as a rational integral polynomial of the coefficients of (1), completing the proof.

Note. The term “homogeneous” in the hypothesis of Ex‘;x;’ is not exactly essential, since any

non-homogeneous rational integral symmetric polynomial is the sum of two or more homogeneous
rational integral symmetric polynomials,

Furthermore, the theorem is readily made more general, as in Prob. 14 below.

If f(z) is a polynomial of degree n over a field F with roots X1, %2 ..., %y, and if
9(Y1, ¥z, .. .,¥n) is a symmetric polynomial over F, then g(x1, s, ...,%,) is an element
of F. N

PROOF:
Since, by Prob. 18, g(yi, vz, ...,¥-) is a polynomial over F' in the elementary symmetric poly-
nomials 81,5z, ...,8n, it follows that g(z, «, . . ., %a) is a polynomial in

€1+ x2 + -0 + Ln,y 122 + xyx3 + - -k Xn—1 Lny X1X2** Ty
These expressions, however, are merely the coefficients of f(x)/a. if
f@) = anl@™ — baa@® 1 4 byoaan? — oo 4 (—1)"hg) 1)

where evidently bxe F, k=0,1,...m—1. Since the expression (1) always holds, the proof is complete.

If a(x) and b(x) are polynomials over a field F with a1, s, ...,am and by bs, ..., b,
as their respective roots, then the products

pi@) = JII]@—(a+by)), i=12,...,m
qx) = Hn(x — (a:by)), i=12,....n .

are polynomials in x with coefficients in F.
PROOF:
(i) Since, by hypothesis,
a(®) = calx—a)(x —a2)- - (= am)
where ¢, is the leading coefficient of a(x), it follows that
a@=b) = cm@— (a:+ b)) — (@2 + b))+ (x — (am+ by)
Hence, by hypothesis,

I

en Il (@ — (a4 b))

cnp(®) = Jla(xz—b)) (1)
J
which is a polynomial in x with coefficients which are symmetric in by, b, ..., b, Thus, by
Prob. 14, the coefficients of (1) must be in F. Further, if both sides of (1) are divided by cr, it
follows at once that the coefficients of p(x) are in F' as it is a field.
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(ii) As is justifiable by hypothesis, let
a(@/b) = cm((x/b;) — a))((x/b;) — az)* - - ((w/bs) — @m)
which implies
bl a(z/b) = cm(x — aibs)(@ — azby)* - (x — anbj)
which in turn implies

chg@ = [Ib7" a(x/b) @

Hence, as in (i), divide both sides of (2) by cr, and the coefficients of g{(x) are found to be in F,
completing the proof.

16. Prove Th.5.2.2.8.
PROOF:
The proof is to show that

f(81, 82, .. .,Sn) # 0 (1)
where si,8s, ...,8. are the elementary symmetric polynomials of the n indeterminates i, s, ..., %,
and fysye -y = RE § Weyry - YLYZ oy~ 0 (2)

ke ok
is a polynomial in a field F which contains none of 1,2z, ..., %x; the polynomial is of the reduced

form so that no two distinct terms of (2) are of the same powers of Y1, ¥z, ..., Yn
Now let a term of (2),

Qicykey- - ke y’:l y’;z tee y:" 3
be chosen by considering only those terms of (2) for which ki+ka+ --- + k. is a maximum, then
again those terms for which ks +ks+ - +kn is a maximum, and so on. These terms are unique,

for the identities
k1+k2+ M +ku

B4+ k4 o0+ En,

14 ’
k2+"'+kn = k2+"'+kn,
kn - k:n
. . ’ !
will imply ki=ki, ke=k:, ..., ka=ka.
Since, by hypothesis and Df. 5.2.2.2,
3 13 k.
gige g = (@t at o Fa)u(@m t @mzs o L1 @) (F2a @)
one of the terms which occurs when @i, - -k, s';l s’z‘2 ce s:" is expressed in terms of 1, %2, ..., %x is
k k. tk,+...+k kot .-tk k,_ 4tk k,
Gy T (B122)"2 o (@12 D RS S ma meee gl " 4)

which is unique in that no other term is of the same powers.

Under the maximal conditions imposed on the k's, no term with the same exponents as those of

the right member of (4) can appear when any other term of f(s1,82,...,8.) is expressed in %1, s, ..., %x.
Thus the right member of (4) does come into existence when f(si,ss, ..., Sa), expressed in x1, Xz, ..., %,
is simplified by combining like terms. That is, f(s1, 82 ...,8.) 7 0, completing the proof.

17. Given a polynomial p = p(x1, X, . . ., %), the set A of all permutations a, of 1,2,...,n,
such that p*=p forms a group. So does the set B of all permutations b such that
p* = *p.
PROOF:
(i) Let aiae,as e A; then, by Df. 3.1.1.1,
Gl. ad:e A, since pm%m = (ph)%2 = p = p.
G2.  ai(azas) = (aiaz)as, since ph®%) = pa®% = p,
G3. 1lcA.
G4. a-'ed, since p°=p implies (p°)* ' = p ', which in turn implies p = p* .
Hence A is a group.
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(ii) Likewise, let by, bs, bn ¢ B; then
Gl. bib:e B, since ph = (p1)%: = (xp)z = *(*p) = =p.
G2, bi(babs) = (bibo)bs, since ph1Pebp = PPty = g
G3. 1e¢B.
G4. b7'eB, since p®=*p implies (p®)* ' = +pt 7! yielding p* ! = *p.

Hence B is a group.

$5.2.3 Roots of Polynomials

5.2.3.1 If a polynomial f(x) = Eak x*, k=0,1,...,n, vanishes (ie. f(x)=0) for
k

more than n distinct values of #, then it is identically zero (ie. ao=ai=---=@a,=0).
(Cf. Prob. 1.)

This theorem is a direct consequence of Th.5.2.1.5 (and Th.4.1.2.5.18) that f(x)
of degree n cannot have more than n roots. A polynomial, however, may not have
any root at all; for example, a constant polynomial f(x) = aox® has no root if a,#0,
since it will never vanish for any value of z. On the other hand, f(z) may have a
root which occurs more than once, as is made explicit in the following definition
(which has been implicitly used, e.g. in Th. 5.2.1.9, Th.5.2.1.21, etc.).

5232 If a polynomial f(x) has a factor of the form (—7r)", but not (xz—rym+*1,
then r is called a root of multiplicity m (or an m-fold root).
Example:

flx) = (x —7)* g(x) has a p-fold root » which as such cannot be a root of g(x) =0; if f(z) is a
polynomial of degree m, then it cannot have more than n—p+1 distinct roots in this context, as
is proved in the following theorem:

5.2.3.3 A polynomial of degree n cannot have more than = roots unless a root of
multiplicity m, if any, is counted m times. (Cf. Prob. 38.)

The roots of a polynomial are related to the coefficients of the polynomial in a
definite pattern, generalized as follows:

5234 If r,re ...,7, are the roots of the equation
f) = aua" + tn-1a™ ' + - gz 4+ a0 = 0 (1)

then the sum of all possible products of the 7’s taken k at a time, k=1,2,...n, is
equal to (—1)" *au.—i/a,. (Cf. Prob. 4.)

Stated in detail (cf. Df.5.2.2.2): f(2) = an(z — r)(@—1ry)- (2 —r) yields

S1 = r+7ret -+ Tn = —an_l/an,
S: = mrs + rirs + o+ g, = an_2/an,
Sy = 7rars + rirars + 0 A s taite = —~Qn-3/0n, (2)
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Example:
a2x® + gz + a0 = 0 has two roots 7y and r; such that Si =71+ 7 = —ai/az and S: = 71 = ao/ ate.
As has already been observed (cf. Df.5.2.2.2), Si,8,,..., S. in this context are
readily expressible in terms of the elementary symmetric polynomials, si,82, ..., 8xs;
viz.

S = (1), i=12,...m

The relation between the roots and coefficients of a polynomial helps solve an
equation when a certain relation among the roots is given; it also helps construct
an equation whose roots have an assigned relation to the roots of a given equation
{(cf. Prob. 5-10).

In general, for nonconstant polynomials at least, the following theorem holds:

Th.5235 If f(a) <0 and f(b) >0, where f(z) is a polynomial over R and a,beR, then
there exists ce R between ¢ and b such that f(c)=0. (Cf.Prob.11)

This theorem, as a special case of the so-called Mean-value Theorem, holds for
any continuous functions as well. It is, however, essentially an existence theorem,
which as such does not pin-point the root of the given polynomial in an actual
construction, although it may be employed as a principle for locating approximate
values of the real roots of f(z). It is of practical importance to be able to approxi-
mate the real roots with any required degree of accuracy, in particular for poly-
nomials of fifth and higher degree, or even third and fourth degree; but the principles
of approximation to real roots are definitely outside the legitimate scope of the
present work.

Th.5.2.3.5 yields also the following theorem: N

Th. 5.2.3.6 Every polynomial with real coefficients of odd degree has at least one real
root. (Cf.Prob. 12))

Just as polynomials with real coefficients have their own peculiarities as above
(and also as in Th.5.2.1.13-14 and Prob. 27-36 below), a restriction of coefficients to
the rational number field R or, what is essentially the same, to the domain I of
integers yields the following simple theorems:

Th.5.2.3.7 An integral root of a polynomial with integral coefficients is an exact divisor
of the constant term of the polynomial. (Cf.Prob. 18.)

Th.5.2.3.8 If a polynomial with integral coefficients has a rational root of the form p/q,
where p and q are integers which have no common divisor other than unity, then p
is an exact divisor of the constant term, and ¢ an exact divisor of the leading
coefficient, of the polynomial (Cf. Prob. 19.)

The restriction of coefficients of polynomials as above may be replaced by a
generalization, extending the coefficients from R or R to C (cf. Th.5.2.1.15-16), and
the following theorem, called the Fundamental Theorem of Algebra, is of course the
most important for polynomials with complex coeflicients.

Th. 5.2.3.9 (by Euler-Gauss). Every polynomial of positive degree with complex coefficients
has a complex root.

This is again an existence theorem, which does not help find in concreto the roots
of a polynomial, but does assert unequivocally that they do exist. The theorem
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asserts, in fact, that every algebraic equation of degree greater than zero (i.e. a
nonconstant polynomial) has at least one root, real or complex; the validity of this
theorem has been taken for granted, without proof, throughout College Algebra.
In the present context, too, the theorem will be presumed to be true.

(Contrary to the belief of some authors, however, it is not at all the case that
the proof without any knowledge of function theory is “either tedious or lacking in
rigor”, although the theory of functions of a complex variable does offer a simpler
proof. Nor should the student be misled to consider Th.5.2.8.9 the fundamental
theorem of algebra in modern algebra, although the réle the complex number field,
or the theory of equations in general, plays is still unique and great in the same
context.)

Th. 5.2.3.10 Polynomials with complex coefficients of degree » have n complex roots.
(Cf. Th.5.2.3.3 and also Prob. 20 below.)

This theorem yields the following definition:

Df.5.2.3.10a The complex number field in relation to Th.5.2.3.10 is said to be alge-
braically closed (or complete).

In this sense any field ¥ may be said to be algebraically complete (or closed) if
polynomials over F have no roots outside F itself.

Th.5.23.11 If f(2) =0, where zeC and f(x) is a polynomial with real coefficients, then
f(8)=0. (Cf. Df.5.1.3.8 and Prob. 21 below.)

Th.5.23.12 Every polynomial f(z) with real coefficients of degree greater than one is
expressible over R as

f(x) = an(x — bl) e (;L' - br)((x —_ 01)2 + d%) . (((I? _ 03)2 4 di)

where a. # 0 is the leading coefficient of f(x) and b, ¢;,d;e R, i=1,2,...,r, j= 12,.. ..,
and d;>0. (Cf.Prob. 24.)

Th.5.2.3.13 If f(z) is a polynomial with real coefficients, and if flay=0 and f(b)+0,
where a,be R, then either f(a)f(b) >0 or f(a) f(b) <0 according as the number of
the real roots of f(x) between a and b is either even or odd. (Cf. Prob. 25.)

The last theorem belongs to the so-called isolation of the real roots of a poly-
nomial with real coeflicients, which examines whether one or more intervals can be
found such that each real root is contained in one of these intervals and each interval
contains only one root. This leads to such theorems as Sturm’s and Budan’s and
also to Descartes’ rule of signs.

Now that the existence of roots for nonconstant polynomials is assured, the
problem is directed to the algebraic solution of individual equations, viz. to find the
roots of polynomials by rational operations and radicals alone, through the following
two definitions:

Df.5.2.3.14 The equation z"=g¢ is called a binomial equation, where the roots of the
equation are the nth roots of a, denoted by va and called a radical of index n
(relative to a field which contains a). (Cf. Prob. 28-29 below.)

The radical, defined as above, leads to the following definition of solvability.
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Df.5.23.15 An equation f(z) = Eaixi =0, 1=0,1,...,m, is said to be solvable by
radicals (or root extractions) and rational operations if there exists a sequence of
numbers b;, j=1,2,...,m, such that every b; is either one of a: or one of the results
of rational operations on b; and b;, where 0 = b, b;, < m, or a root of any index
of a preceding b or one of the results of rational operations on b;, and b;, where
1 = b;,b;, < m, such that every root of the equation appears in the sequence.
Example:

The sequence for @22+ aix+ae = 0, a0, is:

by = a2 be = bibs = awa0 by = bio—bs = af—4a,zao

be = as by = by+bs =2 blz:\/b—u: Vaf—4a/zllo

b: = ao bs = bs+b; = 4 bis = bs— bz = —Val— 4ax0
bs = by/by = 1 by = bebs = 4bs = 4azae ete.

bs = by—bi = 0 bio = bb, = a?

There exist similar but different sequences for the given equation, as in most
cases; at least one such sequence must exist, however, for any equation to be solvable
by radicals.

In general, there exists at least one such sequence for every equation of positive
degree up to 4, beyond which such sequences may or may not exist. Every equation
of degree up to 4, then, will have a general formula involving only rational operations
and root extractions, as will be seen below, for expressing its roots in terms of its
coefficients; such a general formula does not exist, however, for any equation of
degree greater than 4.

Th.5.2.3.16 The linear equation, generally of the form ax+ao = 0, where ai,aeC
and a;+ 0, has the unique root —ad/a;.

Th.5.2.3.17 The quadratic equation, generally of the form a.2?+aixz+as = 0, where
a2, a1,a0 ¢ C and as = 0, has two roots:

rn = (—ait+vael- 4dasa0)/2az, rs = (—a1—Vai— 4a2a0)/2a:

The student is already familiar with these two results (cf. also §5.1.3, Prob. 28-29).

Th.5.2.3.18 (by Cardano). The cubic equation, generally of the form
asx® + a2 +ax + a0 = 0
where as, a2, a1,00 ¢ C and as+#0, can be simplified to the form
B+prt+qg = 0
which can be solved algebraically. (Cf. Prob. 34.)

Th. 5.2.3.19 (by Ferrari-Euler). The quartic equation, generally of the form
et + asxd + a2 + ax + a0 = 0
where as,as, @2, 1,00 ¢ C and as+0, can be simplified to the form
HH+p+qr+r = 0
which can be algebraically solved. (Cf. Prob. 36.)

This theorem, however, is the end of algebraic solutions of general equations
(i.e. without any made-to-fit modifications of coefficients). For, as is well-known,
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Abel proved it once and for all that it is absolutely impossible to express the roots
of an equation of degree higher than the fourth by means of formulas involving
only rational operations and radicals, viz.:

Th.5.2.3.20 (by Abel). The quintic equation, or any equation of degree higher than fifth,
in its general form is not algebraically solvable.

It must be noted that the same result can be obtained by a theory originally
conceived by Galois.

Solved Problems

1. Prove Th.5.2.3.1.
PROOF:

Given f(x) = @™+ @u-12" 1+ o0 + qx + @, and assume a.> 0. Then f(x) has more
than n distinet roots, by hypothesis, which is a flat contradiction in relation to Th.5.2.1.5. Hence it
must be the case that a. = 0.

Assume, then, a.-;# 0, which implies, by hypothesis, that f(x) has more than n—1 distinct
roots, which is again contradictory to Th.5.2.1.5. Hence @._; =0 must be the case.

Likewise, taking similar steps, Gn-2=0, ..., 21=0, a0=0, ie. @ = @Gpoy = *++ = @, = a0 = 0,
which completes the proof.

2. It f(®) = Yaxa* and g(z) = X bea*, k=0,1,...,n, have the same value for more
k I

than » distinct values of z, then f(x) = g(x), where ai= bx.

PROOF:
Let
Mz) = fl@) — g(x) = Saz* — Sha* = 3(ax—ba* = gcm, E=01,...n
k k k
Then, by Th.5.2.3.1, ¢o=¢Cu1= - =co =0, where cx = ar— be, which implies @»=b., Gn_1=
bu-1, ..., @o=bs, completing the proof.

3. Prove Th.5.2.3.3.
PROOF:

Let f(x) be a polynomial of degree m with roots 71,7, ..., 7 of multiplicity my, m., ..., m
Then, by Df.5.2.3:2,

f@) = aw@—r)m(e—r)™ - (x— )™ g(x) €))

v;rhere a, is the leading coefficient of f(x) and evidently degg(x) = n— (mi+ma+ «-- +me) by
Th.5.2.1.6. Since the expression (1) is unique, by Df.5.2.3.2 itself, the proof is complete.

4. Prove Th.5.2.3.4.
PROOF":
Since the cases n =1,2 are trivial, take the case n = 3, and, by actual computation,

fl®) = a® + @2 + o + a0 = as(w— ri) (@ — ro)(x — 7r3)
= as(@® — (ri+ 72+ ra)a® + (e + v+ )L — Tirars) = as(x® — A+ Ay — As)

which implies

A, = ret+re+ors = ‘-az/aa, A, = rir: + rirs + rery = al/aa, A; = rirars = —ao/as
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Assume, then, that the case n =k holds, viz.,

fl) = @xd* + G101+ 0+ a0 = afer—r)@— 1) (2 — 1)
= ae(@*—(ritret--- +'rk)x’°_1 + (7‘1”'2"{‘ rors+ o +rk—1rk)x"’2 R (-1)"7’{"2' ° "I'k)
= au(c* — Ki* ™! 4 Kox* ™2 — - + (—1)*Kx)
which implies
Ki = rn+7re 4+ - + re = —ak—l/ak,
Ke = res+ rrs + o0 + 71 = ax-s/ax,
Ki = rir: Te — (—l)kao/ak

Proceed now to examine the case » = k+1, and

flx) = ax+r12*T + axa* + -0+ a0
= ax+1 (@ — 1)@ — 1) (x — 1) (X — T+1)
= ares1(@* — (ritret - )T 4t s + 000 ot T?
— o (D) e )X — Tiera)
= a1 (@ — (i F et o F )@+ (e F s o0+ TR re)e !
R i Gt § LA S0 PTILRY S
= @per(2*t — Kjak + Ko™ 1 — « oo + (—1)**1 Ki4)
which implies
K, = ri+rs+ 0 + Thr1 = —@/Ak+y,
K; = 71+ rirs + 00 F TeTei1 = Gk-1/Gr+a,
K;H-l = TirecTek+1 — (_1)k+1a0/ak+1

Hence, by induction, f(x) = au(x —7r)(x —73)- - -(x —rs) implies

S: = it ret - F e = —aa-i/an,
S: = rrs + rirs + o0 A PaciTa = dn-2/an,
Se = rwe-crn = (—1)"ad/an

which completes the proof.

5. Let a,b,c¢ be the three roots of 23+px+¢q = 0, and express (a—b)*(b—c)*(c—a)?
in terms of p and q.

Solution:
Since, by Th. 5.2.3.4,

a+b+e¢ =0, ab + bec+ca = p, abe = —q
it follows that

(@—b)? = (a+b)? — 4ab = (—c)® — dp—bc—ca) = ¢ — 4p + 4de(a+b) = —4p — 3¢
Likewise (b—¢)? = —4p—38a®* and (c—a)? = —4p— 3bL
Hence
(a—b)2(b—e)lP(c—a)? = —(4p+ 3p®)(4p + 3b*)(4p + 3c%)
= —64p* — 48(a®+ b+ c¥)p® — 36(a?b? + b + c*aP)p — 27a’b%c?
But @+ b+t = (atb+e)?—2(ab+bect+ca) = —2p,
a?b? + b*? + c’a’® = (ab + bc+ ca)® — 2abela+b+c) = p? a*b’® = ¢*
Hence (a—52((b—c)(c—a)® = —64p® + 96p® — 36p® — 279> = —(4p*+27¢%
Note. (a—b)2(b—¢)*(c—a)? = D is in fact the discriminant of the given cubic equation

(cf. Prob. 34 below).
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6. Given the three roots a,b,c of 2*—pzx+q = 0, construct a cubic equation whose
three roots are a2 b2, ¢

Solution:
Since, by Th. 5.2.3.4, the desired equation must be of the form
x® — (a*+ b* + eBa? + (a?B®+ b%e® + cad)x — a%h’: = 0
and since, from Prob. 5 above,
a®+ b*+ & = —2p, a’b® + b*c* + ¢’a® = p?, a’b’c? = ¢?
it follows at once that the equation at issue is

4+ 2px + pP’x — ¢> = 0O

7. Solve the following equations simultaneously:
(i) z+y+z =9, (ii) 22+9y*+22 = 41, (iii) 2*(y +2) + ¥z +2) + 22(x +y) = 180
Solution:
From (ii) it follows, using (i),

41 = 2+ 9y + 22 = (x+y+2)?® — 2ayt+yz+zx) = 81 — 2(zy + yz + 2x)
or xy +yz + 2zx = 20 (ii")
Also it follows from (iii) that, by (i) and (ii),
180 = a¥y+2) + pPe+a) + 22@t+y) = 2%9—x) + 9 —y) + 229 —2)
= 92ty +2%) — (@P+y +2%) = 9+41 — (x® + y* + 2° — 3xyz + 3xyz)
= 369 — (wty+P+y'+2—ay—yz—ay) + 3zyz) = 369 — (9(41 — 20) + 3xyz)
or xyz = 0 (iii")

Hence, by (i), (ii'), (iii’), and Th. 5.2.3.4, it follows that x,y,z are the three roots of the equation
$?— 9t + 20t = Ht—4)(t—5) = 0
which implies six sets of values for =,y,z to satisfy (i), (ii), (iii):

(0,4,5), (0,5,4), (4,0,5), (4,5,0), (5,0,4), (5,4,0)

8. Find the necessary and sufficient condition that the sum of any two roots of

2+ prPt g2+ re+s = 0 (1)
is equal to the sum of the other two roots.
Solution:
Let the four roots of () be a,b,¢c,d; then, by Th.5.2.3.4,
Si = a+b+c+d = —p, (2)
S: = ab + ac + ad + bec + bd + cd = g, (3)
Ss = abec + abd + acd + bed = -—r, 4)
Sy = abed = s (5)
If a+b = ¢+d by hypothesis, then, from (2)
2(a+b) = 2(c+d) = —p (6)
and, from (3) and (4),
(@a+d)ct+d)y+ab+ecd = gq, ablc+d) + edla+b) = —r
where, substituting (6),
(p*/4) + ab + ed = g, (—p/2)(ab+cd) = —p

which implies, eliminating ab+cd, (p/2)(q — (p*/4)) = », ie.,
P —4dpg + 8 = 0 ”

which is the desired necessary condition.
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10.

Conversely, represent the left-hand side of (7) by f(p), expressing it in terms of @,b,¢, d, through
(2),(3), (4), and

f@ = —(a+b+ec+d® + 4atb+tet+d)ab+tactad+ be + bd + cd) — 8(abe + abd + acd + bed)
which implies, substituting ¢ +b = ¢+ d by hypothesis,
flp) = —8(a+b)P + 8a+b)((a+bd) + (ab+ed) — 8a+ babt+ed) = 0

which implies f(p) has a factor a+b—c—d. But, since f(p) is evidently a symmetric polynomial
with respect to a@,b,c,d, it must contain two other factors a+c—b—d and a+d—b—e¢, which
are obtained by interchanging b,¢ and b,d. Hence

fp) = ka+b—c—dlat+c—b—d)a+td—b—rc)

where k is a constant, since f(p) is cubic with respect to a,b,c,d. Hence a+ b =-c+d if (7?) holds,
ie. f(p) =0, which implies that (7) is also the sufficient condition at issue, and that (?) is indeed the
desired condition.

Note. a+c¢c =b+d or a+d = b+c¢ may be used as hypothesis, yielding exactly the same
result, viz. (7).

Find the necessary and sufficient condition that the sum of any two roots of the

equation P Aprtq = 0 (1)

be equal to a root of the equation
2+re+s = 0 2)

Solution:

Let the three roots of (I) be a,b,¢ and the two roots of (2) be d,e; then consider the following
symmetric polynomial S with a factor (a+b— d) of the lowest degree with respect to a,b,¢,d,e:

S = (@+b—d)b+e—dicta—dlat+tb—eb+c—e)c+a—e) ()

where S =0 if the sum of any two of a,b,c is equal to either d or e, and conversely. Hence the
desired condition is obtained if the coefficients of S=0 are expressed in terms of p,q,7,s.

Now, by Th. 5.2.3.4,

(a+b—dyb+ec—dc+ta—d) = (a+b}b+e)ct+a) — ((at+bd)b+o)
+Bt+eeta)+ (c+a)at+d)d + 2(@+b+c)d> — d°
= q— pd — &
and likewise
(a+b—d)b+tc—ecta—e) = q— pe — €
Hence, again by Th. 5.2.3.4,
S = (¢—pd—d°g—pe—e’)

= ¢ — pg(d+e) — q(d®+ €% + de(p® + p(d®+ €*) + d%?)
= @ + pgr + gr(r¥*—3s) + s(p* + p(rt —2s) + s?)

Thus the desired condition is ¢* + qr(p + > — 3s) + s(p*+ pr* —2ps +s*) = 0.

Solve
3xt — 20 + 27x2 + 262 — 24 = 0 (1)
where the product of two roots is equal to 2.

Solution:

Since, by Th. 5.2.3.4, the product of all four roots is known to be —24/3 = —8, the product of
the other two roots of (I) must be —8/2 = —4. Hence, using Th.5.2.3.4 again, let

x* — (20/8)x® + 92 + (26/3)x — 8 = (2 + px+2)(x*+qx—4) 2)

from which it follows
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p+aq = —20/3 and —4p + 2¢ = 26/3
which in turn imply
p = —11/3 and qg = —3
which change (1) into
8(x*— (11/3)x + 2)(x* —3x—4) = 0
i.e. Br—2)x—8)zx—4(x+1) = 0
which yields the desired roots: 2/3, 3, 4, —1.

Prove Th.5.2.3.5.
PROOF:
Let a <b and M be the set of every x which satisfies
fl) <0, a=x<bd (1)

Then, since » =a satisfies (1), M is not empty, and also, since the interval is bounded above, there
must exist a Lub. (or sup. (cf. Df. 2.4.1.6)), say u, in M such that

a=u=2»% (2)
Now let the given polynomial f(x) be
fe) = Jdra*, k=01,...n
k
and assume f(u) < 0. Then a small positive number e can be found (cf. §5.1.2, Prob. 45) such that
| de(u+ &)y"~* — deun*| < flu)/n, k=01,...n
for an arbitrary real number ¢’ such that le’} =e. Add these n inequalities, and
[ flu+e) — flu)| < f(w)
which, since f(u) > 0, implies
flu+e) < 0 3)
On the other hand, since w is a lub. of M, it follows that u+ec M for some e’ such that
¢’ <0 and |e’| = e, which implies, when substituted in (1),
flut+e) > 0 4)

which clearly contradicts (3).

Furthermore, assume f(u) < 0. Then u < b, since f(b) > 0 by hypothesis. Now take a sufficiently
small positive number e such that u+e < b, and

[de(u+ ey " — drur*| < |f(w)]/n, k=01,...n
for an arbitrary real number ¢’ such that le’| =e. Add these n inequalities, and
[flute) — fa)| < |f(w)]
which, since f(u) < 0, implies
fut+e) <0
which, when ¢ = e, in turn implies
flu+e) < 0

which is contradictory to the initial assumption that « is a lL.u.b. of M. Hence flw) = 0 is the only
alternative, which completes the proof with u =e.

Note. The assumption ¢ > b, instead of a < b, brings forth the same result, as can be readily
verified. It must be noted, too, that the result is a special case of the Mean-value Theorem of the
Calculus and allows a geometric proof, which is rather intuitively obvious; viz. a continuous curve
which passes through two points (a, f(a)) and (b, f(b)) on the opposite sides of the X-axis must cross
the same axis at least once and, in general, an odd number of times between x = ¢ and ¢ =20,
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Prove Th.5.2.3.6.

PROOF:
Let n be an odd number and

flx) = %ckx", k=01, ..m
with the stipulation ¢, = 1, which does not affect the generality of the problem. Since n is odd, a
positive number a can be made sufficiently large such that
(—a)*/n + e(—a)* * = —a*/n + al—a)** < 0, k=01,...n
by letting, e.g., @ > (=1)""*nce. Adding these together, f(—a) < 0.
Likewise, a positive number b can be taken large enough to yield
b/n + ed™F > 0, k=01,...n
by letting, e.g., b > —nck. Adding these together, f(b) > 0.
Hence, by Th. 5.2.3.5, there exists a real root between —a and b, which completes the proof.

Every polynomial with real coefficients of even degree has at least one positive root
and one negative root if its leading coefficient is positive and its constant term is
negative.
PROOF:
Let the given polynomial be
flzy = S as-r 2t = g2 by 2l e bo, k=01, ..n
k
where bau—; = @an-j/@2., §=0,1,...,n—1. Then f(+%) > 0 and f(0) = bo < 0, by hypothesis. Hence,
by Prob. 11, there must exist a real root between 0 and +, i.e. a positive root.

Likewise, since f(—«) >0 and f(0) < 0, there must exist a real root between 0 and —«, i.e. a
negative root.

Hence f(x), of even degree, has at least one positive root and one negative root, which completes
the proof.

Find the necessary and sufficient condition that
f®) = @*+2pqx +p* + > -1 = 0 (1)

where p,q ¢ R has two real roots, the absolute values of which are less than 1.
Solution:
The necessary and sufficient condition that f(x) = 0 has two real roots is

D = p¢—-—pP—-—¢+1 = pP-D(E-1) = 0 @)
_where D is of course the discriminant of f(x) of degree two. Since %=1 must lie outside the desired
nterval M) = G+0*>0  and A1) = (p—gF>0
which imply that the desired condition must contain
P #* ¢ 3
Also, since the sum of the real roots of f(x) must be less than 2,
p*¢* < 1 “4)

must be the case, which implies ¢><1 if p*<1 in compliance with (2). Hence the desired condition
as a whole is, from (3) and (4),
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If m designates the maximal value of all absolute values of the real coefficients of the
equation

fle]) = a4+ g™ ' 4 - a0 = 0
then all roots of f(x) are found between =(m +1).
PROOF:
Since, directly computing a series,
Ym+1) + Ym+12+ -+ + Ym+1)" = A—1m+1)Vm
it follows that
fim+1) = (MmM+D" 4+ qu-s(m+1*" + -+ + ao

= m+D)"Q+ a-t/im+ 1)+ o0 + a/(m+ 1))

= m+)"A—-m/(m+1)— - —m/(m-+ 1))

= m+1"(1~m@Q/m+1) + - + 1/(m+1)")

= m+)Ad—-—Q—-1/m+D")) = 1

ie. fim+1) =1 > 0, and also f(+=) > 0. Hence it follows from Th.5.2.3.5 that f(x) has no
root which is greater than m + 1.

Likewise, taking + for even degree and — for odd degree,

=f(—x) = 2" — Au_g L 4 -+ + (—1)"as
and Hf(—m+1) = M+D" — gay A1) + oo+ (—1)%a
= m+1)" — (m+1)""t — o0 —m = 1

Hence =f(— (m+1)) > 0, which implies, together with =(—(—w)) > 0, that f(x) has no root
between —e« and —(m +1). All roots of f(x) must thus lie between *(m + 1), completing the proof.

Any rational root of a monic polynomial (cf. Df.4.1.2.5.14) with integral coefficients
is an integer and an exact divisor of the nonzero constant term of the polynomial.

PROOF:
Let the given polynomial be represented by

flxy = 2" + an—1x™ P 4+ - + a0 = 0 (1)
and assume p/q to be a rational root of (1) in its lowest terms. Then
fole) = @/Q" + 1@/ + - + a0 = 0
which implies
p /g = —(@u-1P"' + @u-ap2q + o0 a0gtTY) (2)

which in turn implies that the right-hand side of (2) is an integer, since every term is an integer,
while the left-hand side of (2) is a fraction in its lowest terms. This contradiction leads to the
conclusion that any rational root of () must be an integer.

Furthermore, if ¢ is thus an integral root of (1), then
¢+ g+ o+ et a0 = 0
which implies
a/c = —(c"'+ an-1¢"2 4+ o0+ oay) (3)

which in turn implies that the left-hand side of (3) is an integer and therefore ao/c also must be an
integer. Hence ao is an exact divisor of ao.

If f(x) is a polynomial with integral coefficients, and if f(0) and f(1) are both odd
numbers, then f(z) =0 cannot have integral roots.
PROOF:

Let f(x) = ‘,?‘ axx®, k=0,1,...,m; then, by hypothesis, f(0) = a0 and f(1) = gak are both odd.

Hence a.-1+ --:+a1+a must be an even number and there must be an even number of odd
numbers among -1, ..., a1, do.
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Purthermore, if f(x) = 0 has an integral root, say, r, then, by Prob. 16 above, it must be a factor

of ao and also an odd number, since a¢ is odd. Hence 7", 7"~ ', ...,7* are all odd, which implies that
axr® is odd if ax is odd, and even if ai is even. This in turn implies that the number of odd numbers
among a.r", an.-17""%, ...,a1r is equal to the number of odd numbers among @ @n-1,...,0:. But

the number of the latter is even, as has already been found out; the number of the former is thus
also even. It follows, then, that

an?™ + @7+ s+ o

is even, and, consequently, that f(r) # 0, which completes the proof.

Prove Th.5.2.3.7.

PROOF:
Let the given polynomial be

fx) = S ozt = 0, k=01,...n (1)
where a. may not be 1 and ao7# 0. If ¢ is an integral root of (1), then
anc® + Qu-1c"' + - Faic a0 = 0
which immediately implies, as in Prob. 16 above,
afc = —(@nc '+ Gn-1e"2 4 o0+ o) (2)

which implies that ao/c must be an integer, since the right-hand member of (2) is an integer. Hence ¢
is an exact divisor of as, which completes the proof.

Prove Th.5.2.3.8.

PROOF:
Let the polynomial in question be

f@) = Sz =0, k=01,...,1n (1)

where a. >0 and ao+ 0 may be assumed and also, by hypothesis, x = p/¢ may be substituted,
then multiplied by ¢*, resulting in

@np” + G ptt o + apg" T + aeg® = 0 @
which in turn implies, as in Prob. 16,18,
ag” = —p(@.p* '+ Auo1p" g A+ oo A+ a1 g™ (3)

where p is evidently a factor of aog", hence a factor of ao, since p and ¢, thus p and ¢*, have no
common factor other than unity, by hypothesis.

Likewise, (2) may be rewritten as
@ap” = —qn- "'+ o+ arpg*T? + asqgTY) 7A)

yielding a similar conclusion that ¢ is a factor of a., which completes the proof.

Prove Th.5.2.3.10.

PROOF:
If f(x) is a polynomial with complex coefficients of degree n, n =1, then, by Th.5.2.3.9, there
exists a complex number ¢; such that f(¢:) = 0; hence, by Th.5.2.1.3,

fx) = (x— 1) glx) (1)
If g(x) of (1) has degree greater than 1, then, taking a similar step,
g(x) = (x—eco) k() (2)

for some e:e C. Combining (Z) and (2),

fl@) = (x—e)(x — e2) hx)
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Hence, if f(x) is of degree m, then, by induction,
o) = (@—e)e—eco) - (x—en)
for exactly n complex numbers ¢, ¢s, ...,¢.e C, which completes the proof.

Note. Any polynomial over C is thus completely reducible over C, and all prime polynomials are
of degree 1 (cf. Th.5.2.1.15-16).

21. Prove Th.5.2.8.11.
PROOF:
Let z = a+ b, where a,be R; then the equation

(x—a) + b = 0
yields two roots z and # = a—ib. Hence, by hypothesis and Th. 5.2.1.3, it follows that
fl2) = (x—a)?+b)gx) + ex+d
where g(x) is a polynomial with real coefficients and edeR.
Furthermore, since f(z) =0 by hypothesis,
clat+ib)y +d = 0
which implies
ca+d = 0 and ch =0
which in turn implies
cla—ib) +d = 0
Hence f(a—ib) = f(z) = 0, completing the proof.

Second Proof. Since the mapping z — a+ib < 2z = a—ib is an automorphism of C (ef.

Th.5.1.3.9) and also zi+z: = z1+ 2 (cf. §5.1.3, Prob. 13) or, in general, z,+2:4 - + 2, =
Zt+ 24+ - + 2., it readily follows that

flx) = Saa* = Sart = Sae* = f@), k=01, ..n

which immediately implies that f(z) = 0 if f(z) = 0.
Third Proof. Denote the values of
a + ib, (a + ib)?, RN (a + by,

by Uy + vy, Uz + s, e Un + 0,

respectively, where w, vy ¢ I_{?, k=12,...m, as well as a,beB. Then

f@) = fla+ib)

(@nttn + Qu-iUn-1 + * - 4 @uorus + @) + WawVn + Qo1 Vne1 + + oo + @1vy)

= U + {V
Since it can be readily verified by the binomial theorem that (a+ib)* = awy + ive implies
(a —ib)* = w — ivk, it follows that if
fe) = fla+id) = U+iV = 0
then U =0 and V =0, by Df.5.1.3.1a, and consequently,
fl&) = fla—ib) = U -4V = 0

which completes the proof.

22. Given f(z) = 2°*— 11z —20, find the imaginary roots of f(x)= 0.
Solution:
Let x = a-+1ib; then
fl@) = (a+1b)® — 1l(a+1ib) — 20 = 0 ()
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Simplify (1), and

a® — 3ab* — 1la — 20 + i(3a’d—~b*—110) = 0
which implies, by Df. 5.1.3.1a,
a®— 3ab*—1la — 20 = 0 @)
and 30 — > — 116 = 0 3)
Since b7 0 by hypothesis, it follows from (3) that

b = 8a* — 11 (4)

which is substituted in (2) to obtain
40 — 1la + 10 = 0 )

where, by Th.5.2.3.7, ¢ must be an exact divisor of 10. Try the divisors of 10, viz. =1, =2, =5, *10,
in (5), and a = —2 is found to satisfy (5), which in turn implies, by (4), b = =*1. Hence the desired
roots are —2 4+ 7 and ~2 — ¢, verifying an outcome of Th. 5.2.3.11.

23. If f(x) = x* —42® + 112? — 142 + 10 is known to have two roots of the form a+1¢b
and a+2¢b, then find all roots of f(x)=0.
Solution:

It follows at once, from Th.5.2.3.11 and by hypothesis, that f(x) has two other roots of the
form a—ib and a— 2i¢b. Hence, by Th.5.2.3.4,

(a+1ib) + (a+2ib) + (@ —ib) + (a—2ib) = 4 (1)
and (a + ib)(a + 2ib)(a — ib)(a — 2ib) = 10 (2)
From (1) it follows that ¢ =1, which in turn implies through (2),
(a® + b¥(a® + 4b%) = (1 + b%)(1 + 4b%) = 10
which implies b*=1 or b*=—9/4. But, since b is of course real, the former alone is valid, viz.
b = =1

Hence the four roots of f(x) are: 1+, 1—4, 1+2¢, 1— 24,

24. Prove Th.5.2.3.12.

PROOF:

Let all real roots of f(x) be by, by, ..., b,, of the n roots in entirety (some of which may be of
some multiplicity). Then, by Th.5.2.3.11, n—r = 28 is an even number of complex roots of the
form c¢i+idiy, i —idy, ..., ¢+ 1ids, ¢s—ids. Hence, by Th.5.1.3.3,

fl@) = aulx—>by)-(x— b} — (er+ id))(x — (e2—idh)) -+ (x — (cs + id:)) @ — (s — ids))

i

au(x — b1)e - (2 — b )((x — c1)? + @)+ - ((® — ¢)® + d2)

which completes the proof.

25. Prove Th.5.2.3.13.

PROOF:
If f(x) is factored in R according to Th.5.2.8.12, then
F@) = an(@—b1) - (x—b)(x—en)® + dY) - ((x — ¢o)* + d2) 63
where ¢;,d; e R. Hence, if real values are substituted in x in (1), the quadratic forms in () must
be positive and anla—by)+ -+ (a—by), @)
an(b —by)---(b— b)) 3)

have the same sign as f(a) and f(b) respectively. If b; is between a and b, then it follows from
Th. 5.2.3.5 that a — b; and b — b; are of different signs; otherwise, they are of the same sign. Hence
(1) and (2) are of the same sign if the number of b; between a and b are even; if not, they are of
different signs, yielding the theorem.
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26. The equation f(x) = #* — 92 — k(z2—1) = 0 has three real roots for any value of k.
PROOF:

Since f(—=) >0, f(—-1) = 8>0, f(1) = —8<0, f(+=) >0, it follows from Th.5.2.3.5 that
f(x) must have three real roots in the three intervals: (=»,—1), (—1,1), (1,+=), which completes
the proof.

27. The following polynomial with real coefficients,
(@) = 2" + @n-32"3 + @uogax™t + ... + o

where a.-3 > 0, has at least two complex roots.

PROOF:
Let the n roots of f(x) be 7,7, ..., 7s then, by Th. 5.2.3.3,

§n:rl+r2+~--+rn=0 )

igj T = rre s b e i Frers + oo e e o pare = 0 2)
Combine (7) and (2) through (1) — 2+(2), viz.,

(lzri)z—2(i§jrm-) = ‘27‘? = ritr+ o+ = 0 3)

Since a.-3 % 0 by hypothesis, which implies that r,7s, ...,7. are not identically zero, it follows

that if all roots are real, then E r; > 0, at once contradicting (3). Hence it cannot be the case that

all roots are real; at least one of r;, then, must be a complex root. But, then, since f(x) is a polynomial
with real coefficients, it follows from Th.5.2.3.11 that it must contain the conjugate of the first
complex root, which makes two complex roots for f(x), completing the proof.

28. If w is the nth imaginary root of unity, then 14w + w2+ .- + w1 = Q.
PROOF:
Since, by hypothesis, w is an imaginary root of
fl) = 2" —1 = (@—D(" ! + 22 4+ -+ + g + 1) = 0
it follows that
fw) = (w—Dw '+ w2+ - +w+1) = 0
which implies 1+w4+w?+ -+ +w*"! = 0, since w1, i.e. w—1 % 0, by hypothesis.

29. Given a complex root ¢ of z7—1 = 0, find an equation whose roots are ¢+ c® ¢+ ¢, ‘
¢+ ¢5, !
Solution:

Since ¢ is a root of 2" —1 = 0, viz.,
(=@ + o+t + 2+ a2+ ax+1) = 0
it must be the case that
¢ =1 and cf+eft+ctt++ettet+1 =0, o e#1)
which implies
(e+c¢®) + (E+e) + (+¢) = f+eftet+eltc?te = -1,
e+ +eh) + (P + et +¢%) + (e + e + ¢)
= (¢+e+c+e® + (F+c®+ et +¢%) + (4 c®+ c® + ct)
(¢*+ef+et+c¢%) + (F+c+e+e?) + (E+et+ect+e
2+t ettt ctte) = -2

l
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30.

31.

(et e+ e+ = ¢+ (et 1N+ 1)
= P+ttt tet+elf+et1)
= e+ttt tetet+l) = ¢ = 1
Hence the desired equation is, by Th. 5.2.3.4,
2+ x?— 2 —1 = 0

Solve the following binomial equation: a"—:¢ = 0.

Solution:
Since i = cis (#/2) by polar representation, let x = cis9; then the given equation is changed to

(cis ) = cis (7/2)
i.e. cis(ng) = cis(#/2), which implies, by Df.5.1.3.1a,
cos (mg) = cos (=/2) and sin (ng) = sin (#/2)
which imply 6 = (2kz + (#/2))/n. Hence the desired solution is
x = cis ((2kx/n) + (=/2n)), k=01,...,n—1

Solve zt+at4+a2+2x+1 = 0.

Solution:
Divide the given equation by z?, and
(x+1/x) + (x+1/2) +1 = 0 (1)
Substitute x4+ (1/¢) = ¥ in (I), and
@¥—-2)+y+1 = 0, ie. y¥+y—1 =0 (2)
Solve (2) for y, and y = (—1=* \/g)/Z, which implies
s+ 1/ = (~1+V5)/2, ie 222+ (1—VBx+2 =0 )
and @+ 1/z = (~1—V5)/2, e 2u*+(—1—VBz+2 =0 (4)

Solve (3) and (4) for x, and the desired roots are found to be

((—1+\/5)rm/10+2\/§)/4, ((1+\/E)tm/10+2\/5)/4

Second Solution. Multiply the given equation by x —1, and

»¥»—1 =0 1)
which implies that the desired roots are to be found among the roots of (1) excluding 1, which are
cis (2#/5), cis (2#/5), cis(47/5), cis (4%/5) (2)
Let ¢ = 27/5; then
sin20 = sin(2r—3¢) = —sin3¢
2sing#cosd = —sing cos20 — cosé sin 26
2co86 = —cos26 — 2cos’d
2cos9 = —2co0s?4 + 1 — 2 cos2¢
coss = (—1+V5)/4 (".” 6 lies in the first quadrant.) (3)
sing = V1 —cos’s = \110—1-2\/5/1 4
cos2 = 2coste —1 = —(1+V5)/4 (%)

sin2 = V1 —cosfs = \/10—2\/5_4 (6)
From (3)-(6) it follows readily that (2) yields the same roots as those in the first solution.

Note. As has already been manifest at the start, the given equation remains unaltered when «
is changed into its reciprocal. Such an equation is called a reciprocal equation (cf. Supplementary
Problems 5.25-26), which is usually divided into two classes according to the coefficients of f(x) = X aua®,
k=0,1,...,n; viz.,
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(i) Qn = Qo, On-1 = A1, ..., Q1 = An-1, Ao = Axn
(1) an=—do, Gn-1=—a1, ..., 1 = —an_1, G = —an

The above problem belongs to the first type while the problem below belongs to the second.

32. Solve 2% — 11x5 + 172* — 1722 + 11z — 2 = 0.

Solution:

By Th.5.2.3.7 and inspection, two roots =1 are immediately found to be valid for the given
equation. Hence divide the equation by a2 — 1, and

22 — 112® + 192> — 11z + 2 = 0 (1)
Divide () by «*% then substitute y = x+ (1/x), and
2—2) - 11y +19 = o, ie. 20— 11y +15 = 0 2)
Solve (2) for y and obtain y = 3,5/2, which implies
22—8c+1 = 0 and 22" — bz +2 = 0

which yield « = (3+1/5)/2, 2, 1/2.
Hence the desired roots are: 1, —1, 2, 1/2, (3 +Vb)/2, 8 —V5y/2.

33. Transform an equation

f@) = @ux™ + tpoyz® 4 -0 4 g = 0 (1)
into another without the term of degree n—1.
Solution:
Substitute « = y+ b in (1), and
f@ = aly+d)" + au s+ + o + ap
= @y + (@b +an- )yt + (R - 1)/2Daab? + (n— Dan-1b + an-2)y*2
+ (((n — 1)(n — 2)/31)anb® + @n-1 b® + Nan-s b + Wn—sg)y™ 3
tor o ad” + e b+ s g
Hence a substitution b = —a._i/na. transforms (Z) into
f(x) = bn?/" + bn—z y"_z + . 4 bo = 0’
where bn = Qa,
[ —(n—l)af.—;/2nan + An-2,
bo = @u(— @G-t/ A+ o i(—@aoi/Ma) T 4+ e g

34. Prove Th.5.2.3.18.

PROOF:
Change the given equation

@ 2® + a2 4+ aw + a0 = 0 (1)
to be monic, by substituting a = az/as, b = ai/as, ¢ = ao/as; then
Ptax+br+ec =0 (2)

which is then transformed, substituting « = Z—(a/3) (cf. Prob. 33), into
B +pt+qg = 0 (€3]
where p = —a*/8+b and q = 2¢%/27— ab/3 +c.
Now let & = y+ 2 in (8); then
¥+ 2+ Byzy+2) + ply+z) +q = 0
ie. ¥+ 22+ g4+ Buzt+pp+z) = 0 4)

The necessary and sufficient condition that # satisfies (3) is, then, that y and 2 satisfy (4), or what
is the same, that y and 2 satisfy

3yz = —p 5)
and v+ 2 = —q (6)
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35.

36.

Since (5) implies y*2® = —p%/27, it follows from this and Th.5.2.3.4 that the equation
2?4+ qt — p¥27T = 0 ()
has two roots ¥* and 2°. Hence, from (7),
¥ = —q/2 +Vr and 2 = —q/2 — 7 (€3]
where r = ¢*/4 + p?/27. Substitute (§) in « = y+2, and

£ = :/_q/2+\/;+i/jq/2—\/; = u+w (9)

Since the cubic roots of a real number are generally of three different values, the combination of
(8) represents actually nine different values, of which, however, only the following three values
satisfy (5):

2 = u+ o, T = uw + vw?, £z = uw? 4+ vw
where w*=1 (ie. w = (—1+ i\/§)/2, w? = (—1 —1V/3)/2). Hence &1, #, % are the roots of (3), which
yield, by reversing the initial substitution = & — (e¢/3), the desired roots of (1), viz.,

21 = & — (a/3), %2 = &2 — (a/8), 23 = & — (a/3)

Solve 3+ 6x2—3x—148 = 0 (1)
Solution:
Transform the given equation, by a substitution of x = y —2 (cf. Prob. 33), to

y? — 15y — 126 = 0 2)
Then, by Th.5.2.3.18, p=—15 and q =126, which imply
t* — 126t + 125 = 0

the solutions of which are 1 and 125. Hence u=1 and v=5 ("." uv = —p/3 = 5), which in turn imply

Y1 = ut+v = 86, ys = ww +ow® = —38 — 234, ys = uw® +ow = —3+ 2V3i
from which it follows, going back to the initial substitution of x = y — 2, that the desired roots of
(1) are

x = 4, x = —5 — 2V374, s = —5+ 234

Prove Th.5.2.3.19.
PROOF:
The given equation is changed first to

2+ ae®+ b+ e +d = 0 (1)
by substituting a = as/as, b = as/a4, ¢ = as/as, d = as/as, which is further transformed into
v+ oy teytr = 0 (2)
by substituting # = y —a/4 in (1) (cf. Prob. 33). (3
Let ¥y = u+ v+ w; then
2 = () = (u?+ v+ w4+ 2w + vw + wu))?

= (@’ + 0P+ w) + 4 + 0+ wuv + vw + wu) + 4w + v + wiid) + Suvwlu + v + w)

= 2w+ o'+ wha? + Buvwr + 4w+ viwd 4+ wid) — (u? + v + w?)? 4)

since 2(u*+ v*+ whax? = 2(u’ + v+ wH? + 4(u® + v* + w(uv + vw + wu).

Since, also from (2), . .
= —px® — qx —7r 5)

it follows from (4) and (5) that u, v, w can be found to satisfy

2+ v+ w?) = —p, Buvw = —q, 44U+ v+ wd) — (W + v: 4w = —r (6)
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which imply

WVt w = —p/2, w4 w4 wid = p¥16 — r/4, uwviw?® = ¢*/64 (7)
which in turn imply, by Th. 5.2.3.4, that the equation
£+ (p/2)8 + ((p¥/16) — (r/4))t — ¢*/64 = 0 (8)
has three roots 7. = u2, r. = 2, ry = w?,  ie.,
w = =V, v = £\/1, w = =Vr; (9
Hence the roots of (2) are those which satisfy (9) and wvw = —¢/8, viz.,
Y1 = Vri+vVr:+vVr Y3 = —Vri+Vri—r;
¥: = Vri—Vr:— Vrs Y+ = —Vri—Vn+ Vg (10)

Hence the desired roots of (1) are obtained by (3) and (10), viz. #1 = y(— a/4, ete.
Note. The method described above ig by Euler while the following method is by Ferrari.

Rewrite (1) as

#* + ax® = —bax® — cx — d 2"
which is then changed, by adding a?x?/4 to both sides of (2", to
(#*+ ax/2)2 = (a*/4—b)® — cx — d (3)

If the right-hand side of (3') can be made a perfect square, the desired solution is already at hand.
If not, add y(x* -+ ax/2) + y*/4 to both sides of (3’) such that

(" +ax/2+y/2)* = (y+a*4—b)x* + (ay/2— c)x + (y*/4—d) 4"
where the right-hand side will be the square of a linear polynomial ex + f iff
(ay/2 —c)* — d(y+a/4—b)y*/d—d) = 0
ie. ¥ — by* + (ac—4d)y + 4bd — a?d — ¢* = 0 (5"

which is called the resolvent of (3').

If (5") is solved for y in order to make the right-hand side of (4') equal to (ex + f)* for properly
chosen ¢ and £, (3’) is then changed to

(2* + ax/2 + y/2)* = (ex + f)?
which yields two quadratic equations
©*+ax/2 +y/2 = ex + f and ®*+ ax/2 + y/2 = —ex — f
which finally yield the desired four roots.

Solve xt + 823 + 222% + 822 + 21 = 0 (1)
Solution:
A substitution: x = y — 2 transforms (1) to
v -2 + 8 —3 = 0 (2)
which, since p=—2, ¢ =8, »=—38 in this context, yields
£ — 42+ 16t — 64 = 0 @

according to the step (8) of Prob. 36. By inspection (through Th.5.2.3.7), the equation (3) yields the
first root 4 (a factor of —64), then the others, 47 and —4i, which imply, in accordance with

VvtV = —q = -8
that V=2, Ve = V21 +i), Vs = —vV2(1—9).
Hence the four roots of (2) are:

= @+2V2/2 = 1+ /2 ys = (—2+2V2)/2 = -1 +2
2= 2-2V29)/2 = 1 - /2 ¥ = (—2—2V2)/2 = —1 -2

Il
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which yield, by the initial substitution:

# = —1+4/2, a2 = —-1—4/2, x5 =-83+V2 x.=-3—V2

which are the desired roots of (7). (The method adopted here is by Euler.)

Second Solution. Rewrite (1) as

(x> +4x+y)? = (2y+16—22)2* + 8y —32)x + (y*—21)
ie. (> +4e+y)? = 2y—8x + 8y—4x + (y*—21) 2"
where the right-hand side will be a perfect square iff
8y—4) — (-3 —-21) = 0
ie. y* — 11y* + 43y — 656 = 0O

where, by inspection (and Th. 5.2.3.7), a root 5 is immediately found and the probiem is reduced to solve

(x*+4x +5)> = 4dx* + 8x + 4
ie. (@ +4x +5) = 4(x+1)?
ie. 2+ 4 +5 = F2x+1) 8)
Solving «x*-+4x+5 = 2(x+1) and 2*+4x+5 = —2(x+ 1), the desired roots are found to be

—1=x i\/§ and —3 +V2 respectively, which are indeed exactly the same as the first result. (This sec-
ond method is by Ferrari.)

Find the necessary and sufficient condition that the second term and the fourth term
of the equation
et +pxr?+ g trx+s = 0 1)
vanish under one and the same transformation.
Solution:
Substitute * = y—a in (), and
y—a)+ ply—a) + qy—a)® + ry—a) +s = 0 )
If the coeflicients of %® and y in (2) are to vanish, then it must be the case that
—da+p = 0, ie. a=p/4 63
—4a® + 3pa* — 2qa + r = 0 4)
Substituting (8) in (4),
—4(p/4)® + 3p(p/4)? ~ 2q(p/a) + r = 0
i.e. p* — 4pg + 8 = 0 (5)

Conversely, if (5) holds, then the transformation y = x + (p/4) does eliminate the coefficients of
2® and x. Hence (5) is the desired condition.

If a,b,c are the three roots of
¥+ px2+qr+1r = 0 )]
and if s, = @™+ b"+ ¢*, then
Sn + PSn—1 + GSn-2 + rSp—3 = 0 (2)

where n =3,
PROOF:
Multiply (Z) by 2% (n=3), and

x"* + pxn—l + qxn—z _+_ ,’.xn—s — 0

which are satisfied by a, b, ¢, of course. That is,
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a* + pa~~!' 4+ ga*"? + ra*t = ¢ 3)
b + pb ! o+ gb"72 4y = 4)
e + pe*t + gert? 4 perd = g )

Add (3): (4)) (5)1 and) by hypothesis,
(an+ b + cn) -+ p(an—l -+ bn—l + cn—l) + q(an—2 + br—2 + cn—Z) + r(an—:«! + bn-s + cn--S)
= s" + psn—l + qsn—-z + ,rsn—s — 0

which completes the proof.

40.If a+b+c =0, then (a7+b7+c)/T = ((a®+ b2+ ¢2)/2)((a° + b + ¢¥)/5).
PROOF:

The equation whose three roots are a,b,¢, as defined by hypothesis, must be of the form, by
Th. 5.2.3.4,

2+ pr+r = 0 1)

which implies, again by Th. 5.2.3.4,
ab + be + ca = p (2)
abc = —q ®

which in turn imply, together with a+ b + ¢ = 0,
@+ b+ ¢ = (@tb+e) — 2ab+bcteca) = —2p 4)

Let, as in Prob. 39, s. = a™+ b"+¢"; then, by (4) and hypothesis,
81 = 0, 8 — _21) (5)
Furthermore, by () (and as in Prob. 39),

Sn+3 = —PSn+1 — (Su, n=0,1,... (6)
where sy = 3, which implies
88 = —psi — qse = —3q 7
and, by (5),
8¢ = —ps: — gs = 2p? (8)
Hence 85 = —pss — ¢s: = 3pq + 2pqg = bpq
and §7 = —PSs — gs« = —bp'q — 2p¢ = —Tp¥q

which in turn imply, together with (5),
s/T = (—=p)(pq) = (8:/2)(s5/5)
Le. (a"+b"+ /T = ((@®+ b2+ ¢®)/2)((a° + b° -+ ¢%)/5), which completes the proof.




Chapter 5.3

*Algebraic Fields
*§5.3.1 Algebraic Extensions

Df.5.3.1.1 An element of a field F is algebraic over a field F’, where F'CF, if it is a root
of a nonzero polynomial with coefficients in F".
Example:

1/2, a root of 2x — 1, is algebraic over the field B of rational numbers; so is \/E, since it is a
root of x*—2 (cf. §2.1.1, Prob. 13).

Df.53.1.2 An element of a field F is transcendental over a field F’, where F'CF, if it is
not algebraic over F.
Example:
7 is transcendental over the field C of complex numbers, since it can be proved, as was done by
Lindemann, that it is not to be found as a root of polynomials with coefficients over C; so is e, as
was proved earlier by Hermite. So, again, is any number of the form a®, where a is neither 0 nor 1
and b is any irrational algebraic number, as was proved by Gelfond.

This dichotomy of the algebraic and the transcendental yields the following
theorem and definition which articulate Df.5.3.1.1.

Th.5.3.1.3 Any element algebraic over a field F is the root r of one and only one monic
polynomial p(x) of degree m, n=1, which is irreducible in the integral domain F[x]
of all polynomials over F. (Cf.Prob.1.)

Df.5.3.14 The unique monic polynomial p(x) of Th.5.8.1.8 is called the minimal poly-
nomial of r over F, while r is said to be of degree n over F, sometimes denoted by
n = |r:F]. (Cf.Prob. 15,17.)
Example:

#? —2 is the minimal polynomial of V/2 over R while a®— 2x, x*—4, x°— 2% etc., are not,
although V2 is one of their roots; V2 is thus of degree 2 over RB. (Cf. Prob. 3.)

Df.5.3.1.5 A field, say F, is said to be an extenston of a field F if F is a subfield of E.

Example:

The field C of complex numbers is an extension of the field R of real numbers, which in turn
is an extension of the field R of rational numbers, since RcC and RCR.

Furthermore, by Th. 4.1.2.4.2b, every field is an extension of one of the minimal
fields, viz. R and I,, since each field of characteristic zero may be said to contain R
(cf. Th.4.2.1.4 and Th.5.1.1.2) just as each field of characteristic p may be said to
contain the field I, (cf. Th.4.2.1.4).

Df.5.3.1.6 Given an extension E of a field F and a complex S of F, the intersection of
all subfields of E containing both F' and S, denoted by F[S] (or F(S)), is said to be
generated by the (field) adjunction of S, since it is obtained by adjoining S to F
(cf. Df.4.1.2.5.2, and Prob. 4-6 below).

301
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Since F(S), by definition, is the smallest field containing both F and S, it must
be contained in every field which contains both F and S; hence, evidently,

FCF[S|ICE
Example:

The complex number field C is obtained from the real number field R by adjoining a set S of
one element, viz. an imaginary number i=V—1, and as has already been proved (cf. Th.5.1.3.2),
C = R(S).

In general, as is obvious from the context, F'[S] is also an extension of a field.

Df.53.1.7 If an element a of the set S of Df.5.8.1.6 is algebraic over a field F, then

Fla] is said to be a simple algebraic extension of F.

Since a simple extension E of a subfield F is thus generated over F' by a single
element of E (cf. Th.5.1.1.2), E can be said to be algebraic or transcendental over F
according as the generating element of E is algebraic or transcendental over F.

Stated otherwise: E is algebraic (or transcendental) over its subfield F' if every
element in E is algebraic (or transcendental) over F.

Df.5.3.1.8 If an element b of the set S of Df.5.3.1.6 is algebraic over F[a] of Df.5.3.1.7,

then Fla, b] is said to be a multiple algebraic extension over F, although it is still a
simple algebraic extension of Fla].

In general, Flai, as, ...,a: is a multiple algebraic extension of F if each of the
fields Fla, Flayal, ..., Flayas, ..., o]

is a simple algebraic extension of the preceding field, the first of which is F itself.
Hence:

Th.53.1.9 If F.=Flai), F:=Fifas), ..., Fn = Frno1las], where aias ...,a.e8 (cf.

Df.5.3.1.6), then F, = Flay, az .. .,a,). (Cf. Supplementary Problems 5.39-40.)
Example:

R(\/@, \/5), where R is the set of rational numbers, can be constructed by two steps, prescribed

by the theorem above, and the elements of this extension will be of the form a + bV/3 + 0\/3 + dv15,
where a,b,c,d e B (cf. Prob. 5-6).

Df.53.1.10  An extension E of a field F is said to be of finite degree n over F (cf. Prob. 15)

if there exist n elements of E: a1, ay, .. .,an, called a basis for E over F, such that
every element of E is expressible in the form Seker, k=1,2,...,m, where c.eF.
Example:

C, the complex number field, is of degree 2 over the field B of real numbers with 1 and 7 as a
basis (cf. Df.5.3.1.1a and also Df.5.3.1.11 below).

Df.5.3.1.11 The elements aj,as, ...,a, of an extension E of a field F are said to be

linearly dependent over F if there exist b1, bs, ..., bs, not all zero, nor all distinct,
in F' such that
! ¢ zbkak = O, lc:1,2,...,n

k

Otherwise, they are said to be linearly independent over F' (cf. Df. 4.1.3.2.4).
Example:
2 and V3 are linearly dependent over R, since 2(—\/§) +(2)\/§ =0 or 2(\/§)+(—-2)\/§ = 0,

where i2,t\/§e R, but they are linearly independent over R since 2b,+V38bs = 0 implies
b = b. = 0 over R (cf. Prob. 13).




Sec. 5.3.1] ALGEBRAIC FIELDS — ALGEBRAIC EXTENSIONS 303

Th.5.3.1.12 If each of w, r=1.2,...,n+1, is of the form D, a.z, s=1,2,...,n, where
arseF' and z;¢C, F and C being an arbitrary field and the complex number field
respectively, then the set of w, is linearly dependent over F. (Cf.Prob.9.)

This theorem and Df.5.3.1.10 immediately establish the following theorems.

Th.5.3.1.13 If an extension E of a field F' is of finite degree over F, then the degree is
unique. (Cf. Prob. 10.)

Th.5.3.1.14 If a subset A of an extension E of a field F' is linearly dependent on a sub-
set B of n elements of F, then A is linearly dependent on at most n elements of A
itself. (Cf. Prob. 11.)

Th.5.3.1.15 If ceC is of degree n over a field F, then F[c¢] in the context of Df.5.3.1.6
is of degree n over F with 1,¢,¢? ...,¢"! as a basis. (Cf. Prob.19.)
Example:

R[\5/§] is of degree 5 over the field R of rational numbers, and accordingly consists of all the
numbers of the form a + b\s/g + c(\s/g)2 + d({/g)3 + e({/g)‘, where a,b,e,d,ec R. (Cf. Prob. 23.)

The last theorem is further generalized as follows:

Th.5.3.216 If ci,¢s, ..., cn are of degrees ni, Ny, ..., nm respectively over a field ¥, then
Fley ez ...,cm] i8 of degree r over F, where 7 = wnnz - %m, and a basis for
Fley ez, ...,cn] over F is contained among the mims---n, numbers: ckicke. . chn,
where k;, j=1,2,...,m, are nonnegative integers less than ni1—1, na—1, ..., im—1

respectively. (Cf. Prob. 24.)

These theorems allow a reinterpretation and generalization of Df.5.2.3.14-15 as
follows:

A field F1 may be extended by successive adjunctions of a root of each of a set
of binomial equations
™M= a1, X" =02, ..., I = dr

where a; ¢ Fi,
az & Fo=Fy[yai),
as & Fy=FoV@) = Fi[Va, Va),

a e Fr=Fi[Va, Vs, ..., Vi)

The elements of F. are then expressible 3n terms of radicals relative to F'y, since
they are equivalent to rational functions of \’/El,\’/t_z;, Ceey 7{7&7 with coefficients in F.

The problem of solving equations by radicals (and rational operations) is thus
reduced to the case of solving equations in a field by radicals relative to the field,
expressing the roots of the equations in terms of radicals relative to the field at
issue, as has already been done with respect to quadratic, cubic, and quartic equa-
tions {(cf. Th.5.2.3.17-19).



304

PART 5 — ALGEBRA OF FIELDS [CHAP. 5.3

Solved Problems

Prove Th.5.3.1.3.

PROOF:

By hypothesis and Th.5.3.1.1, an element, say r, algebraic over F' is a root of at least one
polynomial f(x) with some (or all) nonzero coefficients over F. If f(x) is reducible, then, by Th.5.2.1.9,
it must be of the form

fl@) = a(Ei(@)™ (P2(x))" -+ (D (x))"m 1
where a is the leading coefficient of f(zx) and pr(x)™, k=12,...,m, are monic prime polynomials
over F. Since f(r) =0, there must exist at least one factor p; in (I) such that p;(r) = 0, which in
this context may be represented by the unique monic polynomial p(x) of degree n, where p(r)=0.

Suppose that r is a root of any polynomial f(x) with deg f(x) < n. Then, since f(x) is of
degree less than that of the irreducible polynomial p(x), it follows that (f(®), p(®)) =1, which in
turn implies, by Th.5.2.1.7,

a(@) flx) + b(x)p(z) = 1 (2)
where a(x), b(x) ¢ Fl«z]. Since x =7 implies f(x) = p(x) = 0, it follows from (2) that 0 =1, which
is absurd, of course. Hence r is not a root of any polynomial f(x) of degree less than x: i.e. firy=0
is the case only if the degree of f(x) is at least n which is the degree of p(x).

Furthermore, p(x) is unique, since the existence of another p(x), say p'(x), implies that p(x) — p'(x)
must be a polynomial over ¥ with » as root and deg p’(x) < m, a contradiction. This completes the
proof.

If any element algebraic over F is the root of an irreducible monic polynomial in Flx],

then it is a root of another polynomial in Flz] iff the latter is a multiple of the former.
PROOF:

Let p(x) be the same monic polynomial obtained by Th.5.8.1.3 and g(x) be the second polynomial

in Flz] with g(a) =0, where a is, as » in Prob. 1, algebraic over F. Then, dividing g(x) by p(x),

9(®) = q@)p(x) + r), degr(z) = n—1 16))

But, since g(a) = p(a) = 0, by hypothesis, it follows that (@) =0 and that r(x) is thus identically
zero. Hence
g(@) = q(=) p(x) (2)

Conversely, every such polynomial as g(x) which has turned out to be a multiple of p{x) must
have a as a root, as is obvious in (2).

Note. This proves again the uniqueness of p(x) in Prob. 1, since all proper multiples of p(x)
are necessarily reducible in (2).

. 3 .

Determine the degree of » = (1+V/3)/2 over the field R of rational numbers, then find
its minimal polynomial over E.

Solution:

3
By hypothesis, 2r—1 = \/5 Then
2r—1)®-3 =0 and 8 — 1292+ 6r —4 = 0

Hence r is evidently a root of a polynomial a(x) = 47— 672+ 3r — 2 which is of degree 3 over R.

Furthermore, if a(x) is to be reducible over R, it must have a linear factor with rational
coefficient, i.e. a rational root (ef. Th. 5.2.1.4). The only possible rational roots of a{x) are limited,
however, by Th. 5.2.3.8; viz. *2,*1,*1/2, +1/4. Since none of these is a root of a(x), as can be
readily verified, a(x) is thus irreducible over E. Hence the minimal polynomial of s over R is
p(x) = (a(x))/4.
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4.

If every element in a set S; or a set S; is in a set Ss;, and if every element in S; is in
Sy or S; or both and F;=F[Si] in the context of Df.5.3.1.6, then F,[S:] = F[Ss].
PROOF:

Since F[Ss] contains F and Si, by Df.5.3.1.6, it contains F and Si, by hypothesis. Hence F[Ss}
must contain F'i, and since it now contains F; and S., it must contain also F\[S:].

Conversely, F[S;] contains F, S: and S, since it contains Fy and S.. It must thus contain F
and Si, by hypothesis, and hence F[S;].

Hence Fx[Sz] = F[Ss].

Note. Df.53.1.9 is in fact a result from this theorem, deduced by induction on =, as can be
readily verified (viz. first by adjoining ai,as,...,an-1 to F, then adjoining a. to the result).

Given the field R of rational numbers, determine R[/3,1/5].
Solution:

In the context of Prob. 4 above, R[V3] =R, contains R and V3, thus all the elements of the
form a-+ by/3, where a,be R, which do constitute a field.

Likewise, Rl[\/g] =R, contains R, and \/5, forming a minimal field that contains R, and \/3,
and the elements of R. are evidently of the form ¢+ dy5, where ¢, de R..

Hence R. = R[V3,V/5] consists of all the elements of the form
(@14 5:V/3) + (@2 +b:V/3)V5 = a + bV3 + ¢V + dVib

where a1,a:,b1,b2,a,b,¢,d ¢ R.

Determine the algebraic extensions which contain the roots of quadratic and cubic

equations.

Solution:

(i) Given x2*+ax+b = 0, the field of coefficients is K = R[a,b], where R is the rational number
field, and its extension K. = K(Va®>—4b) contains the roots of the quadratic equation (cf.
Th. 5.2.3.17).

(ii) Given x*+ aax*+bx+¢ = 0, the field of coefficients is likewise K = R(a,b,¢). Since y =
%+ (a/3) transforms the given equation into #3+py+q = 0 (cf. Th.5.2.3.18), where p,gc K,

it follows from the same theorem that the roots of the cubic equation are contained in a field
extension L, obtained by iterated adjunctions:

L = K[Vr,u,v,w]

where r = (¢/2)%+ (p/3)}, u = \3/(—q/2)+ Vr, v = x/3 (—@/2) ~ V7, w=v—1.

If an element « of an extension E of a field F is linearly dependent on By, 8, ..., 8x
of E, but not on B85 ...,8s, then B; is linearly dependent on «,Bs, ..., Bn
PROOF:

By hypothesis and Df.5.3.1.11, there must exist bxe F, k=12,...,n, such that

¢ = bifs + b+ oc + bafn (1)
where b:70, since b, =0 implies that a is linearly dependent on B2, B8 ..., Bx, contrary to the
hypothesis. Multiply, then, both sides of (1) by b; ", and

bi'e = bi'biBi+ b7'baBa + +r+ + bI1bafa
ie. Br = bil'a 4 (—by'b)Bs + -+ + (~bi ba)fa

which verifies that §: is linearly dependent on a,f, ..., 8, completing the proof.
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If an element « of an extension E of a field F is linearly dependent on 81,82 ...,Bm
of E, and if each g8;, j=1,2,...,m, is linearly dependent on yi,ys, .. .yyn of E, then a
is linearly dependent on yi,ys, ..., yn.

PROOF':

By hypothesis and Df.5.3.1.11, there must exist bjeF, j=12,...,m, and bucF, k= 12,...m,
such that

@) «= Zbp  and @) B = 3 ban
Then, substituting (2) in (1),
a = 3 b5<2 bik7k> = E<_2bjbjk>Yk = EckYk
i=1 k=1 k=1 i=1 k=1
where ¢« = 3 b;bix and evidently cce F. Hence the proof is complete.
j=1

Note. The linear dependency of the elements of a field extension thus satisfies transitivity. As
a matter of fact, the concept is an equivalence relation, since two sets of ai, az, .. .,oam  and
B1,Bs, ..., B~ are actually said to be equivalent if every ai, i= 1,2,...,m, is linearly dependent on
the B’s and, conversely, every 8;, j =1,2,...,n, is linearly dependent on the o’s (cf. Prob. 11-12 below).

Prove Th.5.3.1.12.

PROOF:
If n=1, then w;=auz and w:=auz;, which imply either auw:—auw: = 0 for au+=0
or l+w:+0-w: = 0 for an=0. In either case w: and ws are thus proved to be linearly

dependent over F.

Suppose, then, that the theorem holds up to n=%k If n = k+1, then, by the assumption
and hypothesis,

Wr = iz T @2 o Gkt 2k, r=12...,k+2
which yields, by rearrangement,
Wr — @rk+12k+1 = @n21 + @22 + 0 + @z (1)
Apply the induction hypothesis to the left-hand side of (1), and
bi(Wi — k41 2K+1) + ba(we — ao,xe1 Zetr) + o0 brvr (Wkir — Gerner12k+1) = 0

where by, b, ...,be+1 are in F and are not all zero, which immediately implies

biws + baws + o0+ beriwrs:r = C2k+1 (2)

where ¢ = aurr1b1 + @o,k+1bs + - + @ernrsibrer.  If = 0, then the proof is already completed.
If ¢+ 0, then divide (2) by ¢, and

diws + dewze + * + derrWkit = Zess (3)
where d. = bi/e, i=1,2,...,k+1, and obviously die F since bie F. Since the d’s are not all zero,
take one of them, say d,, and let d;=0. Then, since ws, ws, ..., wesz may be treated the same
way as wi, We, ..., Wk+1, it follows that

eW: + esws + 0+ erirWrkir =  2peq 4)
where e;e F', j = 238,...,k+2, and, subtracting (4) from (3),

diwr + (de—es)ws + o + (dissi— err)Wris — Grrzwriz = 0
or what iz the same,
fiwr + faws + o0 A ferswrsr = 0

where fr=e;, fo=di—es, ..., fi+z = ex+2, and not all zero, of course, since f; = e; #= 0. Since

the theorem is thus verified up to n = k+1, the proof is complete by induction.

Prove Th.5.3.1.13.

PROOF:
Let E be of degree » over F' and also simultaneously of degree m <= over F. Then, by this
assumption, £ has two bases, say a1, as ...,an and B, B2 ..., Bn over F, and, by Th.5.3.1.10,

ai = cufi+ caf: + 0+ CimfBm, 1=12,...n




Sec.

11.

12.

13.

5.3.1] ALGEBRAIC FIELDS — ALGEBRAIC EXTENSIONS 307

where c¢;eF, j=12,...,m. Since n = m+1, it follows from Th. 5.3.1.12 that
diay + deaz + ¢ + dmtramer = 0

where dive F, k=1,2,...,m+1, and not all zero. Hence

dlou + dzaz + - + dm+1am+1 + Ocamsz + =-- + 02, = 0
while also
Ocar + O*az + +++ + 0*an = O
This obviously contradicts Df. 5.3.1.10, since the expression of 0 in terms of the basis @y, az, ..., an

is given here in two ways and thus no longer unique. Hence the initial assumption has turned out
to be untenable, which completes the proof.

If a subset 4 of an extension ¥ of a field ¥ is linearly dependent on a subset B of
n elements of F, then A is linearly dependent on at most n elements of A itself.

PROOF':

Let K be the class of subsets of E which consist of at most n elements of E and are also linearly
equivalent (cf. Prob. 8 note above) to B, and C be one of the sets of K which contain the largest
number of elements of A. Then A is linearly dependent on C, since A is linearly dependent on B.

Now let D = AnC. If A is not linearly dependent on D, then there must exist at least one
element a of A which is not linearly dependent on D. But, since a is linearly dependent on C, ¢’ is
not contained in D if ' denotes one of the smallest nonzero subsets of C. Let then all the elements
of C’" be A1, B ...,B» and in particular g1¢D. Then o is linearly dependent on Bi,8:, ..., B,
but it is not, by the definition of C’ itself, linearly dependent on 8, f8s, ..., 8. Hence, by Prob. 7,
B is linearly dependent on «, 8, ..., Bm.

Hence, if C"” denotes a set which contains the elements of C except gi, which is now replaced
by a in C”, then C"" and C are linearly equivalent, and C”’ consists of at most n elements, yet contain
one more element « of A than C, which is evidently a contradiction,

Hence A must be linearly dependent on D, and since DCC and C consists of at most n elements,
the proof is complete.

Note. This theorem necessarily defines that a subset A of an extension E of a field F is
linearly independent over F' if A is not linearly dependent on any of its proper subsets (cf. Prob. 12-13
below).

If A is a finite set, then it is linearly dependent on a linearly independent set B in A.
PROOF:

Let B be one of the minimal subsets of A which are linearly dependent on A. Then, if B is
linearly dependent on its proper subset C, it follows from Prob. 8 above that 4 must be linearly
dependent on C, which is obviously contradictory to the definition of B. Hence B must be linearly
independent.

The necessary and sufficient condition that a finite number of elements a1, as, .. .y an
of an extension E of a field F' are linearly independent over F' is that

a1 + deaz + ¢+ + Quan = 0 )]
where areF, k=12,...n, implies ¢y =as = -+ = a, = 0.
PROOF:
If some ax, say a., is not zero, then
a1 = —ai'@az — ajldazas — + — a7l @ean
Hence, by Df.5.3.1.11 and Prob. 7 above, the set of a1 az,...,an is linearly dependent on its proper

subset of as,as,...,as; it is thus not linearly independent.
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Conversely, if the set of ai, az, ..., as is linearly dependent on its proper subset, say, as, as, ..., an,

here m = n, th
w en a1 = bga: + baas + e 4 bmam

where b;e F and 2= j=m, which immediately implies
1'a1+(“b2)a2+ +(‘-bm)am+0'am+1+ ot + 0can = 0
Hence (Z) holds even for a.¢ F, not all zero.

Hence a1, as, . .., ax are linearly independent iff a1 =a; = --+ = @, = 0.

If A and B are two finite sets, each of which is linearly independent, and if A and B
are linearly equivalent, then they have the same number of elements.
PROOF:

Let A and B consist of m and » elements respectively, and assume m >n. Then 4 is linearly
dependent on B, which implies, by Prob. 11 above, that A is also linearly dependent on a subset A’
of A consisting of at most n elements. But, since m>n, A’ must be a proper subset of A, which
contradicts the hypothesis that 4 is linearly independent.

A similar contradiction results from m < n.

Hence it must be the case that m ==, i.e. A and B have the same number of elements.

If £ is a finite extension of a field F, then every element of E is uniquely expressible
in terms of a basis over F.

PROOF:

By Prob. 12, E is linearly dependent on a set of @i, az ..., as, Which is linearly independent
over F' and may be considered a basis of E over F. Then, by Th. 5.3.1.10, every element, say «, of F
is expressible in terms of ai,as, .. .yan, Viz.,

a = aiar + dzer + o0+ guan @)
where axe F', k=1,2,...n.

Now suppose that the expression (Z) is not unique such that

e = bion + braz + o+ + buam (2)
where beeF, k=12,...,n, and in general .+ bs. Then, by (Z) and (2), it follows that
(@1~ bi)ar + (@2 —ba)az + -+ + (@n—bian = 0

where (ax—bx) e F, k=1,2,...n. But, then, it must follow from Prob. 13 that
U/l:bl, azzbz, ceay an:bn

and in general, ax = by, contradicting itself. Hence the expression (1) must be unique.

Note. Since it follows from Prob. 14-15 that any two bases of a finite extension E of a field F
must be linearly equivalent, n = [E:F] is unique, defining E to be uniquely an extension, of
degree n, of F.

If E is an extension, of degree n, of a field F, then the maximal number of the elements
of E which are linearly independent over F is exactly n.
PROOF:

Let ai,az ...,ax be a basis of E over F and B, B2, ..., Bn be an arbitrary subset of E which
is linearly independent over F. Then the latter set must be linearly dependent on the former set,
and it follows from Prob. 11 that m =n.
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On the other hand, by hypothesis, there already exists a basis of n elements which are linearly
independent over F, viz. a1, ez ...,an. Hence it must be the case that # is the maximal number of
linearly independent elements of E over F.

Note. Stated otherwise: E of F, of degree =, implies that no n + 1 elements of E can ever be
linearly dependent over F.

If E” is a finite extension of a field F and F is a finite extension of E’ such that
F CE' CE, then E is a finite extension of F and [E:F] = [E:E'|[E":F).
PROOF:

Let ai, ez ...,am be a basis of E' over F and B, f., ...,Bn a basis of E over E’; then the
proof is complete if mn elements

ai B, =i{=m and 1=j5=9
are proved to be a basis of E over F.
Since, by hypothesis, any element y of E may be represented by
y = §a,~ﬂ,», i=12,...1n ()
where a;e E’ such that

a; = 2 bijas, 1=1,2,.. .,m (2)

where b e F, it follows from (1) and (2) that
v = Z(2bsa)s = Sbyap; @)
i 13

which implies that & is linearly dependent on the entire set of «:8; over F.
Furthermore, since X bi;*a:iB8; = 0 in the context of (3) implies 2(2 bijﬂi)ﬂj = 0, it follows
i3 i i

that, since b;; is linearly independent over E’,
;bﬁaizo, 1=j=n
and that, since a: is linearly independent over F,
b; = 0, 1=i=m and 1=j=n

which implies that the mn elements of a:;b; are linearly independent over F and, by Df.5.3.1.10,
constitute a basis of E over F, where obviously,

mn = [E:F] = [E:EVE:F] = men
completing the proof.

Note. The converse of the theorem evidently holds, viz.. if E is a finite extension of F, and
if £’ is a subfield of E such that FCE'CE, then E’ is a finite extension of F; so is K of F.

Any finite extension of a field is an algebraic extension of the field.
PROOF:

Let E be a finite extension, of degree n, of a field F and « be any element of E; then it follows
from Prob. 16 that the n+ 1 elements of E,

L R |
are not linearly independent over F. Hence there must exist axeF, k=0,1,...m, not all zero,
such that
@Gwa” + @1+ v+ @i @0 = 0 03}
Since @, @1, ...,a, are not all zero, there must exist at least one nonzero element among
a1, s, ..., as; for, otherwise, ao must be zero, which makes all of the ax zero, contrary to the initial

hypothesis. Hence « in (I) must be a root of a polynomial, of degree greater than 1, which implies,
by Df.5.3.1.1, that o is algebraic over F, completing the proof.
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19. Prove Th.5.3.1.15.
PROOF:
F[y], by Df. 5.3.1.5-6, contains both F and vy, and consequently contains every element of the form
ot Y7 A+ G2y 2 4 s oy e = Doyt 1
k

where areF, k=0,1,...,n—1. If the set of all elements of the form (1) is denoted by E, then E
is contained in F[y].

It is evident that F contains y, since a;=1 and ax=0 for k+~1 in (1) yield vy itself. Also,
a.=0 for k0 in (1) verifies that every member of F is contained in K.

Now let
a = %akyk and g = gbkyk, Ek=0,1,...,n—1
where ax,bie F, and also let « = f(y) and 8 = g(y), where
@) = Saxa* and g(x) = Ekbkoc", kE=0,1,...,n—1
and h(x) be the minimal pglynomial of y over F. Then, by the Division Algorithm (ef. Th.5.2.1.2),
flx)gx) = h(x)q@) + (@)

where 7(x) = S cca* and ere F.  Substitute x =17y, and

) @ = FMgt) = k) + ) = Sar @

which is obviously of the form (7). Hence af ¢ E.

Since h(x), by hypothesis, is irreducible, constants and ¢ h(x), where ce F, are the only polynomials
with coefficients in F which are factors of h(x). If B = 9(y) # 0, then c¢h(x) cannot be a factor of
g(x) and the only common factor of g(x) and h(x) with coefficients in F' are constants. Thus, g(x)
and h(x) being relatively prime over ¥, it follows from Th.5.2.1.7 that there exist two polynomials
a(x) and b(x) with coefficients in F such that

a(x) g(x) + bx)h(z) = 1 €))
Then « =y implies that a(x) g(x) = 1, so that

/8 = 1/g(y) = a(y)
which in turn implies that
o/B = f(y)aly) 4)
where f(y) a(y) is of the form (1), as has already been proved by (2). Hence a/Be E.
Since evidently also « =8 ¢ E and all rational operations are thus feasible in E, E satisfies F1-11

and is naturally a field. Furthermore, since E contains both ¥ and ¥, as has been shown at the start,
E must contain F[y]. But, by (1), E is also contained in F[y]. Hence E = F[y].

Finally, « = g implies that Xary* = X bey* and that S (ax— by = 0. This is possible,
k k k

however, iff all the (ax — bx) are zero, since v is of degree n over F. Hence, by Df.5.3.1.11, the set of
1,y,...,7"7!, must be linearly independent over F, i.e. a basis of E = F[y] over F, completing the
proof.

20. Given the field R of rational numbers, find the general form of the elements of R[\5/§].

Solution:

\5/§ is a root of x®*— 3, which is irreducible over F, since it must otherwise have a linear factor

with rational coefficients, i.e. a rational factor. Hence VI; is of degree 5 over E and, by Th.5.3.1.15,
5 . 5 5 5

R[\/§] consists of all the numbers of the form: a+ bv/3 + ¢(V3)? 4 d(v/3)° + e(V3)*, where a,bc,decR.

21. If E = Fla,as, ...,a.), where each of a;, i=1,2,.. .»h, is algebraic over a field F,
then E is a finite extension of F.
PROOF:
By Th.5.3.1.15, Fla,] is a finite extension of F. Since Flai, a2] is obtained by adjoining a. to
Flai], where a; is algebraic over F' and now also over Flai], it follows that Fla, as) is a finite exten-
sion of F[a:], and that, by Prob. 17, Flay,0:] is a finite extension of F. Hence, by induction,
Flai,az ...,a.] = E is a finite extension of F, completing the proof.
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22,

23.

If E is an algebraic extension of a field ¥, then any algebraic extension of E is also
an algebraic extension of F.

PROOF:
Let a be an element of an extension of E and

flx) = bax™ + bayax"t 4+ - 4 by

where bie E, k=1,2,...m, be a polynomial in E with a as a root. If F' = F[bo, by, ..., bs], then,
by Prob. 21, F’ is a finite extension of F. Also, since a is algebraic over F’, it follows from
Th.5.3.1.15 that #'[a] is a finite extension of F’ and consequently, from Prob. 17, that F'la] is a
finite extension of F. Hence, by Prob. 18, ¢ is algebraic over F.

It is thus proved that any element of an extension of E is algebraic over F if it is algebraic
over E itself; hence, by Prob. 21, the proof is complete.

Prove Th.5.3.1.16.
PROOF:
Th.5.3.1.15 has already proved the theorem for the case of m =1, viz. where Y=Y

Assume, therefore, the validity of the theorem up to Y Y2 .« sYm—y- Then, since Fly,,v, ..., yp] =
Glym], by Th.5.3.1.9, where G = Fly,7,,.. <»Ym—,)s it follows by induction that G is of degree +’

over F, where ¢ = nins': n.-1, and a basis for G over F is contained among y’l‘l Y';2 Yfﬂm_—ll,
where 0 =Fki =mnm—1, 0=k, =n—1, ..., 0= kn1 = Ny —1.

Also, as in Th.5.3.1.15, v,, is a root of a polynomial, say f(x), of degree n. with coefficients in F,
since it is of degree of n. over F, by hypothesis. Then, since G contains F, the coefficients of f(x)
must be in G, which implies that y,, is of degree n over G, where n = n..

Now, again by Th.5.3.1.15, GlY,] is of degree n over G with LYms Ya - -, Yn ' as a basis over
G and, by Prob. 17, G[y,,] is of degree +' over F with a basis which consists of n#' of the product
Yeu e crc YEm-t ¥*m where 0 = ki = mi—1, ..., 0 = knoy = npoy—1, 0 = k, = n—1 = N —1.
1 2 m—~1 m

P

Hence F[y,, ¥y ..., Ym] is of degree » = mr' = mna - -nm over F with a basis prescribed by the
theorem, and the theorem is complete by induction.

*§5.3.2 Algebraic Numbers

Df.5.3.21 A nonempty set F is an algebraic number field (or algebraic field) if the sum,

difference, product and quotient (except by 0) of any two elements of F is in F' itself.

An algebraic (number) field, then, is necessarily a field, as has already been
abundantly exemplified by the field B of rational numbers, the field R of real numbers,
and the field C of complex numbers. The relation between R and C in particular
readily reveals that an algebraic number field F can be extended by adjoining a
number « to it, yielding an extension E of F, viz. E = Fla], which consists of all
numbers derived from o and F by rational operations; e.g. C = EJ[i].

Since R is a minimal field (cf. Th.4.2.1.4) and every number field contains R,
Df.5.3.2.1 may be restated as follows:

Df.53.2.1a Any algebraic number field is a finite extension of E. (Cf. Prob. 3.)

An algebraic number field is necessarily a field, but not conversely; a field may
not be an algebraic number field, of course. The following definition of algebraic
numbers, for instance, yields an example which forms a field, yet not an algebraic
number field.
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Df.5.3.2.2 An algebraic number a is a complex number which satisfies a nonzero poly-
nomial equation with rational coefficients, viz.,
rak™ + x4 - i+ = 0
where e R, k=0,1,...,n, and not all r.=0.
Df.5.3.2.2 is manifestly a special case of Df.5.3.1.1; viz. F and F’ of the latter

are specified here to be C and R respectively. An algebraic number is thus any
element of C which is algebraic over R (and no other field).

As has already been proved (cf. §2.1, Prob. 13-14), the set 4 of all real algebraic
numbers is denumerable while the set E of all real numbers is not (cf. Prob. 1 note).
That is, not every real number is algebraic; some, in fact nondenumerably infinitely
many, numbers in R are thus not algebraic, i.e. transcendental, as are exemplified
by =, e, ete. (cf. Prob. 4-6).

Th.5.3.2.3 The set A of all algebraic numbers is a field. (Cf. Prob. 7.)

The set A is further characterized by the following theorems:

Th.5.3.24 The field A of all algebraic numbers is algebraically complete (or closed, cf.
Df.5.3.2.10a); viz. every nonzero polynomial equation with coefficients in A has a
root in A. (Cf. Prob. 8.)

Th.5.3.2.5 The field A of all algebraic numbers is not an algebraic number field. (Ct.
Prob. 9.)

Certain fields of some algebraic numbers, however, do form algebraic number
fields, as they are invariably finite extensions of R. The following definition leads
to an example of such fields.

Df.53.26 A Gaussian number is any number of the form: a -+ bi, where a,b¢ R and
i=v/-1.
The set G of all Gaussian numbers is evidently an extension of R, viz. G = R[4,
and as such is a subfield of C = RJ[i], articulated by the following theorem:

Th. 5.3.2.7 The set G of all Gaussian numbers is an algebraic number field. (Cf. Prob. 10.)

G as such is characterized also by many definitions and theorems similar to those
with respect to C; e.g.:

Df.5.3.28 The conjugate, norm, and trace of an element ¢ = a +bi, a,be R, of the field
G of Gaussian numbers are respectively

g =a—bi, N(g) =93, T =g+3g

Th.5.3.29 If g,heG, then
iy g+h =

gth =3 -k (v) N(gh) = N(g) N(h)
(i) 9—h = g—

(vi) T(g+h) = T(g) +T(h)
(Ct. Prob. 11.)

Th.5.3.2.10 If ge@, then ¢ and § are the roots of the following polynomial, called the
principal polynomial of ¢:
x* — T(g)x + N(9)
(Cf. Prob. 12.)
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It can be readily proved that quadratic fields, e.g. R[\/Q}, have properties similar
to those of G (cf. Prob. 12-14), including that they are also algebraic number fields.

The following examples are those of algebraic numbers which do not form fields,
let alone algebraic number fields.

Df.53.2.11 A Gaussian integer is any number of the form: a + bi, where a,bel and
i=v—1.

I denotes here as elsewhere the set of ordinary integers, which in this specific
context may be considered rational integers (cf. Df. 4.1.2.3.5). It follows immediately
that the sum, difference, and product of Gaussian integers are again Gaussian in-
tegers. Hence:

Th.5.3.2.12 The set G* of all Gaussian integers forms an integral domain, denoted by
I[i].  (Cf. Prob. 15.)
In parallel to ordinary integral domains, G* =1 [?] has many theorems similar to
those studied in §4.1.2.2, including the unique factorization theorem (cf. Supplemen-
tary Problems 5.50-51).

These Gaussian integers in mind, then, the algebraic integers in general are
defined as follows:

Df.5.3.213  Any algebraic number a is an algebraic integer if every coeflicient of the
minimal polynomial (cf. Df.5.3.1.4) of a is a rational integer; I denotes the set of all
algebraic integers.

By definition, then, an algebraic integer a is to satisfy the equation of the form
px) = 2" + @2 '+ - iz +a = 0
where axel, k=0,1,...,n—1, since a minimal polynomial is monic.
An algebraic integer can be readily identified by the following theorem:

Th.5.3.214 A number « is an algebraic integer if it satisfies over R a monic polynomial

equation with rational integral coefficients. (Cf. Prob. 20.)
Example:

{;/E is an algebraic integer, since it is a root of x°—4 = 0, while 1/% is not, since it is a root
of x2*—(1/2) = 0.

It must be noted that many odd forms are available for algebraic integers, in
particular among those in quadratic fields; e.g. (—1 +\/5)/2, since it is a root of
¥*+x—~1 = 0. The latter case is generalized by the following theorem:

Th.5.3.2.15 Algebraic integers in any quadratic field E[vm], where m 1 is an integer
free from square factors, are classified into two types:

(i) If m =1 (mod4), then they are of the form a+by/m, where a,bel, and

(ii) if m =1 (mod4), then they are of the form (c+dym)/2, where ¢, del and
¢=d (mod2). (Cf.Prob.24.)

Although the set I of all algebraic integers is more restricted in comparison with
the set G* of all Gaussian integers, I and G* share at least one important property
in common; viz. they are both integral domains (¢f. Th.5.3.2.12 and Supplementary
Problem 5.52).
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Solved Problems

1. If f(x) = 2"+ an—y2™ '+ - - +aqx+a is a polynomial in 2z, where ao+< 0 and
axel, k=0,1,...,n—1, and if r is a real root of the equation f(x) = 0, then 7 is either
an integer or an irrational number.

PROOF:
If » were a rational number, then it must be of the form c/d, where ¢, del and (c¢,d) =1. Hence,
substituting r =e¢/d in f(x) = 0,
¢+ @n-1¢*'d + -0+ ared! + aedr = 0
If d were divisible by a prime p, ¢ also must be divisible by p. But, since this is contrary to

hypothesis, it must be the case that d =1; i.e. the real root cannot be a rational number. Hence it
must be either an integer or an irrational number.

Note. This theorem, which is a special case of Df. 5.3.2.2, is to construct the irrational numbers
which are algebraic, since a real algebraic number may be rational or irrational. The theorem
belongs, therefore, to the same category of the elementary theorem that V7 is an irrational number
if n,re N and =n is not the rth power of a natural number.

2. If a is a nonzero algebraic number, so is 1/a.

PROOF:
By hypothesis and Df.5.3.2.2, a is a root of the polynomial equation
"+ a2+ s L ox e = 0
where cxe B, £k =0,1,...,n—1. Hence 1/a is a root of
1+ 1w+ -0 + a4+ a2 = 0

which is again a polynomial with rational coefficients, proving that 1/a is also an algebraic number.

3. If u and v are algebraic numbers and p represents any polynomial, then p(u,v) in the
context of Df.5.3.1.8 is also an algebraic number.
PROOF:
Let u be a root of an equation f(x) = 2™ + ? axt = 0, i=0,1,...,m—1, and v a root of an
equation g(w) = 2"+ b;e' = 0, j=01,....n—1. If mn=s, and if
’ wr = ud, k=12,...,8 (1)
in any suitable order, where not all #’s and v’s, hence not all w’s, are zero, then
Ut = U1 U™ = G2 U™ = e — @y, VP = b ¥ — b2 — e — B, (2)

where ai, b;¢ B, since f(u) =0 and g(v) =0 by hypothesis. Hence it follows from () and (2) that

WP = CaWi + CewW: + - + CrsWs (€))
where o ¢ R, k'=12,...,5, which implies that

(e —P)ws + cows + <+ + cws, = 0,

Ca1 W1 + (czz—p)uh + - 4+ CasWs = 0,

...................................... 4)

csiws + Cows: + - + (c,,—p)w, = 0

This system of equations in (4) is consistent, however, iff

Ci1— P Ci2 Cis
C21 C2— P C2s

= 0 1G]
Cst Cs2 Ces — P

which indeed yields an algebraic equation satisfied by the polynomial p. Hence p(u,v) =0 repre-
sents an algebraic number, completing the proof.
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*4,

*5.

If % is a real algebraic number of degree n>1 over R, then there exists a positive
number v such that, for any a,bel and b>0,

lu — a/b] = v/b"
PROOF:
If f(x) is the primitive polynomial (cf. Df.5.2.1.10) of lowest degree satisfied by u, then f(x) must
be also of degree =, since it cannot be different by any meore than a multiplicative constant from the
minimal polynomial for u.

Let w be the maximum of |f'(z)| in the interval |u— x| = 1 and v be the smaller of 1 and 1/w.
Then it follows at once that [u—a/b| = 1 implies

lu—a/bl = v = o/p”
which is to be proved.
If, on the other hand, 0 = |u—a/b| < 1, then, by the mean-value theorem,
[ f() — f(a/b) | lu—a/b} |f'(c)]

[u~a/d|w

L

where ¢ lies between « and a/b, i.e. [u—¢| = 1. Now
If(a/b)] = Ju—alb

since f(u) =0 by hypothesis, and also f(a/b)=0 since f(x) is irreducible over R. Furthermore,
[fla/b)] = d/b", where del, since f(x), by hypothesis, is of degree » and has rational coefficients.
Hence n =1, which implies

cw

1/6* = |f(a/b)| = w-

u— a/b|
and finally,
lu—a/b] = (1/w)(1/b™ = v/b"

which completes the proof.

There exist transcendental numbers.
PROOF:
Let an infinite series be

s = 2172, r=12,...m,...
and s = ar/bx = aw/2%

which denotes the sum of the first & terms of s. Then

[s_ak/bkl = 1/2(k+1)! —_— 1/2(k+2)! + . e
< 1/2(k+1)!
< /2"M = 1/pk (1)

If s were algebraic over R, of degree n > 1, then by () and Prob. 4 above,
L = p".

s—an/be] = pp7" &)
where ’}er:o L = 0, which is a contradiction, however. For, by Prob. 4, there exists a number » >0
such that |s —an/b] = w/b}
which implies

brels—an/be] = v > 0
contradicting (2). Hence s cannot be an algebraic number of degree n > 1.

Nor can s be an algebraic number of degree 1, i.e. a rational number. For, if s =c/d, where
edel and d >0, then the choice of an odd % such that 2% * > g implies that the number

t = zklsd—zkld(g(—n'/z") = 2d( s (—1)/2") @

r=k+1
is a positive integer while
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t < ged/ekrmr = gioRR o g )
by the choice of k, yielding the contradiction between (3) and (4).

Since s can be neither an algebraic number of degree » > 1 nor that of degree 1, it cannot be
an algebraic number at all; it must be a transcendental number.

Note. The transcendental numbers of the form s, constructed as above, are due to Ljouville.
This proof has an obvious advantage over Cantor’s existence proof (cf. §2.1, Prob. 13-14), since the
latter does not offer an explicit example of transcendental numbers while the former does.

6. If s, constructed as in Prob. 5, is transcendental, so is s+1s, where ¢ =1/-1.
PROOF:
Suppose that s+ is is not transcendental, i.e. algebraic. Then it must be a root of a polynomial
with real coefficients, which is then satisfied by its conjugate: s—is (cf. Th.5.2.3.11). Hence s —is
is also algebraic.

Then, since their sum must be also algebraic (cf. Th. 5.3.2.3),
(s+is) + (s—is) = 2s

or what is the same, s itself, must be algebraic, which immediately contradicts the hypothesis.
Hence s + is must be transcendental.

7. Prove Th.5.3.2.3.

PROOF:

Let all elements of the set A be algebraic over a field F. The proof is then to show that rational
operation is feasible with respect to these elements over F, i.e. the sum, difference, product, and
quotient (for nonzero denominator) of any two elements of A are algebraic over F, satisfying any
polynomial over F.

If a,be A, b+0, and if a(x) and b(x) are the minimal polynomials over F for « and b respec-
tively, then it follows that p(x) and ¢(z), defined by Prob. 15 of §5.2.2, are algebraic over F in this
context. In the same sense, equate a; and by there with a and b here. Then, since a(x) and b(x) are
satisfied by a,+ b, and a1b, there, they are satisfied by a+b and ab here.

Furthermore, since —b satisfies b(—x), —b is algebraic, and so is a+(—=b) = a—b. Also, if n
is the degree of b(x), then «"b(1/x) is satisfied by 1/b, and 1/b is algebraic. So, then, is its produet:
a(1/b) = a/b.

Hence a+b, a—b, ab, a/b are all algebraic over F, and the set A is a field.

8. Prove Th.5.3.2.4.

PROOF:
Let the coefficients ax, k=0,1,...,m, of a polynomial equation
fl®g) = an2™ + an12™ '+ -5 + a0 = 0 (1)
belong to the field A of algebraic numbers. Then, by Prob. 21-22 of §5.2.1 and Th. 5.3.1.16, an
extension E — R[ao, ay, .. ., @], generated by the coefficients ax, is a finite extension of the minimal

field R of rational numbers.

Since any complex root ¢ of () is algebraic over E, by Th.5.2.3.9, E[c] is then a finite extension
of E and, in consequence, of R. Hence, by Prob. 17 of §5.3.1, the element ¢ of £ must be algebraic
over R, which implies that ce A, proving that A is algebraically closed.

9. Prove Th.5.3.2.5.
PROOF:
If the field A were an algebraic number field, i.e. a finite (thus simple) extension of R, then
let it be of degree over R. But, for instance, a polynomial

xpntl 2

which is easily verified by Eisenstein’s criterion {(ef. Th.5.2.1.12) to be irreducible over R, readily
yields an algebraic number 2'"*! of degree n-+ 1. The existence of such algebraic numbers contra-
dicts the initial hypothesis through Prob. 17 of §5.3.1. Hence the field 4 is not an algebraic number
field.
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10. Prove Th.5.3.2.7.
PROOF:
Let g,he@ and g = o+ b, h = ¢+di # 0, where a,b,c,de R. Then,
@ g+h =(a+bi)+ (c+di) = (a+¢)+ (b+d)i, where a+te, b+d ¢ R, implying that g+heG.
(ii) Likewise, g — ke G.

(iii) g+h = (a+bi)c+di) = (ac—bd) + (ad+ be)i, where ac—bd,ad+bc ¢ G, implying that
g*heG.

(iv) 9/h = (a+bi)/(c+di) = ((ac+ bd)/(c®+ d)) + ((ad — be)/(c* + d’))i, where ¢*+d* #* 0 and
(ac + bd)/(c* + d?), (ad — be)/(c*+ d*) & G, implying that g/heG.

Since G is manifestly non-vacuous, and since the rational operations (i)-(iv) on the elements of G

are closed with respect to G, G is, by Df. 5.3.2.1, an algebraic number field, completing the proof.

11. Prove Th.5.8.2.9.

PROOF:
Let ¢ = a+bi and h = ¢+ di, as above, where a,b,c,dc R. Then,

(i) §=a—bi, h = ¢—di, by Df.53.28, and

g+h = (@+bi) + (c+di) = (@atc) + (b+d)
=(a+b) —(b+dyi = (a~bi)+(c—di) = g+h

(ii)-(iv) are proved likewise, (cf. §5.1.3, Prob. 13).

(v) By Df.5.2.3.8, N(g) = g7 and N(k) = hk; also, by (iii) above (i.e. g+h = §+Fk), it follows that
N(gh) = (gh)(gh) = g-h*§+h = g+G+h+kh = N(g) N(h)

(vi) Since g+ h = (a+¢)+ (b+d)i, by Prob.10, (i) above, it follows from Df.5.3.2.8 that

Tg+h) = (late)+(b+d)+ ({a+c) + (b+d)i)
=(ate)+b+dyi+(a+ec)— (b+di = 2(a + ¢)
while
T(g) + T(hy = ((a+b)+ (a+bi) + ((c + di) + (¢ + di))

(@tdbi+a—b)) + (ctdite—di) = 2 + 2 = 2a+o)
Hence T(g+h) = T(g)+ T(h).

12, Prove Th.5.3.2.10.
PROOF:
Let g = a+ bi; then, by Df.5.3.2.8,
f@) = & —T(r + Nlg) = 2> —@g+dhz+ 9§ = (x—g)x—4§)
Hence f(x) = 0 has two roots ¢ and §, completing the proof.

Note. «*—4x+5, for instance, is the principal polynomial of g = 244, since § = 2—j,
T(9) =4, N(g) = 5.

13(a). The quadratic field R[y/7i|, where y/m¢R, represents an algebraic number field.
PROOF:
Let z,yeR[Vm], where x = a+bVm, y = ¢+ dVm. Then,

{B-(i) x*y = (a+bVm) = (c+dym) = (a =) + (b+d)Vm, which implies « *y e R[Vm].

(i) z-y = (a+bdVm)(c+dvm) = (ac+ bdm) + (ad + be)ym, implying x+y ¢ R[Vm].

(iv) Since e—dym # 0 if ¢+dym # 0,

wly = (a+bdbVm)/(c+dVm) = (a+bVm)(c—dvm)/((c+ dVm)(c—dVm))
= ((ac — bdm)/(c* — md?)) + ((ad — be)/c? — md?))Vm
which proves that z/y ¢ R[Vm].



318

PART 5 - ALGEBRA OF FIELDS [CHAP. 5.3

Hence, by Df.5.3.2.1, R[Vm] forms an algebraic number field.
Note. Some specific subfields of R[Vm] are, e.g. R[VZ], R[V3], R[V5], etc., which are sometimes
called the real quadratic fields of R[\/E] in general, in contrast to the imaginary quadratic fields

such as E[i], B[V—2], ete. The algebraic number field G of all Gaussian numbers, then, is an
imaginary quadratic field.

13(b). If r =K%, where kr,seR and k>0, then R[V7|=R[V3].

14.

15.

16.

PROOF:
By hypothesis V7 = kVs, which implies, for any a,be R,

a+bVr = a+ bkys
Hence x e R[V7] implies xz R[Vs], ie. R[V7] C R[Vs], and e R[Vs] implies xeR[V7|, ie. R[Vs|C
R[Vr]. That is RIVF| = R[V3]
Note. R[\/E] :R[\/l—()], for instance, since 40 = 22:10. The two fields, therefore, contain

the same elements.

As can be readily verified, the conjugate, norm, and trace of each element of any quadratic field
are defined in the same way as Df. 5.3.2.8 with respect to Gaussian numbers, even up to the principal
polynomial.

If zyelli], so are x+y,x—y, 2y ¢ Ii7].
PROOF:
() Let 2 =a+bi, y=c+di, where abel; then

z+y = (a+bi) + (¢c+d) = (a+e) + (b+ d), where a+c¢, b+d el
which implies « +y e I{t].

(ii)-(iii) are proved likewise (cf. Prob. 10 above).

Prove Th.5.3.2.12.

PROOF:

Prob. 14 above has already assured D1-8 (cf. Df. 4.1.2.2.1) for I[i]. As for the rest: for every
zyeellil, where © = a+bi, y = ¢c+di, z = e+ fi = 0, and a,becdefel,

DS. 2y = (e +bi)(c+di) = (ac— bd) + (ad + be)yi = (c+di)a+bi) = yx

D10. 1e&l[i], where 1 = 1+ 0+4.

D11. Since z = e+ fi #* 0 implies e+#0 and f#0, xz=yz implies x =y. TFor, if xz=yz, ie.
(ae — bf) + (af + be)i = (ce — df) + (¢f + de)i, then ae— bf = ce—df and af+ be = c¢f +de,
ie. (@—c)e—(b—d)f =0 and (e—¢c)f + (b—d)e = 0, which implies a=¢ and b=d in
either case, since ¢+#0 and f+#0. Hence a+bi = ctdi, ie x=y, if xz=yz and z+#0.

Hence I[i] is an integral domain.

If = a+bi is an element of I[i], i.e. a,bel, and N(z) is defined to be zZ as in
Df.5.3.2.8, then
(i) N(z) =a? if el as well as zeI[i].
(i) N(zy) = N(@)N(), if yelI[i).
{(iii) N(x) =1 iff z is a unit.
PROOF:
(i) Since x €1, it must be the case that b =0, i.e. £ =a as well as 2 = a. Hence N(x)=ux% = a?=x2.
(i) The proof can be carried out exactly as in Prob. 11, (v).
(iii) If x is a unit, then «|1 such that zy =1 for some yel[d, which implies, by (ii) above,
N(x)N(@y) = N(1) = 1, ie. N(x) 1. Since N(x) must be a non-negative integer, it must be
the case that N(x) = 1.
Conversely, if N(x) = 1, it follows that a?+ 52 = 1 (cf. Df.5.3.2.8), which implies, since abel,

that either a =0 or b =0. In either case, however, x = =1, =i, which are evidently units, completing
the proof.
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17. If N(x), where zelI[z], is a prime in I, so is « in I[i], but not conversely.

18.

19.

PROOF:

Assume x =yz, where y,ze1[i]. Then, by hypothesis and Prob. 16, (ii), N(x)= N(y) N(z) must
be prime in I, which implies that either N(y) =1 or N(z) =1, which in turn implies, by Prob. 18, (iii),
either y or z is a unit, proving that « must be a prime in I[i].

The converse, however, does not hold. For instance, if 3 is a prime in Iii], it does not follow
that N(3) = 3+*3 = 9 is a prime in I. And 3 is indeed a prime in Ifi}, for the following reason:
3 = xy, where wx,y ¢ I]i], implies 9 = N(2) N(y), while N(x) 1 and N(y) # 1 imply that N(x) =N(y) =3,
which in turn implies that either a’+b* =8 or ¢2+d2 =3 for # = a+ bi and y = ctdi. In
either case, since a,b,c,d el and none of them can possibly satisfy the identities, the initial assump-
tion that N(x) 1 and N(y) #1 is thus proved to be an absurdity. Hence it must be the case that
either N(x) =1 or N(y) =1, which immediately implies that 3 is a prime in I[é], although N(3)e/
is not.

If p,gelli] and ¢+0, then there exist r.selli] such that

p = s8¢+, where N(r) < N(q)
PROOF':

Let p/q = a+ bi, where a,be R, and select mmnel such that m and » are the rational integers
nearest to ¢ and b respectively, ie. ja—m| = 1/2 and |b—n| = 1/2.

Now let s = m+ni; then ceI[i], and

(plg) — s = (@a—m) + (b—mn)i
which implies

N(p— gs) N(q) N((p/q) — s)
Ng(ea —m)* + (b—mn)?)

N(@((1/4) + (1/4)) < N(g)
i.e. N(p—gs) < N(q). Hence, letting p—gs = r, the proof is complete.

NI

Note. The division in I[i], which is an integral domain and fails to be a field, is not unique;
ie. the quotient s and the remainder r may not be unique if s;re [{], as in Prob. 19 below.

Divide 2—1¢ by 144, and give a geometric interpretation.
Solution:
@—9/A+9) = ((2—9A — @ + HYl—d) = (A1-3)/2 = (1/2) + (—3/2)¢

Take 1 and —1 as rational integers nearest to 1/2 and —3/2 respectively; then, in the context
of Prob. 18,

s =1—2 and » = @€—9)—1A+DH1~7) = —i
where N(r) =1 < N1 +3) = 2. 7

On the other hand, if 0 and —2 are taken as rational
integers nearest to 1/2 and —3/2 respectively, then

8§=—2 and r = (2—49) — A+)-2) =
where N(r) =1 < N(1+1) = 2. 0 1

As a matter of fact, there are two more alternatives
for the pair of » and s, as can be readily observed in the

=]

following geometric representation: —1 i—1
Since the Gaussian integer s is defined by N(p — gs) < ® (2—i)/(149)

N(q) as in Prob. 18, i.e. N{(p/q) —s) < 1, or what is the

same, |(p/q) —s| < 1, it follows that, in the complex plane, -2 —l 1—2

8 is represented by the points whose distances from the
point for p/q is less than 1, viz. —i, —2q, 1—24, 1—7q,
in this context. Fig. 5.3.2q




320

20.

21.

22.

23.

PART 5 — ALGEBRA OF FIELDS [CHAP. 5.3

If a is algebraic over a field F, then it has a unique minimal polynomial.

PROOF:
If q(x) is a minimal polynomial and f(x) any other polynomial over F' satisfied by a, then, by
Th. 5.2.1.2, there exist two other polynomials 9(x) and »(x) over F' such that

f@) = g@)q@) + ) (1)
where 0 = degr(z) < deg q(x).
Let x =a in (Z). Then, since g(a) = f(a) =0 by hypothesis, it follows that r(a) =0, and that
r(x) = 0; for, otherwise, ¢(x) cannot be minimal, contrary to the initial hypothesis. Hence q(z) | f(x),
and ¢ has a minimal polynomial.

Furthermore, the minimal polynomial ¢(x) is unique. For, if s(x) were any other minimal
polynomial of a over F, it must follow likewise that s(x) | f(x), which in turn implies that g(x) = *+s(x).
But, then, since g(x) and s(x) are both monic by hypothesis, it must be the case that q(x) = s(x),
which completes the proof.

Note. This theorem has an alternative form, or a corollary: q(x), the minimal polynomial of «
which is algebraic over F, is contained as a factor in any polynomial satisfied by a over F.

Prove Th.5.3.2.14.

PROOF:
Let g(«x) be the monic minimal polynomial of a over E. Then, by Prob. 20 above, there exists a
polynomial g(x) over R such that

flx) = g(x) q(x) (1)

where f(x) is monic. Further, by Th. 5.2.1.11,
fx) = erg*(x) ¢*(x) (2)
where g*(x) and g¢*(x) are primitive, while ¢eR > 0 and q(x) = cqq*(x). Then ¢ =1, since

f(x) is monic, hence primitive.

Since ¢*(x) and g*(x) have integral coefficients, by Df.5.2.1.10, and since their product f(x)
is monic, they must be monic. Hence ¢, =1, since q(x) is also monic by hypothesis. Thus q(x) = q*(x),
which implies that every coefficient of g(x) is a rational integer, and the number @ which satisfies
g(x) must be an algebraic integer, by Df. 5.3.2.13, completing the proof.

If ¢ is an algebraic number, then there exists a rational integer k& such that ka is an
algebraic number.

PROOF:
By Df.5.3.2.2, a satisfies an equation
Cx™ + Cor1 XN+ s e = 0
where ¢;c1, i=0,1,...,n, which implies that c.a satisfies an equation
"+ 12"+ CaCrn X 4 CBlu_zand A - -- 4 cle = 0

Let % = ¢., and the proof is complete,

If a satisfies an equation

f((li) = 2"+ 12 F Cp "2+ - ey = 0 (1)
where the ¢, k=0,1,...,n—1, are algebraic integers, then a is also an algebraic
integer.

PROOF:

If the ¢,” are the conjugates of ¢. over R, then, by Prob. 15 of §5.2.2, the product over the
conjugates, Gy (i) . G
p) = JI@ + e, 2 2" + ¢,2,2" % + +++ + ot (2)
has rational coefficients, which in this case must be also rational integral coefficients, since they are
algebraic integers as they have been introduced by adding the products of the e,

Furthermore, p(a) =0, since f(x)| p(x). Also, as is quite obvious in (2), p(x) is monic. Hence,
by Th.5.3.2.14, e is an algebraic integer.
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24. Prove Th.5.3.2.15.

PROOF:
(i) Since p = a+bym yields N(p) = a*—b>m and T(p) = 2a, ie. N(P),T(p) ¢ I, it follows
that 2a =c¢ eI implies
(2b))m = ¢* — 4N(p) (1)

which is again a rational integer. Since m has no square factor, by hypothesis, 2b must be a
rational integer. Hence let 2b =d, and

p = (c+ dym)/2 (2)
where ¢,deI. Then, by (1),
d*m = ¢* (mod 4) €))

If ¢ is not a multiple of 4, then ¢*=1 (mod 4), which implies

d®m =1 (mod 4)

Hence d is not a multiple of 4 and d?=1 (mod 4), which implies

m =1 (mod 4)
Hence m#1 (mod 4) implies that d must be a multiple of 2, which in turn implies a,bz I.

(ii) If m =1 (mod 4), then, from (3),
@ = ¢ (mod4)
which implies 4 | (d —¢){d + ¢), which in turn implies 2| (c—d) or 2| (¢ +d).

If 2((c+d), then 2|(c—d), since ¢—d = (c+d)~2d, which is a multiple of 2. Hence
¢c =d (mod?2)

Conversely, if ¢=d (mod 2), it must be the case that
T((c+dvm)/2) = cel
and N({(c+dvm)/2) = (c®— d’m)/4

which is again a rational integer, since ¢®=d? (mod4) and m =1 (mod4) imply ¢*=d*m (mod 4).

Hence (¢ + dvm)/2 is an algebraic integer, which completes the proof.

Supplementary Problems
Part 5

5.1. Subtraction in the rational number field R is well-defined; so is division in R.
5.2. AcB for every A, BCC (cf. Df.5.1.2.3) iff there exists some CcCC such that A +C = B.

5.3. If p is a positive rational number greater than 1, then there exists an element s in a D-cut S such
that p+se S".

5.4. Generalize Prob. 36 of §5.1.2.
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5.5.

5.6.

*5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

*5.17.

*5.18.

*5.19.

*5.20.

PART 5 — ALGEBRA OF FIELDS [CHAP. 5.3

Any nonempty subset S of the ordered field R of real numbers which has an upper bound in R
has a Lub. in R.

The rational number field R is not complete.

Any Archimedean-ordered field F is isomorphic to a subfield B’ of the real number field R, where

the isomorphic mapping is unique. Furthermore, the order-isomorphism of F into F is unique; viz.
it is an identity mapping.

If a field F is Archimedean-ordered and contains the rational number field R, then there exists an
integer m such that, for some integer k,

mn* = a = (m+ 1)n*
where aeF, ne N and n > 1.

If F is an Archimedean-ordered field which containg R, and if aeF is positive, then there exists
a natural number % such that

1/n* < a
where n >1 is a natural number.
If ai,as ...,a. are positive numbers, then
(mita+ - +a)/n = Varaa - -an
where equality holds iff a1 =a: = --- = g..
If a,as ...,a. are positive and s = a1+ a2+ -+ + a., then

(s—a)(s—az - (s—a) = n—D"a1as - an

If ai,as ...,a. are all distinct and positive, and if s = a1+ as+ --- + an, then

s/(s—a) + s/(s—a) + ++- + s/(s—a) > n¥/(n —1)
42 —2¢*+ x +1 is irreducible over R.
If ¢ is a prime integer, then x"—a is irreducible over E.

If ae R and there exists no pth root of @ in R, where p is a positive prime, then z" — a is irreducible
over R.

x* + y° + 2° — 8cxyz, where ce C, is irreducible over C iff ¢® = 1.

If p is a prime and » a positive integer greater than 1, then
2 le-n + x""_l(:z—Z) T + 1
is irreducible over R.
Let f(x) = @ut™+ @u—12™ '+ --- + @p, where P A Gy PlGi-1, ..., p|as, for a prime p. If
P* [ a0, then f(x) is irreducible over E.
Let a polynomial with integral coefficients be
@) = @™ + auoya™ ! + -0 4 qp
where p* fao, p fa., 0<r=mn, but p |[@r—1, P| @2, ..., Plas, for a prime p. If f(x) can be
decomposed, say,
fx) = g(x)h(x)

then at least one of g(x) and h(x) is of degree greater than 7.

Prove, by Supplementary Problem 5.19 above, that «® + z* + 102® + 4% — 6 is irreducible over R.
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*5.21. If a polynomial f(x) with integral coefficients can be decomposed over E, say,

flx) = ax" + a1t o0+ ae
= (bt o+ b @ e bo(ewt 4ttt A e 4 o)

where r = s+t and s =¢ =1, and p f a», but p|aa-1, ..., p| e, then
p21at—l, p2lac—z, “eay pzlao

*5.22. Find, by Supplementary Problem 5.21 above, an integer k for which jf(x) = «°+ 5x+ 5k 1is irre-
ducible over I.

5.23. Given the three roots a,b,c of «*+ px*+qx+r = 0, find an equation whose roots are a? b3 ¢

5.24. If the three roots of 2+ gx +» = 0 are a, b, ¢, then the six roots of »*(x* -+ a+ 1)® + ¢*x*(x+ 1) = 0
are b/a, ¢/a, a/b, ¢/b, alc, b/c.

5.25. Given an equation with real coefficients,

fle) = 2"+ p* '+ pext k- --s £ p. = 0 1)

and a root » of (1), find (i) an equation whose root is 1/r, (ii) an equation whose root is —r,
(iii) an equation whose root is kr, (iv) an equation whose root is » + m.

5.26. If asx™+ arx™ '+ -+ +a. = 0 is a reciprocal equation, then either
do = Qn, a1 = Qn-1, a2 =~ Un-2,...,
or Qo = —0n, a; = —Qn-1, Qs = —Un-2y...

527. If «’+ax+bd = 0, where a,bel, has roots in R, then they are in I.
5.28. Solve «®— 92%+ 362 —48 = 0.
5.29. Solve a*— 1Tx?— 34— 30 = 0.

5.30. Determine the discriminant of (i) the cubic equation «*+px+q = 0,
(ii) the quartic equation a!'+ px*+qx+7r = 0.

5.31. Find the necessary and sufficient condition that the polynomial

ax® + 3bx® + 3ex + d
be transformed to
ple—u) + qz—vP® + r(x~w)® = 0

where u,v,w are the three roots of ex®+ 3fx*+ 8¢gx + h = 0.

5.32. If &' =1, then find a quintic equation whose roots are o + a', o+ a®, a®+db, a*+ o, a®+ ab.

*533. If o1 =4a, 22 =a+d, ..., ¥er =a+((r—1)—1)d, and x. = a+(n—1)d are the n roots of
a® + prax”t 4+ peat2 4 ces +pg = 0
then there exists the following relation among roots:
d = (@/)VE((n—1)pt—2np)/(n?— 1)

and a = —(pJ/n) — ((n—1)d)/2
5.34. If 1,a1,05, ...,an~1 are the n roots of z"—1 = 0, then find an equation whose roots are 1 - q,

1—as ..., 1~ au-1.
5.35. If an equation

f(®) = au" + @u-rz" 4 c-- +ae = 0, Aoy A1y ... e ]

has an integral root r, then for some mel, (r— m) | f(m).
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5.36.

5.37.

5.38.

5.39.

5.40.

*5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

5.48.

5.49.

5.50.

*5.51.

5.52.

PART 5 — ALGEBRA OF FIELDS [CHAP. 5.3

Find, by Supplementary Problem 5.35 above, an integral root of
«® — 11lx* + 652° — 222 — 148z — 507 = ¢

Given a quartic equation &'+ ax®+ bax?+cx+d = 0, the product of two roots equals the product
of two other roots iff a%d —¢? = 0.

If f is a polynomial in w,, xs, -+, %n, and if it is symmetric over R, so is f%.

A polynomial f(x,y,2) can be expressed as
Fule, y)2" + fa-i(@, 92" + -o0 4+ filx,y)z + fola,y)

where each of the fi(x,y), k=0,1,...m, is a polynomial in x and y.
Any multiple algebraic extension of a field is a simple algebraic extension.

If a polynomial f(x) of degree n over a field F is irreducible over F, but reducible over an extension
FlVa] of F, where ae F' and Vay¢F, then » is an even number and f(x) can be decomposed into two
factors of degree n/2 which are irreducible over F[Va].

An algebraic extension E, which is created by adjoining /-3 to R[\S/E], is of degree 6 and coincides
with an extension E’ = R[V2+ V -3].

The set of all numbers of the form a -+ b\/§, where a,be R, forms an algebraic number field, and
any number field which contains V3 consists of the numbers of the same form.

If p,qeR[\/§] and ¢ # 0, then there exist 'r,seR[\/E] such that
P = sq+ 7 where |N(r)| < |N(g)|

If m =1 (mod 4), then every algebraic integer in R[\/ﬁ] is of the form
a + 0((1+vm)/2), where a,beR

Every rational integer is an algebraic integer in R[Vm], and conversely, any integer in R{y'm)]
which is a rational number is a rational integer.

. Every element » in R[Vm] is an algebraic integer if there exists a nonzero algebraic integer s

such that 2 a
sr, sr®, srl ..

are also algebraic integers.

If ¢ is a Gaussian integer, then N(g) =0 if g=0, N{g =1 if g==1 or =i, and otherwise
N(g) > 1.

If @ and b are relative primes in the domain G* of 3.11 Gaussian integers, i.e. if @ and b have no
common divisors except units, then there exist ¢,de G* such that ac+bd = 1.

If a,b,ce G*, where G* is the integral domain of all Gaussian integers, and if a|bec when a and &
are relatively prime, then ale.

The unique factorization theorem holds in G*.

The set I of all algebraic integers forms an integral domain.




Answers and Hints
to Supplementary Problems

Part 1
TAUTOLOGIES
1.1. Cf. §1.1.1, Prob. 6fF.
1.2. Use truth-tables (cf. §1.1.1, Prob. 8).
1.3. Cf. §1.1.1, Prob, 12.
14. By truth-tables, or by deduction (¢f. §1.1.1, Prob. 15-18).
1.5. r~e = pligig, p~q = ((plnla | (wip)] o)
peqg = i) @l @ip | {pl@l )l @},
peg = el ol @il | {elplo ] ol
J aelalp |l lay ] {elaln ]| alaln.
(Note. Check the validity of this answer by truth-tables; cf. §1.1.1, Prob. 2.)
1.6. plg = (ol @l | (pin) | (@] ),
ple = (pIplela) | (v gl).
(Note. As above, check the validity of this answer by truth-tables.)
1.7. Cf. §1.1.1, Prob. 6, (iii).
1.8. {a = (a(bve)} > (av be).
1.9. Cf. §1.1.1, Prob. 12 (break the negation lines as often as possible until the right-hand side of
the tautology is obtained).
1.10. Gf. §1.1.1, Prob. 11, then Prob. 15-18.
1.11. As above.
1.12. (i) False. (ii) True. (iii) False.

1.13-15. Cf. §1.1.1, Prob. 15-18.

QUANTIFICATIONS
1.16-19. Cf. §1.1.2, MTh. 1.1.2.6-7, Prob. 2ff.

1.20.

2.1.

2.2,
2.3.

Proceed the proof indirectly, starting with Hyp,, i.e.,
@){I(x) > (O(x) > I(=" O@*)}
where I and O predicate an integer and an odd integer respectively, and denying the con-
clusion, ie. @@ = ) 0@ » 0)
If the last step is of the form pp, then the proof is complete.

Part 2

Cf. Df.2.1.7 and, by indirect method, assume that, for every set S, “@ c S” is false, which
implies the existence of a set S’ such that @ ¢ S’, which in turn implies, by Df.2.1.1» and
Df.2.1.2, an element ¥ such that x¢ S’ and xe @, contradicting Df.2.1.7.

Cf. §2.3, Prob. 7.

(i) An(BNnC) = (AnB)NC, (i) AnB = BNA, (iii) AN(BUC) = (AnB) U (AnCQC).
(Cf. §2.3, Prob. 7.)

325
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2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.
2.12.
2.13.

2.14.

2.15.

2.16.

ANSWERS AND HINTS [Part 2

Let x ¢ B; then the hypothesis AnNB = (@ implies ¢ A. But also x ¢ C, since obviously BCC; i.e.
x¢A and xeC, meaning x e C—A. Hence B C (C—A). Likewise, (C—A4) C B, and alto-
gether B = C—A.

If @ = ¢ and ¢ =d, then trivially, {{a},{a, b}} = {{c}, {¢,d}}. Conversely, since {a} = {a}n{a, b}
and {a,b} = {a}U{a, b}, and since, by hypothesis, {e¢} = {a}n{a, b} = {c}n{c,d} = {e}, it
follows that a =¢. If, furthermore, bt ¢, then b e {¢,d}, and this implies b=d. If, finally,
b=c¢,then a =b=c¢=d.

(i) XxX = {(p*p),(p,9),(¢:p),(¢,9)}, and likewise (ii).

iit) XxY = {(p,n), (p,%), (p,1), (¢,7), (¢:9), (q,1)}, and likewise (iv).

E.g. for _A: @) {f(®) » g2)} = (@){{xea) = (xeb)} = (Ex){(xea)xed)) = (Ex)(xeabd).
Hence ab = 0. Justify these steps, then do likewise for E.I.O.
E I 0
(Ex){(x e a)(x e b)} (Bx){(x e a)(x e b)} (Ex){(x & a)(x e b)}
ab =0 ab # 0 ab # 0

i) pvipalpvr)vanlpvye) = pvpsrpvr)v{gapvignad))
= pvipn@vr)v{gap)v0) = pv(pa(pvr)vignap)
= pvpv(gap) = pv(gADP) = p

(Specify which one of B1-6 has been employed to justify each step taken above, referring
to Df.2.4.2.1.) Do likewise for the rest;

(ii) 0, (ii) (pAgv (@ Aq A8 At
Cf. §1.1.1, Prob. 7 note and Prob. 8; also Prob. 15-18.
Cf. Prob. 2.10 above; (i) A v (' Ag)vr, (ii) pve, (i) pAgq.

o(A) = o(ANB) + o(ANB’), since (ANB)N(ANB') = @ and A = (ANB)UANDPB’). Likewise,
o(B) = o(ANB) + o(A’NnB). Adding these equations,

olANB) + o(A'NB) = o(A) + o(B) — 20(ANB)
But, since (ANB)N(ANBYN(A’'NB) = () and also
AUB = (AN(BUB")U(BN(AUAY) = (ANB)U(ANB)U(ANB)U(A’'NB)
= (ANB)U(ANB)U(A'NB)

which implies 0(AUB) = o(ANB) + o(ANB’) + o(A’'NnB), a substitution yields the conclusion.
(The reader should notice, then prove, a more generalized form:

o(AUBUC) = o(A) + o(B) + o(C) — o(ANB) — o(BNC) — o(CNA) + o{ANnBNC)
Further generalization can be carried out, of course.)

By hypothesis, B = Bn(A,UA:U---UA4,) = (BNA)U(BNA)U---U(BNA,), which immedi-
ately yields the theorem.

Let R; and Rs be given as in the text, and

R, = (xeA)A(xeB) A (x¢0) R; = (x¢gA)A(xeB) A (xeC)

B; = (xeA)A (x¢gB) A (xeC) By = (x¢A) A (@eB) A (xgC)

R, = (weA)A (x¢B) A(xgC) R: = (x¢A)yA(x¢B) A (xeC)

then @) U = RiURU- - URs (vi) AUB = RiUR:UR3UR,UR;URs

(ii) A = RiUR;UR3UR, (viij ANB = RUR,

(iii)y B = RiUR,UR;URs (viiiy A’'Nn{ANB) = @

(iv) C = RiURsURsUR; (ix) (AuBYNC = RiUR3UR;s

(vy A’ = RsURUR:URs (x) (ANB)YNnC' = R,

(i) 10, (ii) 20
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2.17. a+b+c—d—e—f+g, where g = o(ANBNC) (since

o(AUBUC) o(AUB) + o(C) — o((AUB)NC)
o(A) + o(B) — o(AUB) + o(C) — o({ANCYU(BNC))
o(4) + o(B) + o(C) — 6(AUB) — (o(AUC) + o(BUC) — o(ANBNC)
0(A) + o(B) + o(C) — 0(AUB) — 0o(AUC) — o(BUC) + o(ANBNC)
cf. Prob. 2.13 above and also Prob. 2.19, (iii), below).

| 2.18. @) (ii) P

| —p — 8§ —
‘“—p—4¢
{ —

2.19. Verbally, (i) if an event = is impossible to oceur, it has probability 0; note that the converse
does not hold, since it cannot be said that x is impossible to oceur if P(x)=0. (ii) If x is any
event, it has any probability between absolute impossibility and absolute certainty. (iii) The
probability that at least one of two events x and y occurs is the sum of the probability that «
occurs and the probability that y occurs, from which the probability that both x and y occur
is subtracted.

2.20. As above, verbally, (iv) if « and y are mutually exclusive events, then the probability that
or y occurs, ie. at least one of ¥ and y occurs, is the sum of their individual probabilities.
(v) Either an event occurs or it does not; i.e. the probability that an event x does not occur is
the difference between 1 (certainty) and the probability that = does occur.

Part 3

3.1. There are four (exhaustive and mutually exclusive) types Ay, A., As, As of symmetries with
respect to the four different axes of symmetries, viz.,

(1) A:: two opposite vertices;

(ii) A2 two centers of opposite faces;

(iii) Aa one vertex and the center of its opposite edge;

(iv) A4 two centers of opposite edges.

The regular tetrahedrons, hexahedrons, octahedrons, dodecahedrons, and icosahedrons have,

respectively, A: = 0,4,3,10,6, A, = 0,3,4,6,10, A: = 4,0,0,0,0, A, = 3,6, 6,15, 15. ‘
3.2. There are three exhaustive and mutually exclusive types of rotations:

(i) Ry, with respect to A (cf. Prob. 3.1 above), which yields, counting in the same order as
above, 8,3, 4, 3, 5, respectively;

(ii)  Rs, dually with respect to 4: and A, which yields, respectively, 3,4, 3,5, 3;

(iii) R, with respect to As, where Rs=A. Hence, counting the original position as 1, the
total number is :

B = 14+ AiRi—1)+ As(R.—1) + As(R:— 1) + A, \
and R of the regular octahedron, for instance, is ‘
1+34-1)+4B-1)+08—1)+6 = 24
3.3. By C2-3, ab = a(be) = (ba)e = ba, yielding G5, which in turn implies a(be) = (ba)e = (ab)e,
proving G2; the rest follows immediately, completing the proof.
34. Construct the multiplication table of the given functions under the prescribed operative rule, |

3.5. (i) By cancellation law. (ii) By induction, (bab~®**' = (bab~1)*bab~! = ba*h~'bab-' =
ba***b7h  (If » <0, then bab~'ba 'b~' = ¢, which implies (bab~!)~! = ba=1b~!, hence ‘
(bab™)* = (ba 'b")"" = b(a~)""b~! = ba"b~') (iii) By induction, as in (ii).

3.6. Cf. Th. 3.1.2.8, (ii). ‘
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3.7.

3.8.
3.9.

3.10.

3.11.
3.12.
3.13.
3.14.
3.15.

3.16.

3.17.

3.18.
3.19.

3.20.
3.21(a).

3.21(d).

ANSWERS AND HINTS [Part 3

Actual transpositions: (e b), (b ¢), (¢ @) in (i), (ii), (iii) leave them invariant; hence, by definition,
the proof is complete.

Cf. Prob. 3.7 above.

Since the product of a symmetric polynomial and an alternating polynomial yields the change
of signs by a transposition, it is by definition an alternating polynomial; likewise, by definition,
the product of two alternating polynomials is a symmetric polynomial, since the sign is un-
changed here by transpositions.

In general (12¢)(12a)(123) = (1ab) = (1 a) (1 b), which evidently belongs to G if ¢+ 2
and b#2. Also a+#2 implies (12)(1a) = (12 a) and (1a)(12) = (1a2 = 1a2)(12a);
hence (12)(1a) and (1 a)(12) belong to G and every even permutation belongs to G. If @
contains even one odd permutation, then every odd permutation is the product of itself and an
even permutation. Hence G is an alternating group or a symmetric group (cf. Df.3.1.2.16,18).

Cf. Prob. 3.10 above.

Cf. Th.3.2.1.4,

Cf. Prob. 3.12 above.

Cf. Prob. 3.13 above and Th. 3.2.1.2.

Since, by hypothesis, there exist two integers p and ¢ such that d = pm + gn, it follows
(997 = (g7*7) = (gm™)P (gm)
and also since there exist m’ and n’ such that m =dm’ and n = dn’, it follows
(g™ (gn)? = gomutdwe = (ghymutwy

By Th. 3.2.2.10, the orders of the proper subgroups of S; is either 2 or 3, which implies transpo-
sitions of either (a b), (b ¢),(c @) or (a b ¢), (@ ¢ b), which in turn yield the following four
subgroups:

G (1), (@ b); G (1), ¢); Gz (1), (c a); Ga (1), (¢ b ¢), (@ ¢ b)

The transpositions which leave the polynomial as it is are: (1), (@ b), (¢ d), (a b) (¢ d), and the
transpositions which interchange the terms of the polynomial are: (@ac)(bd),(ad)y(bec),(adbde),
(@ ¢ b d), which altogether do form a subgroup of Si In either case the polynomial remains
unchanged.

Cf. Prob. 3.17 above.

This is a direct result from Prob. 3.18 above, since the number of permutations belonging to S,
is 4! = 24, which is exhausted, mutually exclusively, by M, M(be), and M(bd).

E.g. (ac) = (be)~(ab)(be), ete. 4
1

As can be readily verified, the subgroup O, of the octahedral

group O corresponds to the set of 4 rotations with A; fixed

(cf. the figure at right). Also, in general, if P; represents a rota-

tion which moves 4, to A, 1=1,2,...,6, then every rotation

which belongs to the right-coset O;P: moves A; to A;, and con- A

versely (since QP; ', where Q is the rotation which moves A4, to A;,

moves A: to A, and consequently belongs to O, which implies

Qc0:1P). Hence

0 = 01P1U01P2U"‘U01Ps

which implies the order of O is 4 (i.e. the order of 0:) times 6
(i.e. the number of right-cosets), i.e. 24.

A,

A

Let Vi, i=12,...,5, be the number of the vertices of the regular tetrahedron, hexahedron,
octahedron, dodecahedron, and icosahedron, respectively, i.e. 4,6,8,12,20, and P be the number
of edges which go through a vertex in rotations (cf. Prob. 3.21 above); then the set of
P;, 1=12,...,5, represents the orders of the subgroups formed by rotations with respect to
the given regular polygons, respectively, which also corresponds to the set R; of Prob. 3.2; i.e.
3,3,4,3,5. The total number R of rotations, in this context, is then given by

R = PV, i=12,...5
yielding 12, 24, 24, 60, 60 for the five regular polygons, respectively.
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3.22.
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3.25.

3.26.
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3.30.

3.31.
3.32.
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Cf. §3.1.2, Prob. 5 and Fig. 3.1.2¢, where 0 and 7 forms a right coset C, while 1 and 7-1, 2
and 7+2, 3 and 7 3, constitute the right-cosets C1, C2, C3, respectively. Since the order of D, is 8,

Ds. = CucClucC2u(Cs

On the other hand, there are five conjugate classes with respect to Di; i.e., in the same context,
(i) 0, (i1) 1 and 3, (iii) 2, (iv) 4 and 5, (v) 6 and 7.

For every abe R, ab - |ab| = |a]|b]|.
Use the n diagonals of the regular 2n-gon which connect the n pairs of opposite vertices.
If a and b are the generators of the cyclic groups of order m and =, then correspondence

a' = b' is unique, since ¢' = a’ implies i =) (mod m), hence i=j (modn), which in turn
implies b* = b. Thus a'e’ = a'*! > bi¥? = b'bi is the prescribed homomorphism.

g1 e g:G - gnGl
e = <ayl G ag:Gy - agnG1>
and b - 911G ¢:G1 -+ g.Gy _ ag1G: ag:G1 -+ ag.G:
bg1 Gy bg:Gy -+ b9.Gi /) T \ abg1Gi abg:Gi -+ abg.Gy

do imply a homomorphism:
ab - g1Gy v gaGr\ 91Gi -+ g.Gy ag:Gi -+ ag.Gy
abgiGy -+ abg.G:) = \ag:Gi -+ ag.Gy abgiG: - abg.Gy

Cf. Fig. 3.1.2¢ (8§3.1.2, Prob. 8), where the tetrahedron has two types of rotations, viz.,

(i) B:, with respect to the symmetric axis which goes through the vertices A,B,C,D:
(1), (BCD), (BDC); (1),(ACD),(ADC); (1),(ABD),(ADB); (1),(ABC),(ACB);

(if) R., with respect to the axes connecting the midpoints of AB and CD, AD and BC:

(1), (AB)(CD); (1),(AD)BC). Since these are exactly what A, represents, the isomorphism
is established.

G: is the cyclic subgroup generated by c™.

Since g7'cge 9 'Gig = G: for every element ¢ which belongs to the normal subgroup G: of G,
every element which belongs to the conjugate classes of ¢ belongs also to G..

Cf. §3.1.2, Prob. 4, 6, where (1) forms a subgroup; so does each of {(1), (12)}, {(1), (13)}, {(1),(23)},
{(1), (123), (132)}, and the last subgroup alone is the normal subgroup of S;. Let A = {(1), (13)},
for instance; then, since (123)4 = {(123),(23)} and (132)A = {(132),(12)},

S: = {4, (123)4, (132)A} = {4, A(123), A(132)}
Also, since (18)(1) = (13), (13)(123) = (12), (13)(132) = (23), it follows that B = {(1), (123), (132)}
implies S: = {B,(13)B} = {B, B(13)}; likewise

S: = {B,(12)B} = {B,B(12)}, and S: = {B,(23)B} = {B, B(23)}

Cf. §3.2.4, Prob. 9, (ii) (and also Prob. 8.21(a) above, giving reasons for “why not”).

Let A1, A2, As be moved to Ai(R), Ax(R), As(R) by a rotation R
which belongs to the octahedral group O; then the correspondence

R N <A1 AZ A3
Ai(R) Ax(R) As(R)

uniquely maps O onto S; of A1, As, As; and another similar cor-
respondence R’, together with RR’, establishes the desired homo-
morphism (cf. Prob. 3.26 above) of O onto the subset K of S,
corresponding to Vi Since the orders of O and S; are 24 and 6,
respectively, the order of the kernel K is 4, by Th. 3.2.3.7 and
Th. 3.2.6, 15, coinciding with that of V., of course.
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3.34.

*3.35.
*3.36.

*4.1.

*4.2,
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4.8.

4.9.

4.10(a).
4.10(b).

4.11.

4.12.
4.13.
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G/N is a cyclic group since it is of order p. Let one of its generators be Na; then all cosets of N
are N,Na,...,Na*"', If ¢e N and ¢7*e¢, then ca'=dc, since a ' Na' = N. Since every
element of G can be expressed as either ai or cal, while dicai = caigi = cald!, calca’ = ceaiai =
cea’d’ = ca‘cd), the proof is complete,

Since G has a subgroup G; of order 2, let the right-cosets be Giay, Gias, Gias, and let the

permutation
Gia, G1(l2 Gias
<G1a16 Graze G1a30>
correspond to ce G, yielding a homomorphism H of G onto Ss. If K is the kernel of G and ceK,
while ¢+ ¢, then Gia: = Giaie, which implies a7'Gia; = a ' Giai¢, which in turn implies
cea;*Gia;. Likewise c¢ a;'Gias, cea;'Gias. Hence ce Gi, and G, = {e,c}, which implies
a ' Giay = a;' Grar = a; ' Gias, which in turn makes G: a normal subgroup of order 2 and also

commutative (cf. Prob. 3.33 above), contradicting the hypothesis. Hence K = {e}, and since G
is of order 6, it is now isomorphic to Si.

Cf. Th. 3.2.7.9. *3.37. Cf. Prob. 3.36 above.
Cf. Df. 3.2.7.8a, *3.38. Cf. Th. 3.2.7.3.

Part 4

Consider two sets N; and N. which satisfy N1-4, establishing an isomorphism between them.
(Note. Rings in general, on the other hand, offers many examples of an tncomplete axiomatic
system, for there do exist non-isomorphic rings, e.g. finite and infinite rings.)

Find, for each of N1-4, a set (or model) which does not satisfy it while it satisfies all the rest.
(E.g. if N consists of three elements a, b, ¢ such that
a’ =b, b =, ¢ =a

then N1 cannot be satisfied here while N2-4 (or some equivalents) can.

Prove, first, that there exists at most one mapping which establishes a correspondence between
every ae N and a number x., given be N, such that #1="b" and also x. = (). Prove, then,
the existence of a correspondence between every ae N, given beN, and a-+b such that
b+1 =¥ and b+a = (b+a)’ for every a and some b.

Cf. Prob. 4.3 above.
Cf. §4.1.2.8, Prob. 13.

If NCS, where every element of S is a difference between two elements of N, then S is a minimal
ring, i.e. I, since any subring which contains N contains all differences in N (cf. Th. 4.1.1.7) and
thus coincides with S. Conversely, if S is a minimal ring (i.e. I), then Prob. 18 of §4.1.1 leads to
the desired conclusion.

Cf. Prob. 4.7 above, then consider two rings R, and R: which contain N, establishing- an
isomorphism between them.

The meet of all subrings of B which contain N is also a subring (cf. §4.2.1, Prob. 5), in fact a
minimal subring; for it is contained in any subring which contains N, and this is indeed I.
Verify D1-11 with respect to I, in particular D11, and finally prove that a-1 = ¢ for any ael.
Let a,bel and a>b; then ¢a—b = ¢ is a positive integer (cf. Df.4.1.2.2.5), i.e. ce N. On the
other hand, if a,be N, then ¢ = b+ ¢, which means ¢ >b in N (cf. Df. 4.1.2.3.2).

(i) @ < b+1 implies xe N, where =1, such that a2 = b+1, and if =1, then a=b,
while if x> 1, then there exists yeN such that x = y+ 1, which implies (a+y)+1 =
a+(y+1) =a+a = b+1, which in turn implies a+y = b, ie. a<b.

(ii)-(iii) By induction.

Cf. Df. 4.1.2.3.5; also Prob. 18-22 of §4.1.2.3.

Since (a,b) = d divides ax + by for any wx,ycl, din if ax+by = n has a solution at all
(ef. §4.1.2.3, Prob. 32), Conversely, if d|n, then let n = m'd, yielding n = w'(ax’ + by'y =
a(n’«s’) + b(n'y’), which reveals that = = n’z’ and Yy = »'y’ constitute a solution of the equation.
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4.15.

4.16.
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4.22,
4.23.

4.24.

4.25.

*4.26-31.
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(i) Cf. §4.1.2.3, Prob. 33.
(ii) Prove, first, that p|,C: (since ,C. = (p(p—1)---(p—7r+ 1)/r!
= (M(p—1---(p—r+1))/(r—1)! ete).
Then, expanding by the Binomial Theorem,
(@a+b)p —ar — b = ,Cia?7'b + CoaP72b* + -+ + Cp abr~?

where, since it is now known that p|,Ci, etec., p|((a+b)?—a?—b?). Likewise, letting

(e — b)» = pPn* by hypothesis, p®| (a® — b?).
Let (a+b,a—b) = d; then, since (a,b) = 1 by hypothesis and d(a,b) = d = (da, db), it follows
that (a+b,a—b) = (de,db), implying a+b = ad and a—b = bd, which yield a =d(a + b)/2,
b = d(e—b)/2. Hence 2|d, and since a+b and ¢ —b cannot be both simultaneously even,
d=2 (since if d =2k, then « = k(a+b), b = kla—b), and (a,0) = k # 1, contradicting the
given hypothesis).

By induction and Df. 4.1.2.3.18.

By hypothesis p | (a + b)(@e—b) = a?~—b?, which implies p|(a—b) or p | (a+Dd), i.e. @ =b (mod p)
or a=—b (modp).

Several proofs are available (e.g. cf. Th. 3.2.6.13) for this Fermat’s theorem, and the following
is one of the most elementary and direct approach: by the Multinomial Theorem,

(wt+y+- ") = ap+y*+ - + Splminl - Yamyre .
k—_w—/ \_—Y——/
a a
where p | 2 (p!/(m!n!---)), and letting x =y = --+ =1,

@ =1+1+--+1+ ZpYm!nl---)) = a+kp, ie a®—a=kp
a
where » | (a#7*—1) since (a,p) = 1.
By induction and Df. 4.1.2.3.18.
2 =5 (mod 11).
x =75 (mod 88).
x = 67 (mod 90).
(i) By the Binomial Theorem, (¢+b)? = a? + ,Cia®'b+ -+ + »Cp—1ab?™ ! 4+ b?, where
L = (plp—1)-(p—k+1)/k!, k=2,3,...,p1

which must be a multiple of p as a whole while its denominator is not divisible by p.
Hence, by hypothesis,

Cra? *b* = ,Crea? *b* = 0, ie. (a+b)r =a?+b?

(ii) Substitute (@ — b) for a in (i), and the desired result is immediately obtained.

(iii) Generalize (i) by induction.

Since a field F contains at least one subfield (e.g. itself), the meet M of all subfields of F is
always obtainable, which is a subfield of F itself (cf. §4.2.1, Prob. 5). Let M’ be a subfield of M

and different from M; then M'CF, yet M ¢M’, which is evidently a contradiction; M is thus a
prime field.

Furthermore, if M’ is also a prime field of F, then MNM" = L C F, while LCM and
LcM”, which imply that L is a subfield of both M and M", ie. two prime fields. Hence
M = M’ = L, proving its uniqueness.

Let ac F and a#0; then, by Th.4.1.2.4.13, there exists neN such that ne>0 if ¢>0, and
na+# 0 for any nel, n+#0, since (—m)a = —na. If a <0, then —a >0, and likewise n(—a) =
—na # 0 for any nel, n0. In either case a0 and n+# 0 imply na +#0.

Cf. Th. 4.1.2.5.19.

By matric multiplication,

- 0—1 0+0 . i
12 = = - = 72 = 2
¢ [0+0 —1+0} I I k
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4.45.

4.46.

4.47.

4.48.

4.49.
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4.51-53.
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o _ o—i oto| _ [-io]|
and veo= [o+o i+0J [o i:| =k
- 0+i 040 i 0 i
. - -
while " [0+0 —i+0] [0 —z}

likewise, jk =1, kj=—i, ki=7j, ik = —j, verifying Df.4.1.3.1.3.
Cf. Df. 4.1.3.1.5, Df. 4.1.3.1.11, and carry out actual computations.
(i) (—5/2, 1, —3/2), (ii) (0, —13/4, 1/4), (iii) 2b.

Assume a(1,2,7) + b(—2,5,4) + ¢(—1, 4, 5) = 0, then solve it for a,b,¢, which in this case
turn out to be not all zero; hence the vectors are linearly dependent, by Df. 4.1.3.2.4.

By Df.4.1.3.2.4,7,

By actual scalar and matric multiplication in f(A).

Let « = | ® b , and find the relation among a, b, ¢,d; ie. » = a b .
c d —2a —2b

ad 0 0
Any matrix of the form: X = 0 b 0
0 0 ¢

Cf. Df.4.1.8.2.19, 20, 21.
Cf. §4.1.3.2, Prob. 33.

(i)-(iv) Cf. §4.1.3.2, Prob. 38-41.

-9 2 1
|A|=—2, A* = [ 2 2 —2] |A*| =4, A-1=—4%/2,
1 -2 1

—2/3 -1/3 —2/3

[ 1/3 —14/15 2/15}
2/3  2/15 —11/15]

AX = B » A Y (AX) = A"'B > X = A~'B, while A(A7'B) = (AA~Y“B = B. Hence A™'B
uniquely satisfies AX = B, Likewise BA~! uniquely satisfies YA =B. Hence A'B = BA-},
ie. X=Y, if AB=BA.

Let M be a minimal subfield of a field F; then the elements of the form: ne, n = 0,1,2,..., belong
to M. TFurthermore, if n 0, x ¢ M such that nex = me can be expressed as (n,m) and, likewise,
ZeM such that nex = —me may be represented as (n,—m). Consider, then, R as the quotient
field whose elements are of the form: (»,9), p,gel.

Cf. the following addition and multiplication table for I/E:

+ | E 1+E X | E 1+ E
E 1+E E E E
1+FE 1+E E 1+E E 1+E

Since 2+3 =6, 2+5 = 10, and 6,10 (2), it follows that 3 and 5 are also ring elements in I,
which implies (6,10) C (2), while also (2) € (6,10) since 2 is of the form: 6x+ 10y (x =2 and
¥ =—1, in this case).

Utilize the fact that every cyeclic subgroup of a cyclic group is again cyclic.

Cf. Df. 4.2.3.7.

Cf. Df. 4.2.2.11.

Cf. §4.2.3.
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Part 5

Cf. Th. 4.1.2.4.6, and prove that there uniquely exists (x/y), %,y eI, such that (i) (a/b) — (x/y) =
(e/d), (ii) (a'/b)/(x/y) = (¢'/d’), where x/y # 0.

If A+ C = B, then it is trivially true that ACB (since a+c¢ = b, for acA,beB,ceC, implies
@< b and ACB, while there exists some aeA for every reC such that a+re A’, implying
A # B). Conversely, if ACB, define C to be the set of all elements of the form: c¢:— ¢1, where
e1< c¢:and ¢1,¢ e A'NB. Then, for every acA, a+(cz—¢c1) = ¢2— (1 — a) < ¢, which implies
a+(c:—e)e B, ie. A+CCB. Likewise, BC A+ C can be proved, and A+C = B.

Choose ne N such that m>1/s, i.e. ns>1 for some seS, then use Th.5.1.2.2 by letting
r = (p—1)/n.

By induction.

Cf. Df.5.1.2.1 and Th.5.1.2.18. (Note. R is the only ordered field which satisfies this theorem.)

Cf. Df.5.1.2.15, and verify the existence of sequences without limits over B (cf. also Prob. 24-26
of §5.1.2). Or, more directly, consider the set R’ of all rational numbers less than, say e
(=2.71...), which then has an upper bound (e.g. 2); further, assume R’ to have a lLub., say r.
Then, by Th.5.1.1.5, r is not even an upper bound of R’ if r <e, and also if r <e, it is not the
Lu.b., either.

Cf. Prob. 43-44 of §5.1.2.

By hypothesis n* > 0, and also by hypothesis, since F is Archimedean ordered, there exist r,8e N
such that rn* > a, sn* > —a, the latter of which implies (—s)n* < ¢, which further implies that
a set S of integers t such that tn* = @ contains —s and is consequently not empty. Also, since
t<r, S is bounded above and contains the greatest integer m, excluding m +1 from S; hence
the conclusion.

Prove, by induction, %* >k, where n>1 by hypothesis, which implies n*a > 1, since ¢ >0 and
there exists ke N such that ka > 1.

By induction.
Use the result of Prob. 5.10 above.

Verify, first n/(lai+ - +1/a) = Vair—an = (a+ - +ax)/n then replace ay...,an by
1/(s—a1),. . ., 1/(s—an).

If it is not irreducible, then it must have rational roots which in this case must be *1, *1/2, £1/4
(cf. Th. 5.2.3.8), none of which is a zero of the given polynomial, however.

If there exist a factor with the roots 7,...,m, then # = r;:++7rn is rational and r*=a™, which
implies that » must be a rational root of " —a™, which is impossible if m <=, however.

Cf. Prob. 5.14 above.

Assume it to be reducible, then consider the homogeneity of the polynomial.

Cf. Th. 5.2.1.12.

Cf. Prob.5.17 and Th.5.2.1.12.

k = —5™~145 — 5™ where m is a positive integer and r is any integer which is not divisible by 5.
x® + (p?+ 3pq +3r)x® + 3r2—8pgr + ¢ + 1 = 0

Cf. Prob. 27 of §5.2.3.

i) Py *+pury '+ +py+1l =0

() vy =Py E Ryt s + (C1)Pe = 0

(iit) ¥+ kpy" '+ By A+ s BT paiy + Epa = 0
iv) y—m)+py—m) "+ s Fpaaly—m)+p =0
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5.31.
5.32.
*5.33.
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5.46-47.
5.48-51.

5.52.

ANSWERS AND HINTS [Part 5

By hypothesis f(x) = f(1/x), which immediately yields ao/an = ay/tn-y = +++ = @n-yfas = anft,
leading to the desired conclusion.

Let ¢/p, where p > 0 and (p,q) = 1, be a rational root of the equation; then (¢°/p) + a(g/p) + b = 0,
ie. ¢*+apq+bp: =0, or —q = plag+ bp), which implies p|q® if p>1, hence P | q, contra-
dicting the assumption; hence p =1, yielding the desired conclusion.
3+ \3/§c - \3/-9, 3+ \3/§c - \3/502, 3+ %cz - %c, where ¢ is the imaginary cubic root of 1.
—3, 5, —1 %4,
i) D = —(4p*+27¢"), (i) D = (4(p*+ 12r)* — (2p® — T2pr + 27¢%%)/27.
ah — 3bg + 3¢f —de = 0
Vry -4 -3 +3y+1 =0
Use i+ 22+ -« + 00 = na + (n(n—1)/2)d = —p,. Cf. Th.5.2.34.
2"l — nan Tt 4 (nn—1)/2Dx*3 — - 4 —)*"'n = 0
f(x) = (¥ —r)g(x), yielding at once f(m) = (m —r)g(m), where fm),m—r,gm)el.
3.
If @i, %2, x3, x4 are the given four roots, then by hypothesis
(#1202 ~— wa@a)(H123 — Lo wa)(wy 22 — x223) = 0
which is symmetric; apply, therefore, Th. 5.2.3.4, to get the desired result.
Cf. Df. 5.2.2.1a, and consider the problem in terms of permutations.
Cf. Th. 4.1.2.5.19.

Prove, first, that F[a,b] is simple when a and b are algebraic over F, ie. F[a,b] = F[¢] for
some ¢ algebraic over F; then generalize.

Since F[Va] has elements of the form b -+ eVa, where b,ce F, let
glx) = 2™+ (bi+ ervVa)em ! 4+ -0 + (b + emVa)

and consider

J(x) 2™ + (b — erVa)a™t + oo+ (b — enVa)

Cf. Th. 5.3.1.15.

The first part of the theorem is readily verified, and since R is the minimal subfield of F, any
number field containing V3 must contain every number of the given form.

Let p/q = a+bV2, where a,be R, and take u,ve R such that le—ul = 1/2, |b—v| = 1/2;
then s = u+ vy/2 is an integer. Since r = p—gs is also an integer and p/qg—s = (@ —u) +
(b —v)V2, it follows

INT| = |Ng-N((p/g) —8)| = [Nq||(a—u)? — 2(b—v)*| = [Ng|/2 < |Ng|

If (c+dvm)/2 = (e—d)/2+d(1+vVm)/2 is a rational integer, so are (¢ —d)/2 and d, since
¢ =d (mod 2). Conversely, if ¢ and b are any rational integers, then

a+b(l+vVm)/2 = ((2a+b) + bym))/2
which is a rational integer, since 2a¢+b = b (mod 2).
Cf. Df.5.3.2.183.
Cf. Df.5.3.2.11.
Cf. Th.5.3.2.12.
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Abel’s theorem, 284 Binomial
Abelian group, 66 equation, 282

Absolute value, 143 theorem, 27
of complex numbers, 237 Boolean
in ordered domains, 143 algebra, 56
of quaternions, 176 ring, 139

Buniakovski’s inequality (see Cauchy-Schwarz
inequality)

Absorption law, 50, 56
Abstract group (i.e. group in general), 65
Addition (see Disjunction, Join, Sum, Union), 32
of complex numbers, 236
of (Dedekind) cuts, 220
of matrices, 181
of natural numbers, 147
of polynomials, 165
of quaternions, 175
in quotient field, 160
of sets, 40
of vectors, 179
Additive group, 66, 69, ete.
Additive inverse, 69, 131
Adjoint, 184

Cancellation law,
additive, 132
for congruences, 149
for groups, 66
for integral domains, 141
multiplicative, 141
Cantor sequence, 222
Cap (see Meet)
Cardano’s theorem, 287
Cardinal number, 5
Cartesian product (see Direct product)
Cauchy-Cantor sequence (see Cantor sequence)
Cauchy-Schwarz inequality (see Schwarz

Adjunction, 165, 301
Aleph-null, 26
Aleph-one, 26
Algebraic
element, 301
extension, 301
integer, 313
number, 312
Algebraically complete (closed), 312
Alternating group, 75
Anti-automorphism, 176
Anti-symmetry, 49

Archimedean (ordered), 152, 161, etec.

Argument, 237
Associate, 148
Associative law, 32

for Boolean algebras, 58

for fields, 159

for groups, 65

for lattices, 50

for matrices, 188

for quaternions, 177

for rings, 131

for sets, 41

for transformations, 37

for vectors, 185
Automorphism, 36

anti-, 176

identity, 214

inner, 106

order, 214

outer, 106

reciprocal, 176
Axiom

of choice, 51

of completeness, 222

of extension, 24

Basis
for Abelian groups, 124
for finite extensions, 302
of vector spaces, 181

Bijective transformation (see Transformation)

Binary
connective, 2
operation, 31
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inequality)
Caylay table (cf. Multiplication table)
Caylay’s theorem, 84
Cell, 42
Centralizer, 101
Center of a group, 102
Chain rule (see Syllogism principle)
Characteristic, 142
Circuit (designs),
parallel, 56, 61
series, 56, 62
Class, 41
equation, 96
Closure, 32, 65, 131, ete.
Coefficient, 165
Cofactor, 184
Column matrix, 181
Commutative
group (see Abelian group)
ring, 131
sfield, 175
Commutative law, 32
for Boolean algebras, 58
for fields, 159
for groups, 66
for lattices, 50
for matrices, 188
for quaternions, 177
for rings, 131
for sets, 41
for vectors, 185
Complement
in a Boolean algebra, 56
in a lattice, 50
of a set, 40
Complete ordered field, 222
Complex, 66
Complex number, 236
field, 236
plane, 237
Component {(or coordinate)
of a complex number, 236
of a quaternion, 175
of a vector, 179
Composite (number), 148
Composite (see Product)
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Composition

index, 122

series, 122
Condition,

necessary, 20

sufficient, 20
Conformability, 182
Congruence, 116, 149f., ete.
Conjugate

complex numbers, 237

Gaussian integers, 312

quaternions, 176

subgroups, 96
Conjunction, 2
Connective (see Logical connective)
Constant, 13

term, 167
Contradiction, 3
Contrapositive (or opposite converse), 10, 21
Coordinate (see Component)
Correspondence,

many-one, 35

one-one, 25
Coset,

left, 95

right, 95
Countable (see Denumerable)
Cramer’s Rule, 192
Cubie

equation, 283

field, 161
Cup (see Join)
Cut (see Dedekind cut)
Cycles, 74
Cyclic

group, 90

permutation, 136

Decimals, 30
Decomposition,
left, 96
right, 96
Dedekind cut, 219
Deductive inference (see Logical inference)
Degree
of algebraic elements, 303
of finite extensions, 302
of permutations, 72
of polynomials, 181
De Moivre theorem, 237
Demonstration, 19
Denumerable, 26
Dependence,
functional, 272
linear, 180, 302
Determinant, 183
of Mébius mappings, 249
Diagonal matrix (see Matrix)
Difference, 142, 147
group, 116
Dihedral group, 77
Dimension
of indeterminates, 168
of vectors, 181
Direct (or Cartesian)
product, 34, 123
sum, 203
Discriminant
of cubic equations, 323
of quadratic equations, 283
of quartic equations, 323
Disjoint, 42
cycles, 75
Disjunction, 2
Distributive lattice, 50
Distributive law, 32
for Boolean algebras, 56
for fields, 159

INDEX

Distributive law (cont.)
for integers, 147
for lattices, 50
for matrices, 188
for quaternions, 177
for rings, 131
for sets, 41
for vectors, 179
Divisibility, 148
Division algorithm
for integers, 148, 202
for polynomials over a field, 251
for polynomials over a ring, 167
Division ring, 175
Divisor, 148
zero, 131
Domain,
Gaussian, 252
integral, 141
of function, 34
Dot product, 182
Duality principle, 32

Eisenstein's theorem, 252
Elementary symmetric funection, 271
Embedded, 198
Endomorphism, 36

of groups, 105

of rings, 132
Equivalence,

of algebras, 56

relation, 25
Euclidean algorithm

for Gaussian integers, 324

for integers, 149, 156

for polynomials, 252
Euclidean

geometry, 21

ring, 203

(vector) space, 179
Even permutation, 75
Existential quantification, 13
Extension

finite, 302

multiple algebraic, 302

simple algebraic, 302

transcendental, 302

Factor, 148
group, 115
ring, 206
Factor theorem, 168
Fermat’s theorem, 117, 211 (Prob. 4.17)
Ferrari-Euler’s theorem, 283
Field, 159
algebraic (number), 311
Archimedean ordered, 161
complete ordered, 222
complex number, 236
cubic, 161
Gaussian number, 312
noncommutative, 175
number, 160
ordered, 161
prime (or minimal), 159
quasi-, 175
quotient, 160
rational number, 214
real number, 221
skew, 175
sub-, 159
Finite
extension, 302
field, 160
group, 67
induction, 33
set, 26
Finite induction principle, 33
Form, 166




Four group, 76
Fraction, 160
Function, 34
polynomial, 166
Functional
calculus, 13
dependence, 272
independence, 272
Fundamental Theorem
of algebra, 281
of arithmetic, 149

Galois field, 160
Gauss’ theorem, 252
Gaussian
domain, 252
integer, 313
number, 312
Generalization principle, 15
Generator
of field extensions, 301
of groups, 90
of ideals, 202
of vector spaces, 180
Greatest common divisor (g.c.d.), 149
Greatest lower bound (g.lb.), 49, 221
Group, 65
Abelian (or commutative), 66
additive Abelian, 66
alternating, 75
composition-quotient, 122
demi-, 66
difference, 116
dihedral, 77
factor, 115
finite, 67
four, 76
Hamiltonian, 110
infinite, 67
loop, 66
monoid, 66
octice, 108-9
of quaternions, 108, 110, 115
of transformations, 72
of translations, 77
permutation, 73
quasi-, 66
quotient, 115
semi, 66
simple, 110
symmetric (permutation or substitution), 74
sub-, 66
Groupoid, 31

Hamilton
group, 116
number couple, 236
quadruple, 175
Height, 29
Homogeneous polynomial, 168
Homographic mapping, 238
Homomorphism, 35
improper, 206
of groups, 83
of rings (and similarly, of domains, fields,
ete.), 132
proper, 206
Hypercomplex number, 179

Ideal, 201
improper, 202
left, 202
maximal, 207
prime, 206
principal, 202
proper, 202
right, 202
two-sided, 202

INDEX
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Ideal (cont.)
unit, 202
zero, 202
Idempotent law
for Boolean algebras, 57
for lattices, 50
for sets, 41
Identity, 33
element, 50, 56, 65, 131, 159, 187, etec.
of indiscernibles principle, 1
left, 65
matrix, 183
operation, 105
permutation, 74
right, 65
transformation, 37
Image, 34
Imaginary part (or component), 236
Inclusion, 24, 66
Independence
functional, 272
linear, 180, 302
Indeterminate, 165
Index, 96
composition, 122
Induction principle, 33
Inequality
Schwarz, 143
triangle, 143
Inference principle, 4
Infimum (see Greatest lower bound)
Infinite
characteristic, 142
group, 67
set, 26
Injective transformation, 34
Inner automorphism, 106
Inner product, 182
Integers, 147
algebraic, 313
rational, 147
Integral domain, 141
Intersection, 40
Into, 35
Invariant subgroup, 110
Inverse, 33
element, 50, 56, 65, 131, 159, 187, etc.
left, 65
matrix, 185
permutation, 74
right, 65
transformation, 37
Irrational number, 30, 220
Irreducible polynomial, 252
Isomorphism, 35
of groups, 84
of rings (integral domains, fields, etc.), 132

Join, 40

of classes, 31-2

of cosets, 96

of subsets, 40
Joint denial, 9
Jordan-Hélder’s theorem, 123

Kernel, 111
Klein's group (see Four group)
Kronecker delta, 184

Lagrange’s theorem, 96
Lattice, 50

Boolean, 50

complemented, 50

distributive, 50

modular (or Dedekind), 50
Leading coefficient, 167
Least common multiple (l.e.m.), 149
Least upper bound (lL.u.b.), 49, 221



338 INDEX

Left Operand, 31
coset, 95 Operator, 31, 105
decomposition, 96 Order
ideal, 202 automorphism, 214
identity, 65 isomorphism, 221
inverse, 65 of an element of a group, 90
Linear of a group, 67
combination, 149, 180 of a square matrix, 183
dependence, 180, 302 Ordered
independence, 180, 302 Archimedean, 161
space, 179 domain, 142
sum, 180 field, 221
Lower bounds, 49, 221 partly, 49
Ordering, 50
Map, 34 partial, 51
Mapping (see Transformation) simple, 51
Mathematical induction, 33 well-ordering, 33, 51
Matric product, 182 Outer automorphism, 106

Matrix, 181
column, 181

diagonal, 183 Parallel, 21

identity, 183 Partial fraction, 252

multiplication, 182 Partition, 42

nonsingular, 184 Peano axioms, 146

row, 181 Permutation, 73

scalar, 183 circular, 74

square, 183 cyclie, 73

sub-, 184 even, 75

zero, 183 identity, 74
Maximal inverse, 74

ideal, 207 odd, 75

normal subgroup, 122 symmetric, 74
Meaning, 1 Polynomial, 165
Mean-value theorem, 281 elementary symmetric, 271
Meet, 40 function, 166

of classes, 41-2 homogeneous, 168

of sets, 40 irreducible, 252

of subfields, 200 monice, 167
Metatheorem (see Introduction) pr}m?,.252
Minimal primitive, 252

field, 159, 198 reducible, 252

generating system, 124 _relatlvely prime, 252
Minor, 184 symmetric, 270
Mébius (or linear or homographic) mapping, 238 PO?’“"e integers, 142
Modular lattice, 50 Prime, 149
Module, 66 field, 159
Modulus, 149, 237 ideal, 206
Monic polynomial, 167 relatively, 149

Monoid, 66 Primitive (or postulate or axiom), 4

Multi ial Th , 331 Principal ideal, 202
MElt;;f:IiZS corem, 33 Principia Mathemat_ica, 4
algebraic extension, 302 Product (or composite),
Multiplication table, 75 direct (or Cartesian), 34, 123
Multiplicity, 280 ’ dot (or scalar or inner), 182

matric, 182
of elements of a group, 65

Negation, 2 of subsets of a set, 95
Negative inference (or contrapositive) principle, 4 of transformation, 36
Nilfactor, 189 scalar, 179, 181
Norm Proof, 19

of Gaussian integers, 318 Proper

of Gaussian numbers, 312 divisor, 148

of quaternions, 176 homomorphism, 206
Normal subgroup, 110 ideal, 202
Normalizer, 101 subgroup, 66
Null subset, 25

operator, 105 Proposition (or statement), 1

set, 25 existential, 13

space, 181 universal, 13
Number field,

algebraie, 311

complex, 236 Quadratic

rational, 214 equation, 283

real, 221 field, 161
Odd Permutation (cf. permutation) Quantification, 13
One-to-one (or one-one) correspondence, 25, 35 Quantifier,
Onto, 35 existential, 13

into (i.e. onto and into), 35, 84, etc. universal, 13

or into, 83, etc. Quartic equation, 283




Quasi-

field (see Sfield)

group, 66
Quaternjon group (see Group)
Quaternions, 175
Quintic equation, 284
Quotient, 160, 167, 251

field, 160

group, 115

ring, 206

Radical (root extraction), 283
Range, 34
Rational
form, 257
integer, 147
number, 29, 214
number field, 214
Real
number field, 221
numbers, 29, 221
part (component), 236
Reciprocal automorphism, 176
Reducible polynomial, 252
Referent, 34, 49
Reflection, 77
Reflexive law, 25
Relation, 34
Relative prime, 149
Relatum, 34, 49
Remainder class, 116
Remainder theorem, 168, 251
Residue class, 116
domain, 142
group, 116
ring, 135, 198
Right
coset, 95
decomposition, 96
ideal, 202
identity, 65
inverse, 65
Ring, 131
adjunction, 165
commutative, 131, 139
divigion, 175
noncommutative, 131, 175
principal ideal, 202
sub-, 132
with unity, 131
with zero-divisors, 131
Root (or zero), 168, 251
of cubic equations, 283
of quadratic equations, 283
of quartic equations, 283
Rotation, 76
Row matrix, 181

Scalar
matrix, 183
multiplication, 179, 181
preduct, 179, 181
Schwarz inequality, 143
Sequence,
Cauchy-Cantor, 222
logical, 19
Set, 24
Sfield, 175
Sign, 1
Descartes’ rule, 282
Simple extension, 302
Singleton, 24
Skew field, 175
Spanned (or generated), 180
Specialization principle, 15
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Square matrix, 183
Subdomain, 141
Subfield, 159

minimal (or prime), 159, 198
Subgroup, 66

common, 90

conjugate, 110

cyelie, 90

invariant, 110

maximal normal, 122

normal, 110

self-conjugate, 110
Subring, 132, 198
Subspace, 180
Substitution principle, 3
Successor, 147
Sum (see Join, etc.)

direct, 203

linear, 180
Supremum (see Least upper bound)
Surjective transformation, 35
Syllogism principle, 5
Symmetrie, 25

anti-, 49

group, 74

polynomial, 270

Tautology, 3
Total matric algebra, 185
Transcendental, 301
Transform, 31, 96
Transformation, 34

bijective, 35

injective, 35

linear, 238

surjective, 35
Transforming element, 96
Transitive, 25
Translation, 77
Transpose, 184
Transposition, 75
Triangle inequality, 143
Trichotomy, 142
Truth table, 2

Unary operation, 31
Union (see Join, etc.)
Unique factorization theorem, 149, 252
Unit, 148
Unit set, 24
Unity, 131
Universal
bounds, 50
proposition, 13
quantifier, 13
Upper bounds, 49, 221

Variable, 13
bound, 13
free (flagged), 13
Vector, 179
space, 179
Venn diagram, 14
Vierergruppe (see Four group)

Well-ordering principle, 33 \
Wronskian, 194

Zermero’s postulate, 33 |
Zero

divisor, 131

ideal, 202 ‘

matrix, 183

subspace, 180

vector, 180 ‘
Zorn’s lemma, 51
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