

1. Advanced Linux Programming

Process Management

 What a Process Is

 Process Relationships

 Create a Child Process

 Doing Something Else

 Related execve() Functions

 Wait For a Child

 Changing Priority/Nice

 Real Time Priority

Advance Process Management(Programming with Threads)

 Introducing Threaded Programming

 Applications Suited to Threads

 Building Threaded Programs

 Creating Threads

 Thread Identity

 Synchronizing by Joining

 Stopping Threads

 Synchronizing with Mutexes

 Using Mutexes

Memory Operations

 Allocating/Freeing Memory

 Memory Alignment

 Locked Memory

 Memory Copy/Initialization

 Memory Comparison/Search

File Operations

 Opening/Closing File Descriptors

 File Descriptor I/O

 Repositioning File Descriptors

 Stream/File Descriptor Conversions

 cat using POSIX I/O

Process Scheduling

 Linux’s Process Scheduler

 Complete Fair Schuduling

 Process Priority

 Changing Priority/Nice

 Changing Scheduling Policy

 Signals

 What Signals Are

 Handling Signals with signal()

 Sending Signals

Interprocess Communication

 Communicating with Pipes

 System Call: pipe()

 Using pipe()

 Named Pipes

 Using Named Pipes

 For Further Reading

 Interprocess Communication (IPC)

 System V IPC Overview

 System V IPC Shared Memory

Computer Network Programming

 Introduction to Networking

 Need/Uses of Networking

 Use of Layered architecture

 OSI Protocol layers

 Ethernet, Token Ring, Token Bus, FDDI

 TCP/IP Stack Internals

 User datagram Protocol (UDP)

 Transmission Control Protocol (TCP)

 Socket concepts

 Socket API Interface

 Client VS Server

 Connectionless and connection oriented client-server communication.

 Socket calls for UDP/TCP server/client

 Iterative vs concurrent servers

 Iterative Connection-less servers (UDP)

 Iterative Connection-Oriented servers (TCP)

The GNU C Library and System Calls

 GNU C Library - glibc

 tools-objdump,file,strace

 types of executable

 static executable

 dynamic executable

 Building Libraries

 Why Use Libraries?

 Static Versus Shared

 Static Library Benefits

 Shared Library Benefits

 Creating a Static Library

 Using Static Libraries

 Creating a Shared Library

 Using Shared Libraries

 Shared Library Management

 ldconfig

2.Linux kernel Programming and Character Device Driver Programming

Kernel Classifications

 Monolithic Kernels

 Micro Kernels

 The User space & Kernel space

 Tool Chains, Libraries, The Makefile

Module Programming

 The HelloWorld Module

 Module Stacking

 Module Parameters

 System Calls

The Virtual Filesystem

 Common Filesystem Interface

 Filesystem Abstraction Layer

 VFS Objects and Their Data Structures

 super block

 inode block

 data block

 boot block

Memory Management

 Kernel High level MMU

 Kernel Low level MMU

 Kernel Memory Allocators

 slab allocator

 page allocator

 fragment allocator

 pool allocator

Interrupts

 Handling I/O

 I/O Architecture

 I/O Mapped I/O

 Memory Mapped I/O

 Interrupts & Registering Interrupt Handlers

 Interrupt Context vs Process Context

Interrupts Bottom Halves

 Soft irqs

 Tasklets

 Work Queues

 Kernel Data Types

Kernel Synchronization

 Critical Sections, Race Conditions

 Concurrency and its Sources

Mechanisms for Kernel Synchronization

 Semaphores

 Reader/ Writer Semaphores

 Spinlocks

 Reader/ Writer Spinlocks

 Atomic Operations

Memory Allocation in the kernel

Kernel Timers and Time Management

 HZ & Jiffies, Delays

 Kernel Timers

Porc FS

 virtual file systems.

 information about processes

 communication between kernel space and user space

 /proc/interrupts

 /proc/meminfo

 /proc/cpuinfo

 /proc/devices

 /proc/ioports

Sys FS

 Enumeration of the devices and busses attached to the system

 file system hierarchy

Character Drivers and Operations

 Registering a System Call

 System Call Handler

 Service Routines

 Character Drivers

 Synchronous Driver model

 Device Numbers

 Major and Minor Numbers

 Registering and Unregistering

 Static and Dynamic allocations

 Important Structures

 File Operations

 File

 Inode

 Character Devices

 cdev structure

 Adding, Allocating, Initializing and Deleting

 User Space Applications and Device Driver mapping

 Device file operations

 Access methods within the driver, open, read, write and close

 Advanced Character Drivers

 Ioctl implementations

 Wait queues and pollings

Accessing Hardware

 Accessing I/O Ports

 Accessing I/O Memoiry

3.Advance Linux Device Drivers

 I.USB Driver

 USB Architecture & Protocol

 Types of Descriptors

 URB structure creation

 USB subsystems

 USB Driver Layered Architecture

 USB Device Drivers

 Understanding the USB framework.

 Programming the Control Endpoint Zero.

 Exchanging the Interrupt Messages

 File System Implementation

 Virtual File System & its Role

 File System Design & Challenges

 Kernel File System & and its Operation Sets

 Auto-probing & detection of a USB device

 II.Block Device Driver

 Fundamentals of Block Device Driver

 Block drivers Definitions.

 Block drivers Registration.

 Block device operations.

 Linux Block I/O Layer

 I/O Schedulers

 Block Driver Data Structures and Methods.

 How to handle block devices

 RAMDISK Device Drivers

 RAMDISK-based block device driver.

 Using the RAMDISK block device.

 Driver registration

 Obtaining a gendisk object

 Implement the driver’s methods.

 III.PCI-Network card Drivers

 PCI Driver

 PCI Architecture & Protocol

 PCI Regions & Direct Memory Access

 PCI subsystems

 PCI Driver Layered Architecture

 Porting, Development & Validation of PCI client Driver

 Network Device Driver Operations

 Network Driver & Device Registrations

 Kernel Data Structures & Buffer Management

 Programming the PCI

 Understanding the x86 processor bus: PCI

 PCI Core & Programming the PCI

 Finding & Interacting with a PCI Device

 Developing the PCI based Network Driver

 Programming the Network Device Registers

 Implementing the PCI Network Driver

 Registering the Network Driver

 Buffer Management with skbuffs

 Packet Transmission & Reception

 Reception using interrupt and poll

4.Porting & Board Bringup Linux- ARM

Toolchain Setup

Introduction to Toolchain

Toolchain Components

Building Toolchain

Toolchain compilation and usage

Bootloader Compilation

Introduction to Bootloader

1 st and 2 nd Stage Bootloader

U-Boot Bootloader Porting

U-Boot Commands Lists

U-Boot Image for Target Board

 Clear Understading of Boot Up Sequence

• Getting Started w/ Beagle board

• Embedded Linux System boot up stages

• Beagle board boot up stages

Kernel Configuration

Linux kernel Cross Compilation for Target board

Browsing Linux Kernel Source

Cross-Compilation of Kernel Source

Generating Kernel Image

-uImage

uImage on Target Board

Application development and Cross Compilation

Kernel Procedures

• Booting up the kernel with NFS RootFS

Techniques for Optimizing the Boot up time

• Measuring & Analyzing the boot up time

• Optimization at Kernel space

• Optimization at User space

5.Debugging

What Is My Program Doing?

Source Level Debugging

Invoking gdb

Getting Started with gdb

Examining and Changing Memory

Using gdb with a Running Process

Debugging Libraries - ElectricFence

Debugging with valgrind

Debugging the Kernel

Printk, Traces.

gdb, kgdb.

Proc & Sys File Systems

Timers & Bottom Halves

kernel debugging with dmesg.

