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Chapter-1 

Electrostatics 
Content: Coulomb’s law (scalar and vector forms), electric field, electric field due to point charge, electric 

dipole and its moment, electric fields along the axial and equatorial lines, concept of dielectric and dielectric 

constant, Gauss’s theorem and its application to find electric field due to an infinite wire and plane sheet of 

charge, conductors and insulators, force and torque experienced by a dipole(in uniform electric field), 

capacitance, parallel plate capacitor with air/dielectric medium between the plates, series and parallel 

combinations of capacitors, energy stored of a capacitor, numerical problems. 

_______________________________________________________________________________________ 

Introduction: Electrostatics, as the name implies, is the study of stationary electric charges.  

A rod of plastic rubbed with fur or a rod of glass rubbed with silk will attract small pieces of paper and is said 

to be electrically charged. The charge on plastic rubbed with fur is defined as negative, and the charge on glass 

rubbed with silk is defined as positive. 

Electric charge 

Charge is that property of an object by virtue of which it applies electrostatic force of interaction on other 

charged objects. 

Charges are of two kinds 

(i) Positive charge 

(ii) Negative charge 

SI unit of electric charge is coulomb (C). CGS unit of charge is stat coulomb and ab coulomb. 

1 coulomb= 3× 𝟏𝟎𝟗 stat coulomb 

1 ab coulomb= 10 coulombs 

Electrically charged objects have several important characteristics: 

• Like charges repel one another; that is, positive repels positive and negative repels negative. 

• Unlike charges attract each another; that is, positive attracts negative. 

Characteristics of Charge 

• Charge is conserved: A neutral object has no net charge. If the plastic rod and fur are initially neutral, 

when the rod becomes charged by the fur, a negative charge is transferred from the fur to the rod. The net 

negative charge on the rod is equal to the net positive charge on the fur. 

• The additive nature of charge means that the entire electric charge of a system is equal to the algebraic sum 

of electric charges located in the system. This is the law of superimposition of electric charge. 

• The quantization of electric charge means that the total charge of the body is always an integral multiple 

of a basic quantum of charge (e) i.e 

q =  ± ne          where,        n =  1, 2, 3, … 

e = charge on an electron =  1.6 × 10−19C 

The basic cause of quantization of electric charge is that during rubbing only an integral number of electrons 

can be transferred from one body to another. 

1.1 Coulomb’s law (scalar and vector forms): 

1.1.1 Coulomb’s law in electrostatics (scalar form): 

According to Coulomb’s law, the force of attraction or repulsion between the two-point charges is  

i) directly proportional to the product of the charges and  

ii) inversely proportional to the square of distance between their (charges) centres.  

 +q1                                 +q2 

   <      <             >          > 
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Suppose two-point charges q1 and q2 are separated in vacuum by distance r.  

𝐹 ∝ 𝑞1𝑞2 

𝐹 ∝
1

𝑟2
 

∴ F ∝
q1q2

r2
 ➔ F = k

q1q2

r2
 

 

 k= F r2 /q1q2 

Where k is electrostatics force constant. The value of k depends upon the nature of medium separating the 

charges and on the system of units. 

When the charges are situated in free space (air/vacuum) 

In CGS system, k = 1 

In SI system, k =
1

4πεo
= 9 × 109Nm2C−2 

εo = 
1

4πk
=8.854×10-12 N-1m-2 C2 

F =
1

4πεo

q1q2

r2
  (Air/Vacuum) 

F =
1

4πε

q1q2

r2
   (Medium) 

  k = ε /εo 

Where εo is the absolute electrical permittivity of the free space and it is equal to 8.854×10-12 C2N-1m-2. It is 

the measure of the property of medium surrounding electric charges which determine the force between the 

charges. More is the permittivity of medium, less is the Coulomb’s force. 

∴ F =
1

4πεo

q1q2

r2
  (scalar form of Coulomb’s law) 

A (vector) = A (magnitude) x unit vector 

F⃗ =
1

4πεo

q1q2

r 2 r̂  = 
1

4πεo

q1q2

r 3  r  

F⃗ =
1

4πε

q1q2

r 2 r̂  = 
1

4πε

q1q2

r 3  r  

Unit vector= Is a vector whose magnitude is unit (one) and direction is same as that of the vector 

A⃗⃗ = AÂ  

r /r= r̂  
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1.1.2 Coulomb’s law in vector form: 

Let r 1 = OA⃗⃗⃗⃗  ⃗= Position vector of charge q1. 

 And r 2 = OB⃗⃗⃗⃗  ⃗= Position vector of charge q2. 

r2 = r1 + r12 =>  r12 = r2 - r1 

∴ The vector leading from q1 to q2 is AB⃗⃗⃗⃗  ⃗ = r 12 = r 2 − r 1 

-r21 + r1 = r2   

-r21 + r1 = r2   

-r21 = r2 – r1 

r21 = -( r2 – r1) 

 r21 = r1 – r2 

Similarly, vector leading from q2 to q1 is BA⃗⃗⃗⃗  ⃗ = r 21 = r 1 − r 2 

So, unit vectors along AB is r̂12 =
r⃗ 12

r12
 and along BA is r̂21 =

r⃗ 21

r21
 

If F⃗ 12 =Force on q2 due to q1 

F⃗ 21 =Force on q1 due to q2 

∴ F⃗ 12 =
1

4πεo

q1q2

AB2  along AB 

F⃗ 12 =
1

4πεo

q1q2

r12
2

r̂12 

F⃗ 12 =
1

4πεo

q1q2

r12
3

r 12 

F⃗ 21 =Force on q1 due to q2 

∴ F⃗ 21 =
1

4πεo

q1q2

BA2
 along BA 

F⃗ 21 =
1

4πεo

q1q2

r21
3

r 21 

 

 

 

Similarly,  

 

 

F12 = - F21 

F21 = - F12  

 

1.2 Electric field  

 

𝐹 12 =
1

4πεo

q1q2

|𝑟 1 − 𝑟 2|3
(𝑟 1 − 𝑟 2) 

 

𝐹 21 =
1

4πεo

q1q2

|𝑟 2 − 𝑟 1|3
(𝑟 2 − 𝑟 1) 
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Electric lines of forces 

Properties/characteristics 

1. Outward from +ve charge and inward from negative charge 

2. They never cancel each other 

3. They are always perpendicular at the surface 

 

 

 

  

+q 

 

-q  

 

 

 

Test charge  

 

When a small positive test charge is brought near a large positive charge, it experiences a force directed away 

from the large charge. This force is due to electric field set up by the source charge. 

We can define electric field due to a given charge as the space around the charge in which the 

electrostatic force of attraction or repulsion due to the charge can be experienced by any other charge. 

 

The electric field intensity  ( E) is defined as the force per unit charge exerted on a small positive test 

charge (𝐪𝐨) placed at that point. Mathematically,  

 

F =
1

4πεo

𝑞 q0

r2
   

 

q- source charge 

q0 – test charge 

 

E= F/q0
 = 1

4πεo

𝑞

r2
 

E⃗⃗ = limit
qo→0

F⃗ 

qo
 

E= N/C = NC-1  (SI units of E) 
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Note that both the force and electric field are vector quantities.  

The test charge is required to be small so that the field of the test charge does not affect the field of the 

set charges being examined.  

The SI unit for electric field is Newtons per coulomb (N/C)  

1.2.1 Electric field intensity at a point due to point charge: 

Suppose P is the point where electric field has to be 

calculated due to charge q at O. Let OP⃗⃗⃗⃗  ⃗ = r . 

Imagine a small positive test charge qo at P. According 

to coulomb’s law, force experienced by test charge  qo 

is  

F⃗ =
1

4πεo

qq0

r2
r̂ 

As  E⃗⃗ =
F⃗⃗ 

qo
 

∴ E⃗⃗ =
1

4πεo

q

r2
r̂ 

r̂ =
r 

IrI⃗⃗⃗⃗ 
 

E =
1

4πεo

q

r2
   

E α  1/ r2 

                 

                           Equatorial line 

 

 

                                 ------------------ axial line 

 

 

 

1.3 Electric Dipole and its dipole moment 

Electric dipole: Is a combination of two equal and opposite charges separated by a small distance 

Ideal dipole = when the distance between charges is minimum 

Electric dipole moment(�⃗⃗� ) : the magnitude of electric dipole 

moment is defined as the product of magnitude of either charge 

and the distance of separation between the two charges. 

|p⃗ | = q × 2a 

                                          p = q x 2a  = (q 2a)  
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It is vector quantity and directed from –ve charge to +ve charge (-q to +q). 

Its SI unit is coulomb metre (C-m) 

1.4 Electric field due to an electric dipole 

i)  along the axial line 

ii) along equatorial line 

1.4.1 Electric field intensity due to dipole at a point lying on axial line: 

Consider an electric dipole consisting of two-point charges -q and +q separated by some distance 2a. Let P be 

an observation point on axial line such that its distance from centre of the dipole is r. 

Electric field due to a point charge   E =
1

4πεo

q

r2
 

E1= 
1

4πεo

−q

𝐴𝑃2   Electric field due to –q charge (placed at A) at a point of observation P 

If E⃗⃗ 1 is the electric field intensity at P due to charge -q at A then  

E1 = |E⃗⃗ 1| =
1

4πεo

q

(r+a)2
  directed along 

PA =r+a 

Again, if E⃗⃗ 2 is the electric field 

intensity at P due to charge +q at B then 

                 I------------------------ I 

BP= OP –OB 

BP= r-a 

E2= 
1

4πεo

q

𝐵𝑃2  

E2 = |E⃗⃗ 2| =
1

4πεo

q

(r−a)2
   directed along BP = r-a 

Clearly, E2 > E1 

(r+a) > (r-a) 

So, 𝐄𝐚𝐱𝐢𝐚𝐥 (𝐚𝐭 𝐏) = 𝐄𝟐 − 𝐄𝟏 

𝐸𝑎𝑥𝑖𝑎𝑙 =
𝑞

4𝜋𝜀𝑜(𝑟 − 𝑎)2
−

𝑞

4𝜋𝜀𝑜(𝑟 + 𝑎)2
=

𝑞

4𝜋𝜀𝑜
[

1

(𝑟 − 𝑎)2
−

1

(𝑟 + 𝑎)2
] =

𝑞(4𝑎𝑟)

4𝜋𝜀𝑜(𝑟2 − 𝑎2)2
 

 

= (r+a)2- (r-a)2/ (r-a)2 (r+a)2 

(r-a)2 (r+a)2 = (r2 – a2)2 

(r+a)2- (r-a)2  =  

 

q(4ar)

4πεo(r2−a2)2
=  

q2a 2r)

4πεo(r2−a2)2
 = 

p 2r

4πεo(r2−a2)2
 

Since, p = q(2a) 

So, Eaxial (at P) =
1

4πεo

2pr

(r2−a2)2
 

For short dipole, r ≫ a , neglect ‘a’ as compared to r 
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So, 𝐸𝑎𝑥𝑖𝑎𝑙 =
1

4𝜋𝜀𝑜

2𝑝𝑟

(𝑟2)2
=

1

4𝜋𝜀𝑜

2𝑝𝑟

𝑟4  ➔ 𝐸𝑎𝑥𝑖𝑎𝑙 =
2𝑝

4𝜋𝜀𝑜𝑟3 

  

Variation of E w.r.t. position  

E  α 1/r2  (point charge) 

E  α 1/r3   (dipole) 

 

1.4.2 Electric field due to dipole at a point lying on the equatorial line: 

Consider an electric dipole consisting of two-point charges -q and 

+q separated by distance 2a. Let P be an observation point on 

equatorial line such that its distance from mid-point O of the electric 

dipole is r. Let ∠PBA = θ. 

If E⃗⃗ 1 is the electric field intensity at P due to charge -q then  

E1 = |E⃗⃗ 1| =
1

4πεo

q

AP2 =
1

4πεo

q

(r2+a2)
 directed along PA 

Again, if E⃗⃗ 2 is the electric field intensity at P due to charge +q then  

E2 = |E⃗⃗ 2| =
1

4πεo

q

BP2 =
1

4πεo

q

(r2+a2)
 directed along PD 

Clearly, E1 = E2 

AO= a 

OP =r 

AP2 = AO2 + OP2 

AP2 = r2 + a2  

AP= (a2 + r2)1/2  

AP=BP = (a2 + r2)1/2 

PF= E2sinθ 

PE= E1 sinθ 

Because E1 =E2 

PF=PE and opposite so they cancel each other 

PR1 =E1
 cosθ 

PR2 = E2 cos θ 

E= E1
 cosθ +  E2 cos θ 

E  (on equitorail line) = 2 E cos θ 
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Let us resolve E⃗⃗ 1 and E⃗⃗ 2 into two components in two mutually perpendicular directions. Components of E⃗⃗ 1 

and E⃗⃗ 2 along the equatorial line cancel each other but the components perpendicular to equatorial line get 

added up because they act in same direction. So, magnitude of resultant intensity E⃗⃗  at P, 

E = E1cosθ + E2cosθ = 2E1cosθ = 2
q

4πεo(r2+a2)

a

√(r2+a2)
   

cosθ = base/hypotunuse 

Eequitorial =
p

4πεo(r2 + a2)
3

2⁄
 

1+ ½ = 3/2  

For short dipole, r ≫ a   Eequitorial =
p

4πεor3
 

Eaxial =
2p

4πεor
3
 

 

1.5 Concept of Dielectric and dielectric constant 

1.5.1 Dielectrics:  

A dielectric is an insulating material in which all the electrons are tightly bound to the nuclei of the atoms and 

there are no free electrons available for the conduction of current. So, the electrical conductivity of a dielectric 

is very low. The conductivity of an ideal dielectric is zero. Materials such as glass, polymers, mica, oil and 

paper are examples of dielectrics. They prevent flow of current through them. So, they can be used for 

insulating purposes. 

Types of dielectrics: 

A molecule is a neutral system in which the algebraic sum of all the charges is zero. Based on the dipole 

moment, the molecules of dielectrics are termed as non-polar and polar molecules. Accordingly, these 

dielectrics are referred to as non-polar and polar dielectrics. 

 

Non-polar dielectrics: 

A non-polar molecule is one in which the centre of gravity of the positive charges (protons) and negative 

charges (electrons) coincide. So, such molecule does not have any permanent dipole moment, as shown in 

figure. Common examples are oxygen (O2), 

nitrogen (N2) and hydrogen (H2). So, the 

dielectrics having non-polar molecules are 

known as non-polar dielectrics.  
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Polar dielectrics: A polar molecule is the one in which the centre of gravity of the positive charges  is 

separated by finite distance from that of the negative charges. So, these molecules possess permanent electric 

dipole moment as shown in figure. Examples are H2O, HCl and NH3. The dielectrics having polar molecules 

are known as polar dielectrics. 

 

1.5.2 Dielectric constant: It  is defined as the ratio of the permittivity of a substance to the permittivity of 

free space.  

𝜀𝑟 =
𝜀

𝜀𝑜
 

where ε is the absolute permittivity of the substance, 𝜀𝑟 is the relative permittivity and 𝜀𝑜 is the permittivity 

in free space. It is dimensionless quantity. 

 

Question: Find the absolute permittivity of mica, if its relative permittivity is 8? 

Solution: The expression for the absolute permittivity of the substance is as follows;  

Here, ε is the absolute permittivity of the substance, 𝜀𝑟 is the relative permittivity and 𝜀𝑜 is the permittivity in 

free space. 

It is given in the problem that the relative permittivity of mica is 8, Put  𝜀𝑟 = 8 

𝜀𝑟 =
𝜀

𝜀𝑜
 ➔ 𝜀 = 𝜀𝑟𝜀𝑜 = 8𝜀𝑜 

Therefore, the value of the absolute permittivity of mica is 8𝜀𝑜. 

 

1.6 Gauss’s theorem and its application to find electric field due to an infinite wire and plane sheet of 

charge: 

1.6.1 Electric Flux: Electric flux over an area in an electric field represents the 

total number of electric field lines crossing the area. It is represented by 𝜙𝐸 .  

It is scalar quantity. The unit of 𝜙𝐸  is Nm2C-1. 

If �⃗�  is electric field intensity over a small area element dS⃗  and θ is angle 

between �⃗�  and outdrawn normal to area element. So, electric flux through this 

element is 

𝑑𝜙𝐸 = �⃗� . d𝑆 = 𝐸 𝑑𝑆 𝑐𝑜𝑠𝜃 

Value of total electric flux emerging out of a closed surface is given by  𝜙𝐸 = ∮ 𝑑𝜙𝐸𝑆
= ∮ �⃗� . 𝑑𝑆 

𝑆
 

1.6.2 Gauss’s theorem in electrostatics: The surface integral of electrostatic field �⃗�  over any closed surface 

S enclosing a volume V in vacuum i.e., total electric flux over the closed surface S in vacuum is 
1

 𝜀𝑜
 times the 

total charge (q) enclosed by closed surface S.  

𝜙𝐸 = ∮�⃗� . 𝑑𝑆 

𝑆

=
𝑞

 𝜀𝑜
 

Where q is the total charge enclosed by the surface S and 𝜀𝑜 is the permittivity of free surface. 
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Proof: Consider an isolated point charge +q placed at point O. Let surface S be a sphere of radius r 

around the charge +q. 

Then electric field intensity due to charge +q at every point on the surface of the 

sphere is given by  �⃗� =
1

4𝜋 𝜀𝑜

𝑞

𝑟2
�̂� 

Now consider a small element of area 𝑑𝑆 with area vector 𝑑𝑆  normal to the 

surface of the area element. So, electric flux through the area element is given 

by  

𝑑𝜙 = �⃗� . 𝑑𝑆 =
1

4𝜋 𝜀𝑜

𝑞

𝑟2
�̂�. 𝑑𝑆�̂� =

1

4𝜋 𝜀𝑜𝑟2
𝑞𝑑𝑆�̂�. �̂� 

where �̂� is the unit vector perpendicular to the surface of the area element. Since,  �̂� and �̂� are along the same 

direction. So, �̂�. �̂� = 1 

hence, 𝑑𝜙 = �⃗� . 𝑑𝑆 =
1

4𝜋 𝜀𝑜

𝑞𝑑𝑆

𝑟2  

Now electric flux over the entire closed surface S is given by  

𝜙 = ∮𝑑𝜙

𝑆

= ∮
1

4𝜋 𝜀𝑜

𝑞𝑑𝑆

𝑟2
=

𝑆

1

4𝜋 𝜀𝑜

𝑞

𝑟2
∮𝑑𝑆

𝑆

 

But ∮ 𝑑𝑆
𝑆

= surface area of the sphere of radius r= 4𝜋𝑟2 

So,     𝜙 =
1

4𝜋 𝜀𝑜

𝑞

𝑟2
(4𝜋𝑟2) =

𝑞

 𝜀𝑜
 

This is the expression of Gauss’s law or theorem in electrostatics. 

1.6.3 Applications:  

(i) Electric field intensity due to an infinitely long straight uniformly charged 

wire: 

Consider an infinite and thin straight wire having uniform linear charge density 

(i.e., charge per unit length) λ. This wire is symmetrical about the axis of the wire. 

To calculate the electric field intensity �⃗�  at a point P, distant r from the line. Draw 

an imaginary cylinder (Gaussian surface) of radius r and length 𝑙 around the 

charged wire.  

The charge enclosed by the Gaussian surface 𝑞 = 𝜆𝑙 

According to Gauss’s theorem, ∮ �⃗� . 𝑑𝑆 
𝑆

=
𝑞

𝜀𝑜
=

𝜆𝑙

𝜀𝑜
  (1) 

The cylinder Gaussian surface is divided into three parts S1, S2 and S3, i.e., curved 

surface, left and right face respectively. 

So, Equation (1) can be written as 

∮ �⃗� . 𝑑𝑆 
𝑆

= ∫ �⃗� . 𝑑𝑆 
𝑆1

+ ∫ �⃗� . 𝑑𝑆 
𝑆2

+ ∫ �⃗� . 𝑑𝑆 
𝑆3

=
𝜆𝑙

𝜀𝑜
   (2) 

For surfaces S2 and S3, angle between �⃗�  𝑎𝑛𝑑 𝑑𝑆  is 90𝑜. So, �⃗� . 𝑑𝑆 = 𝐸𝑑𝑆𝑐𝑜𝑠90𝑜 = 0 for these surfaces. So, 

electric flux will cross through the curved surface only. 

So, Equation (2) becomes 

∮ �⃗� . 𝑑𝑆 
𝑆

= ∫ �⃗� . 𝑑𝑆 
𝑆1

=
𝜆𝑙

𝜀𝑜
 ➔  ∫ 𝐸𝑑𝑆𝑐𝑜𝑠0𝑜

𝑆1
=

𝜆𝑙

𝜀𝑜
 ➔ ∫ 𝐸𝑑𝑆

𝑆1
=

𝜆𝑙

𝜀𝑜
 

Since, E is constant over the Gaussian surface. 
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So, 𝐸 ∫ 𝑑𝑆
𝑆1

=
𝜆𝑙

𝜀𝑜
 ➔ 𝐸(2𝜋𝑟𝑙) =

𝜆𝑙

𝜀𝑜
   

(∫ dS
𝑆1

= area of the curved surface of the cylinder = 2πr𝑙) 

𝐸 =
𝜆

2𝜋𝜀𝑜𝑟
  clearly, 𝐸 ∝

1

𝑟
 

In vector form, �⃗� =
𝜆

2𝜋𝜀𝑜𝑟
�̂� where �̂� is a unit vector perpendicular to the curved surface of the wire. 

If 𝜆 > 0, the direction of electric field at every point is radially outwards. 

If 𝜆 < 0, the direction of electric field at every point is radially inwards. 

(ii) Electric field intensity due to uniformly charged infinite plane sheet: 

Consider a thin infinite plane sheet having uniform surface charge density (i.e., charge per unit area) ‘σ’. We 

have to calculate electric field intensity �⃗�  at any point P distant r from the sheet. Draw a imaginary cylinder 

of cross-sectional area dS and length r on each side of sheet. Electric field �⃗�  is perpendicular to the sheet. At 

the two cylindrical edges P and P’, �⃗�  and outward normal �̂� are parallel to each other. 

So, electric flux over these edges= 2�⃗� . �̂�𝑑𝑆 = 2𝐸𝑑𝑆 

But on the curved surface of the cylinder, �⃗�  and outward 

normal �̂� are perpendicular to each other. So, no contribution 

to electric flux is made by the curved surface of the cylinder. 

So, total electric flux over the entire surface of the cylinder 

𝜙𝐸 = 2𝐸𝑑𝑆 

Total charge enclosed by the cylinder, 𝑞 = 𝜎𝑑𝑆 

Acc. To Gauss’s theorem, 𝜙𝐸 = 2𝐸𝑑𝑆 =
𝑞

𝜀𝑜
=

𝜎𝑑𝑆

𝜀𝑜
 

So, 𝐸 =
𝜎

2𝜀𝑜
 

In vector form, �⃗� =
𝜎

2𝜀𝑜
�̂� where �̂� is a unit vector perpendicular 

to plane of the sheet pointing away from it. 

Note: (i) the electric field is directed away from the sheet if it is positively charged and it is directed towards 

the sheet if it is negatively charged. 

(ii) E is independent of r, the distance of the point from the plane charged sheet. 

(iii) It depends upon surface charge density and acts perpendicular to the sheet. i.e., 𝐸 ∝ 𝜎. 

1.7 Conductors and insulators: 

1.7.1 Conductors: an electrical conductor is defined as materials that allow electricity to flow through them 

easily. 

Examples of Conductors 

• Material such as silver is the best conductor of electricity. But it is costly and so, we don’t use silver in 

industries and transmission of electricity. 

• Copper, Gold, and Aluminium are good conductors of electricity. We use them in electric circuits and 

systems in the form of wires. 

• Mercury is an excellent liquid conductor. 
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1.7.2 Insulators: Insulators are the materials or substances which resist or don’t allow the current to flow 

through them.  

Examples of Insulators 

• Glass is the best insulator as it has the highest resistivity. 

• Plastic is a good insulator and it finds its use in making a number of things. 

• Rubber is a common material used in making tyres, fire-resistant clothes and slippers. This is because it 

is a very good insulator. 

1.7.3 Differences Between Conductor and Insulators: 

Conductor Insulator 

Materials that permit electricity or heat to pass 

through it 

Materials that do not permit heat and electricity to 

pass through it 

A few examples of a conductor are silver, 

aluminium and iron 

A few examples of an insulator are paper, wood and 

rubber 

The electrons move freely within the conductor The electrons do not move freely within the insulator 

 

 

1.8. Force and torque experienced by a dipole(in uniform electric field): 

Consider an electric dipole consisting of two equal and opposite point charge -q at A and +q at B separated 

by a small distance AB=2a, having dipole moment |p⃗ | = q × 2a 

Let this dipole be held in a uniform external electric field  E⃗⃗  at 

an angle θ with the direction of E⃗⃗ . 

Force on charge +q at A= qE⃗⃗ , along the direction of E⃗⃗ . 

Force on charge -q at B= qE⃗⃗ , in a direction apposite to E⃗⃗ . 

Since E⃗⃗  is uniform, ∴ net force on the dipole is (qE − qE) = 0, 

As the forces are equal, unlike and parallel acting at different points. So, they form a couple which rotates the 

dipole in the clockwise direction. 

Draw, AC perpendicular E⃗⃗ , So, perpendicular distance between the forces = arm of couple AC 

Torque = moment of force 

=Force × perpendicular distance AC 

=F×AC=F× ABsinθ 

=F× 2asinθ = qE(2asinθ) 

=(q× 2a)Esinθ ➔ τ = pEsinθ 

In vector form, τ⃗ = p⃗ × E⃗⃗  

Special cases: (i) When p⃗  is along E⃗⃗ , θ = 0o and τ = pESin0o = 0 

The dipole is on stable equilibrium. 

(ii) When dipole is held in a direction opposite to E⃗⃗ , the torque would turn the dipole through 180o and dipole 

will be in an unstable equilibrium. 

(iii) Torque will be maximum when θ = 90o, τmax = pEsin90o = pE 



Page 13 of 17 
 

 

1.9 Capacitance:  

Capacitance is the ability of conductor to hold the charge and associated electrical energy. 

We know that the charge given to a conductor increases its potential, i.e., 𝑄 ∝ 𝑉 ➔ 𝑄 = 𝐶𝑉 

Where C is a constant of proportionality called capacity or capacitance of conductor. 

Symbol of capacitor: The symbol of capacitor is given as 

Units: S.I. unit is 
𝑐𝑜𝑢𝑙𝑜𝑚𝑏 

𝑣𝑜𝑙𝑡
= 𝑓𝑎𝑟𝑎𝑑 (𝐹) 

Commonly used units are mF, µF, nF and pF. (1mF=10-3 F, 1µF= 10-6 F, 1nF=10-9 F, 1pF= 10-12F) 

Dimensional formula:  [𝑀−1𝐿−2𝑇4𝐴2] 

1.10 Parallel plate capacitor with air/dielectric medium between the plates: 

It consists of two thin conducting plates 1 and 2 each of area A held parallel 

to each other, distance d apart. One of the plates, 1 is insulated and other 

plate 2 is earth connected. When a charge Q is given to the insulated plate 

1, then a charge -Q is induced on the nearer face of plate 2 and +Q is induced 

on the farther face of plate 2. As plate 2 is earthed, the charge +Q being free 

flows to earth. Plate 1 has surface charge density 𝜎 =
𝑄

𝐴
 and plate 2 has 

surface charge density (-σ). In the region on left of plate 1 and on right of 

plate 2, the electric field is zero. But in the region between the plates 

separated by air/vacuum, electric field intensity is 𝐸 =
𝜎

𝜀𝑜
=

1

εo

𝑄

𝐴
 

The potential difference V between the plates is product of the electric field times the distance between the 

plates, then 𝑉 = 𝐸 × 𝑑 =
1

∈o

𝑄

𝐴
× 𝑑 

The capacity Co of parallel plate capacitor is given by 𝐶𝑜 =
𝑄

𝑉
=

𝑄𝜀𝑜𝐴

𝑄𝑑
=

𝜀𝑜𝐴

𝑑
 

Note: If a dielectric of permittivity ε is placed between the conducting plates,  

then capacitance 𝐶 =
𝜀𝐴

𝑑
 where 𝜀 = 𝜀𝑜𝐾 ➔ 𝐶 =

𝜀𝑜𝐾𝐴

𝑑
 𝐶 = 𝐾𝐶𝑜 

1.11 Series and parallel combinations of capacitors: 

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors 

act like a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both 

on the individual capacitors and how they are connected. There are two simple and common types of 

connections, called series and parallel, for which we can easily calculate the total capacitance. Certain more 

complicated connections can also be related to combinations of series and parallel. 

1.11.1 Capacitors in series: Three capacitors of capacities 

C1, C2 and C3 are connected in series. V is the potential 

difference applied across the series combination. 

Each capacitor receives t 6he same amount of charge Q. As, 

their capacities are different. So, potential difference across the 

three capacitors are different. 

∴ 𝑉1 =
𝑄

𝐶1
, 𝑉2 =

𝑄

𝐶2
 and 𝑉3 =

𝑄

𝐶3
 

If 𝐶𝑠 is the total capacitance of the combination, then 𝑉 =
𝑄

𝐶𝑠
 

As      𝑉 = 𝑉1 + 𝑉2 + 𝑉3 
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𝑄

𝐶𝑠
=

𝑄

𝐶1
+

𝑄

𝐶2
+

𝑄

𝐶3
= 𝑄 (

1

𝐶1
+

1

𝐶2
+

1

𝐶3
) 

1

𝐶𝑠
=

1

𝐶1
+

1

𝐶2
+

1

𝐶3
 

For n capacitors connected in series, total capacitance would be 
1

𝐶𝑠
= ∑

1

𝐶𝑖

𝑛
𝑖=1  

i.e., the reciprocal of equivalent capacitance of any number of capacitors joined in series is equal to sum of 

the reciprocals of individual capacitances. 

Note: In a series combination, charge can move along only one path. So, that is why charge on each 

capacitor is same. 

1.11.2 Capacitors in parallel: Three capacitors of capacitances 𝐶1, 𝐶2 𝑎𝑛𝑑 𝐶3 are connected in parallel. V is 

the potential difference applied across the parallel combination. 

As potential difference across the three capacitors is the same, So, charges on them will be different say 

𝑄1, 𝑄2 𝑎𝑛𝑑 𝑄3 such that 

 𝑄1 = 𝐶1𝑉, 𝑄2 = 𝐶2𝑉, 𝑄3 = 𝐶3𝑉 

the total charge Q is the sum of the individual charges, then 

 𝑄 = 𝑄1 + 𝑄2 + 𝑄3 

If 𝐶𝑝 is the equivalent capacitance in parallel, then 𝑄 = 𝐶𝑝𝑉 

So, 𝐶𝑝𝑉 = 𝐶1𝑉 + 𝐶3𝑉 + 𝐶3𝑉 = (𝐶1 + 𝐶2 + 𝐶3)𝑉 ∴ 𝐶𝑝 =

𝐶1 + 𝐶2 + 𝐶3 

In general, when n capacitors are connected in parallel, then 𝐶𝑝 = ∑ 𝐶𝑖
𝑛
𝑖=1   i.e., equivalent capacitance of any 

number of capacitors joined is equal to sum of the individual capacitances.  

Note: In a parallel combination, both the plates of every capacitor are connected to the same battery. So, 

potential difference across each capacitor is same. 

1.12 Energy stored in a capacitor: 

 A capacitor is a system of two conductors carrying charges Q and -Q held some distance apart. Suppose the 

conductors A and B are initially uncharged. Let positive charge be transferred from conductor B to conductor 

A in very small instalments of dq each till conductor A gets charge Q. By charge conservation, conductor B 

would acquire charge -Q. At any intermediate stage, suppose charge on conductor A is +q and charge on 

conductor is -q. So, potential difference between conductors A and B is (
𝑞

𝐶
), where C is the capacity of the 

capacitor. Small amount of work done in giving an additional charge dq to the capacitor is 𝑑𝑤 = (
𝑞

𝐶
) (𝑑𝑞) 

Total work done in giving a charge Q to the capacitor  

𝑊 = ∫
𝑞

𝐶

𝑞=𝑄

𝑞=0

𝑑𝑞 =
1

𝐶
[
𝑞2

2
]
0

𝑄

=
1

𝐶
[
𝑄2

2
− 0] =

1

𝐶
(
𝑄2

2
) =

𝑄2

2𝐶
 

This work is stored in the form of potential energy (U) of the capacitor, 𝑈 = 𝑊 =
𝑄2

2𝐶
 

Put 𝑄 = 𝐶𝑉 So, U= 
(𝐶𝑉)2

2𝐶
=

1

2
𝐶𝑉2  ➔ 𝑈 =

1

2
𝐶𝑉2 

Put 𝐶 =
𝑄

𝑉
 So, 𝑈 =

1

2
𝑄𝑉 

So, 𝑈 =
𝑄2

2𝐶
=

1

2
𝐶𝑉2 =

1

2
𝑄𝑉 
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1.12.1 Energy density of a parallel plate capacitor: 

Energy density (u) is defined as the total energy stored per unit volume of the capacitor. 

i.e., 𝑢 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑈)

𝑉𝑜𝑙𝑢𝑚𝑒 
=

1

2
𝐶𝑉2

𝐴𝑑
 

Using  𝐶 =
∈𝑜𝐴

𝑑
  and 𝑉 = 𝐸𝑑 

We get, u=
1

2
(
∈𝑜𝐴

𝑑
  ) (

𝐸2𝑑2

𝐴𝑑
) =

1

2
𝜀𝑜𝐸

2  ➔ 𝑢 =
1

2
𝜀𝑜𝐸

2 

1.12.2 Total energy stored in a combination of capacitors: 

In series combination of capacitors, every capacitor carries the same charge Q i.e., Q is constant. 

∴ Total energy 𝑈 =
𝑄2

2𝐶𝑠
=

𝑄2

2
[

1

𝐶1
+

1

𝐶2
+

1

𝐶3
+. . . . . ] 

=
𝑄2

2𝐶1
+

𝑄2

2𝐶2
+

𝑄2

2𝐶3
+ . . .. 

𝑈 = 𝑈1 + 𝑈1 + 𝑈1+ . . . .. 

In parallel combination of capacitors, potential difference across each capacitor is same i.e., V is constant. 

∴ Total energy, 𝑈 =
1

2
𝐶𝑝𝑉

2 =
1

2
(𝐶1 + 𝐶2 + 𝐶3+. . . . )𝑉2 

=
1

2
𝐶1𝑉

2 +
1

2
𝐶2𝑉

2 +
1

2
𝐶3𝑉

2 + ⋯ 

𝑈 = 𝑈1 + 𝑈1 + 𝑈1+. . .. 

i.e., total energy stored in series and parallel combination of capacitors is equal to sum of the energies stored 

in the individual capacitors. 

Solved Problems 

1. Which physical quantity has its S.I. unit (i) C-m (ii) N/C (iii) Nm2C-1
? 

Solution: (i) Electric dipole moment (ii) Electric field intensity (iii) Electric flux. 

2. A charged rod P attracts rod R whereas P repels another charged rod Q. What type of force is 

developed between Q and R? 

Solution: Q and R will develop attractive forces because R is attracted by P whereas Q is repelled by P.   

3. What is the S.I. unit of permittivity in vacuum? 

Solution: εo = 8.854×10-12 C2N-1m-2 

4. If a negative test charge of magnitude 1.5 × 10−9 C is placed at this point, what is the force 

experienced by the test charge? 

Solution: The situation is represented in the given figure. O is the mid-point of line AB. 

Distance between the two charges, AB = 20 cm 

∴AO = OB = 10 cm 

Net electric field at point O, = E,  

Electric field at point O caused by +3μC charge, 

E1 =
3×10−6

4πεo(AO)2
=

3×10−6

4πεo(10×10−2)2
N/C  along OB 

Magnitude of electric field at point O caused by −3μC charge, 

E2 =
3×10−6

4πεo(OB)2
=

3×10−6

4πεo(10×10−2)2
N/C  along OB 

So, E = E1 + E2 = 2 [9 × 109 3×10−6

(10×10−2)2
]= 5.4 × 106 N/C along OB      

(since the values of E1 and E2 are same, the value is multiplied with 2) 
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Therefore, the electric field at mid-point O is 5.4 × 106 N C−1 along OB. 

A test charge of amount 1.5 × 10−9 C is placed at mid-point O. q = 1.5 × 10−9 C, Force experienced by the 

test charge = F=  qE= 1.5 × 10−9 × 5.4 × 106= 8.1 × 10−3 N 

The force is directed along line OA. This is because the negative test charge is repelled by the charge 

placed at point B but attracted towards point A. 

Therefore, the force experienced by the test charge is 8.1 × 10−3 N along OA. 

5. An infinite line charge produces a field of 9 × 104 N/C at a distance of 2 cm. Calculate the linear 

charge density. 

Solution: Electric field produced by thee infinite line charges at a distance d having linear charge density 

λ is given by the relation, 

E =
λ

2πεod
  ➔  λ = (2πεod)E 

Where,  d = 2 cm = 0.02 m, E=9×104N/C, ∈0 = Permittivity of free space, 
1

4πεo
= 9 × 109 N m2 C−2 

λ =
0.02×9×104

2×9×109  = = 0.1 μC/m 

Therefore, the linear charge density is 0.1 μC/m. 

6. A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the 

capacitor? 

Solution: Capacitor of the capacitance, C = 12 pF = 12 × 10−12 F 

Potential difference, V = 50 V 

Electrostatic energy stored in the capacitor is given by the relation, 

𝐸 =
1

2
𝐶𝑉2 =

1

2
× 12 × 10−12 × (50)2 = 1.5 × 10−8 𝐽 

Therefore, the electrostatic energy stored in the capacitor is 1.5 × 10−8 J. 
7. Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel. What is the total 

capacitance of the combination? Determine the charge on each capacitor if the combination is 

connected to a 100 V supply. 

Solution: Capacitances of the given capacitors are C1 = 2 pF,   C2 = 3 pF,   C3 = 4 pF 

For the parallel combination of the capacitors, equivalent capacitor C′ is give n by the algebraic sum, 

 C′ =  2 + 3 + 4 = 9 pF 

Therefore, total capacitance of the combination is 9 pF. 

Supply voltage, V = 100 V 

The voltage through all the three capacitors is same,  V = 100 V 

Charge on a capacitor of capacitance C and potential difference V is given by the relation, 

 q =  CV  (1) 

For C = 2 pF, charge =  VC =  100 × 2 =  200 pC = 2 × 10−10C 

For C = 3 pF, charge =  VC =  100 × 3 =  300 pC = 3 × 10−10C 

For C = 4 pF, charge =  VC =  100 × 4 =  400 pC = 4 × 10−10C 

8. Three capacitors each of capacitance 9 pF are connected in series. What is the total capacitance of 

the combination? What is the potential difference across each capacitor if the combination is 

connected to a 120 V supply? 

Solution: Capacitance of each of the three capacitors, C = 9 pF 

9. Equivalent capacitance (C’)  of the combination of the capacitors is given by the relation, 

1

𝐶′
=

1

𝐶
+

1

𝐶
+

1

𝐶
=

1

9
+

1

9
+

1

9
=

1

3
         ⇒          𝐶′ = 3 𝑝𝐹 

Therefore, total capacitance of the combination is 3 pF.  

Supply voltage, V = 100 V 

Potential difference (V’) across each capacitor is equal to one-third of the supply voltage,  

V′ =
V

3
=

120

3
= 40 V 

Therefore, the potential difference across each capacitor is 40 V. 
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10. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 

𝛍𝐂/m2. (a) Find the charge on the sphere. (b) What is the total electric flux leaving the surface of the 

sphere? 

Solution: Diameter of the sphere, d = 2.4 m 

Radius of the sphere, r = 1.2 m 

Surface charge density, σ = 80.0 μC/m2 = 80 × 10−6 C/m2 

Total charge on the surface of the sphere,  

Q = Charge density × Surface area = σ(4πr2) =80 × 10−6 × 4 × 3.14 × (1.2)2 

Q = 1.447 × 10−3 C. Therefore, the charge on the sphere is 1.447 × 10−3 C. 

Total electric flux (ϕtotal) leaving out the surface of a sphere containing net charge Q is given by the 

relation, ϕtotal =
q

εo
 

Where, ∈0 = Permittivity of free space = 8.854 × 10−12 N−1C2 m−2 

Q= 1.447 × 10−3 C 

ϕtotal =
1.44×10−3

8.854×10−12  = 1.63 × 108 N C−1 m2 

Therefore, the total electric flux leaving the surface of the sphere is 1.63 × 108 N C−1 m2. 

 

 

Assignment 

1. Find the number of electrons that constitute one coulomb of charge? 

2. What is the value of permittivity of free space? 

3. What is electric dipole and electric dipole moment? 

4. Define electric field intensity? What is its S.I. unit? Is it a vector or scalar quantity? 

5. Derive the expression for the torque acting on an electric dipole placed in a uniform electric field ? 

6. Define electric flux? Write its S.I. unit? Is it a vector quantity?  

7. What are dielectrics? Distinguish between polar and non-polar dielectrics? 

8. Use Gauss’s theorem to drive an expression for the electric field at a point due to an infinite plane sheet 

of charge of uniform charge density σ? 

9. Using Gauss’s theorem, derive an expression for the electric field due to  a thin infinitely long straight line 

of charge? 

10. Derive an expression for the capacitance of a parallel plate capacitor? 

11. Find the equivalent capacitance of three capacitors of capacitances C1, C2 and C3 connected in (i) series 

(ii) parallel. 

12. For a parallel plate capacitor, prove that the total energy stored in the capacitor is 
1

2
𝐶𝑉2?   

13. Two capacitors of capacitances 𝐶1= 3µF and 𝐶2=6µF arranged in series are connected in parallel with a 

third capacitor 𝐶3=4 µF. The arrangement is connected to a 6 V battery. Calculate the total energy stored 

in capacitors.     

14. Find the resultant capacitance of the capacitors connected as shown in fig.  

 

 

15. The plates are in vacuum of a parallel plate capacitor are 5 mm apart and 2 

m2 in area. A potential difference of 1000 volt is applied across the capacitor. Calculate (i) the capacitance 

(ii) the charge on each plate and (iii) electric intensity in the space between the two plates. 

16. Calculate the capacitance of the capacitor C. The equivalent capacitance of 

the combination between P and Q is 30µF. 

 


