
Java Training
Module 1 – Core Java

Are You Ready??

Outline

• OOPs concepts
• Introduction to Java
• Installation steps
• Eclipse & First Java Program
• Basics of programming
• Introduction to class and object

Outline(cont...)

• Access specifiers/modifiers
• Static
• Scanner and command line arguments
• Public static void main(…)
• Shadowing, this keyword
• Enum
• Types of Inheritance
• Super
• Abstract class and Interface

Outline(cont…)

• Anonymous class
• Inner class
• Exception handling
• Collection
• File I/O
• Multithreading
• Miscellaneous

OOPs Concepts

Encapsulation

• Wrapping up of variables and methods together into
a single unit

• Data hiding
• How to achieve?
1. Declare properties as private
2. Expose behaviors as public
• How to achieve?
§ Using access specifiers

Abstraction

• Showing essentials features of an object to client
• Used as an interface to the user
• How to achieve?
§ Using abstract class and interface

Inheritance

• Allowing classes to inherit commonly used state and
behavior from other classes

• Used for code reusability
• How to achieve?
§ Using extends keyword

Polymorphism

• One thing in multiple forms
• Ability to process objects differently based upon

data type and class
• How to achieve?
§ Overloading and Overriding

Introduction

• Higher level programming language
• Not 100% pure
• Developed by Sun Microsystems
• James Gosling – 1991
• Now it is the product of Oracle
• Worldwide 9 million Java developers
• 3 billion mobile phones run Java
• Latest version : Java 8

Java Features

JVM,JDK and JRE

Installation steps

• Download latest java version from
https://java.com/en/download/

• C:/Program Files/Java
• Environment variables : PATH,LIB,INCLUDE
• Two commands : javac and java

Compilation

Eclipse

• Open source IDE
• To develop robust and fully-featured platform
• Download from http://www.eclipse.org/
• You may download latest version : either Mars or

Neon

Basics of programming

Introduction to class and object

• Class : blueprint to describe states and behaviors
• Object : instance of class
• Three types of variables : local, instance and class

level variables
• Constructor
• Object creation

Access Specifiers

• To define visibility of variables and methods
• Not applicable to local variables
• 4 types

Static
• Scope : class level
• Independent of objects
• Shared among all objects of a class
• Applicable to variable, method and block
• One time memory allocation at the time of class

loading
• Saves memory compare to instance variables
• Memory is allocated in class area(others are stack

memory,heap memory,etc)
• Syntax : Classname.variable, Classname.method()

Static(Cont…)

• Static method
• It allows only static variables
• cannot use this and super keywords
• Static block
• It is used to initialize static variables
• It is executed before main method
• It is invoked at the time of class loading

Memory Model

User Input

• Scanner class
• Command line arguments
• InputStreamReader
• BufferedReader

Main method

JVM Architecture

Shadowing and this keyword

• Shadowing : local variables hide instance variables in
local scope

• Solution : this keyword
• To exlicitly point to current invoking object
• It is final variable so can't assign values i.e this=new

Student()
• Applicable to only non-static variables

Enum

• Set of constants
• datatype in java
• Can be used with if,switch case,for

loop,variable and method
• Supports constructors and methods

Types of Inheritance

• Parent-child relationship
• Usage : Code reusability
• Types :

Single,multiple,multilevel,hierarchical,hybrid
• Java directly doesn't support multiple

inheritance
• Super : to invoke properties of parent from

child class

Abstract class

• Atleast one abstract method
• no object
• can have constructors
• extends keyword

Interface

• 100% abstract class
• no object
• can't have constructors
• implements keyword

Polymorphism

• One thing in multiple forms
• Method overloading : same method with different

signature - static polymorphism
• Method overloading : same method with same

signature - dynamic polymorphism
• Upcasting : Dog d=new Dog() ; Animal a=(Animal)

dog
• Downcasting : Animal a = new Dog() ; Dog d=(Dog) a

Anonymous class

• Class having no name
• Way of creating an instance without actually creating

subclass
• It is declared and initialized simultaneously
• Since it has no name,it can be used only once
• Format of anonymous class name :

MainClassName$Id

Inner class

• A class inside the class
• Logical group of classes having similar functionalities
• It can access private data of outer class
• Usage : security , database configuration

Exception handling

• Runtime error
• Two types : checked and unchecked exceptions
• Throwable : Error(unchecked) and

Exception(checked)
• Exception : RuntimeException(unchecked)

Collection

• A framework which is used for data storage
• Common operations :

create,insert,update,delete,search,sort
• Main interfaces : List,Set and Map
• List : ArrayList,Vector,LinkedList
• Set : TreeSet,Hashset,LinkedHashSet
• Map : Hashtable,HashMap
• Object sorting
• Comparable,comparator

Collection Hierarchy

JDBC

• Java to DataBase Connectivity
• Driver class for MySQL - com.jdbc.mysql.Driver
• Connection object
• Statement v/s PreparedStatement
• ResultSet
• SQL queries

File I/O

• FileReader and FileWriter classes
• Character-basedclasses
• BuferedReader and BufferedWriter
• To buffer input and improve efficiency
• Faster compare to FileReader
• APIs available to get metadata of a file

Multithreading

• Parallel execution
• Thread : light-weight and small unit of process
• Use : Video games and animation
• Lifecycle

Multithreading(Cont…)

• Two ways to create a thread : By extending Thread
class and by implementing Runnable interface

• APIs
• start()
• run()
• sleep()
• join()
• wait()
• notify()
• notifyall()
• synchronization

Design Patterns

1.Creational Design Pattern

• Factory Pattern
• Abstract Factory Pattern
• Singleton Pattern
• Prototype Pattern
• Builder Pattern.

Design Pattern(Cont...)

2. Structural Design Pattern
• Adapter Pattern
• Bridge Pattern
• Composite Pattern
• Decorator Pattern
• Facade Pattern
• Flyweight Pattern
• Proxy Pattern

Design Pattern(Cont...)
3. Behavioral Design Pattern
• Chain Of Responsibility Pattern
• Command Pattern
• Interpreter Pattern
• Iterator Pattern
• Mediator Pattern
• Memento Pattern
• Observer Pattern
• State Pattern
• Strategy Pattern
• Template Pattern
• Visitor Pattern

Factory Pattern

• Subclasses decide which
class to instantiate

• Loose coupled approach
• Object creation task is

assigned to subclass

Singleton Pattern

• A class which has only one
instance

• Single instance is reused
again and again

• Saves memory
• It is used in

logging,database and
configuration settings

Decorator Pattern

• To add extra
functionalities to an
object dynamically

• To achieve flexibility
• Enhances extensibility

of the object

Iterator Pattern

• To access elements of
an object without
exposing
implementation

• It is used for traversal
in collection

