CS6303 — COMPUTER ARCHITECTURE
LESSION NOTES
UNITT  OVERVIEW & INSTRUCTIONS
8 GREAT IDEAS

1. Design for Moore's Law

moore's Law The one constant for computer designers is rapid change, which is driven largely by
Moore's Law. It states that integrated circuit resources double every 18-24 months. Moore's Law
resulted from a 1965 prediction of such growth in IC capacity made by Gordon Moore, one of the
founders of Intel. As computer designs can take years, the resources available per chip can easily double
or quadruple between the start and finish of the project. Like a skeet shooter, computer architects must
anticipate where the technology will be when the design finishes rather than design for where it starts.
We use an "up and to the right" Moore's Law graph to represent designing for rapid change.

2. Use Abstraction to Simplify Design
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aAssTRACTION Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as dramatically as resources
grew by Moore's Law. A major productivity technique for hardware and soft ware is to use abstractions
to represent the design at different levels of representation; lower-level details are hidden to off er a
simpler model at higher levels. We'll use the abstract painting icon to represent this second great idea.




3. Make the common case fast

common case FAsT Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is oft en simpler than the rare case and hence is
oft en easier to enhance. This common sense advice implies that you know what the common case is,
which is only possible with careful experimentation and measurement. We use a sports car as the icon
for making the common case fast, as the most common trip has one or two passengers, and it's surely
easier to make a fast sports car than a fast minivan.

4. Performance via parallelism

FaratLeLlism Since the dawn of computing, computer architects have offered designs that get
more performance by performing operations in parallel. We'll see many examples of parallelism in this
book. We use multiple jet engines of a plane as our icon for parallel performance.

5. Performance via pipelining
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rieecaninve A particular pattern of parallelism is so prevalent in computer architecture that it merits
its own name: pipelining. For example, before fire engines, a "bucket brigade" would respond to a fire,
which many cowboy movies show in response to a dastardly act by the villain. Th e townsfolk form a
human chain to carry a water source to fi re, as they could much more quickly move buckets up the
chain instead of individuals running back and forth. Our pipeline icon is a sequence of pipes, with each
section representing one stage of the pipeline.

6. Performance via prediction
Following the saying that it can be better to ask for forgiveness than to ask for permission, the next

great idea is prediction. In some cases it can be faster on average to guess and start working rather than
wait until you know for sure, assuming that the mechanism to recover from a misprediction is not too



expensive and your prediction is relatively accurate. We use the fortune-teller's crystal ball as our
prediction icon.

7. Hierarchy of memories
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wierarcHy  Programmers want memory to be fast, large, and cheap, as memory speed often shapes
performance, capacity limits the size of problems that can be solved, and the cost of memory today is
often the majority of computer cost. Architects have found that they can address these conflicting
demands with a hierarchy of memories, with the fastest, smallest, and most expensive memory per bit
at the top of the hierarchy and the slowest, largest, and cheapest per bit at the bottom. Caches give the
programmer the illusion that main memory is nearly as fast as the top of the hierarchy and nearly as big
and cheap as the bottom of the hierarchy. We use a layered triangle icon to represent the memory
hierarchy. The shape indicates speed, cost, and size: the closer to the top, the faster and more expensive
per bit the memory; the wider the base of the layer, the bigger the memory.

8. Dependability via redundancy

DEFENDAEILITY Computers not only need to be fast; they need to be dependable. Since any
physical device can fail, we make systems dependable by including redundant components that can take
over when a failure occurs and to help detect failures. We use the tractor-trailer as our icon, since the
dual tires on each side of its rear axels allow the truck to continue driving even when one tire fails.
(Presumably, the truck driver heads immediately to a repair facility so the fl at tire can be fixed, thereby
restoring redundancy!)

COMPONENTS OF COMPUTER SYSTEM

Th e fi ve classic components of a computer are input, output, memory, datapath, and control, with the
last two sometimes combined and called the processor. Figure 1.5 shows the standard rganization of a
computer. Th is organization is independent of hardware technology: you can place every piece of every
computer, past and present, into one of these fi ve categories.



Through the Looking Glass

The most fascinating 1/0 device is probably the graphics display. Most personal mobile devices
use liquid crystal displays (LCDs) to get a thin, low-power display. Th e LCD is not the source of light;
instead, it controls the transmission of light. A typical LCD includes rod-shaped molecules in a liquid that
form a twisting helix that bends light entering the display, from either a light source behind the display
or less oft en from refl ected light. Th e rods straighten out when a current is applied and no longer bend
the light. Since the liquid crystal material is between two screens polarized at 90 degrees, the light
cannot pass through unless it is bent.

Today, most LCD displays use an active matrix that has a tiny transistor switch at each pixel to
precisely control current and make sharper images. A red-green-blue mask associated with each dot on
the display determines the intensity of the threecolor components in the fi nal image; in a color active
matrix LCD, there are three transistor switches at each point.

Th e image is composed of a matrix of picture elements, or pixels, which can be represented as a
matrix of bits, called a bit map. Depending on the size of the screen and the resolution, the display
matrix in a typical tablet ranges in size from 1024 _ 768 to 2048 _ 1536. A color display might use 8 bits
for each of the three colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent
colors to be displayed.

Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the PostPC era have replaced
the keyboard and mouse with touch sensitive displays, which has the wonderful user interface
advantage of users pointing directly what they are interested in rather than indirectly with a mouse.
While there are a variety of ways to implement a touch screen, many tablets today use capacitive
sensing. Since people are electrical conductors, if an insulator like glass is covered with a transparent
conductor, touching distorts the electrostatic fi eld of the screen, which results in a change in
capacitance. Th is technology can allow multiple touches simultaneously, which allows gestures that can
lead to attractive user interfaces.

Opening the Box

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, of the fi ve
classic components of the computer, I/0 dominates this reading device. Th e list of I/O devices includes
a capacitive multitouch LCD display, front facing camera, rear facing camera, microphone, headphone
jack, speakers, accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. Th e datapath, ontrol,
and memory are a tiny portion of the components. Th e small rectangles in Figure 1.8 contain the
devices that drive our advancing technology, called integrated circuits and nicknamed chips. Th e A5
package seen in the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate



of 1 GHz. Th e processor is the active part of the computer, following the instructions of a program to
the letter. It adds numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally,
people call the processor the CPU, for the more bureaucratic-sounding central processor unit.

Cache memory

Itconsists of a small, fast memory that acts as a buff er for the DRAM memory. (Th e nontechnical defi
nition of cache is a safe place for hiding things.) Cache is built using a diff erent memory technology,
static random access memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

A Safe Place for Data

Th us far, we have seen how to input data, compute using the data, and display data. If we were to lose
power to the computer, however, everything would be lost because the memory inside the computer is
volatile—that is, when it loses power, it forgets. In contrast, a DVD disk doesn’t forget the movie when
you turn off the power to the DVD player, and is thus a nonvolatile memory technology.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is still one missing item
found in today’s computers: computer networks. Just as the processor shown in Figure 1.5 is connected
to memory and 1/0 devices, networks interconnect whole computers, allowing computer users to
extend the power of computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device or server without a
network interface would be ridiculed. Networked computers have several major advantages:

Communication: Information is exchanged between computers at high speeds.

Resource sharing: Rather than each computer having its own I/O devices, computers on the network
can share 1/0 devices.

Nonlocal access: By connecting computers over long distances, users need not be near the computer
they are using.

Networks vary in length and performance, with the cost of communication increasing according
to both the speed of communication and the distance that information travels. Perhaps the most
popular type of network is Ethernet. It can be up to a kilometer long and transfer at up to 40 gigabits per
second.

Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer designers have
long embraced the latest in electronic technology to try to win the race to design a better computer.
been used over time, with an estimate of the relative performance per unit cost for each technology.
Since this technology shapes what computers will be able to do and how quickly they will evolve, we
believe all computer professionals should be familiar with the basics of integrated circuits.
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Year of introduction
A is simply an on/off switch controlled by electricity. Th e integrated circuit (IC)
combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per
chip. To describe the tremendous increase in the number of transistors from hundreds to millions, the
adjective very large scale is added to the term, creating the abbreviation VLSI, for

Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows the growth in
DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity every 3
years, resulting in an increase in excess of 16,000 times! To understand how manufacture integrated
circuits, we start at the beginning. The manufacture of a chip begins with , & substance found in
sand. Because silicon does not conduct electricity well, it is called a . With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to transform into one of
three devices: @ Excellent conductors of electricity (using either microscopic copper or aluminum wire)
been used over time, with an estimate of the relative performance per unit cost for each technology.
Since this technology shapes what computers will be able to do and how quickly they will evolve, we
believe all computer professionals should be familiar with the basics of integrated circuits.

A is simply an on/off switch controlled by electricity. Th e integrated circuit (IC)
combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per
chip. To describe the tremendous increase in the number of transistors from hundreds to millions, the
adjective very large scale is added to the term, creating the abbreviation VLSI, for

. Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity
every 3 years, resulting in an increase in excess of 16,000 times! To understand how manufacture
integrated circuits, we start at the beginning. Th e manufacture of a chip begins with , @ substance
found in sand. Because silicon does not conduct electricity well, it is called a . With a
special chemical process, it is possible to add materials to silicon that allow tiny areas to transform into
one of three devices:

o Excellent conductors of electricity (using either microscopic copper or
e Excellentinsulators from electricity (like plastic sheathing or glass)
e Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combinations of
conductors, insulators, and switches manufactured in a single small package.aluminum wire)
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FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank
walers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this final test.

Elaboration: The cost of an integrated circuit can be expressed in three simple
equations:
Cost per wafer

Cost per die = -
Dies per wafer X yield
: Wafer area
Dies per wafer = —
Die area

1

Yield =
(1 + (Defects per area % Die area/2))”

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.13). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in the die area.

Performance



Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.14
lists some typical passenger airplanes, together with their cruising speed, range,
and capacity. If we wanted to know which of the planes in this table had the best
performance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed was the Concorde (retired from service in 2003), the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747.

Passenger | Cruising range | Cruising speed | Passenger throughput
capacity nile (m.p.h.) (passengers x m.p.h.)

Boeing 777 375 4630 610 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeofl and landing times).

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease

response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors for separate tasks—for
example, searching the web Decreasing response time almost always improves throughput. Hence, in
case

1, both response time and throughput are improved. In case 2, no one task gets work done faster, so
only throughput increases. If, however, the demand for processing in the second case was almost

as large as the throughput, the system might force requests to queue up. In this case, increasing the
throughput could also improve response time, since it would reduce the waiting time in the queue. Th
us, in many real computer systems, changing either execution time or throughput oft en aff ects the
other. In discussing the performance of computers, we will be primarily concerned with response time
for the fi rst few chapters. To maximize performance, we want to minimize response time or execution

time for some task. Th us, we can relate performance and execution time for a computer X:
1

Performancey = ——
Execution timey

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performancey > Performancey

1 - |

Execution timey Execution timey

Execution timey = Execution timey

That is, the execution time on Y is longer than that on X, if X is faster than Y.



Relatlve Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

‘We know that A is n times as fast as B if

Performance,  Execution timey

Performance,  Execution time,

Thus the performance ratio is
15
—=1.5
10
and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
zomputer A, since

Performance , i
Performancey,
means that
Performance
— A — Performance,

1.5



The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.
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FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

Th e dominant technology for integrated circuits is called CMOS (complementary metal oxide
semiconductor). For CMOS, the primary source of energy consumption is so-called dynamic energy—
that is, energy that is consumed when transistors switch states from 0 to 1 and vice versa. Th e dynamic
energy depends on the capacitive loading of each transistor and the voltage applied:

Energy o Capacitive load % Voltage’
This equation is the energy of a pulse during the logic transition of 0 — 1 — 0 or
1 — 0 — 1. The energy of a single transition is then
Energy o< 1/2 X Capacitive load X Vﬂft&geF
The power required per transistor is just the product of energy of a transition and
the frequency of transitions:

Power o 1/2 X Capacitive load X Voltage® X Frequency switched

Frequency switched is a function of the clock rate. Th e capacitive load per transistor is a
function of both the number of transistors connected to an output (called the fanout) and the
technology, which determines the capacitance of both wires and transistors.



The Sea Change: The Switch from Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. Figure 1.17
shows the improvement in response time of programs for desktop microprocessors over time. Since
2002, the rate has slowed from a factor of 1.5 per year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program running on the single
processor, as of 2006 all desktop and server companies are shipping microprocessors with multiple
processors per chip, where the benefit is oft en more on throughput than on response time. To reduce
confusion between the words processor and microprocessor, companies refer to processors as “cores,”
and such microprocessors are generically called multicore microprocessors.

Hence, a “quadcore” microprocessor is a chip that contains four processors or four cores. In the
past, programmers could rely on innovations in hardware, architecture, and compilers to double
performance of their programs every 18 months without having to change a line of code. Today, for
programmers to get significant improvement in response time, they need to rewrite their programs to
take advantage of multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programmers will have to continue to improve performance of their code as the
number of cores increases.

To reinforce how the soft ware and hardware systems work hand in hand, we use a special
section, Hardware/Soft ware Interface, throughout the book, with the first one appearing below. These
elements summarize important insights at this critical interface.

arallelism has always been critical to performance in computing, but it was  Hardware/
often hidden. Chapter 4 will explain pipelining, an elegant technique that runs Software
programs faster by overlapping the execution of instructions. This is one example of
instruction-level parallelism, where the parallel nature of the hardware is abstracted Interface
away so the programmer and compiler can think of the hardware as executing
instructions sequentially. ‘.

Forcing programmers to be aware of the parallel hardware and to explicitly

rewrite their programs to be parallel had been the “third rail” of computer .
architecture, for companies in the past that depended on such a change in behavior
failed (see [ Section 6.15). From this historical perspective, it’s startling that the .,
whole IT industry has bet its future that programmers will finally successfully

switch to explicitly parallel programming, PIFPELINING
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FIGURE 1.17 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks {see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. The higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven
higher in 2002 than it would have been had it stayed at 25%. Since 2002. the limits of power, available instruction-level parallelism, and long
memory latency have slowed uniprocessor performance recently. to about 22% per year.



Operations of the Computer Hardware
Every computer must be able to perform arithmetic. Th e MIPS assembly language notation add
a, b, c instructs a computer to add the two variables b and ¢ and to put their sum in a.

This notation is rigid in that each MIPS arithmetic instruction performs only one operation and
must always have exactly three variables. For example, suppose we want to place the sum of four
variables b, ¢, d, and e into variable a. (In this section we are being deliberately vague about what a
“variable” is; in the next section we’ll explain in detail.)

The following sequence of instructions adds the four variables:
add a, b, c# The sum ofb and c is placed in a
add a,a, d#Thesumofb, c,andd isnowin a
add a, a, e # The sum of b, ¢, d,and eisnow in a
Thus, it takes three instructions to sum the four variables. The words to the right of the sharp
symbol (#) on each line above are comments for the human reader, so the computer ignores them.

MIPS ASSEMBLY LANGUAGE CODE

add $51,$52,%53 | 3851 = %52 + $s3 Three regmter operands

Arithmetic s.ut:-tract sub  $51,%52.%53 |$51 =1%52 353 Three register operands

add immediate addi $s51,%52.20 |85s51=4%52+20 Used to add constants

load word Tw %s51.20(%s52) 551 = Memory[is2 + 20] Word from memory to register

store word sw %51,20(%s52) Memory[§s2 + 20] =351 Word from register to memaory

load half Th $51,20(%s52) 551 = Memory[$s? + 20] Halfword memory to register

load half unsigned | Thu $51,20($52) |ss1 = Memory[s2 + 20) Halfword memory to register

store half sh %$s51,20(%s2) Memory[fs? + 20] =$s1 Halfword register to memory
Er:fsfer load byte 1b $s51,20{%$s52) |%sl=Memory[s2+ 20] Byte from memory to register

load byte unsigned | 1bu  $s51,20(%s2) | 551 = MemoryEs2 + 20] Eyte from memory to register

store byte sb %$s51,20(%s52) Memory[s? + 20] =$s1 Eyte from register to memory

load linked word 11 $s1,20(%s52) |[%s1=Memory[Fs? +20] Load word as 1st half of atomic swap

store condition. word | sc $s1.20(%$s2) Memony{$s2+20]=$51;8s51=0 or 1 | Store word as 2nd half of atomic swap

load upper immed. | Tui  $s1.20 $s1=20*2F Loads constant in upper 16 bits

and and  $51,%52,%53 (%51 =%52 & %53 Three reg. operands; bit-by-bit AND

or ar 51,352,953 551l =952 3%s2 Three reg. operands; bit-by-bit OR

nor nor L$52,%53 | 551l =~ (552 $53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s51,%s52,20 |$s1=1%s2 &20 Bit-by-bit AND reg with constant

or immediate ori $51,$s52,20 |8s1=%$s2]20 Bit-by-bit OR reg with constant

shift left logical 511 $51.%52.10 |55l =452 <<10 Shift left by constant

shift right logical sr1 $s51,.%s52.10 [8Ss1=4%s2>=10 Shift right by constant

branch on equal beg $s51,.$52.25 if ($51 == $52) go to Equal test; PC-relative branch

PC+4+100
branch onnot equal | bne $s51,%52,25 if ($51!= %$52) goto Mot equal test; PC-relative
PC+4+100

set on less than STt $51,.%52.%353 |if($52 <$53) $s1=1; Compare less than; for beq, bne
Conditional else 551 =0
branch set on less than s1tu  $s51,%$52,853 |if ($s2 < §53) $s51=1; Compare less than unsigned

unsigned glse 551 =0

set less than sTti $51,%$52,20 |if($s2 <20)%$s1=1; Compare less than constant

immediate glse 551 =20

sat less than sTtiu $s51.552,20 |if($s52<20)$s1=1; Compare less than constant

immediate unsigned glse 551 =0 unsigned




Complling Two C Asslgnment Statements Into MIPS

This segment of a C program contains the five variables a, b, ¢, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a=>b+ c;

d =a

The translation from C to MIPS assembly language instructions is performed
by the compiler. Show the MIPS code produced by a compiler.

m 0

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b,
sub d, a,

m 0

Operands of the Computer Hardware

One major difference between the variables of a programming language and registers is the
limited number of registers, typically 32 on current computers, like MIPS. (See for the
history of the number of registers.) Thus, continuing in our top-down, stepwise evolution of the
symbolic representation of the MIPS language, in this section we have added the restriction that the
three operands of MIPS arithmetic instructions must each be chosen from one of the 32 32-bit registers.
The reason for the limit of 32 registers may be found in the second of our three underlying design
principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because it takes
electronic signals longer when they must travel farther. Guidelines such as “smaller is faster” are not
absolutes; 31 registers may not be faster than 32. Yet, the truth behind such observations causes
computer designers to take them seriously. In this case, the designer must balance the craving of
programs for more registers with the designer’s desire to keep the clock cycle fast. Another reason for
not using more than 32 is the number of bits it would take in the instruction format, as Section 2.5
demonstrates.

Ccomplling a € Asslignment Using Reglsters
It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

Ty

f=(g+h)-(i+]J);

The variables f, g, h, 1, and ] are assigned to the registers $s0, $s1, $52,
$53, and $ 54, respectively. What is the compiled MIPS code?



The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $tl,$s3,%s4 # register $tl contains i +
sub $s0,$t0,3t1 # f gets $t0 - $t1, which is (g + h)-(i + j)

Memeory Operands
Recall the five components of a computer introduced in Chapter 1 and repeated

on page 61. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory [2] is 10.

2 10
1 101
0 1

Address Data

Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

Logical Operations

Although the first computers operated on full words, it soon became clear that it was useful to
operate on fields of bits within a word or even on individual bits. Examining characters within a word,
each of which is stored as 8 bits, is one example of such an operation (see Section 2.9). It follows that
operations were added to programming languages and instruction set architectures to simplify, among
other things, the packing and unpacking of bits into words. Th ese instructions are called logical
operations. Figure 2.8 shows logical operations in C, Java, and MIPS.

<< 511

Shift left <<

Shift right > >22 sri
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or. ori
Bit-by-bit NOT ~ ~ nor|

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS
implements NOT using a NOR with one operand being zero.



The first class of such operations is called shift s. They move all the bits in a word to the left or right,
filling the emptied bits with Os. For example, if register $s0 contained

0000 0000 0000 0000 0000 0000 0000 1001two = 9ten
and the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000two = 144ten

The dual of a shift left is a shift right. The actual name of the two MIPS shitft
instructions are called shift left logical (s11) and shift right logical (sr1). The
following instruction performs the operation above, assuming that the original
value was in register $50 and the result should go in register $t 2:

s11  $t2.%$s50,4 # reg $t2 = reg $s0 << 4 bits
We delayed explaining the shamt field in the R-format. Used in shift instructions,
it stands for shift amount. Hence, the machine language version of the instruction
above is

op rs i rd shamt funct

‘ 0 | ] ‘ 16 | 10 <4 | 0

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during computation,
different instructions execute. Decision making is commonly represented in
programming languages using the if statement, sometimes combined with go to
statements and labels. MIPS assembly language includes two decision-making
instructions, similar to an if statement with a go fo. The first instruction is

beq registerl, register?, L1

This instruction means go to the statement labeled L1 if the valuein registerl
equals the value in registerZ. The mnemonic beq stands for branch if equal.
The second instruction is

bne registerl, register?, Ll

It means go to the statement labeled L1 if the value in register] does not equal
the valuein register?Z. The mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

Complling If-then-else Into Conditlonal Branches

In the following code segment, f, g, h, 1, and j are variables. If the five
variables T through j correspond to the five registers $ 50 through $s4, what
is the compiled MIPS code for this C if statement?

if (i=j) f=9g+ h; else f =g - h;



Figure 2.9 shows a flowchart of what the MIPS code should do. The first
expression compares for equality, so it would seem that we would want the
branch if registers are equal instruction (beq). In general, the code will be
more efficient if we test for the opposite condition to branch over the code that
performs the subsequent then part of the if (the label E1 se is defined below)
and so we use the branch if registers are not equal instruction (bne):

bne $s3,$s4 Else {# go to Else if i = j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add $s0,9s1,%s2 # f =g+ h (skipped if i = j)
We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruction
says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of
instruction is jump, abbreviated as j (the label Ex it is defined below).

j Exit # go to Exit
The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label E1se to
this instruction. We also show the label Ex 1t that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,%s1,$s52 # f = g - h (skipped if i = j)
Exit:

Else:

=g+h =g—h

Exit:

FIGURE 2.9 [lllustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.

Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.



complling a while Loop In C

Here is a traditional loop in C:

while (savel[i] == k)
i+=1;

Assume that 1 and k correspond to registers $ s 3 and $55 and the base of the
array save isin $s6. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load save[ i ] into a temporary register. Before we can load
save[1] into a temporary register, we need to have its address. Before we
can add 1 to the base of array 5ave to form the address, we must multiply the
index i by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 2* or 4 (see page 88 in the
prior section). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop: s11 $t1,%$s3,7 # Temp reg $t1 = i * 4
To get the address of save[ 1 ], we need to add $t1 and the base of save in $ s6:
add $tl1,$tl,$s6 # $t1 = address of save[i]
Now we can use that address to load save[ 1] into a temporary register:
Tw $t0,0(%t1) # Temp reg $t0 = savel[i]
The next instruction performs the loop test, exiting if save[i] = k:

bne $t0,%$s5, Exit # go to Exit if save[i] = k



The next instruction adds 1 to 1:
addi $53,%$s3.1 #1i=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Ex 1t label after it, and we're done:

3 Loop # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Case/Switch Statement

Most programming languages have a case or switch statement that allows the
programmer to select one of many alternatives depending on a single value. The
simplest way to implement switch is via a sequence of conditional tests, turning the
swifch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table or
jump table, and the program needs only to index into the table and then jump to
the appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the code. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in the register. To support such situations, computers like MIPS include a jump
register instruction (j r), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction. We'll see an
even more popular use of jr in the next section.

MIPS Addressing for 32-bit Immediates and Addresses

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there are times
where it would be convenient to have a 32-bit constant or 32-bit address. Th is section starts with the
general solution for large constants, and then shows the optimizations for instruction addresses used in
branches and jumps.

32-Bit Immediate Operands
Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they are bigger.
Th e MIPS instruction set includes the instruction load upper immediate (lui) specifi cally to set the upper
16 bits of a constant in a register, allowing a subsequent instruction to specify the lower 16 bits of the
constant. Figure 2.17 shows the operation of lui.
Loading a 32-Blt Constant

What is the MIPS assembly code to load this 32-bit constant into register $s07

gooo 0000 0011 1101 COOO 1001 0OCOO 0CQOD

First, we would load the upper 16 bits, which is 61 in decimal, using Tui:
Tui $sD, 61 # 61 decimal = 0000 Q000 0011 1101 binary
The value of register % s0 afterward is

cocoo 0000 0011 1101 QOO0 OOCO 0000 0000
The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 {# 2304 decimal = 0000 1001 0000 0000
The final value in register % s 0 is the desired value:

cooo 0000 0011 1101 OOCO 1001 0000 0000



The machine language version of Tui $t0, 255  # $t0 is register 8:

| 001111 00000 01000 | 0000 0000 1111 1111 |
Contents of register $t0 after executing Tui $t0, 255: e
| 0000 0000 1111 1111 | 0000 0000 0000 0000 |

FIGURE 2.17 The effect of the 1ui instruction. The instruction 1ui transfers the 16-bit immediate constant field value into the
leftmost 16 bits of the register, filling the lower 16 bits with 0s.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field
and the rest of the bits for the address field. Thus,

3 10000  # go to Tocation 10000

could be assembled into this format (it’s actually a bit more complicated, as we will

see):

| 2 ‘ 10000 ‘
6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 1 UUUU.

Unlike the jump instruction, the conditional branch instruction must specify
two operands in addition to the branch address. Thus,

bne $s0,$sl1.Exit # go to Exit if $s0 = $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 ‘ 17 | Exit
6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that no
program could be bigger than 2', which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added
to the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2% and still be able to use
conditional branches, solving the branch address size problem. Then the question
is, which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
+2' words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 2'® words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point
to the next instruction. Hence, the MIPS address is actually relative to the address
of the following instruction (PC + 4) as opposed to the current instruction (PC).
It is yet another example of making the common case fast, which in this case is
addressing nearby instructions.



Showing Branch Offset In Machine Language

The while loop on pages 92-93 was compiled into this MIPS assembler code:

Loop:s11 $t1,%s3,2 ¥ Temp reg $tl = 4 * 4
add $tl1,$tl1,3%$s6 # $t1 = address of savel[il]
Tw  $t0,00$t1) # Temp reg $t0 = savel[i]
bne $t0,$s5, Exit # go to Exit if saveli] = k
addi $s3,%s3,1 i =T+ 1
] Loop ¥ go to Loop

Exits

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

80000 0 0 19 9 2 0
80004 0 9 22 Q 0 32
80008 35 9 8 0

80012 L 8 21 2

80016 8 19 19 1

80020 2 20000

80024

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called . Figure 2.18 shows how operands
are identifi ed for each addressing mode. Th e MIPS addressing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruction itself

2. Register addressing, where the operand is a register

3. Base or displacement addressing, where the operand is at the memory location whose address is the
sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the
instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the instruction concatenated with
the upper bits of the PC



1. Immediate addressing

op

rs

rt

Immediate

2. Register addressing

op

rs

r

rd | ... [funct

Registers

3. Base addressing

op

rs

rt

Address

Register

Reqgister

Memaory

[(ByiE] Halfword |

4. PC-relative addressing

op|rs |t Address Memory
PC - Word
I
5. Pseudodirect addressing
op Address Memory
|
PC (i}————+ Word
I }
FIGURE 2.18 Mlustration of the five MIPS addressing modes. The operands are shaded in color.

The operand of mode 3 is in memory, whereas the operand for mode 2 is a regisier. Mote that versions of
load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself.
Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the
PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Note that a
single operation can use more than one addressing mode. Add, for example, uses both immediate (addi)
and register {add) addressing.



UNITII  ARITHMETIC OPERATIONS

Introduction

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal or
binary form, but what about the other numbers that commonly occur? For example:

B What about fractions and other real numbers?
m What happensifan operation creates a number bigger than can be represented?

B And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries including representation of
real numbers, arithmetic algorithms, hardware that follows these algorithms, and
the implications of all this for instruction sets. These insights may explain quirks
that you have already encountered with computers. Moreover, we show how to use
this knowledge to make arithmetic-intensive programs go much faster.

Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

Binary Additlon and Subtraction

Let’s try adding 6 _to 7 in binary and then subtracting 6 _ from 7 __ in binary.

0000 0000 0000 000D 0000 0000 0000 0111y, = 7iu
+ 0000 0000 0000 000D 0000 0000 0000 0110y, = 6y
= 0000 0000 0000 000D 0000 0000 0000 1101, = 13,4,

The 4 bits to the right have all the action; Figure 3.1 shows the sums and
carries. The carries are shown in parentheses, with the arrows showing how
they are passed.

Subtracting 6, from 7 can be done directly:
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FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The

third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bitis 1 +
0 + 0, yielding a 1 sum and no carry.

aooo 0000 0000 0000 0000 0000 0000 0111y, =
= 0000 Qo000 0000 OOOO OQOOO 0000 000D D1104y, =
= 0000 0oO0 000D ODOO OOOO ODOO DOOO 00014, =

?Len
ELen
1ten

or via addition using the two's complement representation of —6:

0000 0000 0000 OOOO 0OOO0 0O0C 0000 0111y, =
+ 1111 1111 T111 1111 1111 1111 13111 10104, =
= 0000 0000 0000 0000 OOOO0 OOO0O0 0000 000ly,, =

?tnn
'Etnn
lten

Result
=0 =0 <0

A+B

A+B <0 =0 =0
A-B =20 =0 <0
A-R =0 =0 =0

FIGURE 3.2 Overflow conditions for addition and subtraction.

We have just seen how to detect overflow for twos complement numbers in a
computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in

some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

m Add(add), add immediate (addi), and subtract (sub) cause exceptions on
overflow.

m Add unsigned (addu), add immediate unsigned (addiu), and subtract

unsigned (subu) do nof cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu, no
matter what the type of the variables. The MIPS Fortran compilers, however, pick
the appropriate arithmetic instructions, depending on the type of the operands.

Appendix B describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.



Multiplication

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons

that will become clear shortly, we limit this decimal example to using only the
digits 0 and 1. Multiplying 1000 __ by 1001 __:

Multiplicand 1000,
Multiplier X 1001,
1000
0000
0000
1000
Product 1001000,,

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right to
left, multiplying the multiplicand by the single digit of the multiplier, and shifting
the intermediate product one digit to the left of the earlier intermediate products.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 X multiplicand) in the proper place
if the multiplier digitisa 1, or

2. Place 0 (0 x multiplicand) in the proper place if the digit is 0.

-

Multiplicand

Shift left |--+—

64 bits

—_—

\./ Muttiplier
EanALY Shift right |
32 bits
r
Product ) Control test
Write
64 bits

FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register. ALU,
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. { Appendix B
describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted left
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with
the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when
to write new values into the Product register.



Multiplicand
32 bits

32-bit ALU

" Shift right
Write test
64 bits

FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.3. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register lefi at 64 bits. Now the product is shified right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
{The Product register should really be 65 bits to hold the carry out of the adder, but it's shown here as 64 bits
to highlight the evolution from Figure 3.3.)

Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even more quirky. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010, by 1000,_:

1001ten  Quotient
Divisor 1000+,,/1001010+,,;,  Dividend
000

-1
10
101
1010
-1000
105 2 Remainder

Divide's two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend = Quotient » Divisor + Remainder
A Division Algorithm and Hardware

Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.
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Divisor
Shift right | -—
B4 bits
L 3 "
v Cuotient
84-bit ALU Shift left |-
32 bits

i

Remainder Control
Write test
B4 bits 4

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with the
dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value
into the Remainder register.

Figure 3.9 shows three steps of the first division algorithm. Unlike a human, the
computer isn't smart enough to know in advance whether the divisor is smaller
than the dividend. It must first subtract the divisor in step 1; remember that this is
how we performed the comparison in the set on less than instruction. If the result
is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in
the quotient (step 2a). If the result is negative, the next step is to restore the original
value by adding the divisor back to the remainder and generate a 0 in the quotient
(step 2b). The divisor is shifted right and then we iterate again. The remainder and
quotient will be found in their namesake registers after the iterations are complete.

Initial values 00410 0000 0000 0141
1: Rem = Rem - Div CICIOD 0040 0000 @110 014
1 2b: Rem <=0 = +Div, sll Q, Q0D =0 Q000 0010 Q000 0000 0141
3: Shift Div right Q000 0004 0OD0 0000 01441
1: Rem = Rem - Div Q000 0004 G000 (111 014
2 2b: Rem =0 = +Div, sll Q, Q0 =0 0000 0004 0000 0000 011
3: Shift Div right 0000 0000 1000 0000 01441
1: Rem = Rem — Div Q000 0000 1000 @Ard11 1444
3 2b: Rem <0 = +Div, sll Q. Q0 =0 0000 0000 1000 0000 0144
3: Shift Div right Q000 0000 0400 0000 0144
1: Rem = Rem - Div 0000 00000100 | (D000 0041
4 Za: Remz0=sllQ,Q0=1 0004 0000 0400 0000 0041
3: Shift Div right 00041 0000 0010 0000 0041
1: Rem = Rem — Div 00041 0000 0040 (@000 0004
5 Z2a: Rem=z0=sllQ, Q0 =1 0011 0000 0040 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to determine
the next step is circled in color.



Floating Point

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265... _ (pi)

2.71828... _ (e)

0.000000001_ or 1.0,_ x 1077 (seconds in a nanosecond)
3,155,760,000,_or 3.15576,_ x 107 (seconds in a typical century)

Notice that in the last case, the number didn't represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading Os is called a normalized number, which is the usual way to write it. For
example, 1.0, X 1077 is in normalized scientific notation, but 01 X 107% and
10.0_ X 107" are not.

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

10, . e
Floating-Point Representation

A designer of a floating-point representation must find a compromise between the
size of the fraction and the size of the exponent, because a fixed word size means
you must take a bit from one to add a bit to the other. This tradeoff is between
precision and range: increasing the size of the fraction enhances the precision
of the fraction, while increasing the size of the exponent increases the range of
numbers that can be represented. As our design guideline from Chapter 2 reminds
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a MIPS floating-point number is shown below, where s is the sign
of the floating-point number (1 meaning negative), exponent is the value of the
8-bit exponent field (including the sign of the exponent), and fraction is the 23-bit
number. As we recall from Chapter 2, this representation is sign and magnitude,
since the sign is a separate bit from the rest of the number.

fraction The value,
generally between 0 and
1, placed in the fraction
field. The fraction is also
called the mantissa.

exponent In the
numerical representation
system of floating-point
arithmetic, the value that
is placed in the exponent
field.

31 30‘29‘28|2T|25‘25‘24|23 22|21| 20 ‘19‘ 18|1?|1G|15‘14|13‘12|11|10| 9|8 ‘T|5‘5‘ 4‘ 3|2|1 |U
5 exponent fraction
1 bit 8 bits 23 bits

In general, floating-point numbers are of the form
{(—1¥x Fx 2F

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)



Exponent Fraction Exponent Fraction
0 0 0 0 0
0 Nonzero 0 Monzero + dencrmalized number
1-264 Anything 1-2046 Anything + floating-point number
255 0 2047 0 £ infinity
285 Monzero 2047 Monzero MaM (Mot a Number)

FIGURE 3.13 EEE 754 encoding of floating-point numbers. A separate sign bit determines the
sign. Denormalized numbers are described in the Elaboration on page 222, This information is also found in
Column 4 of the MIPS Reference Data Card at the front of this book

Thus 00 ... 00, represents 0; the representation of the rest of the numbers uses
the form from before with the hidden 1 added:

(—1)* x (1 + Fraction) X 2t

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right sl, s2, s3, ..., then the value is

(mIFX (1 + (51 X2+ (2X2)+(s3 X2+ (s4x 29+ ..)x2E

EXAMPLE

Converting Binary to Declimal Floating Polnt

‘What decimal number is represented by this single precision float?

d
[y

30|29‘28‘27‘2€|25|24|23 22|21|2D|19‘18‘1?‘16|15|14‘13|l2|11|1[]‘ 9 ‘ 8 ‘ 7 | 5] ‘ 5 ‘ 4 ‘ 3 | 2 | il | 0

ij2 06000 0001|101 0000O0O0O0OO0OCO0CO0OO0OCO0CO0CDO0DO0O0OCDOO

The sign bit is 1, the exponent field contains 129, and the fraction field contains
1 X 272 = 1/4, or 0.25. Using the basic equation,

{—1)% X (1 + Fraction) 3 2/®weneat=E=s) — (1)1 % (] + 0.25) x 2087120
—1'3 1.25 % 22

—T35 %4
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Floating-Point Addition

Let's add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999 > 10' + 1.610,_ X 107'. Assume that we can store
only four decimal digits of the significand and two decimal digits of the exponent.

Step 1. To be able to add these numbers properly, we must align the decimal

point of the number that has the smaller exponent. Hence, we need
a form of the smaller number, 1.610 > 107, that matches the
larger exponent. We obtain this by observing that there are multiple
representations of an unnormalized floating-point number in
scientific notation:

1.610, % 107! = 0.1610,_ X 10°= 001610, X 10!

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999, X 10'. Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is
really

0.016 x 10!

Step 2. Next comes the addition of the significands:

9.999
+ 0016,

10.015,_,
The sum is 10.015,_ X 10"

Step 3. 'This sum is not in normalized scientific notation, so we need to

Step 4.

adjust it:

10.015_ x 10' = 1.0015, X 10°

Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative, it would be possible for the sum to have many
leading 0Os, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow—that is, we
must make sure that the exponent still fits in its field.

Since we assumed that the significand can be only four digits long
(excluding the sign), we must round the number. In our grammar
school algorithm, the rules truncate the number if the digit to the
right of the desired point is between 0 and 4 and add 1 to the digit if
the number to the right is between 5 and 9. The number

1.0015_ X 107



Floating-Point Multiplication

Now that we have explained floating-point addition, let’s try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110,_ % 10" x 9.200,  x 107°. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by simply
adding the exponents of the operands together:

New exponent = 10 + (—5) =5

Let’s do this with the biased exponents as well to make sure we obtain
the same result: 10 + 127 = 137, and —5+ 127 =122, so0

New exponent = 137 + 122= 259

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases
as well as the exponents:

New exponent = (10 + 127) + (=5 + 127) = (5 + 2 X 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers,
we must subtract the bias from the sum:

New exponent = 137 + 122 — 127 = 259 — 127 = 132 = (5 + 127)
and 5 is indeed the exponent we calculated initially.
Step 2. Next comes the multiplication of the significands:

1.110,,
X 9.200,

0000
0000
2220
9990
10212000,

There are three digits to the right of the decimal point for each
operand, so the decimal point is placed six digits from the right in the
product significand:

10.212000,_

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 x 10°.



Step 3. 'This product is unnormalized, so we need to normalize it:

10.212 X 10° = 1.0212 X 10°
£l ten

Thus, after the multiplication, the product can be shifted right one digit
to put it in normalized form, adding 1 to the exponent. At this point,
we can check for overflow and underflow. Underflow may occur it both
operands are small—that is, if both have large negative exponents.

Step 4. We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

10212, X 10¢

is rounded to four digits in the significand to

1.021,_ X 10°

Step 5. 'The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise, it’s negative.
Hence, the product is

+1.021 _ X 108

The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication, the sign of the
product is determined by the signs of the operands.

Parallelism and Computer Arithmetic: Subword Parallelism

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9}, but due to the infrequency of
arithmetic operations on these data sizes in typical integer programs, there was
little support beyond data transfers. Architects recognized that many graphics
and audio applications would perform the same operation on vectors of this data.
By partitioning the carry chains within a 128-bit adder, a processor could use
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. The
cost of such partitioned adders was small.

Given that the parallelism occurs within a wide word, the extensions are
classified as subword parallelism. It is also classified under the more general name
of data level parallelism. They have been also called vector or SIMD, for single
instruction, multiple data (see Section 6.6). The rising popularity of multimedia



VLDR.F32

VADD.F32, VADD{L,W}{58,U8,516,U16,532,U32}

VAND.G4, VAND.128

VSTR.F32

VSUB.F32, VSUB{L W}{S8,UB,516,U16,532,U32}

VORR.B4, VORR.128

VLD{1,2,3.4}{18,116,132}

VMUL.F32, VMULL{S8,UB,516,U16,532,U32}

VEOR.G4, VEOR.128

VST{1,2,3.4}.{18,116,132}

VMLA.F32, VMLAL{S8,U8,516,U16,532,U32}

VBIC.G4, VBIC.128

VMOV.{I8 116,132, F32}, #imm

VMLS.F32, VMLSL{58,U8,516,U16,532,U32}

VORN.64, VORN.128

VMVNL{I8,116,132,F32}, #imm

VMAX.{S8,U8,516,U16,532,U32,F32}

VCEQ.{I8,116,132,F32}

VMOV{IG4,1128}

VMIN.{S8,U8,516,U16,532,U32,F32}

VCGE.{S8,UB,516,U16,532,U32,F32)

VMVN.{164,1128}

VABS.{S8,516,532,F32}

VCGT.{58,U8,516,U16,532,U32,F32}

VMNEG.{58,516,532 F32}

VCLE.{S8,U8,516,U16,532,U32,F32}

VSHL.{S8,U8 516,U16,532,564,U84)

VCLT.{58,U8,516,U16,532,U32,F32)

VSHR.[S8,U8,516,U16,532,564,U64)

VTST.{18,116,132}

FIGURE 3.19 Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {] to show optional
variations of the basic operations: {$8,U8,8} stand for signed and unsigned B-bit integers or 8-bit data where type doesn’t matter, of which 16
fit in a 128-bit register; {316,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fit in a 128-bit register;
{832,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fit in a 128-bit register; {$64,U64,64} stand for
signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fit in a 128-bit regjster; [F32} stand for signed and unsigned 32-bit
floating point numbers, of which 4 fit in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON
registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged.
Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.



UNIT Il PROCESSOR AND CONTROL UNIT

Basic MIPS implementation

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

B The memory-reference instructions load word (1w) and store word (sw)
m The arithmetic-logical instructions add, sub, AND, OR,and 51t
m The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift,
multiply, and divide are missing), nor does it include any floating-point instructions.

An Overvlew of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
tetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one register, but
most other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the operation
execution, and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction
will need to access the memory either to read data for a load or write data for a
store. An arithmetic-logical or load instruction must write the data from the ALU
or memory back into a register. Lastly, for a branch instruction, we may need to
change the next instruction address based on the comparison; otherwise, the PC
should be incremented by 4 to get the address of the next instruction.
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FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare {for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.




FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor ("Mux") controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that "ANDs" together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU {in the case of an arithmetic-logical instruction) or
the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to determine
whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction
(for aload or store). The added control lines are straightforward and determine the operation performed at the ALU, whether the data memory

should read or write, and whether the registers should perform a write operation. The control lines are shown in color to make them easier to
see.
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Building a Datapath

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instructions. Let’s start at the top by looking
at which datapath elements each instruction needs, and then work our way down
through the levels of abstraction. When we show the datapath elements, we will

also show their control signals. We use abstraction in this explanation, starting
from the bottom up.



Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure
4.5b also shows the program counter (PC), which as we saw in Chapter 2
is a register that holds the address of the current instruction. Lastly, we will
need an adder to increment the PC to the address of the next instruction. This
adder, which is combinational, can be built from the ALU described in detail
in [i] Appendix B simply by wiring the control lines so that the control always
specifies an add operation. We will draw such an ALU with the label Add, as in
Figure 4.5, to indicate that it has been permanently made an adder and cannot
perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later. Figure
4.6 shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.20 on page 120).
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result to a register. We call these instructions either R-type
instructions or arithmetic-logical instructions (since they perform arithmetic or
logical operations). This instruction class includes add, sub, AND, OR, and s1t,

Instruction
addrass
Instruction PC Add Sum
Instruction S
memory
a. Instruction memory b. Program counter c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

.5 |Read ALU operation

register 1 Read \ A
Register 5 |Read data 1
numbers *" | register 2

5 | write Registers
“" | register Read
Write data 2
Hsn { Data
RegWrite

a. Registers b. ALU

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section B.8 of %] Appendix B. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available
to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5
bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be performed by the
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in
(3] Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The
overflow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.



MemWrite

Read
—| Address T
16 Sign- 32
Data | extend
Write memory
data
MemRead
a. Data memory unit b. Sign extension unit

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memeory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of
an invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-hit result appearing on the output (see Chapter 2). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is
used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of [:] Appendix B for further discussion of how

real memory chips work.

A Simple Implementation Scheme

The ALU Control

The MIPS ALU in ] Appendix B defines the 6 following combinations of four
control inputs:

ALU control lines | Fumction |

0000 AND

0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set not
found in the subset we are implementing.) For load word and store word instructions,
we use the ALU to compute the memory address by addition. For the R-type
instructions, the ALU needs to perform one of the five actions (AND, OR, subtract,
add, or set on less than), depending on the value of the 6-bit funct (or function) field



Instruction Instruction Desired ALU control
opcode oparation Funct field ALU action input
LW 00 JOCOC0 add 0010

load word
SW 00 store word SO0 add 0010
Branch equal 01 branch equal OO0 subtract 01410
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100104 OR 0001
R-type 10 =&t on less than 104040 zet on less than 0111

FIGURE 4.12 How the ALU control bhits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we "don't care” about the value of the function code, and the funct field is shown as XXX When

the ALUOp value is 10, then the function code is used to set the ALU control input. See D Appendix B.
Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let’s identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review

| Amwop | o eunctmew
| Awopr | Awopo | s |Fe [Fa[F2|Fi|Fo| operation
X X X X X

0 0 X 0040
X o X X X X X X 0110
B § X X X 0 0 0 o 0040
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0a00
i X X X 0 i 0 i 0001
h X X X 1 0 1 0 0144

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the
ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first 2
bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced with XX

in the truth table.



Field a rs rt rd shamt funct
Bit positions 31:26 2521 20:16 15:44 10:6 h:0

a. R-type instruction

Field | 35 or 43 rs rt address
Bit positions 31:26 254 20:16 15:0
b. Load or stere instruction

Field 4 rs rt address
Bit positions 31:26 25 20:16 15:0
C. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss shortly.
{a) Instruction format for B-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, sub, AND, OR, and = 1t. The shamt field is used only for shifts; we will ignore it
in this chapter. (b) Instruction format for load (opcode = 35_) and store (opcode = 43 ) instructions. The
register rs is the base register that is added to the 16-bit address field to form the memory address. For loads,
rt is the destination register for the loaded value. For stores, rt is the source register whose value should be
stored into memory. () Instruction format for branch equal {opcode =4). The registers rs and rt are the
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC + 4 to compute the branch target address.
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FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end
of every clock cycle; the branch contral logic determines whether it is written with the incremented PC or the branch target address.



Signal
name Effect when deasserted Effect when asserted
RegDst The register destination number for the The reqister destination number for the Write
Write register comes from the rt field regisier comes from the rd field (bits 15:11).
{bits 20:16).
RegWrite Mone. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALL operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the ouiput of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | Mone. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | Mone. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReqa | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALL. comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element

can create timing problems. (See

:ii5] Appendix B for further discussion of this problem.)
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now

a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.




Finallzing Control

Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 4.18. The outputs are the control lines, and the input is the
6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs
based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section D.2 in ] Appendix D.
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FIGURE 4.22 The control function for the simple single-cycle implementation is
completely specified by this truth table. The top half of the table gives the combinations of mput
signals that correspond to the four opcodes, one per column, that determine the control output settings.
(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom
portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for
two different combinations of the inputs. If we consider only the four opcodes shown in this table, then we
can simplify the truth table by using don't cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 - OpZ, since this is sufficient to distinguish the R-format instructions
from 1w, sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.



An Overview of Pipelining

The same principles apply to processors where we pipeline instruction-execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.
4. Access an operand in data memory.

5. Write the result into a register.

Time between lnstructlﬂﬂnunpjpelmed

Number of pipe stages

Time between instructionspeined =

Under ideal conditions and with a large number of instructions, the speed-up
from pipelining is approximately equal to the number of pipe stages; a five-stage
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. Moreover,
pipelining involves some overhead, the source of which will be clearer shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

Instruction | Register ALU Data | Register | Total
Instruction class fetch read operation | access write time

Load word (Tw) 200 ps 100 ps 200 ps 200 ps 100 pe | 800 p=
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
Rformat (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR, 51t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no

delay.



Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 15 bytes, pipelining is considerably more challenging. Recent implementations
of the x86 architecture actually translate x86 instructions into simple operations
that look like MIPS instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline stages.
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restriction
means we can use the execute stage to calculate the memory address and then
access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different

types.

Hazards

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn't put clothes away. Our carefully scheduled
pipeline plans would then be foiled.



Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads must wait that have completed drying and are ready to
fold as well as those that have finished washing and are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that does not
really exist when doing laundry). For example, suppose we have an add instruction
followed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $tl1
sub $t7, $s0, %$t3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don't need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.25.

; 200 400 600 800 1000
Time T T T

add $s0, $t0, 811 | IE |— =

MEM— w8

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to
the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage,
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data
memory; and WE for the write-back stage, with the drawing showing the register file being written. The
shading indicates the element is used by the instruction. Hence, MEM has a white background because add
does not access the data memory. Shading on the right half of the register file or memory means the element
is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of 1D is
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage
because the register file is written.



Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage
pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read
3. EX: Execution or address calculation
4. MEM: Data memory access

WB: Write back

In Figure 4.33, these five components correspond roughly to the way the data-

path is drawn; instructions and data move generally from left to right through the

IF: Instruction fetern 1D Instruction decodal EX: Exacuia/ MEM: Memory accass WE: Writa back
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FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped
onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are
data lines.)



five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they

never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

B The write-back stage, which places the result back into the register file in the

middle of the datapath

m The selection of the next value of the PC, choosing between the incremented

PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; these
reverse data movements influence only later instructions in the pipeline. Note that
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FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the
IF/1D register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC
address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64

bits, respectively.

We show the instruction abbreviation 1w with the name of the pipe stage that is

active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the instruction being
read from memory using the address in the PC and then being placed in the

[F/ID pipeline register. The PC address is incremented by 4 and then written

back into the PC to be ready for the next clock cycle. This incremented
address is also saved in the IF/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.



2. Instruction decode and register file read: The bottom portion of Figure 4.36
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: Figure 4.37 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
IDVEX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load instruction

reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

Data Hazards: Forwarding versus Stalling
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| renetn
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[20-16]
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FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of
the pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the
IDVEX pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.



Let’s look at a sequence with many dependences, shown in color:

sub $2. $1.3%3 # Register $2 written by sub

and $12,4%2,%5 # 1st operand($2) depends on sub
or $13,%6,3%7 # 2nd operand($2) depends on sub
add $14.42 %7 # 1st($2) & Z2nd($2) depend on sub
Sw $15,100(82) J# Base ($2) depends on sub

The last four instructions are all dependent on the result in register $Z of the
first instruction. If register $ 2 had the value 10 before the subtract instruction and
—20 afterwards, the programmer intends that —20 will be used in the following
instructions that refer to register $2.

Time (in clock cycles)
Value of CcC1 ccz2 CC3 CC4 CCs CCéo CC7 CC8 cc9a
register $2: 10 10 10 10 10/-20 -20 —20 -20 =20
Program
execution

order
(in instructions)

sub %2, $1, $3

| | |

TRV e

—-’_,t"_ /
and $12, 52, $5 —ihlﬂi "

. /B

a

or $13, $6, 52 Jhé:

i

i =
1

add $14, $2,$2

1L

sw $15, 100($2)

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 17 at the top of the figure means clock cycle 1. The first instruction
writes into $ 2, and all the following instructions read $2. This register is written in clock cycle 5, so the proper value is unavailable before clock
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.



Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes
the same register. Figure 4.58 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for the
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.
Hence, in addition to a forwarding unit, we need a hazard defection unit. It
operates during the 1D stage so that it can insert the stall between the load and its
Time (in clock cycles)
CC1 ©c2 '©G3 ©Cc4 ©GS CC6 CGY ccs cco

Program
execution
order

{in instructions) - — —

w 52, 20($1) E@:
and $4, 52, $5 '

_h_

(R ]
Y
w

or $8, 52, $6

s

add $9, 54, $2 41599 i ‘E‘i}
sit $1, $6, §7 "—H‘E:j i |r “E_E_;I

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.



Control Hazards
Time (in clock cycles)

CCH1 cc2 cC3 CC4 CCh CC6 cCr CC8 cCco

Program
exacution
order

{in instructions)

40 beq $1, $3, 28

I

44 and $12, %2, §5
48 or $13, 56, $2
52 add $14, $2, $2

—

72 lw $4, 50($7)

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, ...)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beg
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before be g branches to 1w at location 72. (Figure 4.31 assumed extra hardware to reduce the

control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

Assume Branch Not Taken

As we saw in Section 4.5, stalling until the branch is complete is too slow. One
improvement over branch stalling is to predict that the branch will not be taken
and thus continue execution down the sequential instruction stream. If the branch
is taken, the instructions that are being fetched and decoded must be discarded.
Execution continues at the branch target. If branches are untaken half the time,
and if it costs little to discard the instructions, this optimization halves the cost of
control hazards.

To discard instructions, we merely change the original control values to 0s, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.



Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch.
Thus far, we have assumed the next PC for a branch is selected in the MEM
stage, but if we move the branch execution earlier in the pipeline, then fewer
instructions need be flushed. The MIPS architecture was designed to support fast
single-cycle branches that could be pipelined with a small branch penalty. The
designers observed that many branches rely only on simple tests (equality or sign,
for example) and that such tests do not require a full ALU operation but can be
done with at most a few gates. When a more complex branch decision is required,
a separate instruction that uses an ALU to perform a comparison is required—a
situation that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing
the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the [D stage; of course, the branch target address
calculation will be performed for all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would compare
the two registers read during the ID stage to see if they are equal. Equality can be
tested by first exclusive ORing their respective bits and then ORing all the results.
Moving the branch test to the ID stage implies additional forwarding and hazard
detection hardware, since a branch dependent on a result still in the pipeline must
still work properly with this optimization. For example, to implement branch on
equal (and its inverse), we will need to forward results to the equality test logic that
operates during ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if
the instruction is a branch, we can set the PC to the branch target address.

Forwarding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in [D will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may be
produced later in time, it is possible that a data hazard can occur and a stall
will be needed. For example, if an ALU instruction immediately preceding
a branch produces one of the operands for the comparison in the branch,
a stall will be required, since the EX stage for the ALU instruction will
occur after the ID cycle of the branch. By extension, if a load is immediately
followed by a conditional branch that is on the load result, two stall cycles
will be needed, as the result from the load appears at the end of the MEM
cycle but is needed at the beginning of ID for the branch.



Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For
the simple five-stage pipeline, such an approach, possibly coupled with compiler-
based prediction, is probably adequate. With deeper pipelines, the branch penalty
increases when measured in clock cycles. Similarly, with multiple issue (see Section
4.10), the branch penalty increases in terms of instructions lost. This combination
means that in an aggressive pipeline, a simple static prediction scheme will probably
waste too much performance. As we mentioned in Section 4.5, with more hardware
it is possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don’t know, in fact, if the prediction is
the right one—it may have been put there by another branch that has the same
low-order address bits. However, this doesn’t affect correctness. Prediction is just
a hint that we hope is correct, so fetching begins in the predicted direction. If the
hint turns out to be wrong, the incorrectly predicted instructions are deleted, the
prediction bit is inverted and stored back, and the proper sequence is fetched and
executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than once,
when it is not taken. The following example shows this dilemma.

Not taken
{ Predict taken
Taken
Not taken [ Taken
Mot taken
Predict not taken
Taken

Mot taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of
its range as the division between taken and not taken.



Exceptions



Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using
the term exception to refer to any unexpected change in control flow without
distinguishing whether the cause is internal or external; we use the term interrupt
only when the event is externally caused. Here are five examples showing whether
the situation is internally generated by the processor or externally generated:

From where? | MIPS terminology

I/0 device reguest External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific
situation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 5, when we will better understand the motivation for additional
capabilities in the exception mechanism. In this section, we deal with the control
implementation for detecting two types of exceptions that arise from the portions
of the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often
on the critical timing path of a processor, which determines the clock cycle time
and thus performance. Without proper attention to exceptions during design of
the control unit, attempts to add exceptions to a complicated implementation
can significantly reduce performance, as well as complicate the task of getting the
design correct.

How Exceptions Are Handled in the MIPS Architecture

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. We'll use
arithmetic overflow in the instruction add $1, $2, $1 as the example exception
in the next few pages. The basic action that the processor must perform when an
exception occurs is to save the address of the offending instruction in the exception
program counter (EPC) and then transfer control to the operating system at some
specified address.



A second method, is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might
define the following two exception vector addresses:

Exception type
Undefined instruction 8000 0000,
Arithmetic overflow 8000 0180,

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.
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FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 0180,
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save
the address of the instruction that caused the exception. The 8000 0180,  input to the multiplexor is the initial address to begin fetching
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit.



UNIT IV~ PARALLELISM

Instruction Level Parallelism

« Instruction-Level Parallelism (ILP): overlap the execution of
instructions to improve performance

« 2 approaches to exploit ILP:

1) Rely on hardware to help discover and exploit the parallelism dynamically
(e.g., Pentium 4, AMD Opteron, IBM Power)

2) Rely on software technology to find parallelism, statically at compile-time
(e.g., ltanium 2)

« Basic Block (BB) ILP is quite small

— BB: a straight-line code secwence with no branches in except to the entry and
no branches out except at the exit

— average dynamic branch frequency 15% to 25%
=>4 to 7 instructions execute between a pair of branches

— Plus instructions in BB likely to depend on each other

« To obtain substantial performance enhancements, we must exploit
ILP across multiple basic blocks

+ Simplest: loop-level parallelism to exploit parallelism among
iterations of a loop. E.g..

for (i=1; i<=1000; j=i+1)
x[i] = x[i] + y[i];

« Exploit loop-level parallelism to parallelism by “unrolling loop” either by

1.dynamic via branch prediction or
2.static via loop unrolling by compiler

Determining instruction dependence is critical to Loop Level Parallelism

« If 2 instructions are
— parallel, they can execute simultaneously in a pipeline of arbitrary depth
without causing any stalls (assuming no structural hazards)
— dependent, they are not parallel and must be executed in order, although
they may often be partially overlapped



ILP and Data Dependancies, Hazards

HW/SW must preserve program order:
order instructions would execute in if executed sequentially as determined by
original source program

— Dependences are a property of programs

Presence of dependence indicates potential for a hazard, but actual hazard and
length of any stall is property of the pipeline

Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be exploited

HW/SW goal: exploit parailelism by preserving program order only where it
affects the outcome of the program

Name Dependence #1: Anti-dependence

Name dependence: when 2 instructions use same register or memory
location, called a name, but no flow of data between the instructions
associated with that name; 2 versions of name dependence

instr, writes operand before Instr,reads it
C I: sub r4,r1,xr3

J: add rl1,r2,r3

K: mul r6,rl1l,xr7

Called an “anti-dependence™ by compiler writers.
This results from reuse of the name “r1”

If anti-dependence caused a hazard in the pipeline, called a Write After Read
(WAR) hazard



Control Dependencies

« Every instruction is control dependent on some set of branches,
and, in general, these control dependencies must be preserved to
preserve program order

if pl {
S1;

b

if p2 {
S2;

}

- s1is control dependent on p1, and s2 is control dependent on p2
but not on p1.

Control Dependence Ignored

«  Control dependence need not be preserved

— willing to execute instructions that should not have been executed, thereby
violating the control dependences, if can do so without affecting correctness
of the program

« Instead., 2 properties critical to program coirectness are
1) exception behavior and
2) dataflow



Exception Behavior

* Preserving exception behavior
= any changes in instruction execution order must not change how
exceptions are raised in program
(= no new exceptions)

« Example:

DADDU R2 ,R3, R4
BEQZ R2,L1
LW R1,0 (R2)

Ll:
— (Assume branches not delayed)

+ Problem with moving Lw before BEQZ?

FLYNN’S CLASSIFICATION

This classification was first studied and proposed by Michael Flynn in 1972. Flynn did
not consider the machine architecture for classification of parallel computers; he
introduced the concept of instriction and data streams for categorizing of computers. All
the computers classified by Flynn are not parallel computers, but to grasp the concept of
parallel computers, it is necessary to understand all types of Flynn’s classification. Since,
this classification is based on instruction and data streams, first we need to understand
how the instruction cycle works.

2.3.1 Instruction Cycle

The instruction eyele consists of a sequence of steps needed for the execution of an
istruction in a program. A typical instruction in a programis composed of two parts:
Opcode and Operand. The Operand part specifies the data on which the specified
operation is to be done. (See Figure I). The Operand part is divided into two parts:
addressing mode and the Operand. The addressing mode specifies the method of
determining the addresses of the actual data on which the operation is to be performed and
the operand part 1s used as an argument by the method 1 determining the actual address.
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Figure 1: Opcodeand Operand

The control umt of the CPU of the computer fetches instructions in the program, one at a
time. The fetched Instruction 1s then decoded by the decoder which is a part of the control
unit and the processor executes the decoded instructions. The result of execution is
temporarily stored in Memory Buffer Register (MBR) (alzo called Memory Data
Register). The normal execution steps are shown in Figure 2.

2.3.2 Instruction Stream and Data Stream

The term ‘stream’ refers to a sequence or flow of either instructions or data operated on
by the computer. In the complete cycle of instruction execution, a flow of instructions
from main memory to the CPU is established. This flow of instructions is called
instraction stream. Similarly, there 1s a flow of operands between processor and memory
bi-directionally. This flow of operands is called data stream. These two types of streams
are shown in Figure 3.

Instruction
strearn
CPU Main Memory
Data strearn

Figure 3: Instruction and data stream

2.3.3 Flynn’s Classification

Flynn's classification is based on multiplicity of instruction streams and data streams
observed by the CPU during program execution. Let I and D, are minimum number of
streams flowing at any point in the execution, then the computer organisation can be
categorized as follows:

1) Single Instruction and Single Data stream (SISD)

In this organisation, sequential execution of instructions is performed by one CPU
containing a single processing element (PE), 1.e., ALU under one control unit as shown in
Figure 4. Therefore, SISD machines are conventional serial computers that process only
one stream of instructions and one stream of data. This type of computer organisation is
depicted in the diagram:

L=D.=1
D .
: > Iamn
4 1, —¥ »
Control Urit ; ALUO Memory

L

Figure 4: SISD Organisation



Examples of SISD machines include:

*  CDC 6600 which is unpipelined but has multiple functional units.
¢ CDC 7600 which has a pipelined arithmetic vmt.
*  Amdhal 470/6 which has pipelined instruction processing.

*  Cray-1 which supports vector processing.
2) Single Instruction and Multiple Data str eam (SIMD)

In this organisation, multiple processing elements work under the control of a single
control umt. It has one instruction and multiple data stream. All the processing el ements
of this organization receive the same instruction broadcast from the CU. Main memory
can also be divided into modules for generating multiple data streams acting as a
distributed memory as shownin Figure 5. Therefore, all the processing el ements
simultane ously execute the same instruction and are said to be lock-stepped’ together.
Each processor takes the data from its own memory and hence it has on distinct data
streams. (Some systems also provide a shared global memeory for commmmications.) Every
processor must be allowed to complete its instruction before the next instruction is taken
for execution. Thus, the execution of instructions is synchronous. Examples of SIMD
orgamsation are ILLIAC-IV, PEPE, BSP, STARAN, MPP, DAP and the Connection
Machine (CM-1).

This type of computer organisation is denoted as:

L=1
D> 1
i MM,
Control D3a
TTnit > ® PE, «—r M, >
D3,
L PEn ¢ ’ b In
[ 3

Figure5: SIMD Organisation
3) Multiple Instruction and Single Data stream (MISD)

In this organization, multiple processing elements are orgamsed under the control of
multiple control units. Each control unit is handling one instruction stream and processed
through its corresponding processing element. But each processing element 1s processing
only a single data stream at a time. Therefore, for handling multiple instruction streams
and single data stream, multiple control units and multiple processing elements are
organised in this classification. All processing elements are interacting with the conumnon
shared memory for the orgamsation of single data stream as shown in Figure 6. The only
known example of a computer capable of MISD operation is the C.mmp bwilt by
Carnegie-Mellon University.
This type of computer organisation is denoted as:

=1

D,=1
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Figure6: MISD Organisation

Tlus classification is not popular in commercial machines as the concept of single data
streams executing on multiple processors is rarvely applied. But for the specialized
applications, MISD organisation can be very helpful. For example, Real time computers
need to be fault tolerant where several processors execute the same data for producing the
redundant data. This 15 also known as N- version programming. All these redundant data

4) Multiple Instruction and Multiple Data stream (MIMD)

In this orgamzation, multiple processing elements and multiple control units are orgamzed
as in MISD. But the difference 15 that now 1n thus orgamzation multiple instruction
streams operate on multiple data streams . Therefore, for handling multiple instruction
streams, multiple control umts and multiple processing elements are orgamzed such that
multiple processing elements are handling multiple data streams from the Main memory
as shown i Figiire 7. The processors work on their own data wath theiwr own mstructions.
Tasks executed by different processors can start or fimsh at different times. They are not
lock-stepped, as in SIMD computers, but run asynchronously. This classification actually
recognizes the parallel computer. That means in the real sense MIMD organisation 1s said
to be a Parallel computer. All multiprocessor systems fall under this classification.
Examples include; C.mmp, Burroughs D825, Cray-2, S1, Cray X-MP, HEP, Pluribus,
IBM 370/168 MP, Umivac 1100/80, Tandem/16, IBM 3081/3084, C.m™*, BBEN Butterfly,
Meiko Computing Surface (CS-1), FPS T/40000,1PSC.

Tlus type of computer orgamsation 1s denoted as:

D,>1
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Multithreading
Basics
O Process

e Each process has its unique address space
e Can consist of several threads

0 Thread — each thread has its unique execution context

e Thread has its own PC (Sequencer) + registers + stack
e All threads (within a process) share same address space
e Private heap is optional

0 Multithreaded app’s: process broken into threads

e #1 example: transactions (databases, web servers)
< Increased concurrency
< Partial blocking (your transaction blocks, mine doesn’t have to)
+ Centralized (smarter) resource management (by process)




Multiple Hardware Threads

0 A thread can be viewed as a stream of instructions
e State is represented by PC, Stack pointer, GP Registers

0 Equip multithreaded processors with multiple
hardware contexts (threads)

e OS views CPU as multiple logical processors

0 Execution of instructions from different threads are
interleaved in the pipeline

¢ Interleaving policy is critical...

Blocked Multithreading N | AEm.

(SOE-MT- Switch on Event MT, aka’ —“Poor Man MT~) [l ICICCC]

N EeEeN
O Critical decision: when to switch threads NN EEEEE

¢ When current thread’s utilization/throughput is about to drop
(e.g. L2 cache miss)

0O Requirements for throughput:
e (Thread switch) + (pipe fill time) << blocking latency

+ Would like to get some work done before other thread comes back
e Fast thread-switch: multiple register banks
e Fast pipe-fill: short pipe

0O Advantage: small changes to existing hardware

0 Drawback: high single thread performance requires long thread
switch

0O Examples
« Macro-dataflow machine
o MIT Alewife
« |IBM Northstar



Interleaved (Fine grained) =EE=E%==E
Multithreading (cont.) B moE
0O Advantages: =

¢ (w/ flexible interleave:) Reasonable single thread performance
e High processor utilization (esp. in case of many thread)
0 Drawback:
e Complicated hardware
e Multiple contexts (states)
e (w/ inflexible interleave:) limits single thread performance
0O Examples:
¢ HEP Denelcor: 8 threads (latencies were shorter then)
e TERA: 128 threads
e MicroUnity - 5 x 1GZ threads = 200 MHz like latency
0 Became attractive for GPUs and network processors

Simultaneous IDIIﬁIDI
Multi-threading (SMT) T

B RN N

m | Em

0 Critical decision: fetch-interleaving policy

0 Requirements for throughput:

e Enough threads to utilize resources
+ Fewer than needed to stretch dependences

0 Examples:

¢ Compaq Alpha EV8 (cancelled)
¢ Intel Pentium® 4 Hyper-Threading Technology
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Multi-core CPU chip

« The cores fit on a single processor socket
* Also called CMP (Chip Multi-Processor)
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UNIT V MEMORY AND 1I/0 SYSTEMS

Memory hierarchy

This principle of locality underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library’s collection. There are
two different types of locality:

B Temporal locality (locality in time): if an item is referenced, it will tend to be
referenced again soon. If you recently brought a book to your desk to look at,
you will probably need to look at it again soon.

B Spatial locality (locality in space): if an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when
you brought out the book on early English computers to find out about the
EDSAC, you also noticed that there was another book shelved next to it about
early mechanical computers, so you also brought back that book and, later
on, found something useful in that book. Libraries put books on the same
topic together on the same shelves to increase spatial locality. We'll see how
memory hierarchies use spatial locality a little later in this chapter.

_ _ Current
Speed Processor Size Cost ($/bit) technelogy
Fastest Memory Smallest Highest SHAM
Memory DRAM
Slowest Memory Biggest Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.



Data is transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block or
a line. Usually we transfer an entire block when we copy something between levels.

The upper level—the one closer to the processor—is smaller and faster than the lower
level, since the upper level uses technology that is more expensive. Figure 5.2 shows
that the minimum unit of information that can be either present or not present in
the two-level hierarchy is called a block or a line; in our library analogy, a block of
information is one book.

If the data requested by the processor appears in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a miss.
The lower level in the hierarchy is then accessed to retrieve the block containing the
requested data. (Continuing our analogy, you go from your desk to the shelves to
find the desired book.) The hit rate, or hif ratio, is the fraction of memory accesses
found in the upper level; it is often used as a measure of the performance of the
memory hierarchy. The miss rate (1-hit rate) is the fraction of memory accesses
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether
the access is a hit or a miss (that is, the time needed to look through the books on
the desk). The miss penalty is the time to replace a block in the upper level with
the corresponding block from the lower level, plus the time to deliver this block to
the processor (or the time to get another book from the shelves and place it on the
desk). Because the upper level is smaller and built using faster memory parts, the
hit time will be much smaller than the time to access the next level in the hierarchy,
which is the major component of the miss penalty. (The time to examine the books
on the desk is much smaller than the time to get up and get a new book from the
shelves.)



Memory technologies

There are four primary technologies used today in memory hierarchies. Main
memory is implemented from DRAM (dynamic random access memory), while
levels closer to the processor (caches) use SRAM (static random access memory).
DRAM is less costly per bit than SRAM, although it is substantially slower. The
price difference arises because DRAM uses significantly less area per bit of memory,
and DRAMs thus have larger capacity for the same amount of silicon; the speed
difference arises from several factors described in Section B.9 of ] Appendix B.
The third technology is flash memory. This nonvolatile memory is the secondary
memory in Personal Mobile Devices. The fourth technology, used to implement
the largest and slowest level in the hierarchy in servers, is magnetic disk. The access
time and price per bit vary widely among these technologies, as the table below
shows, using typical values for 2012:

SRAM semiconductor memory 0.5-2.5ns $500-$1000

DRAM semiconductor memory H0-T0 ns $10-%20

Flash semiconductor memaory 5.000-50,000 ns $0.75-%$1.00
Magnetic disk 5,000,000-20,000,000 ns $0.05-%0.10

We describe each memory technology in the remainder of this section.

SRAM Technology

SRAMs are simply integrated circuits that are memory arrays with (usually) a
single access port that can provide either a read or a write. SRAMs have a fixed
access time to any datum, though the read and write access times may differ.

SRAMs don't need to refresh and so the access time is very close to the cycle
time. SRAMs typically use six to eight transistors per bit to prevent the information
from being disturbed when read. SRAM needs only minimal power to retain the
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all
levels of caches are integrated onto the processor chip, so the market for separate
SRAM chips has nearlv evaporated.



DRAM Technology

In a SRAM, as long as power is applied, the value can be kept indefinitely. In a
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.
A single transistor is then used to access this stored charge, either to read the
value or to overwrite the charge stored there. Because DRAMs use only a single
transistor per bit of storage, they are much denser and cheaper per bit than SRAM.
As DRAMs store the charge on a capacitor, it cannot be kept indefinitely and must
periodically be refreshed. That is why this memory structure is called dynamic, as
opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge
can be kept for several milliseconds. If every bit had to be read out of the DRAM
and then written back individually, we would constantly be refreshing the DRAM,
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding
structure, and this allows us to refresh an entire row (which shares a word line)
with a read cycle followed immediately by a write cycle.

Bank |
Column |
|

Rd/Wr
Act

&
v

Yy

h

Edisl

Row

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically
four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closesa
bank. A row address is sent with an Act (activate}, which causes the row to transfer to a buffer. When the row
is in the buffer, it can be transferred by successive column addresses at whatever the width of the DRAM is
(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command,
as well as block transfers, is synchronized with a clock.



Total access time to

Year Introduced | Chip size S per GIB a new row,/column
1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 n=s 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibrt $4.000 60 ns 10 ns
2000 256 Mebibit $41,000 56 ns Tns
2004 512 Mebibit $250 50 ns B ns
2007 1 Gibibit $50 45 ns 1.25ns
2040 2 Gibibit $30 A0 ns 1ns
2012 4 Gibibit $1 35 ns 0.8 ns

FIGURE 5.5 DRAM size increased by multiples of four approximately once every three
years until 1996, and thereafter considerably slower. The improvements in access time have been
slower but continuous, and cost roughly tracks density improvements, although cost is often affected by other
issues, such as availability and demand. The cost per gibibyte is not adjusted for inflation.

Flash Memory

Flash memory is a type of electrically erasable programmable read-only memory
(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out
flash memory bits. To cope with such limits, most flash products include a controller
to spread the writes by remapping blocks that have been written many times to less
trodden blocks. This technique is called wear leveling. With wear leveling, personal
mobile devices are very unlikely to exceed the write limits in the flash. Such wear
leveling lowers the potential performance of flash, but it is needed unless higher-
level software monitors block wear. Flash controllers that perform wear leveling can
also improve yield by mapping out memory cells that were manufactured incorrectly.



FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. The diameter of
today'’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

Unce the head has reached the correct track, we must wait tor the desired sector
to rotate under the read/write head. This time is called the rotational latency or
rotational delay. The average latency to the desired information is halfway around
the disk. Disks rotate at 5400 RPM to 15,000 RPM. The average rotational latency
at 5400 RPM is

0.5 rotation 0.5 rotation

Average rotational latency = =
5400 RPM

5400 RPMI[&DM

minute
= 0.0056 seconds = 5.6 ms

The last component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and the
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores
sectors as they are passed over; transfer rates from the cache are typically higher,
and were up to 750 MB/sec (6 Gbit/sec) in 2012.



The Basics of Caches

Xy Xy
X, X
. 3 g
. Xn_1
X Xz

Xn
s X3

a. Before the reference to X;  b. After the reference to X,

FIGURE 5.7 The cache just before and just after a reference to a word J(_ that is not
initially in the cache. This reference causes a miss that forces the cache to fetch X from memory and
insert it into the cache.

Cache

000
001
010
011
100
101
110
111

AN,
X
\

00001 00101 01001 01101 10001 10101 11001 11101
Memaory

FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight
words in the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order
log,(8) = 3 bits are used as the cache index. Thus, addresses 00001, 01001, 10001 __,and 11001 __ all map
to entry 001, of the cache, while addresses 00101,_, 01101__, 10101, and 11101__ all map to entry 101,
of the cache.



In looking at the scenario in Figure 5.7, there are two questions to answer: How
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The
answers are related. If each word can go in exactly one place in the cache, then it
is straightforward to find the word if it is in the cache. The simplest way to assign
a location in the cache for each word in memory is to assign the cache location
based on the address of the word in memory. This cache structure is called direct
mapped, since each memory location is mapped directly to exactly one location in
the cache. The typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use
this mapping to find a block:

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be
computed simply by using the low-order log, (cache size in blocks) bits of the
address. Thus, an 8-block cache uses the three lowest bits (8 = 2*) of the block
address. For example, Figure 5.8 shows how the memory addresses between 1
(00001 ) and 29 (11101 ) map to locations 1 (001 )and 5 (101 )ina
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of different
memory locations, how do we know whether the data in the cache corresponds
to a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. The tag needs only to contain the upper
portion of the address, corresponding to the bits that are not used as an index into
the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address
bits in the tag, since the lower 3-bit index field of the address selects the block.
Architects omit the index bits because they are redundant, since by definition the
index field of any address of a cache block must be that block number.

Accessing a Cache

Below is a sequence of nine memory references to an empty eight-block cache,
including the action for each reference. Figure 5.9 shows how the contents of the
cache change on each miss. Since there are eight blocks in the cache, the low-order
three bits of an address give the block number:

Decimal address Hit or miss Assigsned cache block
of reference nf mfarnnnn in cache {where found or placed)

10110, miss (5.6b) (10110, mod 8) =110

11010m: miss {5.6¢) {11010, mod 8) =0 1"‘“
22 10110, hit (1011 Elm mod 8) = 110,
26 11010, hit (11010, mod 8) = 010__
16 10000, miss (5.6d) (10000, mod 8) = D00
] ooo11 miss {5.6e) (00011 mod 8) =011
16 10000, hit (10C00,  mod 8) = 003,
18 10010, miss (5.60) (10010, mod 8) = 010,
16 10000, hit {10000, mod 8) = D00,




mdex | v | Ta |  pata ndox | v | v |  pata
000 000

N N
001 N 004 N
010 N 040 N
011 N 011 N
100 N 100 N
104 N 104 N
110 N 110 Y 1 Oy Memory (10110,,..)
143 N 114 N
a. The initial state of the cache after power-on b. After handling a miss of address (10110,,,)
maex | v | Tag |  Data mnm—
000 N Memory {10000,
001 N 001 N
010 Y o [ T Memory (11040,,.) 010 Y 11, Memory (11010,,.)
011 N 011 N
100 N 100 N
101 N 101 N
1410 Y- 1040 Memory (10110,,,.) 110 Y 1000 Memory (10410,,.)
4 i ] N 111 N
c. After handling a miss of address (11010, d. After handling a miss of address (10000,,)
-ﬂ“_ mnm“
Memory (10000, 1000 Memory (10000}
001 N 001 M
040 Y C . Memory (11010, 040 Y 1000 Memory (100410,,.)
011 Y 004 uo Memory (00011,,.) 011 i { 0040 Memory (00014}
100 N 100 M
104 N 101 M
1410 ¥ 1000 Memory (10410, 110 Y 1000 Memory (10410}
114 N 141 M

e. After handling a miss of address (00014,,,)

o

. After handling a miss of address (10010,,,)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag fields
shown in binary for the sequence of addresses on page 386. The cache is initially empty, with all valid bits (V entry in cache)
turned off (N). The processor requests the following addresses: 10110, (miss), 11010, (miss), 10110, (hit), 11010, (hit), 10000, (miss),
00011 (miss), 10000, (hit), 10010__ {miss), and 10000__ (hit). The figures show the cache contents after each miss in the sequence has been
handled. When address 10010, (18) is referenced, the entry for address 11010, (26) must be replaced, and a reference to 11010 will causea
subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in cache block § with tag
field j for this cache is j % B + , or equivalently the concatenation of the tag field j and the index i. For example, in cache fabove, index 010,
has tag 10 and corresponds to address 10010,



Measuring and Improving Cache Performance
CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
* Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

Memory-stall clock cycles = (Read-stall cycles + Write-stall cycles)

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles =  Tealy X Read miss rate X Read miss penalty
Program

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continuing
the write (see the Elaboration on page 394 for more details on dealing with writes),
and write buffer stalls, which occur when the write buffer is full when a write
occurs. Thus, the cycles stalled for writes equals the sum of these two:

Writes
Write-stall cycles = | ——— X Write miss rate X Write miss penalty
Program

+ Write buffer stalls

Because the write buffer stalls depend on the proximity of writes, and not just
the frequency, it is not possible to give a simple equation to compute such stalls.
Fortunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly exceeds
the average write frequency in programs (e.g., by a factor of 2), the write buffer
stalls will be small, and we can safely ignore them. If a system did not meet these
criteria, it would not be well designed; instead, the designer should have used either
a deeper write buffer or a write-back organization.



Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are
the same (the time to fetch the block from memory). If we assume that the write
buffer stalls are negligible, we can combine the reads and writes by using a single
miss rate and the miss penalty:

Memory accesses

Memory-stall clock cycles = X Miss rate X Miss penalty

Program

We can also factor this as

Memory-stall clock cycles = mshructiong X Misseh » Miss penalty

Program Instruction

Let’s consider a simple example to help us understand the impact of cache
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data
cache is 4%. If a processor has a CPI of 2 without any memory stalls and the
miss penalty is 100 cycles for all misses, determine how much faster a processor
would run with a perfect cache that never missed. Assume the frequency of all
loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruction
count (I) is
Instruction miss cycles = [ X 2% X 100 = 2.00 x I

As the frequency of all loads and stores is 36%, we can find the number of
memory miss cycles for data references:

Data miss cycles = [ X 36% X 4% X 100 = 1.44 X 1



The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 [. This is
more than three cycles of memory stall per instruction. Accordingly, the total
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls _ IXCPL,; X Clock cycle
CPU time with perfect cache T Ix CPlLergeq X Clock cycle
_ CPlyy _ 544
CPlierea 2

5.44
The performance with the perfect cache is better b}FJT =2.72,

What happens if the processor is made faster, but the memory system is not? The
amount of time spent on memory stalls will take up an increasing fraction of the
execution time; Amdahls Law, which we examined in Chapter 1, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed-up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPl of 1 + 3.44 = 444, and the
system with the perfect cache would be

ﬁ = 4.44 times as fast,

The amount of execution time spent on memory stalls would have risen from

3.44 — 63%
5.44

to
344 77%
4.44

Similarly, increasing the clock rate without changing the memory system also
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a factor in
determining cache performance. Clearly, if the hit time increases, the total time to
access a word from the memory system will increase, possibly causing an increase in
the processor cycle time. Although we will see additional examples of what can increase



Reducing Cache Misses by More Flexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement scheme:
A block can go in exactly one place in the cache. As mentioned earlier, it is called
direct mapped because there is a direct mapping from any block address in memory
to a single location in the upper level of the hierarchy. However, there is actually a
whole range of schemes for placing blocks. Direct mapped, where a block can be
placed in exactly one location, is at one extreme.

At the other extreme is a scheme where a block can be placed in any location
in the cache. Such a scheme is called fully associative, because a block in memory
may be associated with any entry in the cache. To find a given block in a fully
associative cache, all the entries in the cache must be searched because a block
can be placed in any one. To make the search practical, it is done in parallel with
a comparator associated with each cache entry. These comparators significantly
increase the hardware cost, effectively making fully associative placement practical
only for caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative
is called set associative. In a set-associative cache, there are a fixed number of
locations where each block can be placed. A set-associative cache with n locations
for a block is called an n-way set-associative cache. An n-way set-associative cache
consists of a number of sets, each of which consists of n blocks. Each block in the
memory maps to a unique set in the cache given by the index field, and a block can
be placed in any element of that set. Thus, a set-associative placement combines
direct-mapped placement and fully associative placement: a block is directly
mapped into a set, and then all the blocks in the set are searched for a match. For
example, Figure 5.14 shows where block 12 may be placed in a cache with eight
blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of Blocks in the cache)

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
Tag ; Tag ; Tag ;
Search Search ] { Search I T T I ] l‘ ] ]

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is
given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block
12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative
placement, the memory block for block address 12 can appear in any of the eight cache blocks.



Misses and Assoclativity In Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set-associative, and the
third is direct-mapped. Find the number of misses for each cache organization
given the following sequence of block addresses: 0, 8, 0, 6, and 8.

The direct-mapped case is easiest. First, let'’s determine to which cache block
each block address maps:

Block address Cache block

{Omodulo 4) =0
(6 modulo 4) = 2
{8 modulo 4) =0

| @ o

Now we can fill in the cache contents after each reference, using a blank entry to
mean that the block is invalid, colored text to show a new entry added to the cache
for the associated reference, and plain text to show an old entry in the cache:

Address of memory Contents of cache blocks after reference
block accessed TSI A I

0 miss Memory[0]
B miss Memory[8]
0 miss Memaory[0]
6 miss Memory{0] Memory[6]
B miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two
elements per set. Let’s first determine to which set each block address maps:

Block address

{0 modulo 2) =0
{6 modulo 2y =0
(8 modulo 2y =0

o | @[S

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past



is replaced. (We will discuss other replacement rules in more detail shortly.)
Using this replacement rule, the contents of the set-associative cache after each
reference looks like this:

Address of memory Hit Contents of cache blocks after reference
block accossod | ormiss | seto | seto | sets | set1 |

0 miss Memory[Q]

8 miss Memory[ 0] Memory[8]
0 hit Memory[0] Memory[8]
G miss Memaory[ 0] Memory{G]
8 miss Memory[&] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. The fully associative cache has
the best performance, with only three misses:

O Contents of cache blocks after reference
TR Block0 | Block1 | Block 2

0 miss Memory[0]

8 miss Memory[0] Mermory[&]

0 hit Memory[Q] Memory[&8]

6 miss Memory[0] Memory[8] | Memaory[G]
8 hit Memory[0] Memory[B] | Memory[&]

For this series of references, three misses is the best we can do, because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have
the same number of misses. Even this trivial example shows that cache size and
associativity are not independent in determining cache performance.
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FIGURE 5.18 The implementation of a four-way set-associative cache requires four
comparators and a 4-to-1 multiplexor. The comparators determine which element of the selected set
(if any) matches the tag. The output of the comparators is used to select the data from one of the four blocks
of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the
output. The Output enable signal comes from the comparators, causing the element that matches to drive the
data outputs. This organization eliminates the need for the multiplexor.

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme, the block replaced is the one that has
been unused for the longest time. The set associative example on page 405 uses
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a
set was used relative to the other elements in the set. For a two-way set-associative
cache, tracking when the two elements were used can be implemented by keeping
a single bit in each set and setting the bit to indicate an element whenever that
element is referenced. As associativity increases, implementing LRU gets harder; in
Section 5.8, we will see an alternative scheme for replacement.



Virtual Memory

Of course, to allow multiple virtual machines to share the same memory, we
must be able to protect the virtual machines from each other, ensuring that a
program can only read and write the portions of main memory that have been
assigned to it. Main memory need contain only the active portions of the many
virtual machines, just as a cache contains only the active portion of one program.
Thus, the principle of locality enables virtual memory as well as caches, and virtual
memory allows us to efficiently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other
virtual machines when we compile them. In fact, the virtual machines sharing
the memory change dynamically while the virtual machines are running. Because
of this dynamic interaction, we would like to compile each program into its
own address space—a separate range of memory locations accessible only to this
program. Virtual memory implements the translation of a program’s address space
to physical addresses. This translation process enforces protection of a program’s
address space from other virtual machines.

The second motivation for virtual memory is to allow a single user program
to exceed the size of primary memory. Formerly, if a program became too large
for memory, it was up to the programmer to make it fit. Programmers divided
programs into pieces and then identified the pieces that were mutually exclusive.
These overlays were loaded or unloaded under user program control during
execution, with the programmer ensuring that the program never tried to access
an overlay that was not loaded and that the overlays loaded never exceeded the
total size of the memory. Overlays were traditionally organized as modules, each
containing both code and data. Calls between procedures in different modules
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on
programmers. Virtual memory, which was invented to relieve programmers of
this difficulty, automatically manages the two levels of the memory hierarchy
represented by main memory (sometimes called physical memory to distinguish it

from virtual memory) and secondary storage.
In virtual memory, the address is broken into a virtual page number and a page

offset. Figure 5.26 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the
physical address, while the page offset, which is not changed, constitutes the lower
portion. The number of bits in the page offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory.
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FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share
data or code.

Virtual address

4 BOPY B/ BT i 16141312 111098 v aaiv 3210

Virtual page number Page offset

bert 2 o TR [ 1514131211 1098 ~resfraneer 3940
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Physical address

FIGURE 5.26 Mapping from a virtual to a physical address. The page size is 2" = 4 KiB. The
number of physical pages allowed in memory is 2', since the physical page number has 18 bits in it. Thus,
main memory can have at most 1 GiB, while the virtual address space is 4 GiB.

Many design choices in virtual memory systems are motivated by the high cost
of a page fault. A page fault to disk will take millions of clock cycles to process.
(The table on page 378 shows that main memory latency is about 100,000 times
quicker than disk.) This enormous miss penalty, dominated by the time to get the
first word for typical page sizes, leads to several key decisions in designing virtual
memory systems:



m Pages should be large enough to try to amortize the high access time. Sizes
from 4 KiB to 16 KiB are typical today. New desktop and server systems are
being developed to support 32 KiB and 64 KiB pages, but new embedded
systems are going in the other direction, to 1 KiB pages.

B Organizations that reduce the page fault rate are attractive. The primary
technique used here is to allow fully associative placement of pages in
memory.

m Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use clever
algorithms for choosing how to place pages because even small reductions in
the miss rate will pay for the cost of such algorithms.

B Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

Page table register
Virtual address
420 20 OB DT 16 14 12 12 11 10 O B «revnier 2 LN K 1 |
Virtual page number Page offset
20 12
Valid Physical page numbar
»
Page table
18
If 0 then page is not
present in memory
SRR e R e ...15 14 13 12 11 10 9 843 2 1 0
Physical page number Page offset

Physical address

FIGURE 5.27 The page table is indexed with the virtual page number to obtain the
corresponding portion of the physical address. We assume a 32-bit address. The page table pointer
gives the starting address of the page table. In this figure, the page size is 2 bytes, or 4 KiB. The virtual
address space is 2** bytes, or 4 GiB, and the physical address space is 2*° bytes, which allows main memory
of up to 1 GiB. The number of entries in the page table is 2*, or 1 million entries. The valid bit for each entry
indicates whether the mapping is legal. If it is off, then the page is not present in memory. Although the
page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of
indexing. The extra bits would be used to store additional information that needs to be kept on a per-page
basis, such as protection.



Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we saw in Chapter 4 and will discuss again later in this section. Once the operating
system gets control, it must find the page in the next level of the hierarchy (usually
flash memory or magnetic disk) and decide where to place the requested page in
main memory.

The virtual address alone does not immediately tell us where the page is on disk.
Returning to our library analogy, we cannot find the location of a library book on
the shelves just by knowing its title. Instead, we go to the catalog and look up the
book, obtaining an address for the location on the shelves, such as the Library of
Congress call number. Likewise, in a virtual memory system, we must keep track
of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced,
the operating system usually creates the space on flash memory or disk for all the
pages of a process when it creates the process. This space is called the swap space.
At that time, it also creates a data structure to record where each virtual page is
stored on disk. This data structure may be part of the page table or may be an
auxiliary data structure indexed in the same way as the page table. Figure 5.28
shows the organization when a single table holds either the physical page number
or the disk address.

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs,
if all the pages in main memory are in use, the operating system must choose a
page to replace. Because we want to minimize the number of page faults, most
operating systems try to choose a page that they hypothesize will not be needed
in the near future. Using the past to predict the future, operating systems follow
the least recently used (LRU) replacement scheme, which we mentioned in Section
5.4. The operating system searches for the least recently used page, assuming that
a page that has not been used in a long time is less likely to be needed than a more
recently accessed page. The replaced pages are written to swap space on the disk.
In case you are wondering, the operating system is just another process, and these
tables controlling memory are in memory; the details of this seeming contradiction
will be explained shortly.
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FIGURE 5.28 The page table maps each page in virtual memory to either a page in main
memory or a page stored on disk, which is the next level in the hierarchy. The virtual page
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number
(ie., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

Elaboratlon: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table
entry, we can compute the total page table size:

2

Number of page table entries = f—ﬂ = 220

25
Size of page table = 2°° page table entries x 2° e = 4 MiB

page table entry

That is, we would need to use 4 MIB of memory for each program in execution at any
time. This amount is not so bad for a single process. What if there are hundreds of
processes running, each with their own page table? And how should we handle 64-bit
addresses, which by this calculation would need 252 words?



Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address
and a second access to get the data. The key to improving access performance is to
rely on locality of reference to the page table. When a translation for a virtual page
number is used, it will probably be needed again in the near future, because the
references to the words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of recently
used translations. This special address translation cache is traditionally referred to as
a translation-lookaside butfer (TLB), although it would be more accurate to call it
a translation cache. The TLB corresponds to that little piece of paper we typically use
to record the location of a set of books we look up in the card catalog; rather than
continually searching the entire catalog, we record the location of several books and
use the scrap of paper as a cache of Library of Congress call numbers.

Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number.
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FIGURE 5.29 The TLB acts as a cache of the page table for the entries that map to
physical pages only. The TLE contains a subset of the virtual-to-physical page mappings that are in the
page table. The TLE mappings are shown in color. Because the TLR is a cache, it must have a tag field. If there
is no matching entry in the TLE for a page, the page table must be examined. The page table either supplies a
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no
tag field is needed; in other words, unlike a TLE, a page table is not a cache.



Some typical values for a TLB might be

m TLB size: 16-512 entries

B Block size: 1-2 page table entries (typically 4-8 bytes each)
m Hit time: 0.5-1 clock cycle

B Miss penalty: 10-100 clock cycles

m Miss rate: 0.01%-1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With
a fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page faults.
As a result, many systems provide some support for randomly choosing an entry
to replace. We'll examine replacement schemes in a little more detail in Section 5.8.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
helps maintain this hierarchy by flushing the contents of any page from the cache
when it decides to migrate that page to disk. At the same time, the OS modifies the
page tables and TLB, so that an attempt to access any data on the migrated page
will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of the
memory hierarchy: the TLB, the page table, and the cache. The following example
illustrates these interactions in more detail.



FIGURE 5.20 The TLE and cache implement the process of going from a virtual address to a data item in the Intrinsity
FastMATH. This figure shows the organization of the TLE and the data cache, assuming a 4 KiB page size. This diagram focuses on a read;
Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12, the tag and data RAMs are split. By addressing the long but narrow
data RAM with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While
the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against
the virtual page number, since the entry of interest can be anywhere in the TLB. {See content addressable memories in the Elaboration on

page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from
the page offset form the index that is used to access the cache.
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Implementing Protection with Virtual Memory

Perhaps the most important function of virtual memory today is to allow sharing of
a single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or into
the operating system either intentionally or unintentionally. The write access bit in

the TLB can protect a page from being written. Without this level of protection,
computer viruses would be even more widespread.



Interrupts

Defn: an event external to the currently
executing process that causes a change in
the normal flow of instruction execution:;
usually generated by hardware devices
external to the CPU

* From "Design and Implementation of the
FreeBSD Operating System”, Glossary

* Key point is that interrupts are

asynchronous w.r.t. current process

» Typically indicate that some device needs service

Why Interrupts?

 People like connecting devices
+ Acomputeris much more than the CPU
+ Keyboard, mouse, screen, disk drives
+ Scanner, printer, sound card, camera, etc.
» These devices occasionally need CPU service
+ But we can't predict when
» External events typically occur on a macroscopic
timescale
+ we want to keep the CPU busy between events
““"Need away for CPU to find out devices need
attention



Possible Solution: Polling

* CPU periodically checks each device to see
if it needs service
* takes CPU time even when no requests pending

* overhead may be reduced at expense of
response time

can be efficient if events arrive rapidly

“Polling is like picking up your phone every few
seconds to see if you have acall. ."

Alternative: Interrupts

* Give each device a wire (interrupt line) that
it can use to signal the processor

* When interrupt signaled, processor executes a
routine called an interrupt handler to deal with
the interrupt

* No overhead when no requests pending

haskahle

Interrupt .
Contr@ller‘;ﬁ. Device |
‘m_\m{ Device |

Polling vs. Interrupts

Mor-Maskable
(MRl

"Polling is like picking up your phone every few
seconds to see if you have a call. Interrupts
are like waiting for the phone to ring."

* Interrupts win if processor has other work
to do and event response time is not critical

* Polling can be better if processor has to
respond to an event ASAP

* May be used in device controller that contains
dedicated secondary processor



Hardware Interrupt Handling

Details are architecture dependent!
Interrupt controller signals CPU that interrupt has
occurred, passes interrupt number

+ Interrupts are assigned priorities to handle simultaneous
interrupts

+ Lower priority interrupts may be disabled during service

* CPU senses (check52 interrupt request line after
every instruction; if raised, then:

* uses interrupt number to determine which handler to start
+ interrupt vector associates handlers with interrupts
Basic program state saved (as for system call)
* CPU jumps to interrupt handler

When interrupt done, program state reloaded and
program resumes

Software Interrupt Handling

* Typically two parts to interrupt handling
« The part that has to be done immediately
* So that device can continue working
* The part that should be deferred for later
 So that we can respond to the device faster

» So that we have a more convenient execution
context
+ What does that mean?



Interrupt Context

« Execution of first part of interrupt handler
"borrows" the context of whatever was interrupted
+ Interrupted process state is saved in process structure
+ Handler uses interrupted thread’s kemel stack
* Have to be very careful about stack-allocated data
+ Handler is not allowed to block

+ Has no process structure of its own to save state or
allow rescheduling

+ Can't call functions that might block (like kmalloc)

+ Handler needs to be kept fast and simple

+ Typically sets up work for second part, flags that second
part needs to execute, and re-enables interrupt

Software Interrupts

The deferred parts of interrupt handling are
sometimes referred to as “"software interrupts”
+ InLinux, they are referred to as "bottom halves”

+ The terminology here is inconsistent and confusing

What things can be deferred?

+ Networking

+ time-critical work = copy packet off hardware,
respond to hardware

+ Deferred work = process packet, pass to correct
application
* Timers
+ Time-critical = increment current time-of-day
* Deferred = recalculate process priorities

Signals

- Software equivalent of hardware interrupts

- Allows process to respond to asynchronous external
events

* Process may specify its own signal handlers or may use 05
default action

+ Defaults include
+ Ignoring the signal
+ Terminating all threads in the process (with or without
a core dump)
+ Stopping all threads in the process
+ Resuming all threads in the process

* Provide a simple form of inter-process
communication (IPC)



Basics

* Process structure has flags for possible
signals and actions to take

* When signal is posted to process, signal
pending flag is marked
* When process is next scheduled to run,

pending signals are checked and appropriate
action is taken

» Signal delivery is not instantaneous



