SINGLE PHASE AC CIRCUITS

Definition of Alternating Quantity

v

An alternating quantity changes continuously in magnitude and alternates in direction at regular

intervals of time. Important terms associated with an alternating quantity are defined below.

1. Amplitude

It is the maximum value attained by an alternating quantity. Also called as maximum or peak

value

2. Time Period (T)

It is the Time Taken in seconds to complete one cycle of an alternating quantity

3. Instantaneous Value

It is the value of the quantity at any instant

4. Frequency (f)
It is the number of cycles that occur in one second. The unit for frequency is Hz or cycles/sec.
The relationship between frequency and time period can be derived as follows.

Time taken to complete f cycles = 1 second

Time taken to complete 1 cycle = 1/f second

T=1/f



Advantages of AC system over DC system

1. AC voltages can be efficiently stepped up/down using transformer
2. AC motors are cheaper and simpler in construction than DC motors

3. Switchgear for AC system is simpler than DC system

Generation of sinusoidal AC voltage

Consider a rectangular coil of N turns placed in a uniform magnetic field as shown in the figure. The

coil is rotating in the anticlockwise direction at an uniform angular velocity of ® rad/sec.
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When the coil is in the vertical position, the flux linking the coil is zero because the plane of the coil
is parallel to the direction of the magnetic field. Hence at this position, the emf induced in the coil is
zero. When the coil moves by some angle in the anticlockwise direction, there is a rate of change of
flux linking the coil and hence an emf is induced in the coil. When the coil reaches the horizontal
position, the flux linking the coil is maximum, and hence the emf induced is also maximum. When
the coil further moves in the anticlockwise direction, the emf induced in the coil reduces. Next when
the coil comes to the vertical position, the emf induced becomes zero. After that the same cycle
repeats and the emf is induced in the opposite direction. When the coil completes one complete

revolution, one cycle of AC voltage is generated.



The generation of sinusoidal AC voltage can also be explained using mathematical equations.
Consider a rectangular coil of N turns placed in a uniform magnetic field in the position shown in the
figure. The maximum flux linking the coil is in the downward direction as shown in the figure. This
flux can be divided into two components, one component acting along the plane of the coil ®y,Sinwt

and another component acting perpendicular to the plane of the coil ®p,ccosot.
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The component of flux acting along the plane of the coil does not induce any flux in the coil. Only

the component acting perpendicular to the plane of the coil ie ®,xcosmt induces an emf in the coil.

=P  coswt

e=—Nd£
dt

e= —NicbmX COS (X
dt

e=N®D_ . wsinax
e=FE sinax

Hence the emf induced in the coil is a sinusoidal emf. This will induce a sinusoidal current in the

circuit given by

i =1 sinawt



Angular Frequency (o)

Angular frequency is defined as the number of radians covered in one second(ie the angle covered by

the rotating coil). The unit of angular frequency is rad/sec.

Problem 1

An alternating current i is given by
i=141.4sin 314t
Find i) The maximum value
ii) Frequency
iii) Time Period

iv) The instantaneous value when t=3ms
i=141.4sin 314t

i=1sinawt
1) Maximum value Im=141.4 V
ii) = 314 rad/sec
f=w/2r =50 Hz
iii) T=1/f = 0.02 sec
iv) i=141.4 sin(314x0.003) = 114.35A

Average Value

The arithmetic average of all the values of an alternating quantity over one cycle is called its average

value

Average value = Area under one cycle

Base

2r
v, = [vd (e
27 5



For Symmetrical waveforms, the average value calculated over one cycle becomes equal to zero
because the positive area cancels the negative area. Hence for symmetrical waveforms, the average

value is calculated for half cycle.

Average value = Area under one half cycle
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Average value of a half wave rectifier output
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RMS or Effective Value

The effective or RMS value of an alternating quantity is that steady current (dc) which when flowing
through a given resistance for a given time produces the same amount of heat produced by the

alternating current flowing through the same resistance for the same time.
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RMS value of a sinusoidal current
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Form Factor

The ratio of RMS value to the average value of an alternating quantity is known as Form Factor

o RMSValue

- AverageValue

Peak Factor or Crest Factor

The ratio of maximum value to the RMS value of an alternating quantity is known as the peak factor

_ MaximumValue
RMSValue

For a sinusoidal waveform
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For a Half Wave Rectifier Output
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/4

I, = Ly _ 0.5I
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Phasor Representation
An alternating quantity can be represented using
(i) Waveform
(ii))  Equations
(iii))  Phasor
A sinusoidal alternating quantity can be represented by a rotating line called a Phasor. A phasor is a
line of definite length rotating in anticlockwise direction at a constant angular velocity
The waveform and equation representation of an alternating current is as shown. This sinusoidal

quantity can also be represented using phasors.
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Draw a line OP of length equal to I;,,. This line OP rotates in the anticlockwise direction with a

uniform angular velocity o rad/sec and follows the circular trajectory shown in figure. At any

instant, the projection of OP on the y-axis is given by OM=0Psinf = [;,;sinwt. Hence the line OP is

the phasor representation of the sinusoidal current

o)

-Em

Phase is defined as the fractional part of time period or cycle through which the quantity has

advanced from the selected zero position of reference

Phase of +E,, is n/2 rad or T/4 sec
Phase of -E,, is 3n/2 rad or 3T/4 sec



Phase Difference
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When two alternating quantities of the same frequency have different zero points, they are said to

have a phase difference. The angle between the zero points is the angle of phase difference.

In Phase

Two waveforms are said to be in phase, when the phase difference between them is zero. That is the

zero points of both the waveforms are same. The waveform, phasor and equation representation of

two sinusoidal quantities which are in phase is as shown. The figure shows that the voltage and

current are in phase.
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v=F_sinwl

i=1_sinwt



Lagging

In the figure shown, the zero point of the current waveform is after the zero point of the voltage

waveform. Hence the current is lagging behind the voltage. The waveform, phasor and equation

representation is as shown.
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Leading

In the figure shown, the zero point of the current waveform is before the zero point of the voltage

waveform. Hence the current is leading the voltage. The waveform, phasor and equation

representation is as shown.

v=V_sm wf

i=1_sin(wt+OD)



AC circuit with a pure resistance
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Consider an AC circuit with a pure resistance R as shown in the figure. The alternating voltage v is

v=V_sinwt

given by

The current flowing in the circuit is i. The voltage across the resistor is given as Vg which is the
same as V.

Using ohms law, we can write the following relations

v V_sinat
l=—=—
R R
i=1_ sina¥ e )
Where I :V—m
" R

From equation (1) and (2) we conclude that in a pure resistive circuit, the voltage and current are in

phase. Hence the voltage and current waveforms and phasors can be drawn as below.

Vi -




Instantaneous power

The instantaneous power in the above circuit can be derived as follows

p=vi
p=V _sinax)(l, sinax)
p=V I sin’ ax
V I
p= %(1—0052((1)

p= - cos2ax
2 2

The instantaneous power consists of two terms. The first term is called as the constant power term

and the second term is called as the fluctuating power term.
Average power

From the instantaneous power we can find the average power over one cycle as follows

27| 7]
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27 2 2

0

27 7
P= Vil - ! J[V’"I’" cos2ax |dax
2 2wyl 2 |
2 242
P=V.I

As seen above the average power is the product of the rms voltage and the rms current.

The voltage, current and power waveforms of a purely resistive circuit is as shown in the figure.
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As seen from the waveform, the instantaneous power is always positive meaning that the power

always flows from the source to the load.

Phasor Algebra for a pure resistive circuit

V=VZ0° =V + jO
YEO gy jo=1c0

~ |
> <

Problem 2

An ac circuit consists of a pure resistance of 10Q and is connected to an ac supply of 230 V, 50 Hz.

Calculate the (i) current (ii) power consumed and (iii) equations for voltage and current.

V20 34

(D =—=="
(ii)P = VI = 230%23 = 5260W
i)V, =2V =325.27V

I =+21=32.524

=27 =314rad /sec

v =2325.25sin 314t
[ =32.52sin314¢



AC circuit with a pure inductance

Consider an AC circuit with a pure inductance L as shown in the figure. The alternating voltage v is

v=V_sinwt

given by

The current flowing in the circuit is i. The voltage across the inductor is given as Vi which is the

same as v.

We can find the current through the inductor as follows

V= Lﬂ
dt
V. sinat = Lﬂ
dt

%4
di = 2 sin wrdt
L
\%
[ = —m'[sin wtdt
L
\%
[ = —m(— COSs a)t)
WL

Vv
[ =—=sin(ax —x/2)
L

i=1_sin(ax—rm/2) -~ )
Vv

m
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From equation (1) and (2) we observe that in a pure inductive circuit, the current lags behind the

voltage by 90°. Hence the voltage and current waveforms and phasors can be drawn as below.
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Inductive reactance

The inductive reactance Xy, is given as

X, =aL=2nL
Ve
XL

It is equivalent to resistance in a resistive circuit. The unit is ohms (€2)

Instantaneous power

The instantaneous power in the above circuit can be derived as follows

p =i
p=V sinax)(I sin(ax—7mw/2))
p=-V I sin@xcosax

lem <
p= —Tsm 20t

As seen from the above equation, the instantaneous power is fluctuating in nature.



Average power

From the instantaneous power we can find the average power over one cycle as follows

1 viI .
Pz—j—v’”—’”sm2a)tda)t

0

P=0

The average power in a pure inductive circuit is zero. Or in other words, the power consumed by a
pure inductance is zero.

The voltage, current and power waveforms of a purely inductive circuit is as shown in the figure.

As seen from the power waveform, the instantaneous power is alternately positive and negative.
When the power is positive, the power flows from the source to the inductor and when the power in
negative, the power flows from the inductor to the source. The positive power is equal to the
negative power and hence the average power in the circuit is equal to zero. The power just flows

between the source and the inductor, but the inductor does not consume any power.

Phasor algebra for a pure inductive circuit
V=vZ0 =V+j0
I=1/-90°"=0—jI
v_ v
I 1£-90

= X, 290°



Problem 3

A pure inductive coil allows a current of 10A to flow from a 230V, 50 Hz supply. Find (i) inductance

of the coil (ii) power absorbed and (iii) equations for voltage and current.

0)X, =¥:@=23Q

10
X, =21L

L=2
2

=0.073H

(i)P=0

i)V, =~J2V =325.27V
I =+21=14.14A
=27 =314rad /sec

v =325.25s1n314¢
i =14.14sin(314t -7 /2)

AC circuit with a pure capacitance
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Consider an AC circuit with a pure capacitance C as shown in the figure. The alternating voltage v is

v=V_sinwt

given by



The current flowing in the circuit is i. The voltage across the capacitor is given as V¢ which is the

same as v.

We can find the current through the capacitor as follows

q=Cv

qg=CV_ sinax

. d

'

1 =CV _wcosax

i =wCV_sin(ax+7/2)

i=1 sin(ax+7x/2) 2)

Where I m - (UCVm

From equation (1) and (2) we observe that in a pure capacitive circuit, the current leads the voltage

by 90°. Hence the voltage and current waveforms and phasors can be drawn as below.
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Capacitive reactance

The capacitive reactance Xc is given as

L
wC  27fC
A
XC

It is equivalent to resistance in a resistive circuit. The unit is ohms (€2)

Instantaneous power

The instantaneous power in the above circuit can be derived as follows
p=vi

p=V_sinax)(I, sin(ax+7/?2))

p=V I sinxcosax

VI .
p= Tsm 20t

As seen from the above equation, the instantaneous power is fluctuating in nature.

Average power

From the instantaneous power we can find the average power over one cycle as follows

1 27 I .
= 5 IVm ™ sin 2wtd wr
T

P=0

0

The average power in a pure capacitive circuit is zero. Or in other words, the power consumed by a
pure capacitance is zero.

The voltage, current and power waveforms of a purely capacitive circuit is as shown in the figure.
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As seen from the power waveform, the instantaneous power is alternately positive and negative.
When the power is positive, the power flows from the source to the capacitor and when the power in
negative, the power flows from the capacitor to the source. The positive power is equal to the
negative power and hence the average power in the circuit is equal to zero. The power just flows

between the source and the capacitor, but the capacitor does not consume any power.

Phasor algebra in a pure capacitive circuit

V=VL0 =V + ;O
[=1/90°" =0+ jI

Problem 4

A 318uF capacitor is connected across a 230V, 50 Hz system. Find (i) the capacitive reactance (ii)

rms value of current and (iii) equations for voltage and current.



X, = 1 00
27fC

14
ii)] =——=23A
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C
i)V, =~2V =325.27V
I, =+21=3253A
=27 =314rad/sec
vy =325.25sin314¢
i =32.53sin(314t + 7/2)

R-L Series circuit

\/

Consider an AC circuit with a resistance R and an inductance L connected in series as shown in the

figure. The alternating voltage v is given by

v=V_sinwt

The current flowing in the circuit is i. The voltage across the resistor is Vg and that across the

inductor is Vi.

Vr=IR is in phase with I
V=IXy leads current by 90 degrees

With the above information, the phasor diagram can be drawn as shown.
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The current I is taken as the reference phasor. The voltage Vg is in phase with I and the voltage Vi,

P
Ll

leads the current by 90°. The resultant voltage V can be drawn as shown in the figure. From the
phasor diagram we observe that the voltage leads the current by an angle ® or in other words the
current lags behind the voltage by an angle ©.

The waveform and equations for an RL series circuit can be drawn as below.

V =V sinwt
[=1_sin(ax—P)

From the phasor diagram, the expressions for the resultant voltage V and the angle @ can be derived

as follows.
V=yVi+V;
V,=IR

vV, =IX,

V =(IR)* +(IX )’
V=IJR*+X;
V=1IZ

Where impedance , _ [p2 x?2
L

The impedance in an AC circuit is similar to a resistance in a DC circuit. The unit for impedance is

ohms (Q).



Phase angle

d=tan™’ ﬁJ
VR

d=tan™’ X,
IR

®=tan™ ﬁ}
R

L

d=tan™’ a)_}

R

Instantaneous power

The instantaneous power in an RL series circuit can be derived as follows

p=vi
p=V _sinax)l, sin(ax—P)

p= Vzl cosP — V’"zl’" cos(2ax —P)

The instantaneous power consists of two terms. The first term is called as the constant power term

and the second term is called as the fluctuating power term.

Average power

From the instantaneous power we can find the average power over one cycle as follows

1 v I I
J Yl cosCID—V’” cosQax —P) |[dax
27 5, 2

p=-2" Vil cosP
2

P ———cosCD

V242

P=VIcos®d



The voltage, current and power waveforms of a RL series circuit is as shown in the figure.

As seen from the power waveform, the instantaneous power is alternately positive and negative.
When the power is positive, the power flows from the source to the load and when the power in
negative, the power flows from the load to the source. The positive power is not equal to the negative
power and hence the average power in the circuit is not equal to zero.

From the phasor diagram,

cosCID:V—R:B:5
Vv 1Z Z
P=VIcos®d

R

P=(Z2)xIx—
V4

P=1I°R

Hence the power in an RL series circuit is consumed only in the resistance. The inductance does not

consume any power.
Power Factor
The power factor in an AC circuit is defined as the cosine of the angle between voltage and current ie

cosd

P=VIcos®

The power in an AC circuit is equal to the product of voltage, current and power factor.

Impedance Triangle

We can derive a triangle called the impedance triangle from the phasor diagram of an RL series

circuit as shown



V_=|X|_ X|_

Ve 3 Ve=IR R
The impedance triangle is right angled triangle with R and Xi as two sides and impedance as the

hypotenuse. The angle between the base and hypotenuse is ®. The impedance triangle enables us to

calculate the following things.

1. Impedance Z=\R+X;

2. Power Factor cos® =

NIES

.
3. Phaseangle P =tan 1(#)

4. Whether current leads or lags behind the voltage

Power

In an AC circuit, the various powers can be classified as
1. Real or Active power
2. Reactive power

3. Apparent power

Real or active power in an AC circuit is the power that does useful work in the cicuit. Reactive

power flows in an AC circuit but does not do any useful work. Apparent power is the total power in

an AC circuit.

ICos®

v

|SIn®



From the phasor diagram of an RL series circuit, the current can be divided into two components.
One component along the voltage Icos®, that is called as the active component of current and
another component perpendicular to the voltage Isin® that is called as the reactive component of
current.

Real Power

The power due to the active component of current is called as the active power or real power. It is
denoted by P.

P =V x ICos® = 'R

Real power is the power that does useful power. It is the power that is consumed by the resistance.
The unit for real power in Watt(W).

Reactive Power

The power due to the reactive component of current is called as the reactive power. It is denoted by
Q.

Q =V x ISin® = I’X;.

Reactive power does not do any useful work. It is the circulating power in th L and C components.
The unit for reactive power is Volt Amperes Reactive (VAR).

Apparent Power

The apparent power is the total power in the circuit. It is denoted by S.

S=VxI=IZ
S=yP*+Q°

The unit for apparent power is Volt Amperes (VA).

Power Triangle

From the impedance triangle, another triangle called the power triangle can be derived as shown.

2
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The power triangle is right angled triangle with P and Q as two sides and S as the hypotenuse. The
angle between the base and hypotenuse is ®. The power triangle enables us to calculate the following

things.

1. Apparentpower S = ./P? + Q2

P RealPower
2. Power Factor Cos® =— =

S ApparentPower

The power Factor in an AC circuit can be calculated by any one of the following

methods
% Cosine of angle between V and 1
¢ Resistance/Impedance R/Z

% Real Power/Apparent Power P/S

Phasor algebra in a RL series circuit
V=V+j0=VL)
Z=R+ jX, =ZL®

Problem 5

A coil having a resistance of 72 and an inductance of 31.8mH is connected to 230V, 50Hz supply.

Calculate (i) the circuit current (ii) phase angle (iii) power factor (iv) power consumed



X, = 24fL = 2x3.14x50x31.8x107° =109
Z =R+ X2 =7*+10° =12.2Q
V230

@)1 ——=18.854A
Z 122

X 10
.. =t -1 2L —t -1 =Y — 5501
(ii)¢ = tan ( R j an (7 j ag

(iii) PF = cos® =cos(55°) =0.573lag
(iv)P =VI cos ® =230x18.85x0.573 = 2484.24W

Problem 6

A 200 V, 50 Hz, inductive circuit takes a current of 10A, lagging 30 degree. Find (i) the resistance

(i1) reactance (iii) inductance of the coil

z=2_-29_50
10

({\)R=Zcos¢=20xcos30" =17.32Q
(i) X, =Zsin @ =20xsin30° =10Q
10

(@)L= X, = =0.0318H
27 2x3.14x50

R-C Series circuit
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Consider an AC circuit with a resistance R and a capacitance C connected in series as shown in the

figure. The alternating voltage v is given by

v=V_sinwt

The current flowing in the circuit is i. The voltage across the resistor is Vg and that across the

capacitor is V.

Vr=IR is in phase with I
Vc=IXc lags behind the current by 90 degrees

With the above information, the phasor diagram can be drawn as shown.

J D | i

Vv Ve

r

The current I is taken as the reference phasor. The voltage Vr is in phase with I and the voltage V¢
lags behind the current by 90°. The resultant voltage V can be drawn as shown in the figure. From
the phasor diagram we observe that the voltage lags behind the current by an angle © or in other
words the current leads the voltage by an angle ©.

The waveform and equations for an RC series circuit can be drawn as below.

P V =V sinat

TN [=1_ sin(ar+®)

From the phasor diagram, the expressions for the resultant voltage V and the angle @ can be derived

as follows.



V=yVZ+V?
V.=IR
V. =IX,

V =y(R)? +(IX.)*

V=IJR*+X]

V=IZ
Where impedance  , _ [p2, ¥ 2
Phase angle
® =tan' Ve
Vi
®=tan"' IX
IR
X
® = tan™ —Cj
R
®=tan"' Lj
wCR

Average power
P=VIcos¢
R
P=(Z)XIx—
Z

P=1I°R

Hence the power in an RC series circuit is consumed only in the resistance. The capacitance does not

consume any power.



Impedance Triangle

We can derive a triangle called the impedance triangle from the phasor diagram of an RC series

circuit as shown
Ve, R

J D L

Jd P | |

v

Z

Vv Ve

Phasor algebra for RC series circuit

V=V+j0=VL0
Z=R-jX.=2/-®

I =

N <|

=KA+¢
zZ

Problem 7

A Capacitor of capacitance 79.5uF is connected in series with a non inductive resistance of 30€2
across a 100V, 50Hz supply. Find (i) impedance (ii) current (iii) phase angle (iv) Equation for the
instantaneous value of current
X, = 1 _ 1 _
27fC 2x3.14x50%x79.5%x10
()Z =|R* + X2 =307 +40% =50Q
100

=" =19 _o4
Z 50

>ii)® = tan‘l(&j =tan”' (ﬂj =53"]ead
R 30

(iv)l, =21 =</2x2=2.828A
@=27f =2x3.14x50 = 314rad / sec
i =2.828sin(3147+53)

=40Q




R-L-C Series circuit
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Consider an AC circuit with a resistance R, an inductance L and a capacitance C connected in series

as shown in the figure. The alternating voltage v is given by

v=V_sinwt

The current flowing in the circuit is i. The voltage across the resistor is Vg, the voltage across the

inductor is Vi, and that across the capacitor is V.

Vr=IR is in phase with I
V1 =IX leads the current by 90 degrees
Vc=IXc lags behind the current by 90 degrees

With the above information, the phasor diagram can be drawn as shown. The current I is taken as the
reference phasor. The voltage Vr is in phase with I, the voltage V1 leads the current by 90° and the
voltage V¢ lags behind the current by 90°. There are two cases that can occur Vi >V¢cand Vi <V¢
depending on the values of X;. and Xc. And hence there are two possible phasor diagrams. The

phasor Vi -V¢ or V-V is drawn and then the resultant voltage V is drawn.
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VL>V c VL<VC

From the phasor diagram we observe that when V>V, the voltage leads the current by an angle

@ or in other words the current lags behind the voltage by an angle ®. When V<V the voltage

lags behind the current by an angle ® or in other words the current leads the voltage by an angle
.

From the phasor diagram, the expressions for the resultant voltage V and the angle @ can be derived
as follows.

V=\VZ+(V,-V.)
V=yJUR +(IX, - IX,)’

V=I1JR+(X,~X.)}
V=1Iz

Where impedance 7 — \/RZ +(X, - X.)

Phase angle

d=tan"’ Vi _ch

IR

X, -X
d=tan"’ gj

¢ — tan_l Mj




From the expression for phase angle, we can derive the following three cases

Case (i): When X >X¢

The phase angle @ is positive and the circuit is inductive. The circuit behaves like a series RL circuit.

Case (ii): When XL<XC
The phase angle @ is negative and the circuit is capacitive. The circuit behaves like a series RC

circuit.

Case (iii): When XL=XC
The phase angle @ = 0 and the circuit is purely resistive. The circuit behaves like a pure resistive
circuit.

The voltage and the current can be represented by the following equations. The angle @ is positive or
negative depending on the circuit elements.

V=V sinwt
I =1 sin(axt®P)

Average power
P=VIcos¢g
P=Z)xI ><£
Z
P=I°R

Hence the power in an RLC series circuit is consumed only in the resistance. The inductance and the

capacitance do not consume any power.

Phasor algebra for RLC series circuit

v

+j0=VZL0
(X, -X,.)=2£®

N
1
NI<| m <
~

+

~
—_

~i
Il

-

N <



Problem 8

A 230 V, 50 Hz ac supply is applied to a coil of 0.06 H inductance and 2.5 Q resistance connected in
series with a 6.8 pF capacitor. Calculate (i) Impedance (ii) Current (iii) Phase angle between current

and voltage (iv) power factor (v) power consumed

X, =27fL = 2x3.14x50x0.06 = 18.84Q
R 1
€ 2afC  2x3.14x50%x6.8x107°

Z=|R*+(x, - X ] =2.5°+(18.84 - 468)’ = 449 20

=468 Q

(ii)I :K:ﬂzo.SIZA
Z 449 .2
(iii )® = tan ' X - Xe = tan ! M =_89.7°
R 30

(iv) pf =cos @ =cos 89.7 =0.0056 lead
(v)P =VI cos ® =230x0.512 x0.0056 = 0.66W

Problem 9

A resistance R, an inductance L=0.01 H and a capacitance C are connected in series. When an
alternating voltage v=400sin(3000t-20°)is applied to the series combination, the current flowing is
10+/2 sin(3000t-65°). Find the values of R and C.

D =65 -20"=45"Iag

X, =wL=3000x0.01=30Q

tan® =tan 45" =1

_XC

tanCID:XL—:l
R

R=X,-X,
:‘;_::%:28.392:\/R2+(XL ~X. ) =JR*+ R’
V2R =283

R =20Q

X, - X, =20Q

X, =30-20=10Q
R T
WX, 3000x10

C=

33.3uF



Problem 10

A coil of pf 0.6 is in series with a 100uF capacitor. When connected to a S0Hz supply, the potential
difference across the coil is equal to the potential difference across the capacitor. Find the resistance

and inductance of the coil.

) 100uF
AT ||

(AN
COSq)coﬂ: 0.6
C=100uF
f=50Hz
Veoii=Ve
X =t = 1 —=31.83Q
27C  2x3.14x50x100x10
Vcoil = Vc
IZcoil = IXC
Z . =X.=31.83Q

R=Z_ cos®,  =31.83x0.6=19.09Q
X, =+/Z>, - R* =~/31.83> —19.09° = 25.46Q
1 1

=0.081H

T2l 2x3.14%x50%25.46

Problem 11
A current of (120-j50)A flows through a circuit when the applied voltage is (84j12)V. Determine (i)

impedance (ii) power factor (iii) power consumed and reactive power



V =8+ 12

1=120-j50

iz=Y=3Y112 _goyi011=0112797
I 120-j50

Z =0.11Q

® =797

(i) pf =cos® =co0s79.7" =0.179ag

(ii))S =VI" = (8+ j12)x (120 + j50) =360 + j1840

S=P+jO

P =360W

0 =1840VAR
Problem 12

The complex Volt Amperes in a series circuit are (4330-j2500) and the current is (25+j43.3)A.
Find the applied voltage.

S = 4330+ j2500

=25+ j43.3

V:i: 4330+ j2500 =86.6+ j50
I 25— j433

Problem 13

A parallel circuit comprises of a resistor of 20 in series with an inductive reactance 15€ in one
branch and a resistor of 30€ in series with a capacitive reactance of 20€2 in the other branch.
Determine the current and power dissipated in each branch if the total current drawn by the parallel

circuit is 10L-30 °A




Z, =20+ j15

Z, =30—- j20

1=10£-30° =8.66 — j5

I =1—%2  —(3.66— j5)x (_30_»’20).
Z, +Z, (20 + j15)+ (30— j20)

I,=3.8-j6.08=7.17£—-60°

I,=1-1,=(8.66-j5)—(3.8- j6.08)

1,=486+ j1.08=4.98£-12.5°

P =I'R, =717 x20=1028.2W

P =1}R, =498 x30="744W
Problem 14

A non inductive resistor of 10€ is in series with a capacitor of 100uF across a 250V, 50Hz ac

supply. Determine the current taken by the capacitor and power factor of the circuit

X.= L _ ! —=31.83Q
27C 2x3.14%x50x100x10
Z=R-jX.=10-,31.83
I Y 250 =2.24+ j7.14=7.49/72.5°
Z 10-;31.83
@=72.5

pf =cos¢g=cos72.5"=0.3

Problem 15

An impedance coil in parallel with a 100uF capacitor is connected across a 200V, SOHz supply. The
coil takes a current of 4A and the power loss in the coil is 600W. Calculate (i) the resistance of the

coil (ii) the inductance of the coil (iii) the power factor of the entire circuit.



Zcoil ZK =@ = SOQ
I 4
P=1?R=600W
R= 6—020 _ 6—020 =37.5Q
> 4
X, =42, —R* =+/50>-37.5* =33.07Q
X, 3307
27 2x3.14%50
1 1
T 27C 2x3.14x50x100x10°
Z, =R+ jX, =375+ j33.07
Z,=—jX,=-j31.83
_ZZ, _ (37.5+j33.07)(~ j31.83)
~Z,+Z, (37.5+33.07)+(-j31.83)
Z=27-j3272=42.42/-50.5°
@ =-50.5°

pf =cos® = cos(— 50.5° )= 0.6365

=0.105H

=31.83Q

Problem 16

A series RLC circuit is connected across a SOHz supply. R=100Q, L=159.16mH and C=63.7uF. If
the voltage across C is 150L.-90°V. Find the supply voltage

X, =27fL =2x3.14x50%x159.16x10 = 50Q
1 1

€T 24fC 2x3.14%50%63.7x107°
V. =1(-jX.)=150£—-900 = — j150
_—j150 - 150
—jX.  -j50
Z=R+j(X,-X_)=100+ j(50—50) =100
V =1Z =3x100 = 300V

=50Q

1

=3Z0"A



Problem 17

A circuit having a resistance of 20Q and inductance of 0.07H is connected in parallel with a series
combination of 50Q resistance and 60uF capacitance. Calculate the total current, when the parallel

combination is connected across 230V, S0Hz supply.

X, =24fL =2x%3.14x50x0.07 = 22Q
1 1

XC = = > =
27fC 2%3.14x50x60x10

Z, =20+ j22

Z,=50— j53

_ 727, _ (20+22)(50—53)
Z,+Z, (20+ j22)+(50-j53)

I =K=@=7.4—j3.4=8.134—24.9°
Z Z

=25.7+j11.9



THREE PHASE AC CIRCUITS

A three phase supply is a set of three alternating quantities displaced from each other by an angle of
120°. A three phase voltage is shown in the figure. It consists of three phases- phase A, phase B and
phase C. Phase A waveform starts at 0°. Phase B waveform stars at 120° and phase C waveform at

240°.
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The three phase voltage can be represented by a set of three equations as shown below.

e, =E sinat
e, = E sin(ax—1207)
e. =E, sin(wt—240")=E  sin(ax+120°)

The sum of the three phase voltages at any instant is equal to zero.

e,te;,+e. =0

The phasor representation of three phase voltages is as shown.

€a




The phase A voltage is taken as the reference and is drawn along the x-axis. The phase B voltage
lags behind the phase A voltage by 120°. The phase C voltage lags behind the phase A voltage by
240° and phase B voltage by 120°.

Generation of Three Phase Voltage

/ ‘\ ‘\ // A \
| ‘-.\\-!}\\:-{; \
N [‘ ..-"r\.-if \ -
LN

Three Phase voltage can be generated by placing three rectangular coils displaced in space by 120° in
a uniform magnetic field. When these coils rotate with a uniform angular velocity of ® rad/sec, a

sinusoidal emf displaced by 120° is induced in these coils.

Necessity and advantages of three phase systems

« 30 power has a constant magnitude whereas 1® power pulsates from zero to peak value at
twice the supply frequency

% A 30 system can set up a rotating magnetic field in stationary windings. This is not possible
with a 1® supply.

+ For the same rating 3® machines are smaller, simpler in construction and have better
operating characteristics than 19 machines

+ To transmit the same amount of power over a fixed distance at a given voltage, the 3® system

requires only 3/4™ the weight of copper that is required by the 1® system

« The voltage regulation of a 3@ transmission line is better than that of 1P line



Phase Sequence

The order in which the voltages in the three phases reach their maximum value

e A B C
+Em //\ /’/\\\ //\
L X
0 N\ ~

N X
-Em ‘v/ R

For the waveform shown in figure, phase A reaches the maximum value first, followed by phase B

and then by phase C. hence the phase sequence is A-B-C.

Balanced Supply

A supply is said to be balanced if all three voltages are equal in magnitude and displaced by 120°
A three phase supply can be connected in two ways - Either in Delta connection or in Star

connection as shown in the figure.

o A
€xn
N ~_) €

x/"“\\

O/ "E
€c

*C

Delta Connection Star Connection
Balanced Load

A load is said to be balanced if the impedances in all three phases are equal in magnitude and phase
A three phase load can be connected in two ways - Either in Delta connection or in Star

connection as shown in the figure.
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Balanced Star Connected Load

A balanced star connected load is shown in the figure. A phase voltage is defined as voltage across
any phase of the three phase load. The phase voltages shown in figure are Es, Eg and Ec. A line
voltage is defined as the voltage between any two lines. The line voltages shown in the figure are
Eap, Esc and Eca. The line currents are I, Iy and Ic. For a star connected load, the phase currents are

same as the line currents.
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Using Kirchoff’s voltage law, the line voltages can be written in terms of the phase voltages as

shown below.

E,=E,~Eg
Eye=Ez—E
E,=E.-E,



The phasor diagram shows the three phase voltages and the line voltage Exg drawn from E, and —Ejp

phasors. The phasor for current I, is also shown. It is assumed that the load is inductive.

My,

From the phasor diagram we see that the line voltage Eap leads the phase voltage E4 by 30°. The
magnitude of the two voltages can be related as follows.

E,; =2E, cos30° :\/§EA

Hence for a balanced star connected load we can make the following conclusions.

E, =3E,
Line voltage leads phase voltage by 30°

Three phase Power

In a single phase circuit, the power is given by VIcos®. It can also be written as Vplpncos®. The

power in a three circuit will be three times the power in a single phase circuit.

P=3E I cosd
P:x/gElI, cosd



Balanced Delta Connected Load
A balanced delta connected load is shown in the figure. The phase currents are I5p, Igc and Ica. The

line currents are I, Iz and Ic. For a delta connected load, the phase voltages are same as the line

voltages given by Eap, Egc and Eca.
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Using Kirchoff’s current law, the line currents can be written in terms of the phase currents as shown

below.
ly,=1,,—1
Iy =1p-—1,

Io=1c— 1y




The phasor diagram shows the three voltages Eap, Egc and Eca and the three phase currents Iap, Ipc
and Ica lagging behind the respective phase voltages by an angle ®. This is drawn by assuming that
the load is inductive. From the phase currents Ixg and —Ica, the line current I is drawn as shown in
the figure.

From the phasor diagram we see that the line current I lags behind the phase phase current 55 by

30°. The magnitude of the two currents can be related as follows.

I,=21I,,cos30° :«/§IAB

Hence for a balanced delta connected load we can make the following conclusions.
I,=+31,
E =E,
Line current lags behind phase current by 30°

Three phase Power

The three phase power for a delta connected load can be derived in the same way as that for a star

connected load.

P=3E I, cosd
P:x/gElI, cosP

Measurement of power and power factor by two wattmeter method

The power in a three phase circuit can be measured by connecting two wattmeters in any of the two
phases of the three phase circuit. A wattmeter consists of a current coil and a potential coil as shown

in the figure.

Current coll
a0 <

| MWW

Potential coil



The wattmeter is connected in the circuit in such a way that the current coil is in series and carries
the load current and the potential coil is connected in parallel across the load voltage. The wattmeter
reading will then be equal to the product of the current carried by the current coil, the voltage across
the potential coil and the cosine of the angle between the voltage and current.

The measurement of power is first given for a balanced star connected load and then for a balanced

delta connected load.

(1) Balanced star connected load
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The circuit shows a balanced star connected load for which the power is to be measured. Two

wattmeter W, and W, are connected in phase A and phase C as shown in the figure.




The current coil of wattmeter W carries the current I, and its potential coil is connected across the
voltage Eap. A phasor diagram is drawn to determine the angle between [, and Exp as shown.
From the phasor diagram we determine that the angle between the phasors I5 and Eap is (30+®).

Hence the wattmeter reading W is given by
W1=EABIACOS(3O+®)

The current coil of wattmeter W, carries the current I¢ and its potential coil is connected across the
voltage Ecg. From the phasor diagram we determine that the angle between the phasors Ic and Ecp is

(30-®). Hence the wattmeter reading W, is given by

W,=Ecglccos(30-D)

Line voltages Exg=Ecp=EL

And line currents Ia=Ic=I;,

Hence
W, =E, I, cos(30+P)
W, =E, I, cos(30—®P)
W, +W, =E, I, cos(30+P)+E, I, cos(30—P)
W, +W, =E, I,(2cos30° cosP)
W, +W, =~3E, I, cos®

From the above equations we observe that the sum of the two wattmeter reading gives the three

phase power.

(i1)Balanced delta connected load

The circuit shows a balanced delta connected load for which the power is to be measured. Two

wattmeter W and W, are connected in phase A and phase C as shown in the figure.
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The current coil of wattmeter W, carries the current I and its potential coil is connected across the

voltage Exp. A phasor diagram is drawn to determine the angle between I and Exp as shown.

From the phasor diagram we determine that the angle between the phasors Ix and Eag is (30+®).

Hence the wattmeter reading W is given by

W1=EABIACOS(30+®)

The current coil of wattmeter W, carries the current I¢ and its potential coil is connected across the
voltage Ecg, From the phasor diagram we determine that the angle between the phasors I¢ and Ecp is

(30-@). Hence the wattmeter reading W, is given by



W2=ECBI(jCOS(30-(D)
Line voltages Eag=Ecp=EL

And line currents Ia=Ic=I;,

Hence

W, =E,I, cos(30+P)

W, =E, I, cos(30—P)

W, +W, =E, I, cos(30+P)+ E, I, cos(30—P)
W, +W, =E, I,(2¢cos30° cosP)

W, +W, =~/3E,I, cos®

From the above equations we observe that the sum of the two wattmeter reading gives the three

phase power.

Determination of Real power, Reactive power and Power factor
W,=E, I, cos(30 + D)
W, =E, I, cos(30—D)
W, +W, = «/SELIL cosP
W,-W,=E, I, sin®

tan @ =«/§(Wz _le

W +W,
@ =tan"'|/3 W oW
W+ W,
P=W+W,
0 =3W,-W)

pf =cos® = cos{tanl{«/g (%jﬂ



The power factor can also be determined from the power triangle

S
Q
i >
P
From the power triangle,
P=W +W,
0 =3, - W)
S = (W, +W,)> +3(W, —W,)’
pfzcosCI):£ W + W,

S=ﬁm+mﬁ+xm—mf

Wattmeter readings at different Power Factors
(Dupf
D=0

W, =E, I, cos(30+®)=E, I, cos(30) :£ELIL

W,=E,I, cos(30-®)=E,I, cos(30)=—EFE,I,

| Sy

W, =W,

(ii) pf = 0.866
P =30°

W, =E, I, cos(30+®)=FE, I, cos(30+30) = Ed,

W,=E,I, cos(30-®P)=E, I, cos(30-30)=FE, I,
W, =2W,



(i) pf =0.5

d =60°

W, =E,I, cos(30+P)=E, I, cos(30+60)=0

W,=E, I, cos(30—-P)=E, I, cos(30-60) =§ELIL
(iv)pf <0.5

d > 60°

W, =E, I, cos(30+P)<0
W,=E, I, cos(30—P)>0

Vpf =0
® =90°
ELIL

W, =E, I, cos(30+®)=FE, I, cos(30+90) =

ELIL

W,=E, I, cos(30—®)=FE, I, cos(30-90) =—

W, =-W,

Problem 1
A balanced 3® delta connected load has per phase impedance of (25+j40)Q. If 400V, 3® supply is

connected to this load, find (i) phase current (ii) line current (iii) power supplied to the load.

Z, =V25"+40° =47.17Q

d=tan"" [ﬂj =60°
25

Z,,=47.17£60°Q
E, =400V =E,,

E, 400
Z,, 4117260

(i), =31, =3x8.48=14.7£-90" A

(iii)P =~3E, I, cos ® =/3x400x14.7% cos 60°
P =5397.76W

=8.48£-60"A

(i)lph =



Problem 2

Two wattmeter method is used to measure the power absorbed by a 3® induction motor. The
wattmeter readings are 12.5kW and -4.8kW. Find (i) the power absorbed by the machine (ii) load

power factor (iii) reactive power taken by the load.

W =12.5kW
W, = —4.8kW
OP=W,+W, =12.5-4.8="7.7TkW
y W, —W, ~4.8-12.5
(ii) tan ® = @(W) = ﬁ(mJ =—3.89
® =tan"'[-3.89]=-75.6"
pf =cos® = cos(—75.6")=0.2487
(ii)Q =~3(W, —W,)=~/3(—4.8-12.5) = 29.96kVAR

Problem 3

Calculate the active and reactive components of each phase of a star connected 10kV, 3@ alternator

supplying SMW at 0.8 pf.

E, =10kV
P=5MW
pf =cos®=0.8
P =36.87°
P=+3E,I, cos®
6
=Lt X0 _a5p54
VBE, cos®  +/3x10x10°x0.8

6
p, =210 _166.7mw
Q,, =E,l,sn®= 1010, 360.8x5in 36.87° =1.25MVAR

NE

Problem 4

A 30 load of three equal impedances connected in delta across a balanced 400V supply takes a line
current of 10A at a power factor of 0.7 lagging. calculate (i) the phase current (ii) the total power (iii)

the total reactive kVAR



E, =400V =E,,

I, =10A

pf =cos®=0.7lag

o =45.57"

DI, = I, _10 =5.8A

NE
(ii)P =~/3E, I, cos® =~/3x400x10x0.7 = 4.84kW
(iii)Q =~[3E, 1, sin ® = /3 x400x10xsin 45.57° = 4.94kVAR

Problem 5

The power flowing in a 3®, 3 wire balanced load system is measured by two wattmeter method. The

reading in wattmeter A is 750W and wattmeter B is 1500W. What is the power factor of the system?

W, =750W
W, =1500W

=tan” |3 2L | = an” ﬁ(w]
W, +W, 750+1500

® =30°

pf =cos® =cos30° =0.866

Problem 6

A 3 star connected supply with a phase voltage of 230V is supplying a balanced delta connected
load. The load draws 15kW at 0.8pf lagging. Find the line currents and the current in each phase of
the load. What is the load impedance per phase.

15kW
0.8kW

|

230V

€ l

€g




Alternator
Eph =230V

E, =/3x230V =398.37V
P =15kW
pf =cos® =0.8lagging

P

I, =—F/————
- \/gELCOS(I)

=27.17A

Load
E,=E = 398.37V
[, =27.17A

— IL

ph

1 =15.68A

&

E
Z, = Iph =25.4Q

ph



