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3

Basic Concepts
Some books are to be tasted, others to be swallowed, and some few to
be chewed and digested.

—Francis Bacon

c h a p t e r

1
Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.a), “an ability to apply knowledge
of mathematics, science, and engineering.”
As students, you are required to study mathematics, science, and engi-
neering with the purpose of being able to apply that knowledge to the
solution of engineering problems. The skill here is the ability to apply
the fundamentals of these areas in the solution of a problem. So how
do you develop and enhance this skill?

The best approach is to work as many problems as possible in all
of your courses. However, if you are really going to be successful with
this, you must spend time analyzing where and when and why you have
difficulty in easily arriving at successful solutions. You may be sur-
prised to learn that most of your problem-solving problems are with
mathematics rather than your understanding of theory. You may also
learn that you start working the problem too soon. Taking time to think
about the problem and how you should solve it will always save you
time and frustration in the end.

What I have found that works best for me is to apply our six-
step problem-solving technique. Then I carefully identify the areas
where I have difficulty solving the problem. Many times, my actual
deficiencies are in my understanding and ability to use correctly cer-
tain mathematical principles. I then return to my fundamental math
texts and carefully review the appropriate sections, and in some cases,
work some example problems in that text. This brings me to another
important thing you should always do: Keep nearby all your basic
mathematics, science, and engineering textbooks.

This process of continually looking up material you thought you
had acquired in earlier courses may seem very tedious at first; how-
ever, as your skills develop and your knowledge increases, this process
will become easier and easier. On a personal note, it is this very process
that led me from being a much less than average student to someone
who could earn a Ph.D. and become a successful researcher.

Photo by Charles Alexander
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Figure 1.1
A simple electric circuit.
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Figure 1.2
Electric circuit of a radio transmitter.

Introduction
Electric circuit theory and electromagnetic theory are the two funda-
mental theories upon which all branches of electrical engineering are
built. Many branches of electrical engineering, such as power, electric
machines, control, electronics, communications, and instrumentation,
are based on electric circuit theory. Therefore, the basic electric circuit
theory course is the most important course for an electrical engineer-
ing student, and always an excellent starting point for a beginning stu-
dent in electrical engineering education. Circuit theory is also valuable
to students specializing in other branches of the physical sciences
because circuits are a good model for the study of energy systems in
general, and because of the applied mathematics, physics, and topol-
ogy involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred
to as an electric circuit, and each component of the circuit is known as
an element.

An electric circuit is an interconnection of electrical elements.

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic elements: a battery, a lamp, and connecting wires. Such a simple
circuit can exist by itself; it has several applications, such as a flash-
light, a search light, and so forth.

A complicated real circuit is displayed in Fig. 1.2, representing the
schematic diagram for a radio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.
Our goal in this text is to learn various analytical techniques and
computer software applications for describing the behavior of a circuit
like this.

1.1
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1.3 Charge and Current 5

TABLE 1.1

Six basic SI units and one derived unit relevant to this text.

Quantity Basic unit Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd
Charge coulomb C

TABLE 1.2

The SI prefixes.

Multiplier Prefix Symbol

exa E
peta P
tera T
giga G
mega M
kilo k
hecto h

10 deka da
deci d
centi c
milli m
micro
nano n
pico p
femto f
atto a10�18

10�15
10�12
10�9

m10�6
10�3
10�2
10�1

102
103
106
109
1012
1015
1018

Electric circuits are used in numerous electrical systems to accom-
plish different tasks. Our objective in this book is not the study of
various uses and applications of circuits. Rather, our major concern is
the analysis of the circuits. By the analysis of a circuit, we mean a
study of the behavior of the circuit: How does it respond to a given
input? How do the interconnected elements and devices in the circuit
interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a sys-
tem of units that we will use throughout the text.

Systems of Units
As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measurement
language is the International System of Units (SI), adopted by the
General Conference on Weights and Measures in 1960. In this system,
there are seven principal units from which the units of all other phys-
ical quantities can be derived. Table 1.1 shows the six units and one
derived unit that are relevant to this text. The SI units are used through-
out this text.

One great advantage of the SI unit is that it uses prefixes based on
the power of 10 to relate larger and smaller units to the basic unit.
Table 1.2 shows the SI prefixes and their symbols. For example, the
following are expressions of the same distance in meters (m):

Charge and Current
The concept of electric charge is the underlying principle for explain-
ing all electrical phenomena. Also, the most basic quantity in an elec-
tric circuit is the electric charge. We all experience the effect of electric

1.3

600,000,000 mm  600,000 m  600 km

1.2
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6 Chapter 1 Basic Concepts

1 However, a large power supply capacitor can store up to 0.5 C of charge.

Battery

I − −
− −

+ −

Figure 1.3
Electric current due to flow of electronic
charge in a conductor.

A convention is a standard way of
describing something so that others in
the profession can understand what
we mean. We will be using IEEE con-
ventions throughout this book.

charge when we try to remove our wool sweater and have it stick to
our body or walk across a carpet and receive a shock.

Charge is an electrical property of the atomic particles of which mat-
ter consists, measured in coulombs (C).

We know from elementary physics that all matter is made of funda-
mental building blocks known as atoms and that each atom consists of
electrons, protons, and neutrons. We also know that the charge e on an
electron is negative and equal in magnitude to C, while
a proton carries a positive charge of the same magnitude as the elec-
tron. The presence of equal numbers of protons and electrons leaves an
atom neutrally charged.

The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are electrons. Thus realistic or
laboratory values of charges are on the order of pC, nC, or C.1

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge

3. The law of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic sum
of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
electric charge or electricity is the fact that it is mobile; that is, it can
be transferred from one place to another, where it can be converted to
another form of energy.

When a conducting wire (consisting of several atoms) is con-
nected to a battery (a source of electromotive force), the charges are
compelled to move; positive charges move in one direction while neg-
ative charges move in the opposite direction. This motion of charges
creates electric current. It is conventional to take the current flow as
the movement of positive charges. That is, opposite to the flow of neg-
ative charges, as Fig. 1.3 illustrates. This convention was introduced
by Benjamin Franklin (1706–1790), the American scientist and inven-
tor. Although we now know that current in metallic conductors is due
to negatively charged electrons, we will follow the universally
accepted convention that current is the net flow of positive charges.
Thus,

Electric current is the time rate of change of charge, measured in
amperes (A).

Mathematically, the relationship between current i, charge q, and time t is

(1.1)i �
¢ dq

dt

e � �1.602 � 10�19 C.

m

1�(1.602 � 10�19) � 6.24 � 1018

1.602 � 10�19
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where current is measured in amperes (A), and

The charge transferred between time and t is obtained by integrat-
ing both sides of Eq. (1.1). We obtain

(1.2)

The way we define current as i in Eq. (1.1) suggests that current need
not be a constant-valued function. As many of the examples and prob-
lems in this chapter and subsequent chapters suggest, there can be sev-
eral types of current; that is, charge can vary with time in several ways.

If the current does not change with time, but remains constant, we
call it a direct current (dc).

A direct current (dc) is a current that remains constant with time.

By convention the symbol I is used to represent such a constant current.
A time-varying current is represented by the symbol i. A common

form of time-varying current is the sinusoidal current or alternating
current (ac).

An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household to run the air conditioner,
refrigerator, washing machine, and other electric appliances. Figure 1.4

Q �
¢ �

t

t0
 
i dt

t0

1 ampere � 1 coulomb/second

1.3 Charge and Current 7

Andre-Marie Ampere (1775–1836), a French mathematician and
physicist, laid the foundation of electrodynamics. He defined the elec-
tric current and developed a way to measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few
weeks, as he was intensely interested in mathematics and many of the
best mathematical works were in Latin. He was a brilliant scientist and
a prolific writer. He formulated the laws of electromagnetics. He in-
vented the electromagnet and the ammeter. The unit of electric current,
the ampere, was named after him.

Historical

I

0 t

(a)

(b)

i

t0

Figure 1.4
Two common types of current: (a) direct
current (dc), (b) alternating current (ac).

The Burndy Library Collection
at The Huntington Library, 
San Marino, California.
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8 Chapter 1 Basic Concepts

5 A

(a)

−5 A

(b)

Figure 1.5
Conventional current flow: (a) positive
current flow, (b) negative current flow.

How much charge is represented by 4,600 electrons?

Solution:
Each electron has C. Hence 4,600 electrons will have

�1.602 � 10�19 C/electron � 4,600 electrons � �7.369 � 10�16 C

�1.602 � 10�19

Example 1.1

Practice Problem 1.2

Example 1.2

Calculate the amount of charge represented by six million protons.

Answer: C.�9.612 � 10�13

Practice Problem 1.1

If in Example 1.2, find the current at s.

Answer: 2.707 mA.

t � 1.0q � (10 � 10e�2t) mC,

The total charge entering a terminal is given by mC.
Calculate the current at s.

Solution:

At

i � 5 sin 2 p � 10 p cos 2 p � 0 � 10 p � 31.42 mA

t � 0.5,

i �
dq

dt
�

d

dt
 (5t sin 4 p t) mC/s � (5 sin 4 p t � 20 p t cos 4 p t) mA

t � 0.5
q � 5t sin 4 p t

shows direct current and alternating current; these are the two most
common types of current. We will consider other types later in the
book.

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
direction of current flow is conventionally taken as the direction of pos-
itive charge movement. Based on this convention, a current of 5 A may
be represented positively or negatively as shown in Fig. 1.5. In other
words, a negative current of A flowing in one direction as shown
in Fig. 1.5(b) is the same as a current of A flowing in the opposite
direction.

�5
�5
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1.4 Voltage 9

Example 1.3Determine the total charge entering a terminal between and
s if the current passing the terminal is A.

Solution:

 � at3 �
t2

2
b ` 2

1
� (8 � 2) � a1 �

1

2
b � 5.5 C

 Q � �
2

t�1
 
i dt � �

2

1
 
(3t2 � t) dt

i � (3t2 � t)t � 2
t � 1 s

The current flowing through an element is

Calculate the charge entering the element from to s.

Answer: 13.333 C.

t � 2t � 0

i � e4 A,  0 6 t 6 1

4t2 A,  t 7 1

a

b

vab

+

−

Figure 1.6
Polarity of voltage .vab

Practice Problem 1.3

Voltage
As explained briefly in the previous section, to move the electron in a
conductor in a particular direction requires some work or energy trans-
fer. This work is performed by an external electromotive force (emf),
typically represented by the battery in Fig. 1.3. This emf is also known
as voltage or potential difference. The voltage between two points
a and b in an electric circuit is the energy (or work) needed to move
a unit charge from a to b; mathematically,

(1.3)

where w is energy in joules (J) and q is charge in coulombs (C). The
voltage or simply v is measured in volts (V), named in honor of
the Italian physicist Alessandro Antonio Volta (1745–1827), who
invented the first voltaic battery. From Eq. (1.3), it is evident that

Thus,

Voltage (or potential difference) is the energy required to move a unit
charge through an element, measured in volts (V).

Figure 1.6 shows the voltage across an element (represented by a
rectangular block) connected to points a and b. The plus and minus

signs are used to define reference direction or voltage polarity. The
can be interpreted in two ways: (1) Point a is at a potential of vabvab

(�)
(�)

1 volt � 1 joule/coulomb � 1 newton-meter/coulomb

vab

vab �
¢ dw

dq

vab

1.4
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Historical

Alessandro Antonio Volta (1745–1827), an Italian physicist,
invented the electric battery—which provided the first continuous flow
of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing
electrical experiments at age 18. His invention of the battery in 1796
revolutionized the use of electricity. The publication of his work in
1800 marked the beginning of electric circuit theory. Volta received
many honors during his lifetime. The unit of voltage or potential dif-
ference, the volt, was named in his honor.

10 Chapter 1 Basic Concepts

9 V

(a)

a

b

+

−

−9 V

(b)

a

b
+

−

Figure 1.7
Two equivalent representations of the
same voltage : (a) Point a is 9 V above
point b; (b) point b is 9 V above point a.�

vab

Keep in mind that electric current is
always through an element and that
electric voltage is always across the
element or between two points.

The Burndy Library Collection
at The Huntington Library, 
San Marino, California.

volts higher than point b, or (2) the potential at point a with respect to
point b is . It follows logically that in general

(1.4)

For example, in Fig. 1.7, we have two representations of the same volt-
age. In Fig. 1.7(a), point a is V above point b; in Fig. 1.7(b), point b
is V above point a. We may say that in Fig. 1.7(a), there is a 9-V
voltage drop from a to b or equivalently a 9-V voltage rise from b to
a. In other words, a voltage drop from a to b is equivalent to a volt-
age rise from b to a.

Current and voltage are the two basic variables in electric circuits.
The common term signal is used for an electric quantity such as a cur-
rent or a voltage (or even electromagnetic wave) when it is used for
conveying information. Engineers prefer to call such variables signals
rather than mathematical functions of time because of their importance
in communications and other disciplines. Like electric current, a con-
stant voltage is called a dc voltage and is represented by V, whereas a
sinusoidally time-varying voltage is called an ac voltage and is repre-
sented by v. A dc voltage is commonly produced by a battery; ac volt-
age is produced by an electric generator.

Power and Energy
Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
all know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our bills to the electric
utility companies, we are paying for the electric energy consumed over
a certain period of time. Thus, power and energy calculations are
important in circuit analysis.

1.5

�9
�9

vab � �vba

vab
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1.5 Power and Energy 11

p = +vi

(a)

v

+

−

p = −vi

(b)

v

+

−

ii

Figure 1.8
Reference polarities for power using the
passive sign convention: (a) absorbing
power, (b) supplying power.

When the voltage and current directions
conform to Fig. 1.8 (b), we have the ac-
tive sign convention and p vi.��

(a)

4 V

3 A

(a)

+

−

3 A

4 V

3 A

(b)

+

−

Figure 1.9
Two cases of an element with an absorbing
power of 12 W: (a) W,
(b) W.p � 4 � 3 � 12

p � 4 � 3 � 12

3 A

(a)

4 V

3 A

(a)

+

−

3 A

4 V

3 A

(b)

+

−

Figure 1.10
Two cases of an element with a supplying
power of 12 W: (a)

W, (b) W.p � �4 � 3 � �12�12
p � �4 � 3 �

To relate power and energy to voltage and current, we recall from
physics that:

Power is the time rate of expending or absorbing energy, measured in
watts (W).

We write this relationship as

(1.5)

where p is power in watts (W), w is energy in joules (J), and t is time
in seconds (s). From Eqs. (1.1), (1.3), and (1.5), it follows that

(1.6)

or

(1.7)

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneous power. Thus, the power absorbed or supplied by an ele-
ment is the product of the voltage across the element and the current
through it. If the power has a sign, power is being delivered to or
absorbed by the element. If, on the other hand, the power has a sign,
power is being supplied by the element. But how do we know when
the power has a negative or a positive sign?

Current direction and voltage polarity play a major role in deter-
mining the sign of power. It is therefore important that we pay atten-
tion to the relationship between current i and voltage v in Fig. 1.8(a).
The voltage polarity and current direction must conform with those
shown in Fig. 1.8(a) in order for the power to have a positive sign.
This is known as the passive sign convention. By the passive sign con-
vention, current enters through the positive polarity of the voltage. In
this case, or implies that the element is absorbing
power. However, if or , as in Fig. 1.8(b), the element
is releasing or supplying power.

Passive sign convention is satisfied when the current enters through
the positive terminal of an element and p vi. If the current enters
through the negative terminal, p vi.

Unless otherwise stated, we will follow the passive sign conven-
tion throughout this text. For example, the element in both circuits of
Fig. 1.9 has an absorbing power of W because a positive current
enters the positive terminal in both cases. In Fig. 1.10, however, the
element is supplying power of W because a positive current enters
the negative terminal. Of course, an absorbing power of W is
equivalent to a supplying power of W. In general,

�Power absorbed � �Power supplied

�12
�12

�12

�12

��

��

vi 6 0p � �vi
vi 7 0p � �vi

�
�

p � vi

p �
dw
dt

�
dw
dq

�
dq

dt
� vi

p �
¢ dw

dt
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12 Chapter 1 Basic Concepts

An energy source forces a constant current of 2 A for 10 s to flow
through a light bulb. If 2.3 kJ is given off in the form of light and heat
energy, calculate the voltage drop across the bulb.

Solution:
The total charge is

The voltage drop is

v �
¢w
¢q

�
2.3 � 103

20
� 115 V

¢q � i ¢t � 2 � 10 � 20 C

Example 1.4

To move charge q from point a to point b requires J. Find the
voltage drop if: (a) C, (b) C.

Answer: (a) V, (b) 10 V.�5

q � �3q � 6vab

�30Practice Problem 1.4

Find the power delivered to an element at ms if the current enter-
ing its positive terminal is

and the voltage is: (a) , (b) .v � 3 di�dtv � 3i

i � 5 cos 60 p t A

t � 3Example 1.5

In fact, the law of conservation of energy must be obeyed in any
electric circuit. For this reason, the algebraic sum of power in a cir-
cuit, at any instant of time, must be zero:

(1.8)

This again confirms the fact that the total power supplied to the circuit
must balance the total power absorbed.

From Eq. (1.6), the energy absorbed or supplied by an element
from time to time t is

(1.9)

Energy is the capacity to do work, measured in joules (J).

The electric power utility companies measure energy in watt-hours
(Wh), where

1 Wh � 3,600 J

w � �
t

t0
 
p dt � �

t

t0
 
vi dt

t0

a p � 0
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1.5 Power and Energy 13

Solution:
(a) The voltage is hence, the power is

At ms,

(b) We find the voltage and the power as

At ms,

 � �14137.167 sin 32.4� cos 32.4� � �6.396 kW

 p � �4500 p sin 0.18 p cos 0.18 p W

t � 3

 p � vi � �4500 p sin 60 p t cos 60 p t W

 v � 3 

di

dt
� 3(�60 p)5 sin 60 p t � �900 p sin 60 p t V

p � 75 cos2 (60 p � 3 � 10�3) � 75 cos2 

 0.18 p � 53.48 W

t � 3
p � vi � 75 cos2 60 p t W

v � 3i � 15 cos 60 p t;

Practice Problem 1.5Find the power delivered to the element in Example 1.5 at ms
if the current remains the same but the voltage is: (a) V,

(b) V.

Answer: (a) 17.27 W, (b) 29.7 W.

v � a10 � 5�
t

0

i dtb
v � 2i
t � 5

Example 1.6How much energy does a 100-W electric bulb consume in two hours?

Solution:

This is the same as

w � pt � 100 W � 2 h � 200 Wh

 � 720,000 J � 720 kJ

 w � pt � 100 (W) � 2 (h) � 60 (min/h) � 60 (s/min)

Practice Problem 1.6A stove element draws 15 A when connected to a 240-V line. How
long does it take to consume 180 kJ?

Answer: 50 s.
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14 Chapter 1 Basic Concepts

Smithsonian Institution.

Historical

1884 Exhibition In the United States, nothing promoted the future
of electricity like the 1884 International Electrical Exhibition. Just
imagine a world without electricity, a world illuminated by candles and
gaslights, a world where the most common transportation was by walk-
ing and riding on horseback or by horse-drawn carriage. Into this world
an exhibition was created that highlighted Thomas Edison and reflected
his highly developed ability to promote his inventions and products.
His exhibit featured spectacular lighting displays powered by an impres-
sive 100-kW “Jumbo” generator.

Edward Weston’s dynamos and lamps were featured in the United
States Electric Lighting Company’s display. Weston’s well known col-
lection of scientific instruments was also shown.

Other prominent exhibitors included Frank Sprague, Elihu Thompson,
and the Brush Electric Company of Cleveland. The American Institute
of Electrical Engineers (AIEE) held its first technical meeting on Octo-
ber 7–8 at the Franklin Institute during the exhibit. AIEE merged with
the Institute of Radio Engineers (IRE) in 1964 to form the Institute of
Electrical and Electronics Engineers (IEEE).
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1.6 Circuit Elements 15

Figure 1.11
Symbols for independent voltage sources:
(a) used for constant or time-varying volt-
age, (b) used for constant voltage (dc).

V

(b)

+

−
v

(a)

+
−

i

Figure 1.12
Symbol for independent current source.

(a) (b)

v +
− i

Figure 1.13
Symbols for: (a) dependent voltage
source, (b) dependent current source.

Circuit Elements
As we discussed in Section 1.1, an element is the basic building block
of a circuit. An electric circuit is simply an interconnection of the ele-
ments. Circuit analysis is the process of determining voltages across
(or the currents through) the elements of the circuit.

There are two types of elements found in electric circuits: pas-
sive elements and active elements. An active element is capable of
generating energy while a passive element is not. Examples of pas-
sive elements are resistors, capacitors, and inductors. Typical active
elements include generators, batteries, and operational amplifiers. Our
aim in this section is to gain familiarity with some important active
elements.

The most important active elements are voltage or current
sources that generally deliver power to the circuit connected to
them. There are two kinds of sources: independent and dependent
sources.

An ideal independent source is an active element that provides a
specified voltage or current that is completely independent of other
circuit elements.

In other words, an ideal independent voltage source delivers to the
circuit whatever current is necessary to maintain its terminal volt-
age. Physical sources such as batteries and generators may be
regarded as approximations to ideal voltage sources. Figure 1.11
shows the symbols for independent voltage sources. Notice that both
symbols in Fig. 1.11(a) and (b) can be used to represent a dc volt-
age source, but only the symbol in Fig. 1.11(a) can be used for a
time-varying voltage source. Similarly, an ideal independent current
source is an active element that provides a specified current com-
pletely independent of the voltage across the source. That is, the cur-
rent source delivers to the circuit whatever voltage is necessary to
maintain the designated current. The symbol for an independent cur-
rent source is displayed in Fig. 1.12, where the arrow indicates the
direction of current i.

An ideal dependent (or controlled) source is an active element in
which the source quantity is controlled by another voltage or current.

Dependent sources are usually designated by diamond-shaped symbols,
as shown in Fig. 1.13. Since the control of the dependent source is
achieved by a voltage or current of some other element in the circuit,
and the source can be voltage or current, it follows that there are four
possible types of dependent sources, namely:

1. A voltage-controlled voltage source (VCVS).
2. A current-controlled voltage source (CCVS).
3. A voltage-controlled current source (VCCS).
4. A current-controlled current source (CCCS).

1.6
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16 Chapter 1 Basic Concepts

Calculate the power supplied or absorbed by each element in Fig. 1.15.

Solution:
We apply the sign convention for power shown in Figs. 1.8 and 1.9.
For , the 5-A current is out of the positive terminal (or into the
negative terminal); hence,

For and , the current flows into the positive terminal of the ele-
ment in each case.

For , we should note that the voltage is 8 V (positive at the top), the
same as the voltage for since both the passive element and the
dependent source are connected to the same terminals. (Remember that
voltage is always measured across an element in a circuit.) Since the
current flows out of the positive terminal,

We should observe that the 20-V independent voltage source and 
dependent current source are supplying power to the rest of

the network, while the two passive elements are absorbing power.
Also,

In agreement with Eq. (1.8), the total power supplied equals the total
power absorbed.

p1 � p2 � p3 � p4 � �100 � 60 � 48 � 8 � 0

0.2I

p4 � 8(�0.2I) � 8(�0.2 � 5) � �8 W   Supplied power

p3,
p4

 p3 � 8(6) � 48 W   Absorbed power

  p2 � 12(5) � 60 W   Absorbed power

p3p2

p1 � 20(�5) � �100 W   Supplied power

p1

Example 1.7

p2

p3

I = 5 A

20 V

6 A

8 V 0.2 I

12 V

+
−

+

−

+ −

p1 p4

Figure 1.15
For Example 1.7.

i

A B

C 10i5 V
+
−

+

−

Figure 1.14
The source on the right-hand side is a
current-controlled voltage source.

Dependent sources are useful in modeling elements such as transis-
tors, operational amplifiers, and integrated circuits. An example of a
current-controlled voltage source is shown on the right-hand side of
Fig. 1.14, where the voltage of the voltage source depends on
the current i through element C. Students might be surprised that
the value of the dependent voltage source is V (and not A)
because it is a voltage source. The key idea to keep in mind is
that a voltage source comes with polarities in its symbol,
while a current source comes with an arrow, irrespective of what it
depends on.

It should be noted that an ideal voltage source (dependent or inde-
pendent) will produce any current required to ensure that the terminal
voltage is as stated, whereas an ideal current source will produce the
necessary voltage to ensure the stated current flow. Thus, an ideal
source could in theory supply an infinite amount of energy. It should
also be noted that not only do sources supply power to a circuit, they
can absorb power from a circuit too. For a voltage source, we know
the voltage but not the current supplied or drawn by it. By the same
token, we know the current supplied by a current source but not the
voltage across it.

(� �)

10i10i

10i
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1.7 Applications 17

Compute the power absorbed or supplied by each component of the
circuit in Fig. 1.16.

Answer: W, W, W, W.p4 � 15p3 � 12p2 � 18p1 � �45
9 A

5 V 3 V

2 V

4 A

I = 5 A

0.6I+
−

+ −

+
−

+

−

+

−

p2

p1 p3 p4

Figure 1.16
For Practice Prob. 1.7.

2 The dagger sign preceding a section heading indicates the section that may be skipped,
explained briefly, or assigned as homework.
3 Modern TV tubes use a different technology.

Cathode
(–)

Heated filament
(source of electrons)

Electron gun

)

Fluorescent
screen

Conductive coating

Electron
beam

Anode
(+)

+
+

–
–

(B)
Plates for

vertical deflection

(A)
Plates for

horizontal deflection

de

Conductive coating

Electron
beam

Anode
(+)

+
+

–
–

Plates for
vertical deflection

tal deflectionhorizont

Figure 1.17
Cathode-ray tube.

Practice Problem 1.7

Applications2

In this section, we will consider two practical applications of the concepts
developed in this chapter. The first one deals with the TV picture tube
and the other with how electric utilities determine your electric bill.

1.7.1 TV Picture Tube

One important application of the motion of electrons is found in both
the transmission and reception of TV signals. At the transmission end,
a TV camera reduces a scene from an optical image to an electrical
signal. Scanning is accomplished with a thin beam of electrons in an
iconoscope camera tube.

At the receiving end, the image is reconstructed by using a cathode-
ray tube (CRT) located in the TV receiver.3 The CRT is depicted in Fig.
1.17. Unlike the iconoscope tube, which produces an electron beam of
constant intensity, the CRT beam varies in intensity according to the
incoming signal. The electron gun, maintained at a high potential, fires
the electron beam. The beam passes through two sets of plates for ver-
tical and horizontal deflections so that the spot on the screen where the
beam strikes can move right and left and up and down. When the elec-
tron beam strikes the fluorescent screen, it gives off light at that spot.
Thus, the beam can be made to “paint” a picture on the TV screen.

1.7
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18 Chapter 1 Basic Concepts

The electron beam in a TV picture tube carries electrons per sec-
ond. As a design engineer, determine the voltage needed to accel-
erate the electron beam to achieve 4 W.

Solution:
The charge on an electron is

If the number of electrons is n, then and

The negative sign indicates that the current flows in a direction
opposite to electron flow as shown in Fig. 1.18, which is a simplified
diagram of the CRT for the case when the vertical deflection plates
carry no charge. The beam power is

Thus, the required voltage is 25 kV.

p � Voi  or  Vo �
p

i
�

4

1.6 � 10�4 � 25,000 V

i �
dq

dt
� e 

dn

dt
� (�1.6 � 10�19)(1015) � �1.6 � 10�4 A

q � ne

e � �1.6 � 10�19 C

Vo

1015Example 1.8

If an electron beam in a TV picture tube carries electrons/second
and is passing through plates maintained at a potential difference of
30 kV, calculate the power in the beam.

Answer: 48 mW.

1013Practice Problem 1.8

i

q

Vo

Figure 1.18
A simplified diagram of the cathode-ray
tube; for Example 1.8.

Karl Ferdinand Braun and Vladimir K. Zworykin

Karl Ferdinand Braun (1850–1918), of the University of Strasbourg,
invented the Braun cathode-ray tube in 1879. This then became the
basis for the picture tube used for so many years for televisions. It is
still the most economical device today, although the price of flat-screen
systems is rapidly becoming competitive. Before the Braun tube could
be used in television, it took the inventiveness of Vladimir K.
Zworykin (1889–1982) to develop the iconoscope so that the modern
television would become a reality. The iconoscope developed into the
orthicon and the image orthicon, which allowed images to be captured
and converted into signals that could be sent to the television receiver.
Thus, the television camera was born.

Historical
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1.7 Applications 19

Example 1.9A homeowner consumes 700 kWh in January. Determine the electric-
ity bill for the month using the following residential rate schedule:

Base monthly charge of $12.00.

First 100 kWh per month at 16 cents/kWh.

Next 200 kWh per month at 10 cents/kWh.

Over 300 kWh per month at 6 cents/kWh.

Solution:
We calculate the electricity bill as follows.

Average cost �
$72

100 � 200 � 400
� 10.2 cents/kWh

Base monthly charge � $12.00

First 100 kWh @ $0.16/k Wh � $16.00

Next 200 kWh @ $0.10/k Wh � $20.00

Remaining 400 kWh @ $0.06/k Wh � $24.00

Total charge � $72.00

Practice Problem 1.9Referring to the residential rate schedule in Example 1.9, calculate the
average cost per kWh if only 350 kWh are consumed in July when the
family is on vacation most of the time.

Answer: 14.571 cents/kWh.

TABLE 1.3

Typical average monthly consumption of household
appliances.

Appliance kWh consumed Appliance kWh consumed

Water heater 500 Washing machine 120
Freezer 100 Stove 100
Lighting 100 Dryer 80
Dishwasher 35 Microwave oven 25
Electric iron 15 Personal computer 12
TV 10 Radio 8
Toaster 4 Clock 2 

1.7.2 Electricity Bills

The second application deals with how an electric utility company charges
their customers. The cost of electricity depends upon the amount of
energy consumed in kilowatt-hours (kWh). (Other factors that affect the
cost include demand and power factors; we will ignore these for now.)
However, even if a consumer uses no energy at all, there is a minimum
service charge the customer must pay because it costs money to stay con-
nected to the power line. As energy consumption increases, the cost per
kWh drops. It is interesting to note the average monthly consumption of
household appliances for a family of five, shown in Table 1.3.
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20 Chapter 1 Basic Concepts

Problem Solving
Although the problems to be solved during one’s career will vary in
complexity and magnitude, the basic principles to be followed remain
the same. The process outlined here is the one developed by the
authors over many years of problem solving with students, for the
solution of engineering problems in industry, and for problem solving
in research.

We will list the steps simply and then elaborate on them.

1. Carefully define the problem.
2. Present everything you know about the problem.
3. Establish a set of alternative solutions and determine the one that

promises the greatest likelihood of success.
4. Attempt a problem solution.
5. Evaluate the solution and check for accuracy.
6. Has the problem been solved satisfactorily? If so, present the solu-

tion; if not, then return to step 3 and continue through the process
again.

1. Carefully define the problem. This may be the most important part
of the process, because it becomes the foundation for all the rest of the
steps. In general, the presentation of engineering problems is somewhat
incomplete. You must do all you can to make sure you understand the
problem as thoroughly as the presenter of the problem understands it.
Time spent at this point clearly identifying the problem will save you
considerable time and frustration later. As a student, you can clarify a
problem statement in a textbook by asking your professor. A problem
presented to you in industry may require that you consult several indi-
viduals. At this step, it is important to develop questions that need to
be addressed before continuing the solution process. If you have such
questions, you need to consult with the appropriate individuals or
resources to obtain the answers to those questions. With those answers,
you can now refine the problem, and use that refinement as the prob-
lem statement for the rest of the solution process.

2. Present everything you know about the problem. You are now ready
to write down everything you know about the problem and its possible
solutions. This important step will save you time and frustration later.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success. Almost every problem will
have a number of possible paths that can lead to a solution. It is highly
desirable to identify as many of those paths as possible. At this point,
you also need to determine what tools are available to you, such as
PSpice and MATLAB and other software packages that can greatly
reduce effort and increase accuracy. Again, we want to stress that time
spent carefully defining the problem and investigating alternative
approaches to its solution will pay big dividends later. Evaluating the
alternatives and determining which promises the greatest likelihood of
success may be difficult but will be well worth the effort. Document
this process well since you will want to come back to it if the first
approach does not work.

4. Attempt a problem solution. Now is the time to actually begin
solving the problem. The process you follow must be well documented

1.8
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1.8 Problem Solving 21

Figure 1.19
Illustrative example.

Example 1.10Solve for the current flowing through the resistor in Fig. 1.19.

Solution:

1. Carefully define the problem. This is only a simple example, but
we can already see that we do not know the polarity on the 3-V source.
We have the following options. We can ask the professor what the
polarity should be. If we cannot ask, then we need to make a decision
on what to do next. If we have time to work the problem both ways,
we can solve for the current when the 3-V source is plus on top and
then plus on the bottom. If we do not have the time to work it both
ways, assume a polarity and then carefully document your decision.
Let us assume that the professor tells us that the source is plus on the
bottom as shown in Fig. 1.20.

2. Present everything you know about the problem. Presenting all that
we know about the problem involves labeling the circuit clearly so that
we define what we seek.

Given the circuit shown in Fig. 1.20, solve for .
We now check with the professor, if reasonable, to see if the prob-

lem is properly defined.
3. Establish a set of alternative solutions and determine the one that

promises the greatest likelihood of success. There are essentially three
techniques that can be used to solve this problem. Later in the text you
will see that you can use circuit analysis (using Kirchhoff’s laws and
Ohm’s law), nodal analysis, and mesh analysis.

To solve for using circuit analysis will eventually lead to a
solution, but it will likely take more work than either nodal or mesh

i8�

i8�

8-�

Figure 1.20
Problem definition.

2 Ω 4 Ω

8 Ω5 V 3 V+
− +

−
i8Ω

2 Ω 4 Ω

8 Ω5 V 3 V+
−

in order to present a detailed solution if successful, and to evaluate the
process if you are not successful. This detailed evaluation may lead to
corrections that can then lead to a successful solution. It can also lead
to new alternatives to try. Many times, it is wise to fully set up a solu-
tion before putting numbers into equations. This will help in checking
your results.

5. Evaluate the solution and check for accuracy. You now thoroughly
evaluate what you have accomplished. Decide if you have an acceptable
solution, one that you want to present to your team, boss, or professor.

6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. Now you need to present your solution or try another alterna-
tive. At this point, presenting your solution may bring closure to the
process. Often, however, presentation of a solution leads to further
refinement of the problem definition, and the process continues. Fol-
lowing this process will eventually lead to a satisfactory conclusion.

Now let us look at this process for a student taking an electrical
and computer engineering foundations course. (The basic process also
applies to almost every engineering course.) Keep in mind that
although the steps have been simplified to apply to academic types of
problems, the process as stated always needs to be followed. We con-
sider a simple example.
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22 Chapter 1 Basic Concepts

2 Ω 4 Ω

8 Ω
5 V 3 V+

− +
−

i2

i1 i3

+ − + −

+

−
v8Ω

v4Ωv2Ω

Loop 1 Loop 2

v1

Figure 1.21
Using nodal analysis.

Therefore, we will solve for using nodal analysis.
4. Attempt a problem solution. We first write down all of the equa-

tions we will need in order to find .

Now we can solve for 

5. Evaluate the solution and check for accuracy. We can now use
Kirchhoff’s voltage law (KVL) to check the results.

Applying KVL to loop 1,

Applying KVL to loop 2,

 � �2 � 5 � 3 � 0  (Checks.)

 � �(0.25 � 8) � (1.25 � 4) � 3

 �v8� � v4� � 3 � �(i2 � 8) � (i3 � 4) � 3

 � �5 � 3 � 2 � 0  (Checks.)

 � �5 � 3�(�1.5)2 4 � (0.25 � 8)

 �5 � v2� � v8� � �5 � (�i1 � 2) � (i2 � 8)

i1 � i2 � i3 � �1.5 � 0.25 � 1.25 � 0  (Checks.)

i3 �
v1 � 3

4
�

2 � 3

4
�

5

4
� 1.25 A

i2 � i8� � 0.25 A

 i1 �
v1 � 5

2
�

2 � 5

2
� �

3

2
� �1.5 A

7v1 � �14,  v1 � �2 V,  i8� �
v1

8
�

2

8
� 0.25 A

leads to (4v1 � 20) � (v1) � (2v1 � 6) � 0

8 c v1 � 5

2
�

v1 � 0

8
�

v1 � 3

4
d � 0

v1.

v1 � 5

2
�

v1 � 0

8
�

v1 � 3

4
� 0

i8� � i2,  i2 �
v1

8
,  i8� �

v1

8

i8�

i8�

analysis. To solve for using mesh analysis will require writing
two simultaneous equations to find the two loop currents indicated in
Fig. 1.21. Using nodal analysis requires solving for only one unknown.
This is the easiest approach.

i8�
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1.9 Summary 23

Try applying this process to some of the more difficult problems at the
end of the chapter.

Practice Problem 1.10

Summary
1. An electric circuit consists of electrical elements connected

together.
2. The International System of Units (SI) is the international mea-

surement language, which enables engineers to communicate their
results. From the seven principal units, the units of other physical
quantities can be derived.

3. Current is the rate of charge flow past a given point in a given
direction.

4. Voltage is the energy required to move 1 C of charge through an
element.

5. Power is the energy supplied or absorbed per unit time. It is also
the product of voltage and current.

6. According to the passive sign convention, power assumes a posi-
tive sign when the current enters the positive polarity of the voltage
across an element.

7. An ideal voltage source produces a specific potential difference
across its terminals regardless of what is connected to it. An ideal
current source produces a specific current through its terminals
regardless of what is connected to it.

8. Voltage and current sources can be dependent or independent. A
dependent source is one whose value depends on some other cir-
cuit variable.

9. Two areas of application of the concepts covered in this chapter
are the TV picture tube and electricity billing procedure.

p �
dw
dt

� vi

v �
dw
dq

i �
dq

dt

1.9

So we now have a very high degree of confidence in the accuracy
of our answer.

6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorily.

The current through the 8- resistor is 0.25 A flowing down through
the 8- resistor.�

�
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24 Chapter 1 Basic Concepts

1.8 The voltage across a 1.1-kW toaster that produces a
current of 10 A is:

(a) 11 kV (b) 1100 V (c) 110 V (d) 11 V

1.9 Which of these is not an electrical quantity?

(a) charge (b) time (c) voltage

(d) current (e) power

1.10 The dependent source in Fig. 1.22 is:

(a) voltage-controlled current source

(b) voltage-controlled voltage source

(c) current-controlled voltage source

(d) current-controlled current source

Review Questions

1.1 One millivolt is one millionth of a volt.

(a) True (b) False

1.2 The prefix micro stands for:

(a) (b) (c) (d) 

1.3 The voltage 2,000,000 V can be expressed in powers
of 10 as:

(a) 2 mV (b) 2 kV (c) 2 MV (d) 2 GV

1.4 A charge of 2 C flowing past a given point each
second is a current of 2 A.

(a) True (b) False

1.5 The unit of current is:

(a) coulomb (b) ampere

(c) volt (d) joule

1.6 Voltage is measured in:

(a) watts (b) amperes

(c) volts (d) joules per second

1.7 A 4-A current charging a dielectric material will
accumulate a charge of 24 C after 6 s.

(a) True (b) False

10�610�3103106

vs

io

6io
+
−

Figure 1.22
For Review Question 1.10.

Answers: 1.1b, 1.2d, 1.3c, 1.4a, 1.5b, 1.6c, 1.7a, 1.8c,
1.9b, 1.10d.

Figure 1.23
For Prob. 1.6.

Problems

q(t) (mC)

t (ms)0 2 4 6 8 10 12

30

1.4 A current of 7.4 A flows through a conductor.
Calculate how much charge passes through any
cross-section of the conductor in 20 s.

1.5 Determine the total charge transferred over the time
interval of s when A.

1.6 The charge entering a certain element is shown in
Fig. 1.23. Find the current at:

(a) ms (b) ms (c) mst � 10t � 6t � 1

i(t) � 1
2t0 � t � 10

Section 1.3 Charge and Current

1.1 How many coulombs are represented by these
amounts of electrons?

(a) (b) 

(c) (d) 

1.2 Determine the current flowing through an element if
the charge flow is given by

(a) mC

(b) C

(c) nC

(d) pC

(e) C

1.3 Find the charge flowing through a device if the
current is:

(a) A, C

(b) mA, 

(c) A, C

(d) A, q(0) � 0i(t) � 10e�30t sin 40t

q(0) � 2 mi(t) � 20 cos(10t � p�6) m

q(0) � 0i(t) � (2t � 5)

q(0) � 1i(t) � 3

q(t)

q(t) � 20e�4t cos 50t m

q(t) � 10 sin 120 p t

q(t) � (3e�t � 5e�2t)

q(t) � (8t2 � 4t � 2)

q(t) � (3t � 8)

1.628 � 10202.46 � 1019

1.24 � 10186.482 � 1017
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Figure 1.24
For Prob. 1.7.

1.8 The current flowing past a point in a device is shown in
Fig. 1.25. Calculate the total charge through the point.

q (C)

t (s)

50

−50

0
2 4 6 8

Figure 1.25
For Prob. 1.8.

i (mA)

t (ms)0 1 2

10

Figure 1.26
For Prob. 1.9.

1.9 The current through an element is shown in Fig. 1.26.
Determine the total charge that passed through the
element at:

(a) s (b) s (c) st � 5t � 3t � 1

0 1 2 3 4 5

5

10

i (A)

t (s)

Sections 1.4 and 1.5 Voltage, Power, and Energy

1.10 A lightning bolt with 10 kA strikes an object for 15 s.
How much charge is deposited on the object?

1.11 A rechargeable flashlight battery is capable of
delivering 90 mA for about 12 h. How much charge
can it release at that rate? If its terminal voltage is
1.5 V, how much energy can the battery deliver?

1.12 If the current flowing through an element is given by

Plot the charge stored in the element over
s.0 6 t 6 20

i(t) � μ
3tA, 0 	 t 6 6 s

18A, 6 	 t 6 10 s

�12A, 10 	 t 6 15 s

0, t  
 15 s

m

1.7 The charge flowing in a wire is plotted in Fig. 1.24.
Sketch the corresponding current.

1.13 The charge entering the positive terminal of an
element is

while the voltage across the element (plus to minus) is

(a) Find the power delivered to the element at
s.

(b) Calculate the energy delivered to the element
between 0 and 0.6 s.

1.14 The voltage v across a device and the current i
through it are

Calculate:

(a) the total charge in the device at s

(b) the power consumed by the device at s.

1.15 The current entering the positive terminal of a device
is mA and the voltage across the device
is V.

(a) Find the charge delivered to the device between
and s.

(b) Calculate the power absorbed.

(c) Determine the energy absorbed in 3 s.

Section 1.6 Circuit Elements

1.16 Figure 1.27 shows the current through and the
voltage across an element. 

(a) Sketch the power delivered to the element 
for . 

(b) Fnd the total energy absorbed by the element for
the period of 0 6 t 6 4s.

t 7 0

t � 2t � 0

v(t) � 10di�dt
i(t) � 6e�2t

t � 1

t � 1

v(t) � 10 cos 2t V,  i(t) � 20 (1 � e�0.5t ) mA

t � 0.3

v � 3 cos 4 p t V

q � 5 sin 4 p t mC

Figure 1.27
For Prob. 1.16.

v (V)

t (s)

5

−5

0
20 4

i (mA)

t (s)

60

0 2 4
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1.18 Find the power absorbed by each of the elements in
Fig. 1.29.

26 Chapter 1 Basic Concepts

Figure 1.29
For Prob. 1.18.

Figure 1.30
For Prob. 1.19.

1.20 Find and the power absorbed by each element in
the circuit of Fig. 1.31.

Vo

14 A

4 AI = 10 A

p1 p3

p4p2

p5
0.4I 20 V30 V +

−

+

−
12 V

+

−

10 V
+ −

8 V
+ −

Section 1.7 Applications

1.21 A 60-W incandescent bulb operates at 120 V. How
many electrons and coulombs flow through the bulb
in one day?

1.22 A lightning bolt strikes an airplane with 40 kA for
1.7 ms. How many coulombs of charge are deposited
on the plane?

1.23 A 1.8-kW electric heater takes 15 min to boil a
quantity of water. If this is done once a day and
power costs 10 cents/kWh, what is the cost of its
operation for 30 days?

1.24 A utility company charges 8.2 cents/kWh. If a
consumer operates a 60-W light bulb continuously
for one day, how much is the consumer charged?

1.25 A 1.5-kW toaster takes roughly 3.5 minutes to heat
four slices of bread. Find the cost of operating the
toaster once per day for 1 month (30 days). Assume
energy costs 8.2 cents/kWh.

1.26 A flashlight battery has a rating of 0.8 ampere-hours
(Ah) and a lifetime of 10 hours.

(a) How much current can it deliver?

(b) How much power can it give if its terminal
voltage is 6 V?

(c) How much energy is stored in the battery in Wh?

1.27 A constant current of 3 A for 4 hours is required
to charge an automotive battery. If the terminal
voltage is V, where t is in hours,

(a) how much charge is transported as a result of the
charging?

(b) how much energy is expended?

(c) how much does the charging cost? Assume
electricity costs 9 cents/kWh.

1.28 A 60-W incandescent lamp is connected to a 120-V
source and is left burning continuously in an
otherwise dark staircase. Determine:

(a) the current through the lamp.

(b) the cost of operating the light for one non-leap
year if electricity costs 9.5 cents per kWh.

1.29 An electric stove with four burners and an oven is
used in preparing a meal as follows.

Burner 1: 20 minutes Burner 2: 40 minutes

Burner 3: 15 minutes Burner 4: 45 minutes

Oven: 30 minutes

If each burner is rated at 1.2 kW and the oven at
1.8 kW, and electricity costs 12 cents per kWh,
calculate the cost of electricity used in preparing
the meal.

10 � t�2

9 V 9 V8 A

2 A I

+

−

3 V

6 V+
−

+

−+

−

Figure 1.31
For Prob. 1.20.

6 A

6 A

1 A

3 A

3 A

Vo 5Io

Io = 2 A

28 V

12 V

+

−

+ −

28 V
+ −

+ −

30 V –
+

+
−

1.17 Figure 1.28 shows a circuit with five elements. If
W, W, W, W,

calculate the power received or delivered by
element 3.

p3

p5 � 30p4 � 45p2 � 60p1 � �205

Figure 1.28
For Prob. 1.17.

31

2 4

5

1.19 Find I and the power absorbed by each element in
the network of Fig. 1.30.
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Comprehensive Problems

1.32 A telephone wire has a current of A flowing
through it. How long does it take for a charge of
15 C to pass through the wire?

1.33 A lightning bolt carried a current of 2 kA and lasted
for 3 ms. How many coulombs of charge were
contained in the lightning bolt?

1.34 Figure 1.32 shows the power consumption of a
certain household in 1 day. Calculate:

(a) the total energy consumed in kWh,

(b) the average power per hour over the total 24 hour
period.

20 m

12 2 4 6 8 10 12 2 4 6 10 128

 p
800 W

200 W

noon

1200 W

t (h)

Figure 1.32
For Prob. 1.34.

1.35 The graph in Fig. 1.33 represents the power drawn by
an industrial plant between 8:00 and 8:30 A.M. Cal-
culate the total energy in MWh consumed by the plant.

Figure 1.33
For Prob. 1.35.

8.00 8.05 8.10 8.15 8.20 8.25 8.30

5
4
3

8
 p (MW)

t

1.36 A battery may be rated in ampere-hours (Ah). A
lead-acid battery is rated at 160 Ah.

(a) What is the maximum current it can supply for
40 h?

(b) How many days will it last if it is discharged at
1 mA?

1.37 A 12-V battery requires a total charge of 40 ampere-
hours during recharging. How many joules are
supplied to the battery?

1.38 How much energy does a 10-hp motor deliver in
30 minutes? Assume that 1 horsepower W.

1.39 A 600-W TV receiver is turned on for 4 h with
nobody watching it. If electricity costs 10 cents/kWh,
how much money is wasted?

� 746

1.30 Reliant Energy (the electric company in Houston,
Texas) charges customers as follows:

Monthly charge $6

First 250 kWh @ $0.02/kWh

All additional kWh @ $0.07/kWh

If a customer uses 2,436 kWh in one month, how
much will Reliant Energy charge?

1.31 In a household, a 120-W personal computer (PC) is
run for 4 h/day, while a 60-W bulb runs for 8 h/day.
If the utility company charges $0.12/kWh, calculate
how much the household pays per year on the PC
and the bulb.
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29

Basic Laws
There are too many people praying for mountains of difficulty to be
removed, when what they really need is the courage to climb them!

—Unknown

c h a p t e r

2
Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.b), “an ability to design and con-
duct experiments, as well as to analyze and interpret data.”
Engineers must be able to design and conduct experiments, as well as
analyze and interpret data. Most students have spent many hours per-
forming experiments in high school and in college. During this time,
you have been asked to analyze the data and to interpret the data.
Therefore, you should already be skilled in these two activities. My
recommendation is that, in the process of performing experiments in
the future, you spend more time in analyzing and interpreting the data
in the context of the experiment. What does this mean?

If you are looking at a plot of voltage versus resistance or current
versus resistance or power versus resistance, what do you actually see?
Does the curve make sense? Does it agree with what the theory tells
you? Does it differ from expectation, and, if so, why? Clearly, practice
with analyzing and interpreting data will enhance this skill.

Since most, if not all, the experiments you are required to do as a
student involve little or no practice in designing the experiment, how
can you develop and enhance this skill?

Actually, developing this skill under this constraint is not as diffi-
cult as it seems. What you need to do is to take the experiment and
analyze it. Just break it down into its simplest parts, reconstruct it try-
ing to understand why each element is there, and finally, determine
what the author of the experiment is trying to teach you. Even though
it may not always seem so, every experiment you do was designed by
someone who was sincerely motivated to teach you something.
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Introduction
Chapter 1 introduced basic concepts such as current, voltage, and
power in an electric circuit. To actually determine the values of these
variables in a given circuit requires that we understand some funda-
mental laws that govern electric circuits. These laws, known as Ohm’s
law and Kirchhoff’s laws, form the foundation upon which electric cir-
cuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
niques include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive
circuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

Ohm’s Law
Materials in general have a characteristic behavior of resisting the flow
of electric charge. This physical property, or ability to resist current, is
known as resistance and is represented by the symbol R. The resist-
ance of any material with a uniform cross-sectional area A depends on
A and its length , as shown in Fig. 2.1(a). We can represent resistance
(as measured in the laboratory), in mathematical form,

(2.1)

where is known as the resistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
insulators, such as mica and paper, have high resistivities. Table 2.1
presents the values of for some common materials and shows which
materials are used for conductors, insulators, and semiconductors.

The circuit element used to model the current-resisting behavior of a
material is the resistor. For the purpose of constructing circuits, resistors
are usually made from metallic alloys and carbon compounds. The circuit

r

r

R � r 

/
A

/

2.2

2.1

30 Chapter 2 Basic Laws

l

Cross-sectional
area A

(a)

Material with
resistivity �

v R

i

+

−

(b)

Figure 2.1
(a) Resistor, (b) Circuit symbol for 
resistance.

TABLE 2.1

Resistivities of common materials.

Material Resistivity ( m) Usage

Silver Conductor
Copper Conductor
Aluminum Conductor
Gold Conductor
Carbon Semiconductor
Germanium Semiconductor
Silicon Semiconductor
Paper Insulator
Mica Insulator
Glass Insulator
Teflon Insulator3 � 1012

1012
5 � 1011
1010
6.4 � 102
47 � 10�2
4 � 10�5
2.45 � 10�8
2.8 � 10�8
1.72 � 10�8
1.64 � 10�8

��
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symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787–1854), a German physicist, is credited
with finding the relationship between current and voltage for a resis-
tor. This relationship is known as Ohm’s law.

Ohm’s law states that the voltage v across a resistor is directly propor-
tional to the current i flowing through the resistor.

That is,

(2.2)

Ohm defined the constant of proportionality for a resistor to be the
resistance, R. (The resistance is a material property which can change
if the internal or external conditions of the element are altered, e.g., if
there are changes in the temperature.) Thus, Eq. (2.2) becomes

(2.3)

which is the mathematical form of Ohm’s law. R in Eq. (2.3) is mea-
sured in the unit of ohms, designated . Thus,

The resistance R of an element denotes its ability to resist the flow of
electric current; it is measured in ohms ( ).

We may deduce from Eq. (2.3) that

(2.4)

so that

To apply Ohm’s law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of
current i and the polarity of voltage v must conform with the passive

1 � � 1 V/A

R �
v
i

�

�

v � i R

v r i

2.2 Ohm’s Law 31

Georg Simon Ohm (1787–1854), a German physicist, in 1826
experimentally determined the most basic law relating voltage and cur-
rent for a resistor. Ohm’s work was initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw him-
self into electrical research. His efforts resulted in his famous law.
He was awarded the Copley Medal in 1841 by the Royal Society of
London. In 1849, he was given the Professor of Physics chair by the
University of Munich. To honor him, the unit of resistance was named
the ohm.

Historical
©
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sign convention, as shown in Fig. 2.1(b). This implies that current flows
from a higher potential to a lower potential in order for . If cur-
rent flows from a lower potential to a higher potential, .

Since the value of R can range from zero to infinity, it is impor-
tant that we consider the two extreme possible values of R. An element
with is called a short circuit, as shown in Fig. 2.2(a). For a short
circuit,

(2.5)

showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a
perfect conductor. Thus,

A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with is known as an open circuit, as
shown in Fig. 2.2(b). For an open circuit,

(2.6)

indicating that the current is zero though the voltage could be anything.
Thus,

An open circuit is a circuit element with resistance approaching infinity.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed.
The circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resis-
tors have adjustable resistance. The symbol for a variable resistor is
shown in Fig. 2.4(a). A common variable resistor is known as a poten-
tiometer or pot for short, with the symbol shown in Fig. 2.4(b). The
pot is a three-terminal element with a sliding contact or wiper. By slid-
ing the wiper, the resistances between the wiper terminal and the fixed
terminals vary. Like fixed resistors, variable resistors can be of either
wirewound or composition type, as shown in Fig. 2.5. Although resistors
like those in Figs. 2.3 and 2.5 are used in circuit designs, today most

i � lim
RS�

 
v
R

� 0

R � �

v � i R � 0

R � 0

v � �i R
v � i R
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(a)

(b)

R = 0

i

R = ∞

i = 0

v = 0

+

−

v

+

−

Figure 2.2
(a) Short circuit , (b) Open circuit

.(R � �)
(R � 0)

(a)

(b)

Figure 2.3
Fixed resistors: (a) wirewound type,
(b) carbon film type.
Courtesy of Tech America.

(a) (b)

Figure 2.4
Circuit symbol for: (a) a variable resistor
in general, (b) a potentiometer.

(a) (b)

Figure 2.5
Variable resistors: (a) composition type, (b) slider pot.
Courtesy of Tech America.
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circuit components including resistors are either surface mounted or
integrated, as typically shown in Fig. 2.6.

It should be pointed out that not all resistors obey Ohm’s law. A
resistor that obeys Ohm’s law is known as a linear resistor. It has a
constant resistance and thus its current-voltage characteristic is as illus-
trated in Fig. 2.7(a): Its i-v graph is a straight line passing through the
origin. A nonlinear resistor does not obey Ohm’s law. Its resistance
varies with current and its i-v characteristic is typically shown in
Fig. 2.7(b). Examples of devices with nonlinear resistance are the light
bulb and the diode. Although all practical resistors may exhibit nonlin-
ear behavior under certain conditions, we will assume in this book that
all elements actually designated as resistors are linear.

A useful quantity in circuit analysis is the reciprocal of resistance
R, known as conductance and denoted by G:

(2.7)

The conductance is a measure of how well an element will con-
duct electric current. The unit of conductance is the mho (ohm spelled
backward) or reciprocal ohm, with symbol , the inverted omega.
Although engineers often use the mho, in this book we prefer to use
the siemens (S), the SI unit of conductance:

(2.8)

Thus,

Conductance is the ability of an element to conduct electric current;
it is measured in mhos ( ) or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, is the same as 0.1 S. From Eq. (2.7), we may write

(2.9)

The power dissipated by a resistor can be expressed in terms of R.
Using Eqs. (1.7) and (2.3),

(2.10)

The power dissipated by a resistor may also be expressed in terms of
G as

(2.11)

We should note two things from Eqs. (2.10) and (2.11):

1. The power dissipated in a resistor is a nonlinear function of either
current or voltage.

2. Since R and G are positive quantities, the power dissipated in a
resistor is always positive. Thus, a resistor always absorbs power
from the circuit. This confirms the idea that a resistor is a passive
element, incapable of generating energy.

p � vi � v2G �
i 

2

G

p � vi � i 
2R �

v2

R

i � Gv

10 �

�

� 1 A / V

�

1 S � 1 

�

G �
1

R
�

i
v
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Figure 2.6
Resistors in an integrated circuit board. 

Slope = R

(a)

v

i

Slope = R

(b)

v

i

Figure 2.7
The i-v characteristic of: (a) a linear 
resistor, (b) a nonlinear resistor.
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34 Chapter 2 Basic Laws

An electric iron draws 2 A at 120 V. Find its resistance.

Solution:
From Ohm’s law,

R �
v
i

�
120

2
� 60 �

Example 2.1

The essential component of a toaster is an electrical element (a resis-
tor) that converts electrical energy to heat energy. How much current
is drawn by a toaster with resistance at 110 V?

Answer: 7.333 A.

15 �

Practice Problem 2.1

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

Solution:
The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same
pair of terminals. Hence, the current is

The conductance is

We can calculate the power in various ways using either Eqs. (1.7),
(2.10), or (2.11).

or

or

p � v2G � (30)20.2 � 10�3 � 180 mW

p � i2R � (6 � 10�3)25 � 103 � 180 mW

p � vi � 30(6 � 10�3) � 180 mW

G �
1

R
�

1

5 � 103 � 0.2 mS

i �
v
R

�
30

5 � 103 � 6 mA

Example 2.2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conduc-
tance G, and the power p.

Answer: 30 V, 100 S, 90 mW.m

Practice Problem 2.2

30 V

i

+
− 5 kΩ v

+

−

Figure 2.8
For Example 2.2.

Figure 2.9
For Practice Prob. 2.2

3 mA

i

10 kΩ v
+

−
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Nodes, Branches, and Loops
Since the elements of an electric circuit can be interconnected in sev-
eral ways, we need to understand some basic concepts of network
topology. To differentiate between a circuit and a network, we may
regard a network as an interconnection of elements or devices, whereas
a circuit is a network providing one or more closed paths. The con-
vention, when addressing network topology, is to use the word network
rather than circuit. We do this even though the word network and cir-
cuit mean the same thing when used in this context. In network topol-
ogy, we study the properties relating to the placement of elements in
the network and the geometric configuration of the network. Such ele-
ments include branches, nodes, and loops.

A branch represents a single element such as a voltage source or a
resistor.

In other words, a branch represents any two-terminal element. The cir-
cuit in Fig. 2.10 has five branches, namely, the 10-V voltage source,
the 2-A current source, and the three resistors.

A node is the point of connection between two or more branches.

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a sin-
gle node. The circuit in Fig. 2.10 has three nodes , and c. Notice
that the three points that form node b are connected by perfectly con-
ducting wires and therefore constitute a single point. The same is true
of the four points forming node c. We demonstrate that the circuit in
Fig. 2.10 has only three nodes by redrawing the circuit in Fig. 2.11.
The two circuits in Figs. 2.10 and 2.11 are identical. However, for the
sake of clarity, nodes b and c are spread out with perfect conductors
as in Fig. 2.10.

a, b

2.3

2.3 Nodes, Branches, and Loops 35

Example 2.3A voltage source of V is connected across a 5-k resistor.
Find the current through the resistor and the power dissipated.

Solution:

Hence,

p � vi � 80 sin2
 p t mW

i �
v
R

�
20 sin p t

5 � 103 � 4 sin p t mA

�20 sin p t

Practice Problem 2.3A resistor absorbs an instantaneous power of mW when con-
nected to a voltage source V. Find i and R.

Answer: mA, 7.5 k .�2 cos t

v � 15 cos t
30 cos2 t

10 V 2 A

a b

c

5 Ω

+
− 2 Ω 3 Ω

Figure 2.10
Nodes, branches, and loops.

b

c

a

10 V

5 Ω

2 Ω
3 Ω 2 A

+
−

Figure 2.11
The three-node circuit of Fig. 2.10 is
redrawn.
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36 Chapter 2 Basic Laws

A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node more than once. A loop is said to be independent if it contains
at least one branch which is not a part of any other independent loop.
Independent loops or paths result in independent sets of equations.

It is possible to form an independent set of loops where one of the
loops does not contain such a branch. In Fig. 2.11, abca with the 
resistor is independent. A second loop with the resistor and the cur-
rent source is independent. The third loop could be the one with the 
resistor in parallel with the resistor. This does form an independent
set of loops.

A network with b branches, n nodes, and l independent loops will
satisfy the fundamental theorem of network topology:

(2.12)

As the next two definitions show, circuit topology is of great value
to the study of voltages and currents in an electric circuit.

Two or more elements are in series if they exclusively share a single
node and consequently carry the same current.
Two or more elements are in parallel if they are connected to the same
two nodes and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected
sequentially, end to end. For example, two elements are in series if
they share one common node and no other element is connected to
that common node. Elements in parallel are connected to the same pair
of terminals. Elements may be connected in a way that they are nei-
ther in series nor in parallel. In the circuit shown in Fig. 2.10, the volt-
age source and the 5- resistor are in series because the same current
will flow through them. The 2- resistor, the 3- resistor, and the cur-
rent source are in parallel because they are connected to the same two
nodes b and c and consequently have the same voltage across them.
The 5- and 2- resistors are neither in series nor in parallel with
each other.

��

��
�

b � l � n � 1

3�
2�

3�
2�

Determine the number of branches and nodes in the circuit shown in
Fig. 2.12. Identify which elements are in series and which are in
parallel.

Solution:
Since there are four elements in the circuit, the circuit has four
branches: 10 V, , and 2 A. The circuit has three nodes as
identified in Fig. 2.13. The 5- resistor is in series with the 10-V
voltage source because the same current would flow in both. The 6-
resistor is in parallel with the 2-A current source because both are
connected to the same nodes 2 and 3.

�
�

5 �, 6 �

Example 2.4
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Kirchhoff’s Laws
Ohm’s law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’s
laws were first introduced in 1847 by the German physicist Gustav
Robert Kirchhoff (1824–1887). These laws are formally known as
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s first law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.

Kirchhoff’s current law (KCL) states that the algebraic sum of currents
entering a node (or a closed boundary) is zero.

Mathematically, KCL implies that

(2.13)

where N is the number of branches connected to the node and is
the nth current entering (or leaving) the node. By this law, currents

in

a
N

n�1

in � 0

2.4

2.4 Kirchhoff’s Laws 37

5 Ω

6 Ω 2 A10 V +
−

1 25 Ω

6 Ω 2 A10 V +
−

3Figure 2.12
For Example 2.4. Figure 2.13

The three nodes in the circuit of
Fig. 2.12.

Practice Problem 2.4How many branches and nodes does the circuit in Fig. 2.14 have? Iden-
tify the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The
1- and 2- resistors are in parallel. The 4- resistor and 10-V source
are also in parallel.

���

5 Ω

1 Ω 2 Ω 4 Ω10 V+
−

5 Ω

3

1 Ω 2 Ω 4 Ω10 V+
−

1 2

Figure 2.14
For Practice Prob. 2.4. Figure 2.15

Answer for Practice Prob. 2.4.
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entering a node may be regarded as positive, while currents leaving the
node may be taken as negative or vice versa.

To prove KCL, assume a set of currents flow
into a node. The algebraic sum of currents at the node is

(2.14)

Integrating both sides of Eq. (2.14) gives

(2.15)

where and But the law of conserva-
tion of electric charge requires that the algebraic sum of electric
charges at the node must not change; that is, the node stores no net
charge. Thus confirming the validity of KCL.

Consider the node in Fig. 2.16. Applying KCL gives

(2.16)

since currents , and are entering the node, while currents and
are leaving it. By rearranging the terms, we get

(2.17)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum of the cur-
rents leaving the node.

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed bound-
ary is the same as a closed path. As typically illustrated in the circuit
of Fig. 2.17, the total current entering the closed surface is equal to the
total current leaving the surface.

A simple application of KCL is combining current sources in par-
allel. The combined current is the algebraic sum of the current supplied
by the individual sources. For example, the current sources shown in

i1 � i3 � i4 � i2 � i5

i5

i2i4i1, i3

i1 � (�i2) � i3 � i4 � (�i5) � 0

qT (t) � 0 S iT (t) � 0,

qT (t) � � iT (t) d t.qk (t) � � ik (t) d t

qT (t) � q1(t) � q2(t) � q3(t) � p

iT (t) � i1(t) � i2(t) � i3(t) � p

ik (t), k � 1, 2, p ,

38 Chapter 2 Basic Laws

Historical

i1
i5

i4

i3
i2

Figure 2.16
Currents at a node illustrating KCL.

Closed boundary

Figure 2.17
Applying KCL to a closed boundary.

Two sources (or circuits in general) are
said to be equivalent if they have the
same i-v relationship at a pair of
terminals.

Gustav Robert Kirchhoff (1824–1887), a German physicist, stated
two basic laws in 1847 concerning the relationship between the cur-
rents and voltages in an electrical network. Kirchhoff’s laws, along
with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff
entered the University of Konigsberg at age 18 and later became a lec-
turer in Berlin. His collaborative work in spectroscopy with German
chemist Robert Bunsen led to the discovery of cesium in 1860 and
rubidium in 1861. Kirchhoff was also credited with the Kirchhoff law
of radiation. Thus Kirchhoff is famous among engineers, chemists, and
physicists.
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Fig. 2.18(a) can be combined as in Fig. 2.18(b). The combined or
equivalent current source can be found by applying KCL to node a.

or

(2.18)

A circuit cannot contain two different currents, and , in series,
unless ; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation
of energy:

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all volt-
ages around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

(2.19)

where M is the number of voltages in the loop (or the number of
branches in the loop) and is the mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we
travel around the loop. We can start with any branch and go around
the loop either clockwise or counterclockwise. Suppose we start with
the voltage source and go clockwise around the loop as shown; then
voltages would be and in that order. For
example, as we reach branch 3, the positive terminal is met first; hence,
we have For branch 4, we reach the negative terminal first; hence,

Thus, KVL yields

(2.20)

Rearranging terms gives

(2.21)

which may be interpreted as

(2.22)

This is an alternative form of KVL. Notice that if we had traveled
counterclockwise, the result would have been 
and which is the same as before except that the signs are reversed.
Hence, Eqs. (2.20) and (2.21) remain the same.

When voltage sources are connected in series, KVL can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage
source in Fig. 2.20(b) is obtained by applying KVL.

�Vab � V1 � V2 � V3 � 0

�v2,
�v3,�v4,�v5,�v1,

Sum of voltage drops � Sum of voltage rises

v2 � v3 � v5 � v1 � v4

�v1 � v2 � v3 � v4 � v5 � 0

�v4.
�v3.

�v5,�v1, �v2, �v3, �v4,

vm

a
M

m�1

vm � 0

I1 � I2

I2I1

IT � I1 � I2 � I3

IT � I2 � I1 � I3

2.4 Kirchhoff’s Laws 39

a

(a)

(b)

I1 I2 I3

b

a

IT = I1 – I2 + I3 

b

IT

IT

Figure 2.18
Current sources in parallel: (a) original
circuit, (b) equivalent circuit.

KVL can be applied in two ways: by
taking either a clockwise or a counter-
clockwise trip around the loop. Either
way, the algebraic sum of voltages
around the loop is zero.

Figure 2.19
A single-loop circuit illustrating KVL.

v4v1
+
− +

−

v3v2

v5

+ − + −

+−
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or

(2.23)

To avoid violating KVL, a circuit cannot contain two different voltages
and in parallel unless .V1 � V2V2V1

Vab � V1 � V2 � V3

40 Chapter 2 Basic Laws

Figure 2.20
Voltage sources in series: (a) original circuit, (b) equivalent circuit.

V1

V2

V3

a

b

(a)

VS = V1 + V2 − V3 

a

b

(b)

+
−

+
−

+
−Vab

+

−

Vab

+

−

+
−

For the circuit in Fig. 2.21(a), find voltages and v2.v1Example 2.5

Figure 2.21
For Example 2.5.

(a)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

(b)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

i

Solution:
To find and we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

(2.5.1)

Applying KVL around the loop gives

(2.5.2)

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

Substituting i in Eq. (2.5.1) finally gives

v1 � 8 V,  v2 � �12 V

�20 � 2i � 3i � 0  or  5i � 20  1   i � 4 A

�20 � v1 � v2 � 0

v1 � 2i,  v2 � �3i

v2,v1
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2.4 Kirchhoff’s Laws 41

Practice Problem 2.5Find and in the circuit of Fig. 2.22.

Answer: 16 V, V.�8

v2v1

Figure 2.22
For Practice Prob. 2.5.

32 V +
− −8 V+

−

4 Ω

v1

2 Ω

v2

+ −

+ −

Example 2.6Determine and i in the circuit shown in Fig. 2.23(a).vo

Solution:
We apply KVL around the loop as shown in Fig. 2.23(b). The result is

(2.6.1)

Applying Ohm’s law to the 6- resistor gives

(2.6.2)

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

and V.vo � 48

�16 � 10i � 12i � 0  1  i � �8 A

vo � �6i

�

�12 � 4i � 2 vo � 4 � 6i � 0

Figure 2.23
For Example 2.6.

4 Ω

(a)

12 V

2vo

i
4 V

i

+ −

+
− +

−

4 Ω

(b)

12 V

2vo

4 V

+ −

+
− +

−

6 Ω

vo

6 Ω

vo+ − + −

Practice Problem 2.6Find and in the circuit of Fig. 2.24.

Answer: 20 V, V.�10

vovx

Figure 2.24
For Practice Prob. 2.6.

70 V 2vx
+
−

+
−

10 Ω

vx

5 Ω

vo+ −

+ −
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42 Chapter 2 Basic Laws

Find current and voltage in the circuit shown in Fig. 2.25.

Solution:
Applying KCL to node a, we obtain

For the 4- resistor, Ohm’s law gives

vo � 4io � 24 V

�

3 � 0.5io � io  1  io � 6 A

voioExample 2.7

a

0.5io 3 A

io

4 Ωvo

+

−

Figure 2.25
For Example 2.7.

Find and in the circuit of Fig. 2.26.

Answer: 12 V, 6 A.

iovoPractice Problem 2.7

Figure 2.26
For Practice Prob. 2.7.

io
4

9 A

io

2 Ω 8 Ω vo

+

−

Find currents and voltages in the circuit shown in Fig. 2.27(a).Example 2.8

Figure 2.27
For Example 2.8.

8 Ω

30 V +
−

(a)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−

8 Ω

30 V +
−

(b)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−
Loop 2Loop 1

Solution:
We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law,

(2.8.1)v1 � 8i1,  v2 � 3i2,  v3 � 6i3
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2.5 Series Resistors and Voltage Division 43

Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are really looking for three things: or

At node a, KCL gives

(2.8.2)

Applying KVL to loop 1 as in Fig. 2.27(b),

We express this in terms of and as in Eq. (2.8.1) to obtain

or

(2.8.3)

Applying KVL to loop 2,

(2.8.4)

as expected since the two resistors are in parallel. We express and
in terms of and as in Eq. (2.8.1). Equation (2.8.4) becomes

(2.8.5)

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

or A. From the value of , we now use Eqs. (2.8.1) to (2.8.5)
to obtain

i1 � 3 A,  i3 � 1 A,  v1 � 24 V,  v2 � 6 V,  v3 � 6 V

i2i2 � 2

30 � 3i2
8

� i2 �
i2
2

� 0

6i3 � 3i2  1  i3 �
i2
2

i2i1v2

v1

�v2 � v3 � 0  1  v3 � v2

i1 �
(30 � 3i2)

8

�30 � 8i1 � 3i2 � 0

i2i1

�30 � v1 � v2 � 0

i1 � i2 � i3 � 0

(i1, i2, i3).
(v1, v2, v3)

Practice Problem 2.8Find the currents and voltages in the circuit shown in Fig. 2.28.

Answer: V, V, V, A, mA,
A.i3 � 1.25

i2 � 500i1 � 3v3 � 10v2 � 4v1 � 6

Figure 2.28
For Practice Prob. 2.8.

10 V 6 V+
−

i2

i3i1

8 Ωv2

+

−

2 Ω

v1

4 Ω

v3

+
−

+ − + −

Series Resistors and Voltage Division
The need to combine resistors in series or in parallel occurs so fre-
quently that it warrants special attention. The process of combining the
resistors is facilitated by combining two of them at a time. With this
in mind, consider the single-loop circuit of Fig. 2.29. The two resistors

2.5
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are in series, since the same current i flows in both of them. Applying
Ohm’s law to each of the resistors, we obtain

(2.24)

If we apply KVL to the loop (moving in the clockwise direction), we
have

(2.25)

Combining Eqs. (2.24) and (2.25), we get

(2.26)

or

(2.27)

Notice that Eq. (2.26) can be written as

(2.28)

implying that the two resistors can be replaced by an equivalent resis-
tor ; that is,

(2.29)

Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30.
The two circuits in Figs. 2.29 and 2.30 are equivalent because they
exhibit the same voltage-current relationships at the terminals a-b. An
equivalent circuit such as the one in Fig. 2.30 is useful in simplifying
the analysis of a circuit. In general,

The equivalent resistance of any number of resistors connected in
series is the sum of the individual resistances.

For N resistors in series then,

(2.30)

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

(2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage
divider has N resistors in series with the source volt-
age v, the nth resistor ( ) will have a voltage drop of

(2.32)vn �
Rn

R1 � R2 � p � RN
  v

Rn

(R1, R2, . . . , RN)

v1 �
R1

R1 � R2
  v,  v2 �

R2

R1 � R2
  v

Req � R1 � R2 � p � RN �a
N

n�1

Rn

Req � R1 � R2

Req

v � iReq

i �
v

R1 � R2

v � v1 � v2 � i(R1 � R2)

�v � v1 � v2 � 0

v1 � iR1,  v2 � iR2

44 Chapter 2 Basic Laws

Figure 2.30
Equivalent circuit of the Fig. 2.29 circuit.

v

Req

v

+
−

i

+ −

a

b

Resistors in series behave as a single
resistor whose resistance is equal to
the sum of the resistances of the
individual resistors.

Figure 2.29
A single-loop circuit with two resistors in
series.

v +
−

R1

v1

R2

v2

i

+ − + −

a

b
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Parallel Resistors 
and Current Division

Consider the circuit in Fig. 2.31, where two resistors are connected
in parallel and therefore have the same voltage across them. From
Ohm’s law,

or

(2.33)

Applying KCL at node a gives the total current i as

(2.34)

Substituting Eq. (2.33) into Eq. (2.34), we get

(2.35)

where is the equivalent resistance of the resistors in parallel:

(2.36)

or

or

(2.37)

Thus,

The equivalent resistance of two parallel resistors is equal to the prod-
uct of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in paral-
lel. From Eq. (2.37), if then 

We can extend the result in Eq. (2.36) to the general case of a cir-
cuit with N resistors in parallel. The equivalent resistance is

(2.38)

Note that is always smaller than the resistance of the smallest resis-
tor in the parallel combination. If , then

(2.39)Req �
R

N

R1 � R2 � p � RN � R
Req

1

Req
�

1

R1
�

1

R2
� p �

1

RN

Req � R1�2.R1 � R2,

Req �
R1R2

R1 � R2

1

Req
�

R1 � R2

R1R2

1

Req
�

1

R1
�

1

R2

Req

i �
v
R1

�
v
R2

� v a 1

R1
�

1

R2
b �

v
Req

i � i1 � i2

i1 �
v
R1

,  i2 �
v
R2

v � i1R1 � i2R2

2.6

2.6 Parallel Resistors and Current Division 45

Figure 2.31
Two resistors in parallel.

Node b

Node a

v +
− R1 R2

i1 i2

i
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R2 = 0

(a)

R1

i

i1 = 0 i2 = i

R2 = ∞

(b)

R1

i

i1 = i i2 = 0

Figure 2.33
(a) A shorted circuit, (b) an open circuit.

For example, if four 100- resistors are connected in parallel, their
equivalent resistance is 

It is often more convenient to use conductance rather than resist-
ance when dealing with resistors in parallel. From Eq. (2.38), the equiv-
alent conductance for N resistors in parallel is

(2.40)

where 
Equation (2.40) states:

The equivalent conductance of resistors connected in parallel is the
sum of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
Fig. 2.32. Notice the similarity between Eqs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner,
the equivalent conductance of resistors in series is obtained just
the same way as the resistance of resistors in parallel. Thus the
equivalent conductance of N resistors in series (such as shown in
Fig. 2.29) is

(2.41)

Given the total current i entering node a in Fig. 2.31, how do we
obtain current and We know that the equivalent resistor has the
same voltage, or

(2.42)

Combining Eqs. (2.33) and (2.42) results in

(2.43)

which shows that the total current i is shared by the resistors in
inverse proportion to their resistances. This is known as the princi-
ple of current division, and the circuit in Fig. 2.31 is known as a
current divider. Notice that the larger current flows through the
smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is
zero, say ; that is, is a short circuit, as shown in
Fig. 2.33(a). From Eq. (2.43), implies that . This
means that the entire current i bypasses and flows through the
short circuit , the path of least resistance. Thus when a circuitR2 � 0

R1

i2 � ii1 � 0,R2 � 0
R2R2 � 0

i1 �
R2 i

R1 � R2
,  i2 �

R1 i

R1 � R2

v � iReq �
iR1 

R2

R1 � R2

i2?i1

1

Geq
�

1

G1
�

1

G2
�

1

G3
� p �

1

GN

Geq

Geq � 1�Req, G1 � 1�R1, G2 � 1�R2, G3 � 1�R3, p , GN � 1�RN.

Geq � G1 � G2 � G3 � p � GN

25 �.
�

46 Chapter 2 Basic Laws

Conductances in parallel behave as a
single conductance whose value is
equal to the sum of the individual
conductances.

Figure 2.32
Equivalent circuit to Fig. 2.31.

b

a

v +
− Req or Geqv

i
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is short circuited, as shown in Fig. 2.33(a), two things should be kept
in mind:

1. The equivalent resistance [See what happens when
in Eq. (2.37).]

2. The entire current flows through the short circuit.

As another extreme case, suppose that is, is an open
circuit, as shown in Fig. 2.33(b). The current still flows through the
path of least resistance, By taking the limit of Eq. (2.37) as 
we obtain in this case.

If we divide both the numerator and denominator by Eq. (2.43)
becomes

(2.44a)

(2.44b)

Thus, in general, if a current divider has N conductors 
in parallel with the source current i, the nth conductor ( ) will have
current

(2.45)

In general, it is often convenient and possible to combine resis-
tors in series and parallel and reduce a resistive network to a single
equivalent resistance Such an equivalent resistance is the resist-
ance between the designated terminals of the network and must
exhibit the same i-v characteristics as the original network at the
terminals.

Req.

in �
Gn

G1 � G2 � p � GN
 i

Gn

(G1, G2, p , GN)

i2 �
G2

G1 � G2
 i

i1 �
G1

G1 � G2
 i

R1R2,
Req � R1

R2 S �,R1.

R2R2 � �,

R2 � 0
Req � 0.

2.6 Parallel Resistors and Current Division 47

Example 2.9

Figure 2.34
For Example 2.9.

2 Ω
5 ΩReq

4 Ω

8 Ω

1 Ω

6 Ω 3 Ω

Find for the circuit shown in Fig. 2.34.

Solution:
To get we combine resistors in series and in parallel. The 6- and
3- resistors are in parallel, so their equivalent resistance is

(The symbol � is used to indicate a parallel combination.) Also, the 1-
and 5- resistors are in series; hence their equivalent resistance is

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In
Fig. 2.35(a), we notice that the two 2- resistors are in series, so the
equivalent resistance is

2 � � 2 � � 4 �

�

1 � � 5 � � 6 �

�
�

6 � � 3� �
6 � 3

6 � 3
� 2 �

�
�Req,

Req
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This 4- resistor is now in parallel with the 6- resistor in Fig. 2.35(a);
their equivalent resistance is

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In
Fig. 2.35(b), the three resistors are in series. Hence, the equivalent
resistance for the circuit is

Req � 4 � � 2.4 � � 8 � � 14.4 �

4 � � 6 � �
4 � 6

4 � 6
� 2.4 �

��

48 Chapter 2 Basic Laws

6 Ω
Req

4 Ω

(a)

8 Ω

2 Ω

2 Ω

2.4 Ω
Req

4 Ω

(b)

8 Ω

Figure 2.35
Equivalent circuits for Example 2.9.

Practice Problem 2.9 By combining the resistors in Fig. 2.36, find 

Answer: 10 �.

Req.

Figure 2.36
For Practice Prob. 2.9.

5 Ω4 Ω6 Ω
Req

4 Ω

3 Ω

3 Ω 4 Ω

3 Ω

Calculate the equivalent resistance in the circuit in Fig. 2.37.RabExample 2.10

Figure 2.37
For Example 2.10.

a

b
b b

c d

6 Ω

12 Ω

5 Ω4 Ω

10 Ω 1 Ω 1 Ω

Rab
3 Ω

Solution:
The 3- and 6- resistors are in parallel because they are connected
to the same two nodes c and b. Their combined resistance is

(2.10.1)3 � � 6 � �
3 � 6

3 � 6
� 2 �

��

ale80571_ch02_029-080.qxd  11/30/11  12:37 PM  Page 48



Similarly, the 12- and 4- resistors are in parallel since they are
connected to the same two nodes d and b. Hence

(2.10.2)

Also the 1- and 5- resistors are in series; hence, their equivalent
resistance is

(2.10.3)

With these three combinations, we can replace the circuit in Fig. 2.37 with
that in Fig. 2.38(a). In Fig. 2.38(a), 3- in parallel with 6- gives 2-
as calculated in Eq. (2.10.1). This 2- equivalent resistance is now in series
with the 1- resistance to give a combined resistance of 
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2- and 3- resistors in parallel to get

This 1.2- resistor is in series with the 10- resistor, so that

Rab � 10 � 1.2 � 11.2 �

��

2 � � 3 � �
2 � 3

2 � 3
� 1.2 �

��

1 � � 2 � � 3 �.�
�

�,��

1 � � 5 � � 6 �

��

12 � � 4 � �
12 � 4

12 � 4
� 3 �

��
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(a)

bb

d

b

c

3 Ω 6 Ω2 Ω

10 Ω 1 Ω
a

b

(b)

b b

c

3 Ω2 Ω

10 Ω
a

b

Figure 2.38
Equivalent circuits for Example 2.10.

Practice Problem 2.10Find for the circuit in Fig. 2.39.

Answer: 19 �.

Rab

Figure 2.39
For Practice Prob. 2.10.

1 Ω
9 Ω

18 Ω

20 Ω

20 Ω

2 Ω

5 Ω16 Ω
a

b

Rab

Find the equivalent conductance for the circuit in Fig. 2.40(a).

Solution:
The 8-S and 12-S resistors are in parallel, so their conductance is

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b)
so that the combined conductance is

This is in parallel with the 6-S resistor. Hence,

We should note that the circuit in Fig. 2.40(a) is the same as that
in Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in

Geq � 6 � 4 � 10 S

20 � 5

20 � 5
� 4 S

8 S � 12 S � 20 S

Geq Example 2.11
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siemens, those in Fig. 2.40(c) are expressed in ohms. To show that the
circuits are the same, we find for the circuit in Fig. 2.40(c).

This is the same as we obtained previously.

Geq �
1

Req
� 10 S

 �
1
6 � 1

4
1
6 � 1

4

�
1

10
 �

 Req �
1

6
 g a1

5
�

1

8
 g 1

12
b �

1

6
 g a1

5
�

1

20
b �

1

6
 g 1

4

Req
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12 S8 S6 S

(a)

5 S

Geq

20 S6 S

(b)

5 S

Geq

(c)

Req

Ω1
5

Ω1
6 Ω1

8 Ω1
12

Figure 2.40
For Example 2.11: (a) original circuit, 
(b) its equivalent circuit, (c) same circuit as
in (a) but resistors are expressed in ohms.

Practice Problem 2.11 Calculate in the circuit of Fig. 2.41.

Answer: 4 S.

Geq

Figure 2.41
For Practice Prob. 2.11.

4 S

6 S

8 S

2 S
12 S

Geq

Find and in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3- resistor.

Solution:
The 6- and 3- resistors are in parallel, so their combined resistance is

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage From Fig. 2.42(b),
we can obtain in two ways. One way is to apply Ohm’s law to get

i �
12

4 � 2
� 2 A

vo

vo.

vo

6 � � 3 � �
6 � 3

6 � 3
� 2 �

��

�
voioExample 2.12
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and hence, Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4- and
2- resistors. Hence,

Similarly, can be obtained in two ways. One approach is to apply
Ohm’s law to the 3- resistor in Fig. 2.42(a) now that we know ; thus,

Another approach is to apply current division to the circuit in Fig. 2.42(a)
now that we know i, by writing

The power dissipated in the 3- resistor is

po � vo 
io � 4 a4

3
b � 5.333 W

�

io �
6

6 � 3
 i �

2

3
 (2 A) �

4

3
 A

vo � 3io � 4  1  io �
4

3
 A

vo�
io

vo �
2

2 � 4
 (12 V) � 4 V

�
�

vo � 2i � 2 � 2 � 4 V.
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a

b

(a)

12 V

4 Ωi io

6 Ω 3 Ωvo

+

−

a

b

(b)

12 V

4 Ωi

+
− 2 Ωvo

+

−

+
−

Figure 2.42
For Example 2.12: (a) original circuit,
(b) its equivalent circuit.

Find and in the circuit shown in Fig. 2.43. Also calculate and
and the power dissipated in the 12- and 40- resistors.

Answer: V, mA, W, V, 
500 mA, W.p2 � 10

i2 �v2 � 20p1 � 8.333i1 � 833.3v1 � 10

��i2

i1v2v1 Practice Problem 2.12

Figure 2.43
For Practice Prob. 2.12.

30 V

i1

+
− 40 Ωv2

+

−
10 Ω

12 Ω

v1

6 Ω

i2

+ −

Example 2.13For the circuit shown in Fig. 2.44(a), determine: (a) the voltage 
(b) the power supplied by the current source, (c) the power absorbed
by each resistor.

Solution:
(a) The 6-k and 12-k resistors are in series so that their combined
value is k . Thus the circuit in Fig. 2.44(a) reduces to
that shown in Fig. 2.44(b). We now apply the current division technique
to find and 

 i2 �
9,000

9,000 � 18,000
  (30 mA) � 10 mA

 i1 �
18,000

9,000 � 18,000
 (30 mA) � 20 mA

i2.i1

�6 � 12 � 18
��

vo,
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Notice that the voltage across the 9-k and 18-k resistors is the same,
and V, as expected.
(b) Power supplied by the source is

(c) Power absorbed by the 12-k resistor is

Power absorbed by the 6-k resistor is

Power absorbed by the 9-k resistor is

or

Notice that the power supplied (5.4 W) equals the power absorbed
W). This is one way of checking results.(1.2 � 0.6 � 3.6 � 5.4

p � voi1 � 180(20) mW � 3.6 W

p �
vo

2

R
�

(180)2

9,000
� 3.6 W

�

p � i 2
2 R � (10 � 10�3)2 (6,000) � 0.6 W

�

p � iv � i2 (i2 R) � i 
2
2 R � (10 � 10�3)2 (12,000) � 1.2 W

�

po � voio � 180(30) mW � 5.4 W

vo � 9,000i1 � 18,000i2 � 180
��
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(a)

30 mA 9 kΩvo

+

−
12 kΩ

6 kΩ

(b)

30 mA 9 kΩvo

+

−
18 kΩ

i1

io i2

Figure 2.44
For Example 2.13: (a) original circuit,
(b) its equivalent circuit.

Practice Problem 2.13

30 mA3 kΩ 5 kΩ 20 kΩ

1 kΩ

v1

+

−
v2

+

−

Figure 2.45
For Practice Prob. 2.13.

For the circuit shown in Fig. 2.45, find: (a) and (b) the power
dissipated in the 3-k and 20-k resistors, and (c) the power supplied
by the current source.

��
v2,v1

Answer: (a) 45 V, 60 V, (b) 675 mW, 180 mW, (c) 1.8 W.

Wye-Delta Transformations
Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig. 2.46.
How do we combine resistors through when the resistors are neither
in series nor in parallel? Many circuits of the type shown in Fig. 2.46
can be simplified by using three-terminal equivalent networks. These are

R6R1

2.7vs
+
−

R1

R4

R2

R5

R3

R6

Figure 2.46
The bridge network.
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the wye (Y) or tee (T) network shown in Fig. 2.47 and the delta ( ) or
pi ( ) network shown in Fig. 2.48. These networks occur by themselves
or as part of a larger network. They are used in three-phase networks,
electrical filters, and matching networks. Our main interest here is in how
to identify them when they occur as part of a network and how to apply
wye-delta transformation in the analysis of that network.

ß
¢

2.7 Wye-Delta Transformations 53

1 3

2 4

R3

R2R1

(a)

1 3

2 4

R3

R2R1

(b)

Figure 2.47
Two forms of the same network: (a) Y, (b) T.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye net-
work, we compare the two networks and make sure that the resistance
between each pair of nodes in the (or ) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

(2.46)

Setting (Y) gives

(2.47a)

Similarly,

(2.47b)

(2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

(2.48)

Adding Eqs. (2.47b) and (2.48) gives

(2.49)R1 �
Rb Rc

Ra � Rb � Rc

R1 � R2 �
Rc (Rb � Ra)

Ra � Rb � Rc

R34 � R2 � R3 �
Ra (Rb � Rc)

Ra � Rb � Rc

R13 � R1 � R2 �
Rc (Ra � Rb)

Ra � Rb � Rc

R12 � R1 � R3 �
Rb (Ra � Rc)

Ra � Rb � Rc

� R12 (¢)R12

R12 
(¢) � Rb 7  (Ra � Rc)

R12 (Y) � R1 � R3

ß¢

Figure 2.48
Two forms of the same network: (a) ,
(b) .ß

¢

1 3

2 4

Rc

(a)

1 3

2 4

(b)

RaRb

Rc

RaRb
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Each resistor in the Y network is the product of the resistors in the two
adjacent branches, divided by the sum of the three resistors.¢¢

and subtracting Eq. (2.48) from Eq. (2.47b) yields

(2.50)

Subtracting Eq. (2.49) from Eq. (2.47a), we obtain

(2.51)

We do not need to memorize Eqs. (2.49) to (2.51). To transform a net-
work to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

¢

R3 �
Ra Rb

Ra � Rb � Rc

R2 �
Rc Ra

Ra � Rb � Rc

54 Chapter 2 Basic Laws

Figure 2.49
Superposition of Y and networks as an
aid in transforming one to the other.

¢

R3

RaRb

R1 R2

Rc

b

n

a

c

One can follow this rule and obtain Eqs. (2.49) to (2.51) from Fig. 2.49.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to
an equivalent delta network, we note from Eqs. (2.49) to (2.51) that

(2.52)

Dividing Eq. (2.52) by each of Eqs. (2.49) to (2.51) leads to the fol-
lowing equations:

(2.53)

(2.54)

(2.55)

From Eqs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to
is as follows:¢

Rc �
R1 R2 � R2 R3 � R3 R1

R3

Rb �
R1 R2 � R2 R3 � R3 R1

R2

Ra �
R1 R2 � R2 R3 � R3 R1

R1

 �
Ra Rb Rc

Ra � Rb � Rc

 R1 R2 � R2 R3 � R3 R1 �
Ra Rb Rc (Ra � Rb � Rc)

(Ra � Rb � Rc)
2

Each resistor in the network is the sum of all possible products of Y
resistors taken two at a time, divided by the opposite Y resistor.

¢
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The Y and networks are said to be balanced when

(2.56)

Under these conditions, conversion formulas become

(2.57)

One may wonder why is less than Well, we notice that the Y-
connection is like a “series” connection while the -connection is like
a “parallel” connection.

Note that in making the transformation, we do not take anything
out of the circuit or put in anything new. We are merely substituting
different but mathematically equivalent three-terminal network patterns
to create a circuit in which resistors are either in series or in parallel,
allowing us to calculate if necessary.Req

¢
R¢.RY

RY �
R¢

3
  or  R¢ � 3RY

R1 � R2 � R3 � RY,  Ra � Rb � Rc � R¢

¢

Example 2.14Convert the network in Fig. 2.50(a) to an equivalent Y network.¢

Figure 2.50
For Example 2.14: (a) original network, (b) Y equivalent network.¢

c

ba

10 Ω 15 Ω

(a)

Rb Ra

Rc

25 Ω

c

ba

5 Ω

3 Ω

7.5 Ω
R2R1

R3

(b)

Solution:
Using Eqs. (2.49) to (2.51), we obtain

The equivalent Y network is shown in Fig. 2.50(b).

 R3 �
Ra Rb

Ra � Rb � Rc
�

15 � 10

50
� 3 �

 R2 �
Rc Ra

Ra � Rb � Rc
�

25 � 15

50
� 7.5 �

 R1 �
Rb Rc

Ra � Rb � Rc
�

10 � 25

15 � 10 � 25
�

250

50
� 5 �
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56 Chapter 2 Basic Laws

Transform the wye network in Fig. 2.51 to a delta network.

Answer: Ra � 140 �, Rb � 70 �, Rc � 35 �.

Practice Problem 2.14

Figure 2.51
For Practice Prob. 2.14.

20 Ω

R2

ba

c

10 Ω

R1

R3 40 Ω

Obtain the equivalent resistance for the circuit in Fig. 2.52 and use
it to find current i.

Solution:

1. Define. The problem is clearly defined. Please note, this part
normally will deservedly take much more time.

2. Present. Clearly, when we remove the voltage source, we end
up with a purely resistive circuit. Since it is composed of deltas
and wyes, we have a more complex process of combining the
elements together. We can use wye-delta transformations as one
approach to find a solution. It is useful to locate the wyes (there
are two of them, one at n and the other at c) and the deltas
(there are three: can, abn, cnb).

3. Alternative. There are different approaches that can be used to
solve this problem. Since the focus of Sec. 2.7 is the wye-delta
transformation, this should be the technique to use. Another
approach would be to solve for the equivalent resistance by
injecting one amp into the circuit and finding the voltage
between a and b; we will learn about this approach in Chap. 4.

The approach we can apply here as a check would be to use
a wye-delta transformation as the first solution to the problem.
Later we can check the solution by starting with a delta-wye
transformation.

4. Attempt. In this circuit, there are two Y networks and three 
networks. Transforming just one of these will simplify the circuit.
If we convert the Y network comprising the 5- 10- and
20- resistors, we may select

Thus from Eqs. (2.53) to (2.55) we have

 Rc �
R1 

R2 � R2 R3 � R3 R1

R3
�

350

5
� 70 �

 Rb �
R1 R2 � R2 R3 � R3 R1

R2
�

350

20
� 17.5 �

 �
350

10
� 35 �

 Ra �
R1 R2 � R2 R3 � R3 R1

R1
�

10 � 20 � 20 � 5 � 5 � 10

10

R1 � 10 �,  R2 � 20 �,  R3 � 5 �

�
�,�,

¢

RabExample 2.15

a a
i

bb

c n120 V
5 Ω

30 Ω

12.5 Ω

15 Ω

10 Ω

20 Ω

+
−

Figure 2.52
For Example 2.15.
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With the Y converted to the equivalent circuit (with the
voltage source removed for now) is shown in Fig. 2.53(a).
Combining the three pairs of resistors in parallel, we obtain

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we
find

Then

We observe that we have successfully solved the problem.
Now we must evaluate the solution.

5. Evaluate. Now we must determine if the answer is correct and
then evaluate the final solution.

It is relatively easy to check the answer; we do this by
solving the problem starting with a delta-wye transformation. Let
us transform the delta, can, into a wye.

Let and This will lead
to (let d represent the middle of the wye):

 Rnd �
Ra Rc

27.5
�

5 � 10

27.5
� 1.8182 �

 Rcd �
Ra Rn

27.5
�

5 � 12.5

27.5
� 2.273 �

 Rad �
Rc Rn

Ra � Rc � Rn
�

10 � 12.5

5 � 10 � 12.5
� 4.545 �

Rn � 12.5 �.Ra � 5 �,Rc � 10 �,

i �
vs

Rab
�

120

9.632
� 12.458 A

Rab � (7.292 � 10.5) � 21 �
17.792 � 21

17.792 � 21
� 9.632 �

 15 � 35 �
15 � 35

15 � 35
� 10.5 �

 12.5 � 17.5 �
12.5 � 17.5

12.5 � 17.5
� 7.292 �

 70 � 30 �
70 � 30

70 � 30
� 21 �

¢,

2.7 Wye-Delta Transformations 57

a

b

30 Ω70 Ω

17.5 Ω

35 Ω

12.5 Ω

15 Ω

(a)

a

b

21 Ω

(b)

7.292 Ω

10.5 Ω

a

b

c n

d

30 Ω

4.545 Ω

20 Ω

1.8182 Ω2.273 Ω

15 Ω

(c)

Figure 2.53
Equivalent circuits to Fig. 2.52, with the voltage source removed.
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This now leads to the circuit shown in Figure 2.53(c). Looking
at the resistance between d and b, we have two series
combination in parallel, giving us

This is in series with the resistor, both of which are in
parallel with the resistor. This then gives us the equivalent
resistance of the circuit.

This now leads to

We note that using two variations on the wye-delta transformation
leads to the same results. This represents a very good check.

6. Satisfactory? Since we have found the desired answer by
determining the equivalent resistance of the circuit first and the
answer checks, then we clearly have a satisfactory solution. This
represents what can be presented to the individual assigning the
problem.

i �
vs

Rab
�

120

9.631
� 12.46 A

Rab �
(9.642 � 4.545)30

9.642 � 4.545 � 30
�

425.6

44.19
� 9.631 �

30-�
4.545-�

Rdb �
(2.273 � 15)(1.8182 � 20)

2.273 � 15 � 1.8182 � 20
�

376.9

39.09
� 9.642 �
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For the bridge network in Fig. 2.54, find and i.

Answer: 6 A.40 �,

RabPractice Problem 2.15

24 Ω

240 V

i

30 Ω

10 Ω

50 Ω

13 Ω

20 Ω
+
−

b

a

Figure 2.54
For Practice Prob. 2.15.

So far, we have assumed that connect-
ing wires are perfect conductors (i.e.,
conductors of zero resistance). In real
physical systems, however, the resist-
ance of the connecting wire may be
appreciably large, and the modeling
of the system must include that
resistance.

Applications
Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, light bulbs, electric heaters, stoves, ovens, and loudspeakers. In
this section, we will consider two real-life problems that apply the con-
cepts developed in this chapter: electrical lighting systems and design
of dc meters.

2.8.1 Lighting Systems

Lighting systems, such as in a house or on a Christmas tree, often con-
sist of N lamps connected either in parallel or in series, as shown in
Fig. 2.55. Each lamp is modeled as a resistor. Assuming that all the lamps
are identical and is the power-line voltage, the voltage across each
lamp is for the parallel connection and for the series connec-
tion. The series connection is easy to manufacture but is seldom used
in practice, for at least two reasons. First, it is less reliable; when a lamp
fails, all the lamps go out. Second, it is harder to maintain; when a lamp
is bad, one must test all the lamps one by one to detect the faulty one.

Vo�NVo

Vo

2.8
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Vo

+

−
Power
plug

1 2 3 N

Lamp(a)

Vo

+

−

1
2

3

N

(b)

Figure 2.55
(a) Parallel connection of light bulbs, (b) series connection of light bulbs.

Three light bulbs are connected to a 9-V battery as shown in Fig. 2.56(a).
Calculate: (a) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

Example 2.16

(a)

9 V
10 W

15 W

20 W

(b)

9 V

+

−

+

−

+

−

I1

I2

V3

V2

V1 R1

I

R3

R2

Figure 2.56
(a) Lighting system with three bulbs, (b) resistive circuit equivalent model.

Thomas Alva Edison (1847–1931) was perhaps the greatest
American inventor. He patented 1093 inventions, including such
history-making inventions as the incandescent electric bulb, the phono-
graph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received
only three months of formal education because he hated school. He was
home-schooled by his mother and quickly began to read on his own. In
1868, Edison read one of Faraday’s books and found his calling. He
moved to Menlo Park, New Jersey, in 1876, where he managed a well-
staffed research laboratory. Most of his inventions came out of this
laboratory. His laboratory served as a model for modern research organ-
izations. Because of his diverse interests and the overwhelming number
of his inventions and patents, Edison began to establish manufacturing
companies for making the devices he invented. He designed the first elec-
tric power station to supply electric light. Formal electrical engineering
education began in the mid-1880s with Edison as a role model and leader.

Historical

Library of Congress
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Solution:
(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs; that is,

Since then the total current supplied by the battery is

(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b).
Since (20-W bulb) is in parallel with the battery as well as the series
combination of and ,

The current through is

By KCL, the current through the series combination of and is

(c) Since 

 R3 �
p3

I 3
2 �

10

2.777 
2 � 1.297 �

 R2 �
p2

I 2
2 �

15

2.777 
2 � 1.945 �

 R1 �
p1

I 1
2 �

20

2.222 
2 � 4.05 �

p � I 
2R,

I2 � I � I1 � 5 � 2.222 � 2.778 A

R3R2

I1 �
p1

V1
�

20

9
� 2.222 A

R1

V1 � V2 � V3 � 9 V

R3R2

R1

I �
p

V
�

45

9
� 5 A

p � V I,

p � 15 � 10 � 20 � 45 W
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2.8.2 Design of DC Meters

By their nature, resistors are used to control the flow of current. We
take advantage of this property in several applications, such as in a
potentiometer (Fig. 2.57). The word potentiometer, derived from the
words potential and meter, implies that potential can be metered out.
The potentiometer (or pot for short) is a three-terminal device that oper-
ates on the principle of voltage division. It is essentially an adjustable
voltage divider. As a voltage regulator, it is used as a volume or level
control on radios, TVs, and other devices. In Fig. 2.57,

(2.58)Vout � Vbc �
Rbc

Rac
 Vin

+
+
−

−

Vin

Vout

a

b

c

Max

Min

Figure 2.57
The potentiometer controlling potential
levels.

Refer to Fig. 2.55 and assume there are 10 light bulbs that can be con-
nected in parallel and 10 light bulbs that can be connected in series,
each with a power rating of 40 W. If the voltage at the plug is 110 V
for the parallel and series connections, calculate the current through
each bulb for both cases.

Answer: 364 mA (parallel), 3.64 A (series).

Practice Problem 2.16
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where Thus, decreases or increases as the sliding
contact of the pot moves toward c or a, respectively.

Another application where resistors are used to control current flow
is in the analog dc meters—the ammeter, voltmeter, and ohmmeter,
which measure current, voltage, and resistance, respectively. Each of
these meters employs the d’Arsonval meter movement, shown in
Fig. 2.58. The movement consists essentially of a movable iron-core coil
mounted on a pivot between the poles of a permanent magnet. When
current flows through the coil, it creates a torque which causes the pointer
to deflect. The amount of current through the coil determines the deflec-
tion of the pointer, which is registered on a scale attached to the meter
movement. For example, if the meter movement is rated 1 mA, 50 it
would take 1 mA to cause a full-scale deflection of the meter movement.
By introducing additional circuitry to the d’Arsonval meter movement,
an ammeter, voltmeter, or ohmmeter can be constructed.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a
load and is therefore connected in parallel with the element. As shown

�,

VoutRac � Rab � Rbc.

2.8 Applications 61

An instrument capable of measuring
voltage, current, and resistance is
called a multimeter or a volt-ohm
meter (VOM).

A load is a component that is receiving
energy (an energy sink), as opposed
to a generator supplying energy (an
energy source). More about loading
will be discussed in Section 4.9.1.

scale

pointer

spring

permanent magnet

rotating coil

stationary iron core

spring

N

S

V

A

V

I

+

−
Voltmeter

Ammeter

Element

Figure 2.58
A d’Arsonval meter movement.

Figure 2.59
Connection of a voltmeter and an amme-
ter to an element.

in Fig. 2.60(a), the voltmeter consists of a d’Arsonval movement in
series with a resistor whose resistance is deliberately made very
large (theoretically, infinite), to minimize the current drawn from the
circuit. To extend the range of voltage that the meter can measure,
series multiplier resistors are often connected with the voltmeters, as
shown in Fig. 2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can
measure voltage from 0 to 1 V, 0 to 10 V, or 0 to 100 V, depending on
whether the switch is connected to or respectively.

Let us calculate the multiplier resistor for the single-range volt-
meter in Fig. 2.60(a), or or for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of to be
connected in series with the internal resistance of the voltmeter. In
any design, we consider the worst-case condition. In this case, the
worst case occurs when the full-scale current flows through
the meter. This should also correspond to the maximum voltage read-
ing or the full-scale voltage Since the multiplier resistance is in
series with the internal resistance 

(2.59)Vfs � I fs (Rn � Rm)

Rm,
RnVfs.

Ifs � Im

Rm

Rn

R3Rn � R1, R2,
Rn

R3,R2,R1,

Rm
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From this, we obtain

(2.60)

Similarly, the ammeter measures the current through the load and
is connected in series with it. As shown in Fig. 2.61(a), the ammeter
consists of a d’Arsonval movement in parallel with a resistor whose
resistance is deliberately made very small (theoretically, zero) to
minimize the voltage drop across it. To allow multiple ranges, shunt
resistors are often connected in parallel with as shown in
Fig. 2.61(b). The shunt resistors allow the meter to measure in the
range 0–10 mA, 0–100 mA, or 0–1 A, depending on whether the switch
is connected to or respectively.

Now our objective is to obtain the multiplier shunt for the single-
range ammeter in Fig. 2.61(a), or or for the multiple-
range ammeter in Fig. 2.61(b). We notice that and are in parallel
and that at full-scale reading where is the current
through the shunt resistor Applying the current division principle
yields

or

(2.61)

The resistance of a linear resistor can be measured in two ways.
An indirect way is to measure the current I that flows through it by

Rx

Rn �
Im

Ifs � Im
 Rm

Im �
Rn

Rn � Rm
 Ifs

Rn.
InI � Ifs � Im � In,

RnRm

R3Rn � R1, R2,
Rn

R3,R2,R1,

Rm

Rm

Rn �
Vfs

Ifs
� Rm

62 Chapter 2 Basic Laws

Figure 2.61
Ammeters: (a) single-range type, 
(b) multiple-range type.

Im

I

Probes

(a)

RnIn

(b)

R1

R2

R3

10 mA

100 mA

1 A

Switch

Im

I

Probes

Rm

Meter

Rm

Meter

Probes V

+

−

R1

R2

R3

1 V

10 V

100 V

Switch

Im

(b)

Rn

Im

Multiplier

Probes V

+

−

(a)

Rm

Meter

Rm

Meter

Figure 2.60
Voltmeters: (a) single-range type, (b) multiple-range type.
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connecting an ammeter in series with it and the voltage V across it by
connecting a voltmeter in parallel with it, as shown in Fig. 2.62(a).
Then

(2.62)

The direct method of measuring resistance is to use an ohmmeter. An
ohmmeter consists basically of a d’Arsonval movement, a variable
resistor or potentiometer, and a battery, as shown in Fig. 2.62(b).
Applying KVL to the circuit in Fig. 2.62(b) gives

or

(2.63)

The resistor R is selected such that the meter gives a full-scale deflec-
tion; that is, when . This implies that

(2.64)

Substituting Eq. (2.64) into Eq. (2.63) leads to

(2.65)

As mentioned, the types of meters we have discussed are known
as analog meters and are based on the d’Arsonval meter movement.
Another type of meter, called a digital meter, is based on active circuit
elements such as op amps. For example, a digital multimeter displays
measurements of dc or ac voltage, current, and resistance as discrete
numbers, instead of using a pointer deflection on a continuous scale as
in an analog multimeter. Digital meters are what you would most likely
use in a modern lab. However, the design of digital meters is beyond
the scope of this book.

Rx � a Ifs

Im
� 1b (R � Rm)

E � (R � Rm) Ifs

Rx � 0Im � Ifs

Rx �
E

Im
� (R � Rm)

E � (R � Rm � Rx) Im

Rx �
V

I

2.8 Applications 63

Samuel F. B. Morse (1791–1872), an American painter, invented
the telegraph, the first practical, commercialized application of
electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale
and the Royal Academy of Arts in London to become an artist. In the
1830s, he became intrigued with developing a telegraph. He had a
working model by 1836 and applied for a patent in 1838. The U.S.
Senate appropriated funds for Morse to construct a telegraph line
between Baltimore and Washington, D.C. On May 24, 1844, he sent
the famous first message: “What hath God wrought!” Morse also devel-
oped a code of dots and dashes for letters and numbers, for sending
messages on the telegraph. The development of the telegraph led to the
invention of the telephone.

Historical

Im

R

E Rx

Ohmmeter

(b)

(a)

V

A

+

−
VRx

I

Rm

Figure 2.62
Two ways of measuring resistance: 
(a) using an ammeter and a voltmeter, 
(b) using an ohmmeter.

Library of Congress
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Following the voltmeter setup of Fig. 2.60, design a voltmeter for the
following multiple ranges:
(a) 0–1 V (b) 0–5 V (c) 0–50 V (d) 0–100 V
Assume that the internal resistance and the full-scale cur-
rent 

Solution:
We apply Eq. (2.60) and assume that and correspond
with ranges 0–1 V, 0–5 V, 0–50 V, and 0–100 V, respectively.
(a) For range 0–1 V,

(b) For range 0–5 V,

(c) For range 0–50 V,

(d) For range 0–100 V,

Note that the ratio of the total resistance ( ) to the full-scale
voltage is constant and equal to for the four ranges. This ratio
(given in ohms per volt, or /V) is known as the sensitivity of the
voltmeter. The larger the sensitivity, the better the voltmeter.

�
1�IfsVfs

Rn � Rm

R4 �
100 V

100 � 10�6 � 2000 � 1,000,000 � 2000 � 998 k�

R3 �
50

100 � 10�6 � 2000 � 500,000 � 2000 � 498 k�

R2 �
5

100 � 10�6 � 2000 � 50,000 � 2000 � 48 k�

R1 �
1

100 � 10�6 � 2000 � 10,000 � 2000 � 8 k�

R4R1, R2, R3,

Ifs � 100 mA.
Rm � 2 k�

Example 2.17

Following the ammeter setup of Fig. 2.61, design an ammeter for the
following multiple ranges:
(a) 0–1 A (b) 0–100 mA (c) 0–10 mA
Take the full-scale meter current as mA and the internal resist-
ance of the ammeter as 

Answer: Shunt resistors: .50 m�, 505 m�, 5.556 �

Rm � 50 �.
Im � 1

Practice Problem 2.17

Summary

1. A resistor is a passive element in which the voltage v across it is
directly proportional to the current i through it. That is, a resistor
is a device that obeys Ohm’s law,

where R is the resistance of the resistor.

v � iR

2.9
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2. A short circuit is a resistor (a perfectly, conducting wire) with zero
resistance ( ). An open circuit is a resistor with infinite resis-
tance ( ).

3. The conductance G of a resistor is the reciprocal of its resistance:

4. A branch is a single two-terminal element in an electric circuit. A
node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops l in a
network are related as

5. Kirchhoff’s current law (KCL) states that the currents at any node
algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

6. Kirchhoff’s voltage law (KVL) states that the voltages around a
closed path algebraically sum to zero. In other words, the sum of
voltage rises equals the sum of voltage drops.

7. Two elements are in series when they are connected sequentially,
end to end. When elements are in series, the same current flows
through them . They are in parallel if they are connected
to the same two nodes. Elements in parallel always have the same
voltage across them ( ).

8. When two resistors and are in series, their
equivalent resistance and equivalent conductance are

9. When two resistors and are in parallel,
their equivalent resistance and equivalent conductance are

10. The voltage division principle for two resistors in series is

11. The current division principle for two resistors in parallel is

12. The formulas for a delta-to-wye transformation are

R3 �
Ra Rb

Ra � Rb � Rc

R1 �
Rb Rc

Ra � Rb � Rc
,  R2 �

Rc Ra

Ra � Rb � Rc

i1 �
R2

R1 � R2
 i,  i2 �

R1

R1 � R2
 i

v1 �
R1

R1 � R2
 v,  v2 �

R2

R1 � R2
 v

Req �
R1R2

R1 � R2
,  Geq � G1 � G2

GeqReq

R2 (�1�G2)R1 (�1�G1)

Req � R1 � R2,  Geq �
G1G2

G1 � G2

GeqReq

R2 (�1�G2)R1 (�1�G1)
v1 � v2

(i1 � i2)

b � l � n � 1

G �
1

R

R � �
R � 0

2.9 Summary 65
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13. The formulas for a wye-to-delta transformation are

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

Rc �
R1 R2 � R2 R3 � R3 R1

R3

Ra �
R1 R2 � R2 R3 � R3 R1

R1
,  Rb �

R1 R2 � R2 R3 � R3 R1

R2

66 Chapter 2 Basic Laws

Review Questions

2.1 The reciprocal of resistance is:

(a) voltage (b) current

(c) conductance (d) coulombs

2.2 An electric heater draws 10 A from a 120-V line. The
resistance of the heater is:

(a) (b) 

(c) (d) 

2.3 The voltage drop across a 1.5-kW toaster that draws
12 A of current is:

(a) 18 kV (b) 125 V

(c) 120 V (d) 10.42 V

2.4 The maximum current that a 2W, 80 k resistor can
safely conduct is:

(a) 160 kA (b) 40 kA

(c) 5 mA (d) 

2.5 A network has 12 branches and 8 independent
loops. How many nodes are there in the 
network?

(a) 19 (b) 17 (c) 5 (d) 4

2.6 The current I in the circuit of Fig. 2.63 is:

(a) 0.8 A (b) 0.2 A

(c) 0.2 A (d) 0.8 A

��

25 mA

�

1.2 �12 �

120 �1200 �

2.7 The current of Fig. 2.64 is:

(a) A (b) A (c) 4 A (d) 16 A�2�4

Io

2.8 In the circuit in Fig. 2.65, V is:

(a) 30 V (b) 14 V (c) 10 V (d) 6 V

3 V 5 V+
−

+
−

4 Ω I

6 Ω

Figure 2.63
For Review Question 2.6.

10 A

4 A2 A

Io

Figure 2.64
For Review Question 2.7.

+
−

+
−

+ −

+ −

10 V

12 V 8 V

V

Figure 2.65
For Review Question 2.8.
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2.10 In the circuit of Fig. 2.67, a decrease in leads to a
decrease of, select all that apply:

(a) current through 

(b) voltage across 

(c) voltage across 

(d) power dissipated in 

(e) none of the above

R2

R1

R3

R3

R3

Problems 67

3 V

a

b

5 V

1 V

(a)

+
−

+ −

+ −

3 V

a

b

5 V

1 V

(b)

+
−

+−

+ −

3 V

a

5 V

1 V

(c)

+
−

+ −

+− b

3 V

a

5 V

1 V

(d)

+
−

+−

+− b

Figure 2.66
For Review Question 2.9.

Vs

R1

R2 R3
+
−

Figure 2.67
For Review Question 2.10.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5c, 2.6b, 2.7a, 2.8d,
2.9d, 2.10b, d.

Problems

Section 2.2 Ohm’s Law

2.1 Design a problem, complete with a solution, to help
students to better understand Ohm’s Law. Use at
least two resistors and one voltage source. Hint, you
could use both resistors at once or one at a time, it is
up to you. Be creative.

2.2 Find the hot resistance of a light bulb rated 60 W, 120 V.

2.3 A bar of silicon is 4 cm long with a circular cross sec-
tion. If the resistance of the bar is at room tem-
perature, what is the cross-sectional radius of the bar?

2.4 (a) Calculate current i in Fig. 2.68 when the switch is
in position 1.

(b) Find the current when the switch is in position 2.

240 �

2.6 In the network graph shown in Fig. 2.70, determine
the number of branches and nodes.

250 Ω100 Ω
40 V

1 2

i

+
−

Figure 2.68
For Prob. 2.4.

Figure 2.69
For Prob. 2.5.

2.9 Which of the circuits in Fig. 2.66 will give you
V?Vab � 7

Section 2.3 Nodes, Branches, and Loops

2.5 For the network graph in Fig. 2.69, find the number
of nodes, branches, and loops.

Figure 2.70
For Prob. 2.6.
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2.14 Given the circuit in Fig. 2.78, use KVL to find the
branch voltages to V4.V1

2.7 Determine the number of branches and nodes in the
circuit of Fig. 2.71.

Section 2.4 Kirchhoff’s Laws

2.8 Design a problem, complete with a solution, to help
other students better understand Kirchhoff’s Current
Law. Design the problem by specifying values of ia,
ib, and ic, shown in Fig. 2.72, and asking them to
solve for values of i1, i2, and i3. Be careful to specify
realistic currents.

2.9 Find and in Fig. 2.73.i3i1, i2,

Figure 2.72
For Prob. 2.8.

Figure 2.73
For Prob. 2.9.

2.10 Determine and in the circuit of Fig. 2.74.i2i1

2.11 In the circuit of Fig. 2.75, calculate and V2.V1

2.12 In the circuit in Fig. 2.76, obtain and v3.v2,v1,

2.13 For the circuit in Fig. 2.77, use KCL to find the
branch currents to I4.I1

Figure 2.74
For Prob. 2.10.

68 Chapter 2 Basic Laws

12 V 2 A

1 Ω 4 Ω

8 Ω 5 Ω+
−

Figure 2.71
For Prob. 2.7.

ib

ic

ia

i1

i3i2

5 A

2 A

4 A

1 A

A B

C

7 Ai1

i3

i2

6 A

–6 A

–8 A 4 A

i2

i1

5 V

+

−−

+

−

+

+ −
1 V

+ −
2 V

V1 V2

Figure 2.75
For Prob. 2.11.

40 V

– 50 V + + 20 V – + v2 –

+
v1
–

+
v3
–

+ 30 V –

+

−

Figure 2.76
For Prob. 2.12.

I1

I2 I4

I3

7 A

2 A

4 A3 A

Figure 2.77
For Prob. 2.13.

V2

V4

V1

V3

3 V

4 V 5 V

+

–

– –

+

+

–

–

2 V

+ +

++ –

–

+ –

Figure 2.78
For Prob. 2.14.
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2.18 Find I and in the circuit of Fig. 2.82.Vab

2.19 From the circuit in Fig. 2.83, find I, the power
dissipated by the resistor, and the power supplied by
each source.

Problems 69

2.15 Calculate v and in the circuit of Fig. 2.79.ix

2.16 Determine in the circuit in Fig. 2.80.Vo

2.17 Obtain through in the circuit of Fig. 2.81.v3v1

Figure 2.79
For Prob. 2.15.

ix

3ix10 V +
−

+ 16 V –

+ 
4 V 

–

+ v –

12 Ω

+
−

10 V 25 V+
−

+
−

14 Ω

+

Vo

–

16 Ω

Figure 2.80
For Prob. 2.16.

24 V

12 V

10 Vv3
v2+

−

+−

+
−

+

−
+

−

v1+ −

Figure 2.81
For Prob. 2.17.

5 Ω3 Ω

+
−

+
−

+

−
Vab30 V 8 V

b

a

+−

10 V

I

Figure 2.82
For Prob. 2.18.

12 V

10 V

–8 V

3 Ω+
−

+ −

+ −

I

Figure 2.83
For Prob. 2.19.

2.20 Determine in the circuit of Fig. 2.84.io

Figure 2.84
For Prob. 2.20.

2.21 Find in the circuit of Fig. 2.85.Vx

54 V

22 Ω

+
− 5io

+
−

io

+

−
15 V +

−

1 Ω

2 Ω

5 Ω Vx

+ −

2 Vx

Figure 2.85
For Prob. 2.21.

2.22 Find in the circuit in Fig. 2.86 and the power
absorbed by the dependent source.

Vo

Figure 2.86
For Prob. 2.22.

2 Vo25 A

10 Ω

10 Ω

+  Vo −
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2.30 Find for the circuit in Fig. 2.94.Req

2.23 In the circuit shown in Fig. 2.87, determine and
the power absorbed by the resistor.12-�

vx

Sections 2.5 and 2.6 Series and Parallel Resistors

2.26 For the circuit in Fig. 2.90, Calculate 
and the total power absorbed by the entire circuit.

ixio � 3 A.

70 Chapter 2 Basic Laws

20 A 2 Ω
4 Ω

3 Ω 6 Ω

8 Ω 12 Ω

1.2 Ω1 Ω

vx
+ –

Figure 2.87
For Prob. 2.23.

2.24 For the circuit in Fig. 2.88, find in terms of
and If what

value of will produce |Vo 
�Vs 

| � 10?a

R1 � R2 � R3 � R4,R4.a, R1, R2, R3,
Vo�Vs

2.25 For the network in Fig. 2.89, find the current,
voltage, and power associated with the 20-k
resistor.

�

Vo+
−

+

−
R4R3

R1

R2 �IoVs

Io

Figure 2.88
For Prob. 2.24.

0.01VoVo

+

−
20 kΩ5 kΩ10 kΩ5 mA

Figure 2.89
For Prob. 2.25.

ix io
10 Ω

8 Ω 4 Ω 2 Ω 16 Ω

2.27 Calculate in the circuit of Fig. 2.91.Io

Figure 2.91
For Prob. 2.27.

Figure 2.90
For Prob. 2.26.

Io

8 Ω

3 Ω 6 Ω10 V +
−

2.28 Design a problem, using Fig. 2.92, to help other
students better understand series and parallel
circuits.

Vs

R1

R2

v1

v2+
−

+ −
+

−
R3

v3

+

−

Figure 2.92
For Prob. 2.28.

2.29 All resistors in Fig. 2.93 are each. Find Req.5 �

Req

Figure 2.93
For Prob. 2.29.

60 Ω

180 Ω25 Ω

60 Ω

Req

Figure 2.94
For Prob. 2.30.
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2.34 Using series/parallel resistance combination, find the
equivalent resistance seen by the source in the circuit
of Fig. 2.98. Find the overall absorbed power by the
resistor network.

Problems 71

2.31 For the circuit in Fig. 2.95, determine to .i5i1

200 V
1 Ω 2 Ω

4 Ω+
−

3 Ω

i2

i1

i4 i5

i3

Figure 2.95
For Prob. 2.31.

2.32 Find i1 through i4 in the circuit in Fig. 2.96.

i4 i2

i3 i1

40 Ω

60 Ω

50 Ω

200 Ω

16 A

Figure 2.96
For Prob. 2.32.

2.33 Obtain v and i in the circuit of Fig. 2.97.

9 A 2 S1 S

4 S 6 S

3 S
+

−
v

i

Figure 2.97
For Prob. 2.33.

160 Ω200 V

20 Ω 28 Ω

160 Ω 80 Ω

60 Ω

52 Ω 20 Ω

−
+

Figure 2.98
For Prob. 2.34.

2.35 Calculate and in the circuit of Fig. 2.99.IoVo

200 V

30 Ω70 Ω

+
−

5 Ω20 Ω
+

−
Vo

Io

Figure 2.99
For Prob. 2.35.

2.36 Find i and in the circuit of Fig. 2.100.Vo

25 Ω

80 Ω 24 Ω 50 Ω

20 Ω

60 Ω 20 Ω

30 Ω20 V +
−

i

−

+
Vo

Figure 2.100
For Prob. 2.36.

2.37 Find R for the circuit in Fig. 2.101.

20 V 30 V+
− +

−

R 10 Ω

+ −10 V

Figure 2.101
For Prob. 2.37.

2.38 Find and in the circuit of Fig. 2.102.ioReq

6 Ω

60 Ω

15 Ω 20 Ω

80 Ω

io 2.5 Ω

35 V +
−

Req

12 Ω

Figure 2.102
For Prob. 2.38.
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2.44 For the circuits in Fig. 2.108, obtain the equivalent
resistance at terminals a-b. 

2.42 Reduce each of the circuits in Fig. 2.106 to a single
resistor at terminals a-b.

72 Chapter 2 Basic Laws

2.40 For the ladder network in Fig. 2.104, find I and Req.

15 V 6 Ω

2 Ω

+
−

8 Ω 1 Ω

2 Ω4 Ω

I

Req

Figure 2.104
For Prob. 2.40.

2.41 If in the circuit of Fig. 2.105, find R.Req � 50 �

Req

30 Ω
10 Ω

60 Ω

R

12 Ω 12 Ω 12 Ω

Figure 2.105
For Prob. 2.41.

5 Ω

4 Ω

8 Ω

5 Ω

10 Ω

4 Ω

2 Ω

3 Ω

b

(b)

Figure 2.106
For Prob. 2.42.

2.43 Calculate the equivalent resistance at terminals
a-b for each of the circuits in Fig. 2.107.

Rab

40 Ω10 Ω

5 Ω

20 Ω

(a)

a

b

30 Ω
80 Ω

60 Ω

(b)

a

b

10 Ω

20 Ω

Figure 2.107
For Prob. 2.43.

2 Ω

20 Ω5 Ω
a

b

3 Ω

Figure 2.108
For Prob. 2.44.

8 Ω

5 Ω

20 Ω

30 Ω

a b

(a)

2.39 Evaluate for each of the circuits shown in
Fig. 2.103.

Req

2 kΩ
1 kΩ

1 kΩ2 kΩ

(a)

12 kΩ4 kΩ

6 kΩ

12 kΩ

(b)

Figure 2.103
For Prob. 2.39.
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2.47 Find the equivalent resistance in the circuit of
Fig. 2.111.

Rab

Problems 73

2.45 Find the equivalent resistance at terminals a-b of
each circuit in Fig. 2.109.

10 Ω

40 Ω

20 Ω

30 Ω

50 Ω

(a)

5 Ω

a

b

(b)

5 Ω 20 Ω

25 Ω 60 Ω

12 Ω

15 Ω 10 Ω

30 Ω

Figure 2.109
For Prob. 2.45.

ad e

f

b

c

6 Ω

3 Ω

5 Ω

20 Ω

10 Ω 8 Ω

Figure 2.111
For Prob. 2.47.

Section 2.7 Wye-Delta Transformations

2.48 Convert the circuits in Fig. 2.112 from Y to ¢.

10 Ω 10 Ω

10 Ω

ba

c

(a)

20 Ω30 Ω

50 Ω

a

(b)

b

c

Figure 2.112
For Prob. 2.48.

2.46 Find I in the circuit of Fig. 2.110.

20 Ω

5 Ω

12 Ω

5 Ω
24 Ω

8 Ω

15 Ω

15 Ω

15 Ω

I

80 V −
+

Figure 2.110
For Prob. 2.46.

2.49 Transform the circuits in Fig. 2.113 from to Y.¢

12 Ω

12 Ω 12 Ω

(a)

a b

c

60 Ω

30 Ω 10 Ω

(b)

a b

c

Figure 2.113
For Prob. 2.49.
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*2.52 For the circuit shown in Fig. 2.116, find the
equivalent resistance. All resistors are 3 �.

74 Chapter 2 Basic Laws

2.50 Design a problem to help other students better
understand wye-delta transformations using 
Fig. 2.114.

9 mA

R R

R

R

R

Figure 2.114
For Prob. 2.50.

2.51 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.115.

(a)

b

a

30 Ω

10 Ω
10 Ω

20 Ω

20 Ω10 Ω

20 Ω10 Ω

30 Ω

25 Ω

(b)

b

a

15 Ω5 Ω

Figure 2.115
For Prob. 2.51.

Req

Figure 2.116
For Prob. 2.52.

*2.53 Obtain the equivalent resistance in each of the
circuits of Fig. 2.117. In (b), all resistors have a
value of 30 �.

Rab

* An asterisk indicates a challenging problem.

(b)

40 Ω

50 Ω

10 Ω

60 Ω

30 Ω

20 Ω

(a)

b

a

80 Ω

30 Ω
a

b

Figure 2.117
For Prob. 2.53.

2.54 Consider the circuit in Fig. 2.118. Find the
equivalent resistance at terminals: (a) a-b, (b) c-d.

50 Ω 60 Ω

100 Ω

150 Ω

150 Ω

100 Ω

a c

db

Figure 2.118
For Prob. 2.54.

2.55 Calculate in the circuit of Fig. 2.119.Io

20 Ω

40 Ω

60 Ω

50 Ω10 Ω

20 Ω

24 V +
−

Io

Figure 2.119
For Prob. 2.55.
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2.56 Determine V in the circuit of Fig. 2.120.

100 V

30 Ω

15 Ω 10 Ω16 Ω

35 Ω 12 Ω 20 Ω+
− V

+

−

Figure 2.120
For Prob. 2.56.

*2.57 Find and I in the circuit of Fig. 2.121.Req

2 Ω4 Ω

12 Ω
6 Ω 1 Ω

8 Ω 2 Ω

3 Ω10 Ω
5 Ω

4 Ω
20 V +

−

Req

I

Figure 2.121
For Prob. 2.57.

Section 2.8 Applications

2.58 The 60 W light bulb in Fig. 2.122 is rated at 120 volts.
Calculate to make the light bulb operate at the rated
conditions.

Vs

+
−

40 Ω

Vs 80 ΩBulb

Figure 2.122
For Prob. 2.58.

Figure 2.123
For Prob. 2.59.

120 V

30 W 40 W 50 W

+
−

I

2.60 If the three bulbs of Prob. 2.59 are connected in
parallel to the 120-V source, calculate the current
through each bulb.

2.61 As a design engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two light bulbs as shown in Fig. 2.124. You must
select the two bulbs from the following three
available bulbs.

, cost $0.60 (standard size)
, cost $0.90 (standard size)
, cost $0.75 (nonstandard size)

The system should be designed for minimum cost
such that lies within the range A percent.� 5I � 1.2

�R3 � 100 �
�R2 � 90 �
�R1 � 80 �

I

Rx Ry

70-W
Power
Supply

+

−

Figure 2.124
For Prob. 2.61.

2.62 A three-wire system supplies two loads A and B as
shown in Fig. 2.125. Load A consists of a motor
drawing a current of 8 A, while load B is a PC
drawing 2 A. Assuming 10 h/day of use for 365 days
and 6 cents/kWh, calculate the annual energy cost of
the system.

B

A110 V

110 V

+
–

+
–

Figure 2.125
For Prob. 2.62.2.59 Three light bulbs are connected in series to a 120-V

source as shown in Fig. 2.123. Find the current I
through the bulbs. Each bulb is rated at 120 volts.
How much power is each bulb absorbing? Do they
generate much light?

2.63 If an ammeter with an internal resistance of 100
and a current capacity of 2 mA is to measure 5 A,
determine the value of the resistance needed.

 �
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2.68 (a) Find the current I in the circuit of Fig. 2.128(a).

(b) An ammeter with an internal resistance of is
inserted in the network to measure as shown in
Fig. 2.128(b). What is 

(c) Calculate the percent error introduced by the
meter as

` I � I¿
I
` � 100%

I¿?
I¿

1 �

76 Chapter 2 Basic Laws

Calculate the power dissipated in the shunt
resistor.

2.64 The potentiometer (adjustable resistor) in Fig. 2.126
is to be designed to adjust current from 1 A to
10 A. Calculate the values of R and to achieve this.Rx

ix

Rx

+
−

ix R

Rx

ix
110 V

Figure 2.126
For Prob. 2.64.

2.65 A d’Arsonval meter with an internal resistance of
1 k requires 10 mA to produce full-scale deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.

2.66 A 20-k /V voltmeter reads 10 V full scale.

(a) What series resistance is required to make the
meter read 50 V full scale?

(b) What power will the series resistor dissipate
when the meter reads full scale?

2.67 (a) Obtain the voltage in the circuit of Fig. 2.127(a).

(b) Determine the voltage measured when a
voltmeter with 6-k internal resistance is
connected as shown in Fig. 2.127(b).

(c) The finite resistance of the meter introduces an
error into the measurement. Calculate the percent
error as

(d) Find the percent error if the internal resistance
were 36 k�.

` Vo � Vo¿
Vo

` � 100%

�
V ¿o

Vo

�

�

+

−
2 mA

1 kΩ

5 kΩ 4 kΩ Vo

(a)

(b)

2 mA
+

−

1 kΩ

5 kΩ 4 kΩ VoltmeterVo

Figure 2.127
For Prob. 2.67.

2.69 A voltmeter is used to measure in the circuit in
Fig. 2.129. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-k resistor. Let

V, k and k Calculate
with and without the voltmeter when

(a) (b) k

(c) R2 � 100 k�

�R2 � 10R2 � 1 k�

Vo

�.R1 � 20�,Rs � 10Vs � 40
�

Vo

+
−

I

4 V

16 Ω

40 Ω 60 Ω

(a)

+
−

I'

4 V

16 Ω

40 Ω 60 Ω

(b)

Ammeter

Figure 2.128
For Prob. 2.68.

+

−

+
−

V100 kΩVo

Vs

Rs

R1

R2

Figure 2.129
For Prob. 2.69.
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2.70 (a) Consider the Wheatstone bridge shown in 
Fig. 2.130. Calculate and 

(b) Rework part (a) if the ground is placed at
a instead of o.

vab.vb,va,

Problems 77

2.71 Figure 2.131 represents a model of a solar
photovoltaic panel. Given that V,

and find RL.iL � 1 A,R1 � 20 �,
Vs � 30

25 V

o

8 kΩ 15 kΩ

12 kΩ 10 kΩ

+
– a b

Figure 2.130
For Prob. 2.70.

2.72 Find in the two-way power divider circuit in 
Fig. 2.132.

Vo

Vs RL

R1

+
−

iL

Figure 2.131
For Prob. 2.71.

2.74 The circuit in Fig. 2.134 is to control the speed of a
motor such that the motor draws currents 5 A, 3 A,
and 1 A when the switch is at high, medium, and low
positions, respectively. The motor can be modeled as
a load resistance of 20 m Determine the series
dropping resistances and R3.R2,R1,

�.

I

A

R

Rx

20 Ω
Ammeter
model

Figure 2.133
For Prob. 2.73.

1 Ω

1 Ω

1 Ω

1 Ω

1 Ω

2 Ω

10 V +
−

Vo

Figure 2.132
For Prob. 2.72.

2.73 An ammeter model consists of an ideal ammeter
in series with a 20- resistor. It is connected
with a current source and an unknown resistor

as shown in Fig. 2.133. The ammeter reading
is noted. When a potentiometer R is added and
adjusted until the ammeter reading drops to one
half its previous reading, then What
is the value of Rx?

R � 65 �.

Rx

�

6 V

High

Medium

Low

10-A, 0.01-Ω fuse
R1

R2

R3

Motor

Figure 2.134
For Prob. 2.74.

2.75 Find in the four-way power divider circuit in 
Fig. 2.135. Assume each element is 1 �.

Rab

1

1

1

1

1

1

1

1
1

1

1

1

1

1

b

a

Figure 2.135
For Prob. 2.75.
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2.79 An electric pencil sharpener rated 240 mW, 6 V is
connected to a 9-V battery as shown in Fig. 2.138.
Calculate the value of the series-dropping resistor 
needed to power the sharpener.

Rx

2.81 In a certain application, the circuit in Fig. 2.140
must be designed to meet these two criteria:

(a) (b)

If the load resistor 5 k is fixed, find and to
meet the criteria.

R2R1�

Req � 40 k�Vo�Vs � 0.05

78 Chapter 2 Basic Laws

Comprehensive Problems

2.76 Repeat Prob. 2.75 for the eight-way divider shown in
Fig. 2.136.

2.77 Suppose your circuit laboratory has the following
standard commercially available resistors in large
quantities:

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an electronic
circuit design?

(a) (b) 

(c) 40 k (d) 52.32 k

2.78 In the circuit in Fig. 2.137, the wiper divides the
potentiometer resistance between and 

Find vo�vs.0 	 a 	 1.
(1 � a)R,aR

��

311.8 �5 �

1.8 �  20 �  300 �  24 k�  56 k�

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

b

a

Figure 2.136
For Prob. 2.76.

vo

+

−

+
− R

R

�R

vs

Figure 2.137
For Prob. 2.78.

9 V

Switch Rx

Figure 2.138
For Prob. 2.79.

2.80 A loudspeaker is connected to an amplifier as shown
in Fig. 2.139. If a 10- loudspeaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4- loudspeaker
will draw.

�

�

Amplifier

Loudspeaker

Figure 2.139
For Prob. 2.80.

Vs
+
−

+

−
5 kΩVoR2

R1

Req

Figure 2.140
For Prob. 2.81.
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Comprehensive Problems 79

2.82 The pin diagram of a resistance array is shown in
Fig. 2.141. Find the equivalent resistance between
the following:

(a) 1 and 2

(b) 1 and 3

(c) 1 and 4

20 Ω 20 Ω

40 Ω
10 Ω

10 Ω

1 2

34

80 Ω

Figure 2.141
For Prob. 2.82.

2.83 Two delicate devices are rated as shown in Fig. 2.142.
Find the values of the resistors and needed to
power the devices using a 24-V battery.

R2R1

Device 1

Device 2
24 V

R1

R2

60-mA, 2-Ω fuse

9 V, 45 mW

24 V, 480 mW

Figure 2.142
For Prob. 2.83.
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81

Methods of
Analysis
No great work is ever done in a hurry. To develop a great scientific
discovery, to print a great picture, to write an immortal poem, to
become a minister, or a famous general—to do anything great requires
time, patience, and perseverance. These things are done by degrees,
“little by little.”

—W. J. Wilmont Buxton

c h a p t e r

3

Enhancing Your Career

Career in Electronics
One area of application for electric circuit analysis is electronics. The
term electronics was originally used to distinguish circuits of very low
current levels. This distinction no longer holds, as power semiconduc-
tor devices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vacuum, or
semiconductor. Modern electronics involves transistors and transistor
circuits. The earlier electronic circuits were assembled from compo-
nents. Many electronic circuits are now produced as integrated circuits,
fabricated in a semiconductor substrate or chip.

Electronic circuits find applications in many areas, such as automa-
tion, broadcasting, computers, and instrumentation. The range of devices
that use electronic circuits is enormous and is limited only by our imag-
ination. Radio, television, computers, and stereo systems are but a few.

An electrical engineer usually performs diverse functions and is likely
to use, design, or construct systems that incorporate some form of elec-
tronic circuits. Therefore, an understanding of the operation and analysis
of electronics is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within electrical engi-
neering. Because the field of electronics is ever advancing, an electronics
engineer must update his/her knowledge from time to time. The best way
to do this is by being a member of a professional organization such as
the Institute of Electrical and Electronics Engineers (IEEE). With a mem-
bership of over 300,000, the IEEE is the largest professional organization
in the world. Members benefit immensely from the numerous magazines,
journals, transactions, and conference/symposium proceedings published
yearly by IEEE. You should consider becoming an IEEE member.

Troubleshooting an electronic circuit
board.
© BrandX Pictures/Punchstock
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Introduction
Having understood the fundamental laws of circuit theory (Ohm’s law
and Kirchhoff’s laws), we are now prepared to apply these laws to
develop two powerful techniques for circuit analysis: nodal analysis,
which is based on a systematic application of Kirchhoff’s current law
(KCL), and mesh analysis, which is based on a systematic application
of Kirchhoff’s voltage law (KVL). The two techniques are so impor-
tant that this chapter should be regarded as the most important in the
book. Students are therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can ana-
lyze any linear circuit by obtaining a set of simultaneous equations that
are then solved to obtain the required values of current or voltage. One
method of solving simultaneous equations involves Cramer’s rule, which
allows us to calculate circuit variables as a quotient of determinants. The
examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule. Another method of solving simultaneous equations is to
use MATLAB, a computer software discussed in Appendix E.

Also in this chapter, we introduce the use of PSpice for Windows,
a circuit simulation computer software program that we will use
throughout the text. Finally, we apply the techniques learned in this
chapter to analyze transistor circuits.

Nodal Analysis
Nodal analysis provides a general procedure for analyzing circuits
using node voltages as the circuit variables. Choosing node voltages
instead of element voltages as circuit variables is convenient and
reduces the number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits
do not contain voltage sources. Circuits that contain voltage sources
will be analyzed in the next section.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit with n nodes without voltage sources, the nodal analy-
sis of the circuit involves taking the following three steps.

3.2

3.1

82 Chapter 3 Methods of Analysis

Nodal analysis is also known as the
node-voltage method.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages 
to the remaining nodes. The voltages are

referenced with respect to the reference node.
2. Apply KCL to each of the nonreference nodes. Use

Ohm’s law to express the branch currents in terms of node
voltages.

3. Solve the resulting simultaneous equations to obtain the
unknown node voltages.

n � 1

n � 1v2, p , vn�1

v1,

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as the reference

or datum node. The reference node is commonly called the ground
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since it is assumed to have zero potential. A reference node is indicated
by any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(c)
is called a chassis ground and is used in devices where the case, enclo-
sure, or chassis acts as a reference point for all circuits. When the
potential of the earth is used as reference, we use the earth ground in
Fig. 3.1(a) or (b). We shall always use the symbol in Fig. 3.1(b).

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in
Fig. 3.2(a). Node 0 is the reference node while nodes 1 and
2 are assigned voltages and respectively. Keep in mind that the
node voltages are defined with respect to the reference node. As illus-
trated in Fig. 3.2(a), each node voltage is the voltage rise from the ref-
erence node to the corresponding nonreference node or simply the
voltage of that node with respect to the reference node.

As the second step, we apply KCL to each nonreference node in
the circuit. To avoid putting too much information on the same circuit,
the circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add

and as the currents through resistors and respec-
tively. At node 1, applying KCL gives

(3.1)

At node 2,

(3.2)

We now apply Ohm’s law to express the unknown currents and
in terms of node voltages. The key idea to bear in mind is that, since

resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

i3

i1, i2,

I2 � i2 � i3

I1 � I2 � i1 � i2

R3,R1, R2,i3i1, i2,

v2,v1

(v � 0),

3.2 Nodal Analysis 83

The number of nonreference nodes is
equal to the number of independent
equations that we will derive.

Figure 3.1
Common symbols for indicating a
reference node, (a) common ground,
(b) ground, (c) chassis ground.

(a) (b) (c)

Figure 3.2
Typical circuit for nodal analysis.

Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

(3.3)

Note that this principle is in agreement with the way we defined resist-
ance in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from
Fig. 3.2(b),

(3.4)

Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in

(3.5)

(3.6)I2 �
v1 � v2

R2
�

v2

R3

I1 � I2 �
v1

R1
�

v1 � v2

R2

i3 �
v2 � 0

R3
  or  i3 � G3v2

i2 �
v1 � v2

R2
  or  i2 � G2 (v1 � v2)

i1 �
v1 � 0

R1
  or  i1 � G1v1

i �
vhigher � vlower

R

(a)

(b)

1 2

v1

i1

i2 i2

i3

v2

I2

0

R3v2

+

−

R3

R1v1

+

−

R1I1

I2

R2

R2

I1
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In terms of the conductances, Eqs. (3.5) and (3.6) become

(3.7)

(3.8)

The third step in nodal analysis is to solve for the node voltages.
If we apply KCL to nonreference nodes, we obtain simul-
taneous equations such as Eqs. (3.5) and (3.6) or (3.7) and (3.8). For
the circuit of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8)
to obtain the node voltages and using any standard method, such
as the substitution method, the elimination method, Cramer’s rule, or
matrix inversion. To use either of the last two methods, one must cast
the simultaneous equations in matrix form. For example, Eqs. (3.7) and
(3.8) can be cast in matrix form as

(3.9)

which can be solved to get and Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators or with software packages such as MATLAB, Mathcad,
Maple, and Quattro Pro.

v2.v1

cG1 � G 2  �G 2

�G 2  G 2 � G 3
d cv1

v2
d � c I1 � I2

I2
d

v2v1

n � 1n � 1

I2 � G2(v1 � v2) � G3v2

I1 � I2 � G1v1 � G2(v1 � v2)

84 Chapter 3 Methods of Analysis

Appendix A discusses how to use
Cramer’s rule.

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:
Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared
for nodal analysis. Notice how the currents are selected for the
application of KCL. Except for the branches with current sources, the
labeling of the currents is arbitrary but consistent. (By consistent, we
mean that if, for example, we assume that enters the resistor
from the left-hand side, must leave the resistor from the right-hand
side.) The reference node is selected, and the node voltages and 
are now to be determined.

At node 1, applying KCL and Ohm’s law gives

Multiplying each term in the last equation by 4, we obtain

or

(3.1.1)

At node 2, we do the same thing and get

Multiplying each term by 12 results in

or

(3.1.2)�3v1 � 5v2 � 60

3v1 � 3v2 � 120 � 60 � 2v2

i2 � i4 � i1 � i5  1   
v1 � v2

4
� 10 � 5 �

v2 � 0

6

3v1 � v2 � 20

20 � v1 � v2 � 2v1

i1 � i2 � i3  1   5 �
v1 � v2

4
�

v1 � 0

2

v2v1

i2

4-�i2

Example 3.1

Figure 3.3
For Example 3.1: (a) original circuit,
(b) circuit for analysis.

2
1

5 A

10 A2 Ω 6 Ω

4 Ω

(a)

5 A

10 A2 Ω 6 Ω

4 Ω

(b)

i1 = 5 i1 = 5

i4 = 10i2

i3
i2 i5

v2v1
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3.2 Nodal Analysis 85

Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of and 

■ METHOD 1 Using the elimination technique, we add Eqs. (3.1.1)
and (3.1.2).

Substituting in Eq. (3.1.1) gives

■ METHOD 2 To use Cramer’s rule, we need to put Eqs. (3.1.1)
and (3.1.2) in matrix form as

(3.1.3)

The determinant of the matrix is

We now obtain and as

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the
values of the nodal voltages.

The fact that is negative shows that the current flows in the direction
opposite to the one assumed.

i2

i4 � 10 A,  i5 �
v2

6
� 3.333 A

i1 � 5 A,  i2 �
v1 � v2

4
� �1.6668 A,  i3 �

v1

2
� 6.666 A

 v2 �
¢2

¢
�

` 3 20

�3 60
`

¢
�

180 � 60

12
� 20 V

 v1 �
¢1

¢
�

`20 �1

60 5
`

¢
�

100 � 60

12
� 13.333 V

v2v1

¢ � ` 3 �1

�3 5
` � 15 � 3 � 12

c 3 �1

�3 5
d cv1

v2
d � c20

60
d

3v1 � 20 � 20  1  v1 �
40

3
� 13.333 V

v2 � 20

4v2 � 80  1   v2 � 20 V

v2.v1

Obtain the node voltages in the circuit of Fig. 3.4.

Answer: v1 � �6 V, v2 � �42 V.

Practice Problem 3.1

Figure 3.4
For Practice Prob. 3.1.

3 A 12 A

6 Ω

2 Ω 7 Ω

1 2
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86 Chapter 3 Methods of Analysis

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:
The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages
to the three nodes as shown in Fig. 3.5(b) and label the currents.

Example 3.2

Figure 3.5
For Example 3.2: (a) original circuit, (b) circuit for analysis.

4 Ω

4 Ω

2 Ω 8 Ωix

1 3
2

0

3 A 2ix

(a)

ix ix i3

4 Ω

4 Ω

2 Ω 8 Ω
i1

v1
v2

i2 i2
i1

v3

3 A

3 A

2ix

(b)

At node 1,

Multiplying by 4 and rearranging terms, we get

(3.2.1)

At node 2,

Multiplying by 8 and rearranging terms, we get

(3.2.2)

At node 3,

Multiplying by 8, rearranging terms, and dividing by 3, we get

(3.2.3)

We have three simultaneous equations to solve to get the node voltages
and We shall solve the equations in three ways.

■ METHOD 1 Using the elimination technique, we add Eqs. (3.2.1)
and (3.2.3).

or

(3.2.4)

Adding Eqs. (3.2.2) and (3.2.3) gives

(3.2.5)�2v1 � 4v2 � 0  1   v1 � 2v2

v1 � v2 �
12

5
� 2.4

5v1 � 5v2 � 12

v3.v1, v2,

2v1 � 3v2 � v3 � 0

i1 � i2 � 2ix  1   
v1 � v3

4
�

v2 � v3

8
�

2(v1 � v2)

2

�4v1 � 7v2 � v3 � 0

ix � i2 � i3  1   
v1 � v2

2
�

v2 � v3

8
�

v2 � 0

4

3v1 � 2v2 � v3 � 12

3 � i1 � ix  1   3 �
v1 � v3

4
�

v1 � v2

2

ale80571_ch03_081_126.qxd  11/30/11  4:10 PM  Page 86



3.2 Nodal Analysis 87

Substituting Eq. (3.2.5) into Eq. (3.2.4) yields

From Eq. (3.2.3), we get

Thus,

■ METHOD 2 To use Cramer’s rule, we put Eqs. (3.2.1) to (3.2.3)
in matrix form.

(3.2.6)

From this, we obtain

where and are the determinants to be calculated as
follows. As explained in Appendix A, to calculate the determinant of
a 3 by 3 matrix, we repeat the first two rows and cross multiply.

Similarly, we obtain

 ¢3 �

�

�

�

  5  3 �2 12

�4 7 0

2 �3 0

3 �2 12

�4 7 0

 5  

�

�

�

� 0 � 144 � 0 � 168 � 0 � 0 � �24

 ¢2 �

�

�

�

  5  3 12 �1

�4 0 �1

2 0 1

3 12 �1

�4 0 �1

 5  

�

�

�

� 0 � 0 � 24 � 0 � 0 � 48 � 24

 ¢1 �

�

�

�

  5  12 �2 �1

0 7 �1

0 �3 1

12 �2 �1

0 7 �1

 5  

�

�

�

� 84 � 0 � 0 � 0 � 36 � 0 � 48

� 21 � 12 � 4 � 14 � 9 � 8 � 10

�

�

�

 5  3 �2 �1

�4 7 �1

2 �3 1

3 �2 �1

�4 7 �1

 5 
�

�

�

3 �2 �1

¢ � 3  �4 7 �1   3 �
2 �3 1

¢3¢2,¢1,¢,

v1 �
¢1

¢
,  v2 �

¢2

¢
,  v3 �

¢3

¢

£
3 �2 �1

�4 7 �1

2 �3 1

§  £
v1

v2

v3

§ � £
12

0

0

§

v1 � 4.8 V,  v2 � 2.4 V,  v3 � �2.4 V

v3 � 3v2 � 2v1 � 3v2 � 4v2 � �v2 � �2.4 V

2v2 � v2 � 2.4  1   v2 � 2.4,  v1 � 2v2 � 4.8 V
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Thus, we find

as we obtained with Method 1.

■ METHOD 3 We now use MATLAB to solve the matrix. Equa-
tion (3.2.6) can be written as

where A is the 3 by 3 square matrix, B is the column vector, and V is
a column vector comprised of and that we want to determine.
We use MATLAB to determine V as follows:

��A � [3 �2 �1; �4 7 �1; 2 �3 1];

��B � [12 0 0]�;

��V � inv(A) * B

Thus, and as obtained previously.v3 � �2.4 V,v2 � 2.4 V,v1 � 4.8 V,

V �
4.8000
2.4000

�2.4000

v3v2,v1,

AV � B  1   V � A�1B

v3 �
¢3

¢
�

�24

10
� �2.4 V

v1 �
¢1

¢
�

48

10
� 4.8 V,  v2 �

¢2

¢
�

24

10
� 2.4 V

Practice Problem 3.2 Find the voltages at the three nonreference nodes in the circuit of
Fig. 3.6.

Answer: v1 � 32 V, v2 � �25.6 V, v3 � 62.4 V.

Figure 3.6
For Practice Prob. 3.2.

4 A

2 Ω

3 Ω

4 Ω 6 Ω

ix

4ix

1 3
2

Nodal Analysis with Voltage Sources
We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

■ CASE 1 If a voltage source is connected between the reference
node and a nonreference node, we simply set the voltage at the non-
reference node equal to the voltage of the voltage source. In Fig. 3.7,
for example,

(3.10)

Thus, our analysis is somewhat simplified by this knowledge of the volt-
age at this node.

■ CASE 2 If the voltage source (dependent or independent) is con-
nected between two nonreference nodes, the two nonreference nodes

v1 � 10 V

3.3
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A supernode is formed by enclosing a (dependent or independent)
voltage source connected between two nonreference nodes and any
elements connected in parallel with it.

form a generalized node or supernode; we apply both KCL and KVL
to determine the node voltages.

3.3 Nodal Analysis with Voltage Sources 89

Figure 3.7
A circuit with a supernode.

10 V

5 V

4 Ω

8 Ω 6 Ω

2 Ω
v1 v3

v2

i3

i1

i2

i4

Supernode

+
−

+ −

A supernode may be regarded as a
closed surface enclosing the voltage
source and its two nodes.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more
than two nodes forming a single supernode. For example, see the cir-
cuit in Fig. 3.14.) We analyze a circuit with supernodes using the
same three steps mentioned in the previous section except that the
supernodes are treated differently. Why? Because an essential com-
ponent of nodal analysis is applying KCL, which requires knowing
the current through each element. There is no way of knowing the
current through a voltage source in advance. However, KCL must
be satisfied at a supernode like any other node. Hence, at the super-
node in Fig. 3.7,

(3.11a)

or

(3.11b)

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.7, we
redraw the circuit as shown in Fig. 3.8. Going around the loop in the
clockwise direction gives

(3.12)

From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages.
Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.
3. A supernode requires the application of both KCL and KVL.

�v2 � 5 � v3 � 0  1   v2 � v3 � 5

v1 � v2

2
�

v1 � v3

4
�

v2 � 0

8
�

v3 � 0

6

i1 � i4 � i2 � i3

+ −

v2 v3

5 V

+ +

− −

Figure 3.8
Applying KVL to a supernode.
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90 Chapter 3 Methods of Analysis

For the circuit shown in Fig. 3.9, find the node voltages.

Solution:
The supernode contains the 2-V source, nodes 1 and 2, and the 10-
resistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives

Expressing and in terms of the node voltages

or

(3.3.1)

To get the relationship between and we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain

(3.3.2)

From Eqs. (3.3.1) and (3.3.2), we write

or

and Note that the 10- resistor does not
make any difference because it is connected across the supernode.

�v2 � v1 � 2 � �5.333 V.

3v1 � �22  1   v1 � �7.333 V

v2 � v1 � 2 � �20 � 2v1

�v1 � 2 � v2 � 0  1   v2 � v1 � 2

v2,v1

v2 � �20 � 2v1

2 �
v1 � 0

2
�

v2 � 0

4
� 7  1   8 � 2v1 � v2 � 28

i2i1

2 � i1 � i2 � 7

�

Example 3.3

Figure 3.9
For Example 3.3.

+−

2 A

2 V

7 A4 Ω

10 Ω

2 Ω

v1 v2

2 A

2 A

7 A

7 A

2 Ω 4 Ω

v2v1

i1 i2

1 2

(a)

+−

(b)

2 V
1 2

++

− −

v1 v2

Figure 3.10
Applying: (a) KCL to the supernode, (b) KVL to the loop.

Figure 3.11
For Practice Prob. 3.3.

14 V

6 V4 Ω

3 Ω 2 Ω 6 Ω+
−

+−

i

v
+

−

Practice Problem 3.3 Find v and i in the circuit of Fig. 3.11.

Answer: 2.8 A.�400 mV,
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Solution:
Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL
to the two supernodes as in Fig. 3.13(a). At supernode 1-2,

Expressing this in terms of the node voltages,

or

(3.4.1)

At supernode 3-4,

or

(3.4.2)4v1 � 2v2 � 5v3 � 16v4 � 0

i1 � i3 � i4 � i5  1   
v1 � v4

3
�

v3 � v2

6
�

v4

1
�

v3

4

5v1 � v2 � v3 � 2v4 � 60

v3 � v2

6
� 10 �

v1 � v4

3
�

v1

2

i3 � 10 � i1 � i2

3.3 Nodal Analysis with Voltage Sources 91

Find the node voltages in the circuit of Fig. 3.12. Example 3.4

Figure 3.12
For Example 3.4.

20 V

2 Ω 4 Ω

6 Ω

3 Ω

1 Ω

vx
3vx

+ − + −

10 A

1 4
32

+ −

3 Ω

6 Ω

2 Ω 4 Ω 1 Ω

(a)

i1

i2
i3 i4i5

v1
v2 v3 v4

vx+ −

(b)

+ −

+ −

20 V

3 Ω

6 Ω

i3

v1 v2 v3 v4

vx

Loop 1 Loop 2

Loop 3
3vx

+ + ++

− − − −

i1

i3

10 A

+ −

Figure 3.13
Applying: (a) KCL to the two supernodes, (b) KVL to the loops.
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We now apply KVL to the branches involving the voltage sources as
shown in Fig. 3.13(b). For loop 1,

(3.4.3)

For loop 2,

But so that

(3.4.4)

For loop 3,

But and Hence,

(3.4.5)

We need four node voltages, and and it requires only
four out of the five Eqs. (3.4.1) to (3.4.5) to find them. Although the fifth
equation is redundant, it can be used to check results. We can solve
Eqs. (3.4.1) to (3.4.4) directly using MATLAB. We can eliminate one
node voltage so that we solve three simultaneous equations instead of
four. From Eq. (3.4.3), Substituting this into Eqs. (3.4.1)
and (3.4.2), respectively, gives

(3.4.6)

and

(3.4.7)

Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as

Using Cramer’s rule gives

,

Thus, we arrive at the node voltages as

,

and We have not used Eq. (3.4.5); it can be
used to cross check results.

v2 � v1 � 20 � 6.667 V.

v4 �
¢4

¢
�

840

�18
� �46.67 V

v1 �
¢1

¢
�

�480

�18
� 26.67 V,  v3 �

¢3

¢
�

�3120

�18
� 173.33 V

¢4 � †
3 �1 0

6 �1 80

6 �5 40

† � 840¢3 � †
3 0 �2

6 80 �2

6 40 �16

† � �3120,

¢1 � †
0 �1 �2

80 �1 �2

40 �5 �16

† � �480¢ � †
3 �1 �2

6 �1 �2

6 �5 �16

† � �18,

£
3 �1 �2

6 �1 �2

6 �5 �16

§  £
v1

v3

v4

§ � £
0

80

40

§

6v1 � 5v3 � 16v4 � 40

6v1 � v3 � 2v4 � 80

v2 � v1 � 20.

v4,v1, v2, v3,

�2v1 � v2 � v3 � 2v4 � 20

vx � v1 � v4.6i3 � v3 � v2

vx � 3vx � 6i3 � 20 � 0

3v1 � v3 � 2v4 � 0

vx � v1 � v4

�v3 � 3vx � v4 � 0

�v1 � 20 � v2 � 0  1   v1 � v2 � 20

92 Chapter 3 Methods of Analysis
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A mesh is a loop which does not contain any other loops within it.

3.4 Mesh Analysis 93

Practice Problem 3.4

Figure 3.14
For Practice Prob. 3.4.

Find and in the circuit of Fig. 3.14 using nodal analysis.

Answer: v3 � 1.6305 V.v2 � �17.39 V,v1 � 7.608 V,

v3v1, v2,

2 Ω 4 Ω 3 Ω

6 Ω

i

v1
v2 v3

+−

5i

++ −−
25 V

Mesh Analysis
Mesh analysis provides another general procedure for analyzing cir-
cuits, using mesh currents as the circuit variables. Using mesh currents
instead of element currents as circuit variables is convenient and
reduces the number of equations that must be solved simultaneously.
Recall that a loop is a closed path with no node passed more than once.
A mesh is a loop that does not contain any other loop within it.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, while mesh analysis applies KVL to find unknown currents.
Mesh analysis is not quite as general as nodal analysis because it is
only applicable to a circuit that is planar. A planar circuit is one that
can be drawn in a plane with no branches crossing one another; oth-
erwise it is nonplanar. A circuit may have crossing branches and still
be planar if it can be redrawn such that it has no crossing branches.
For example, the circuit in Fig. 3.15(a) has two crossing branches, but
it can be redrawn as in Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a)
is planar. However, the circuit in Fig. 3.16 is nonplanar, because there
is no way to redraw it and avoid the branches crossing. Nonplanar cir-
cuits can be handled using nodal analysis, but they will not be con-
sidered in this text.

3.4

Mesh analysis is also known as loop
analysis or the mesh-current method.

(a)

1 A

(b)

1 A

1 Ω

1 Ω 3 Ω

2 Ω

4 Ω
5 Ω

8 Ω 7 Ω

6 Ω

2 Ω

4 Ω

7 Ω8 Ω

5 Ω 6 Ω 3 Ω

Figure 3.15
(a) A planar circuit with crossing branches,
(b) the same circuit redrawn with no cross-
ing branches.

Figure 3.16
A nonplanar circuit.

5 A

1 Ω

5 Ω
4 Ω

6 Ω

10 Ω

11 Ω
12 Ω

13 Ω

9 Ω
8 Ω

3 Ω

2 Ω7 Ω

To understand mesh analysis, we should first explain more about
what we mean by a mesh.
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Figure 3.17
A circuit with two meshes.

+
−

+
−

I1 R1 R2

R3

i1 i2

I2

I3

V1 V2

a b c

def

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currents and are assigned to meshes 1 and
2. Although a mesh current may be assigned to each mesh in an arbi-
trary direction, it is conventional to assume that each mesh current
flows clockwise.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

or

(3.13)

For mesh 2, applying KVL gives

or

(3.14)

Note in Eq. (3.13) that the coefficient of is the sum of the resistances
in the first mesh, while the coefficient of is the negative of the resis-
tance common to meshes 1 and 2. Now observe that the same is true
in Eq. (3.14). This can serve as a shortcut way of writing the mesh
equations. We will exploit this idea in Section 3.6.

i2

i1

�R3 i1 � (R2 � R3)i2 � �V2

R2 i2 � V2 � R3(i2 � i1) � 0

(R1 � R3) i1 � R3i2 � V1

�V1 � R1i1 � R3 (i1 � i2) � 0

i2i1

Steps to Determine Mesh Currents:

1. Assign mesh currents to the n meshes.
2. Apply KVL to each of the n meshes. Use Ohm’s law to

express the voltages in terms of the mesh currents.
3. Solve the resulting n simultaneous equations to get the mesh

currents.

i1, i2, p , in

The direction of the mesh current is
arbitrary—(clockwise or counterclock-
wise)—and does not affect the validity
of the solution.

Although path abcdefa is a loop and
not a mesh, KVL still holds. This is the
reason for loosely using the terms
loop analysis and mesh analysis to
mean the same thing.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find
the mesh currents in a given circuit.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next section, we will consider
circuits with current sources. In the mesh analysis of a circuit with n
meshes, we take the following three steps.

The shortcut way will not apply if one
mesh current is assumed clockwise
and the other assumed counter-
clockwise, although this is permissible.
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The third step is to solve for the mesh currents. Putting Eqs. (3.13)
and (3.14) in matrix form yields

(3.15)

which can be solved to obtain the mesh currents and We are at
liberty to use any technique for solving the simultaneous equations.
According to Eq. (2.12), if a circuit has n nodes, b branches, and l inde-
pendent loops or meshes, then Hence, l independent
simultaneous equations are required to solve the circuit using mesh
analysis.

Notice that the branch currents are different from the mesh cur-
rents unless the mesh is isolated. To distinguish between the two types
of currents, we use i for a mesh current and I for a branch current. The
current elements and are algebraic sums of the mesh currents.
It is evident from Fig. 3.17 that

(3.16)I1 � i1,  I2 � i2,  I3 � i1 � i2

I3I1, I2,

l � b � n � 1.

i2.i1

cR1 � R3 �R3

�R3 R2 � R3
d c i1

i2
d � c V1

�V2
d

3.4 Mesh Analysis 95

For the circuit in Fig. 3.18, find the branch currents and using
mesh analysis.

Solution:
We first obtain the mesh currents using KVL. For mesh 1,

or

(3.5.1)

For mesh 2,

or

(3.5.2)

■ METHOD 1 Using the substitution method, we substitute
Eq. (3.5.2) into Eq. (3.5.1), and write

From Eq. (3.5.2), Thus,

■ METHOD 2 To use Cramer’s rule, we cast Eqs. (3.5.1) and
(3.5.2) in matrix form as

c 3 �2

�1 2
d c i1

i2
d � c1

1
d

I1 � i1 � 1 A,  I2 � i2 � 1 A,  I3 � i1 � i2 � 0

i1 � 2i2 � 1 � 2 � 1 � 1 A.

6i2 � 3 � 2i2 � 1  1   i2 � 1 A

i1 � 2i2 � 1

6i2 � 4i2 � 10(i2 � i1) � 10 � 0

3i1 � 2i2 � 1

�15 � 5i1 � 10(i1 � i2) � 10 � 0

I3I1, I2, Example 3.5

Figure 3.18
For Example 3.5.

+
−

+
−

15 V

10 V

5 Ω 6 Ω

10 Ω

4 Ω

I1

i1

I2

i2

I3
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We obtain the determinants

Thus,

as before.

i1 �
¢1

¢
� 1 A,  i2 �

¢2

¢
� 1 A

¢2 � ` 3 1

�1 1
` � 3 � 1 � 4¢1 � `1 �2

1 2
` � 2 � 2 � 4,

¢ � ` 3 �2

�1 2
` � 6 � 2 � 4

96 Chapter 3 Methods of Analysis

Calculate the mesh currents and of the circuit of Fig. 3.19.

Answer: A, A.i2 � 0i1 � 2.5

i2i1Practice Problem 3.5

  45 V   30 V

2 Ω

4 Ω 3 Ω

12 Ω

9 Ω

i1
i2

+
−

+
−

Figure 3.19
For Practice Prob. 3.5.

Example 3.6

+
−

+
−

24 V

12 Ω

4 Ω

10 Ω 24 Ω

i1

i1

i3

i2

i2
Io

4Io

A

Figure 3.20
For Example 3.6.

Use mesh analysis to find the current in the circuit of Fig. 3.20.

Solution:
We apply KVL to the three meshes in turn. For mesh 1,

or

(3.6.1)

For mesh 2,

or

(3.6.2)

For mesh 3,

4Io � 12(i3 � i1) � 4(i3 � i2) � 0

�5i1 � 19i2 � 2i3 � 0

24i2 � 4 (i2 � i3) � 10 (i2 � i1) � 0

11i1 � 5i2 � 6i3 � 12

�24 � 10 (i1 � i2 ) � 12 (i1 � i3) � 0

Io
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But at node A, so that

or

(3.6.3)

In matrix form, Eqs. (3.6.1) to (3.6.3) become

We obtain the determinants as

We calculate the mesh currents using Cramer’s rule as

,

Thus, A.Io � i1 � i2 � 1.5

i3 �
¢3

¢
�

288

192
� 1.5 A

i1 �
¢1

¢
�

432

192
� 2.25 A,  i2 �

¢2

¢
�

144

192
� 0.75 A

 ¢3 �

�

�

�

  5  11 �5 12

�5 19 0

�1 �1 0

11 �5 12

�5 19 0

 5  

�

�

�

� 60 � 228 � 288

 ¢2 �

�

�

�

  5  11 12 �6

�5 0 �2

�1 0 2

11 12 �6

�5 0 �2

 5  

�

�

�

� 24 � 120 � 144

 ¢1 �

�

�

�

  5  12 �5 �6

0 19 �2

0 �1 2

12 �5 �6

0 19 �2

 5  

�

�

�

� 456 � 24 � 432

 � 418 � 30 � 10 � 114 � 22 � 50 � 192

 ¢ �

�

�

�

  5  11 �5 �6

�5 19 �2

�1 �1 2

11 �5 �6

�5 19 �2

 5 
�

�

�

£
11 �5 �6

�5 19 �2

�1 �1 2

§ £
i1
i2
i3

§ � £
12

0

0

§

�i1 � i2 � 2i3 � 0

4(i1 � i2) � 12(i3 � i1) � 4(i3 � i2) � 0

Io � i1 � i2,
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Using mesh analysis, find in the circuit of Fig. 3.21.

Answer: A.�4

IoPractice Problem 3.6

+
−

–
+16 V

4 Ω 8 Ω

2 Ω

6 Ω

i1 i2

i3

10io

Io

Figure 3.21
For Practice Prob. 3.6.

+
− 5 A10 V

4 Ω 3 Ω

6 Ωi1 i2

Figure 3.22
A circuit with a current source.

A supermesh results when two meshes have a (dependent or inde-
pendent) current source in common.

(b)

20 V 4 Ω

6 Ω 10 Ω

i1 i2+
−

+
−

6 A

20 V

6 Ω 10 Ω

2 Ω

4 Ω

i1

i1

i2

i2

0

(a)

Exclude these
elements

Figure 3.23
(a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current
source.

Mesh Analysis with Current Sources
Applying mesh analysis to circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

■ CASE 1 When a current source exists only in one mesh: Consider
the circuit in Fig. 3.22, for example. We set A and write a
mesh equation for the other mesh in the usual way; that is,

(3.17)

■ CASE 2 When a current source exists between two meshes: Con-
sider the circuit in Fig. 3.23(a), for example. We create a supermesh
by excluding the current source and any elements connected in series
with it, as shown in Fig. 3.23(b). Thus,

�10 � 4i1 � 6(i1 � i2) � 0  1   i1 � �2 A

i2 � �5

3.5

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in
advance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives

�20 � 6i1 � 10i2 � 4i2 � 0
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or

(3.18)

We apply KCL to a node in the branch where the two meshes inter-
sect. Applying KCL to node 0 in Fig. 3.23(a) gives

(3.19)

Solving Eqs. (3.18) and (3.19), we get

(3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh provides the constraint equa-
tion necessary to solve for the mesh currents.

2. A supermesh has no current of its own.
3. A supermesh requires the application of both KVL and KCL.

i1 � �3.2 A,  i2 � 2.8 A

i2 � i1 � 6

6i1 � 14i2 � 20

3.5 Mesh Analysis with Current Sources 99

For the circuit in Fig. 3.24, find to using mesh analysis.i4i1 Example 3.7

+
− 10 V6 Ω 8 Ω

2 Ω4 Ω

i1

i2 i3 i4

2 Ω

5 A

i1

i2

i2 i3

Io

P

Q

3Io

Figure 3.24
For Example 3.7.

Solution:
Note that meshes 1 and 2 form a supermesh since they have an
independent current source in common. Also, meshes 2 and 3 form
another supermesh because they have a dependent current source in
common. The two supermeshes intersect and form a larger supermesh
as shown. Applying KVL to the larger supermesh,

or

(3.7.1)

For the independent current source, we apply KCL to node P:

(3.7.2)

For the dependent current source, we apply KCL to node Q:

i2 � i3 � 3Io

i2 � i1 � 5

i1 � 3i2 � 6i3 � 4i4 � 0

2i1 � 4i3 � 8(i3 � i4) � 6i2 � 0
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But hence,

(3.7.3)

Applying KVL in mesh 4,

or

(3.7.4)

From Eqs. (3.7.1) to (3.7.4),

i1 � �7.5 A,  i2 � �2.5 A,  i3 � 3.93 A,  i4 � 2.143 A

5i4 � 4i3 � �5

2i4 � 8(i4 � i3) � 10 � 0

i2 � i3 � 3i4

Io � �i4,

100 Chapter 3 Methods of Analysis

Use mesh analysis to determine and in Fig. 3.25.

Answer: i1 � 4.632 A, i2 � 631.6 mA, i3 � 1.4736 A.

i3i1, i2,Practice Problem 3.7

+
− 4 A

8 V

1 Ω

2 Ω 2 Ω

8 Ω

4 Ωi1

i3

i2

Figure 3.25
For Practice Prob. 3.7.

I1

v1

G1 G3

G2

I2

v2

(a)

(b)

i1 i3V1 V2
+
−

+
−

R1 R2

R3

Figure 3.26
(a) The circuit in Fig. 3.2, (b) the circuit
in Fig. 3.17.

Nodal and Mesh Analyses 
by Inspection

This section presents a generalized procedure for nodal or mesh analy-
sis. It is a shortcut approach based on mere inspection of a circuit.

When all sources in a circuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage
equations as we did in Section 3.2. We can obtain the equations by
mere inspection of the circuit. As an example, let us reexamine the cir-
cuit in Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The
circuit has two nonreference nodes and the node equations were
derived in Section 3.2 as

(3.21)

Observe that each of the diagonal terms is the sum of the conductances
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the
currents entering the node.

In general, if a circuit with independent current sources has N non-
reference nodes, the node-voltage equations can be written in terms of
the conductances as

(3.22)≥
G11 G12 p G1N

G21 G22 p G2N

o o o o
GN1 GN2 p GNN

¥ ≥
v1

v2

o
vN

¥ � ≥
i1
i2
o

iN

¥

cG1 � G2 �G2

�G2 G2 � G3
d cv1

v2
d � c I1 � I2

I2
d

3.6
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or simply

(3.23)

where

Sum of the conductances connected to node k

Negative of the sum of the conductances directly
connecting nodes k and 

Unknown voltage at node k

Sum of all independent current sources directly connected
to node k, with currents entering the node treated as positive

G is called the conductance matrix; v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keep in mind that this is valid for circuits with only inde-
pendent current sources and linear resistors.

Similarly, we can obtain mesh-current equations by inspection
when a linear resistive circuit has only independent voltage sources.
Consider the circuit in Fig. 3.17, shown again in Fig. 3.26(b) for con-
venience. The circuit has two nonreference nodes and the node equa-
tions were derived in Section 3.4 as

(3.24)

We notice that each of the diagonal terms is the sum of the resistances
in the related mesh, while each of the off-diagonal terms is the nega-
tive of the resistance common to meshes 1 and 2. Each term on the
right-hand side of Eq. (3.24) is the algebraic sum taken clockwise of
all independent voltage sources in the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as

(3.25)

or simply

(3.26)

where

Sum of the resistances in mesh k

Negative of the sum of the resistances in common
with meshes k and 

Unknown mesh current for mesh k in the clockwise direction

Sum taken clockwise of all independent voltage sources in
mesh k, with voltage rise treated as positive

R is called the resistance matrix; i is the output vector; and v is
the input vector. We can solve Eq. (3.25) to obtain the unknown mesh
currents.

vk �

ik �

j, k � j
Rjk �Rkj �

Rkk �

Ri � v

≥
R11 R12 p R1N

R21 R22 p R2N

o o o o
RN1 RN2 p RNN

¥ ≥
i1
i2
o

iN

¥ � ≥
v1

v2

o
vN

¥

cR1 � R3 �R3

�R3 R2 � R3
d c i1

i2
d � c v1

�v2
d

ik �

vk �

j, k � j
Gjk �Gk j �

Gkk �

Gv � i
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102 Chapter 3 Methods of Analysis

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

Example 3.8

3 A 1 A 4 A

2 A

10 Ω

5 Ω

1 Ω

8 Ω 8 Ωv1 v2 v3 v4

4 Ω 2 Ω

Figure 3.27
For Example 3.8.

Solution:
The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. This implies that the size of the conductance matrix
G, is 4 by 4. The diagonal terms of G, in siemens, are

The off-diagonal terms are

The input current vector i has the following terms, in amperes:

Thus the node-voltage equations are

which can be solved using MATLAB to obtain the node voltages 
and v4.v3,

v1, v2,

≥
0.3 �0.2 0 0

�0.2 1.325 �0.125 �1

0 �0.125 0.5 �0.125

0 �1 �0.125 1.625

¥ ≥
v1

v2

v3

v4

¥ � ≥
3

�3

0

6

¥

i1 � 3,  i2 � �1 � 2 � �3,  i3 � 0,  i4 � 2 � 4 � 6

G41 � 0,  G42 � �1,  G43 � �0.125

G31 � 0,  G32 � �0.125,  G34 � �
1

8
� �0.125

G21 � �0.2,  G23 � �
1

8
� �0.125,  G24 � �

1

1
� �1

G12 � �
1

5
� �0.2,  G13 � G14 � 0

G33 �
1

8
�

1

8
�

1

4
� 0.5,  G44 �

1

8
�

1

2
�

1

1
� 1.625

G11 �
1

5
�

1

10
� 0.3,  G22 �

1

5
�

1

8
�

1

1
� 1.325
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3.6 Nodal and Mesh Analyses by Inspection 103

By inspection, obtain the node-voltage equations for the circuit in
Fig. 3.28.

Answer:

≥
1.25 �0.2 �1 0

�0.2 0.2 0 0

�1 0 1.25 �0.25

0 0 �0.25 1.25

¥ ≥
v1

v2

v3

v4

¥ � ≥
0

5

�3

2

¥

Practice Problem 3.8

By inspection, write the mesh-current equations for the circuit in Fig. 3.29. Example 3.9

+
−

+ −

+
−

+
−10 V

4 V

2 Ω

2 Ω

5 Ω

2 Ω

4 Ω

3 Ω

3 Ω

1 Ω 1 Ω

4 Ω

i1

i2

i3

i4 i5 6 V
12 V

Figure 3.29
For Example 3.9.

Solution:
We have five meshes, so the resistance matrix is 5 by 5. The diagonal
terms, in ohms, are:

,

The off-diagonal terms are:

,

,

,

,

The input voltage vector v has the following terms in volts:

,

v3 � �12 � 6 � �6,  v4 � 0,  v5 � �6

v1 � 4,  v2 � 10 � 4 � 6

R51 � 0,  R52 � �1,  R53 � 0,  R54 � �3

R41 � 0,  R42 � �1,  R43 � 0,  R45 � �3

R31 � �2,  R32 � �4,  R34 � 0 � R35

R21 � �2,  R23 � �4,  R24 � �1,  R25 � �1

R12 � �2,  R13 � �2,  R14 � 0 � R15

R33 � 2 � 3 � 4 � 9,  R44 � 1 � 3 � 4 � 8,  R55 � 1 � 3 � 4

R11 � 5 � 2 � 2 � 9,  R22 � 2 � 4 � 1 � 1 � 2 � 10

Figure 3.28
For Practice Prob. 3.8.

3 A

2 A

2 A

20 Ω

1 Ω

5 Ω

4 Ω

1 Ωv1 v2

v3 v4
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Thus, the mesh-current equations are:

From this, we can use MATLAB to obtain mesh currents 
and i5.

i1, i2, i3, i4,

� E 4

6

�6

0

�6

UEi1i2i3
i4
i5

UE 9 �2 �2 0 0

�2 10 �4 �1 �1

�2 �4 9 0 0

0 �1 0 8 �3

0 �1 0 �3 4

U
104 Chapter 3 Methods of Analysis

+
−

+
−

30 V

12 V

20 V

50 Ω

20 Ω

i1

i2 i3

i4 i5

15 Ω

30 Ω

20 Ω

60 Ω80 Ω

+
−

Figure 3.30
For Practice Prob. 3.9.

By inspection, obtain the mesh-current equations for the circuit in
Fig. 3.30.

Practice Problem 3.9

Answer:

� E 30

0

�12

20

�20

UEi1i2i3
i4
i5

UE 150 �40 0 �80 0

�40 65 �30 �15 0

0 �30 50 0 �20

�80 �15 0 95 0

0 0 �20 0 80

U

Nodal Versus Mesh Analysis
Both nodal and mesh analyses provide a systematic way of analyzing
a complex network. Someone may ask: Given a network to be ana-
lyzed, how do we know which method is better or more efficient? The
choice of the better method is dictated by two factors.

3.7
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The first factor is the nature of the particular network. Networks
that contain many series-connected elements, voltage sources, or super-
meshes are more suitable for mesh analysis, whereas networks with
parallel-connected elements, current sources, or supernodes are more
suitable for nodal analysis. Also, a circuit with fewer nodes than
meshes is better analyzed using nodal analysis, while a circuit with
fewer meshes than nodes is better analyzed using mesh analysis. The
key is to select the method that results in the smaller number of
equations.

The second factor is the information required. If node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

It is helpful to be familiar with both methods of analysis, for at
least two reasons. First, one method can be used to check the results
from the other method, if possible. Second, since each method has its
limitations, only one method may be suitable for a particular problem.
For example, mesh analysis is the only method to use in analyzing tran-
sistor circuits, as we shall see in Section 3.9. But mesh analysis can-
not easily be used to solve an op amp circuit, as we shall see in Chapter 5,
because there is no direct way to obtain the voltage across the op amp
itself. For nonplanar networks, nodal analysis is the only option,
because mesh analysis only applies to planar networks. Also, nodal
analysis is more amenable to solution by computer, as it is easy to pro-
gram. This allows one to analyze complicated circuits that defy hand
calculation. A computer software package based on nodal analysis is
introduced next.

Circuit Analysis with PSpice
PSpice is a computer software circuit analysis program that we will
gradually learn to use throughout the course of this text. This section
illustrates how to use PSpice for Windows to analyze the dc circuits we
have studied so far.

The reader is expected to review Sections D.1 through D.3 of
Appendix D before proceeding in this section. It should be noted that
PSpice is only helpful in determining branch voltages and currents
when the numerical values of all the circuit components are known.

3.8

3.8 Circuit Analysis with PSpice 105

Appendix D provides a tutorial on
using PSpice for Windows.

Use PSpice to find the node voltages in the circuit of Fig. 3.31.

Solution:
The first step is to draw the given circuit using Schematics. If one
follows the instructions given in Appendix sections D.2 and D.3, the
schematic in Fig. 3.32 is produced. Since this is a dc analysis, we use
voltage source VDC and current source IDC. The pseudocomponent
VIEWPOINTS are added to display the required node voltages. Once
the circuit is drawn and saved as exam310.sch, we run PSpice by
selecting Analysis/Simulate. The circuit is simulated and the results

Example 3.10

+
− 3 A120 V

20 Ω

30 Ω 40 Ω

10 Ω1 2 3

0

Figure 3.31
For Example 3.10.
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106 Chapter 3 Methods of Analysis

are displayed on VIEWPOINTS and also saved in output file
exam310.out. The output file includes the following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 120.0000 (2) 81.2900 (3) 89.0320

indicating that V3 � 89.032 V.V2 � 81.29 V,V1 � 120 V,

+

−

R1 R3

20 10

120 V V1 R2 R430 40 I1 3 A

IDC

0

1 2 3
120.0000 81.2900 89.0320

Figure 3.32
For Example 3.10; the schematic of the circuit in Fig. 3.31.

For the circuit in Fig. 3.33, use PSpice to find the node voltages.Practice Problem 3.10

+
−

500 mA

50 V30 Ω 60 Ω 50 Ω

100 Ω

25 Ω

1 2 3

0

Figure 3.33
For Practice Prob. 3.10.

Answer: V3 � 50 V.V2 � 14.286 V,V1 � �10 V,

In the circuit of Fig. 3.34, determine the currents and i3.i1, i2,Example 3.11

+
−

+−

24 V

1 Ω

i1 i2 i3
+

−

4 Ω 2 Ω

2 Ω 8 Ω 4 Ω

3vo

vo

Figure 3.34
For Example 3.11.
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3.9 Applications: DC Transistor Circuits 107

Solution:
The schematic is shown in Fig. 3.35. (The schematic in Fig. 3.35
includes the output results, implying that it is the schematic displayed
on the screen after the simulation.) Notice that the voltage-controlled
voltage source E1 in Fig. 3.35 is connected so that its input is the
voltage across the 4- resistor; its gain is set equal to 3. In order to
display the required currents, we insert pseudocomponent IPROBES in
the appropriate branches. The schematic is saved as exam311.sch and
simulated by selecting Analysis/Simulate. The results are displayed on
IPROBES as shown in Fig. 3.35 and saved in output file exam311.out.
From the output file or the IPROBES, we obtain A and

A.i3 � 2.667
i1 � i2 � 1.333

�

+

−
24 V V1

R1

4

R2 2 R3 8 R4 4

1.333E + 00 1.333E + 00 2.667E + 00

0

R6

1

R5

2

E E1

+−
− +

Figure 3.35
The schematic of the circuit in Fig. 3.34.

Use PSpice to determine currents and in the circuit of Fig. 3.36.

Answer: mA, A, A.i3 � 2i2 � 2.286i1 � �428.6

i3i1, i2, Practice Problem 3.11

+
−

2 A

10 V

2 Ω

i1

i1

i2

4 Ω

1 Ω 2 Ω

i3

Figure 3.36
For Practice Prob. 3.11.

Applications: DC Transistor Circuits
Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for
the integrated circuits found in these electronics and computers is the
active, three-terminal device known as the transistor. Understanding
the transistor is essential before an engineer can start an electronic cir-
cuit design.

Figure 3.37 depicts various kinds of transistors commercially avail-
able. There are two basic types of transistors: bipolar junction transis-
tors (BJTs) and field-effect transistors (FETs). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective is to present enough detail about the BJT to enable us to apply
the techniques developed in this chapter to analyze dc transistor circuits.

3.9
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108 Chapter 3 Methods of Analysis

William Schockley (1910–1989), John Bardeen (1908–1991), and
Walter Brattain (1902–1987) co-invented the transistor.

Nothing has had a greater impact on the transition from the “Indus-
trial Age” to the “Age of the Engineer” than the transistor. I am sure
that Dr. Shockley, Dr. Bardeen, and Dr. Brattain had no idea they would
have this incredible effect on our history. While working at Bell Lab-
oratories, they successfully demonstrated the point-contact transistor,
invented by Bardeen and Brattain in 1947, and the junction transistor,
which Shockley conceived in 1948 and successfully produced in 1951.

It is interesting to note that the idea of the field-effect transistor,
the most commonly used one today, was first conceived in 1925–1928
by J. E. Lilienfeld, a German immigrant to the United States. This is
evident from his patents of what appears to be a field-effect transistor.
Unfortunately, the technology to realize this device had to wait until
1954 when Shockley’s field-effect transistor became a reality. Just think
what today would be like if we had this transistor 30 years earlier!

For their contributions to the creation of the transistor, Dr. Shockley,
Dr. Bardeen, and Dr. Brattain received, in 1956, the Nobel Prize in
physics. It should be noted that Dr. Bardeen is the only individual to
win two Nobel prizes in physics; the second came later for work in
superconductivity at the University of Illinois.

Historical

Figure 3.37
Various types of transistors.
(Courtesy of Tech America.)

n

n

pBase

Collector

Emitter E

B

C

(a)

p

p

nBase

Collector

Emitter E

B

C

(b)

Figure 3.38
Two types of BJTs and their circuit
symbols: (a) npn, (b) pnp.

There are two types of BJTs: npn and pnp, with their circuit sym-
bols as shown in Fig. 3.38. Each type has three terminals, designated
as emitter (E), base (B), and collector (C). For the npn transistor, the
currents and voltages of the transistor are specified as in Fig. 3.39.
Applying KCL to Fig. 3.39(a) gives

(3.27)IE � IB � IC

Courtesy of Lucent
Technologies/Bell Labs
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3.9 Applications: DC Transistor Circuits 109

where and are emitter, collector, and base currents, respec-
tively. Similarly, applying KVL to Fig. 3.39(b) gives

(3.28)

where and are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes: active,
cutoff, and saturation. When transistors operate in the active mode, typ-
ically 

(3.29)

where is called the common-base current gain. In Eq. (3.29), 
denotes the fraction of electrons injected by the emitter that are col-

lected by the collector. Also,

(3.30)

where is known as the common-emitter current gain. The and 
are characteristic properties of a given transistor and assume constant
values for that transistor. Typically, takes values in the range of 0.98 to
0.999, while takes values in the range of 50 to 1000. From Eqs. (3.27)
to (3.30), it is evident that

(3.31)

and

(3.32)

These equations show that, in the active mode, the BJT can be modeled
as a dependent current-controlled current source. Thus, in circuit analy-
sis, the dc equivalent model in Fig. 3.40(b) may be used to replace the
npn transistor in Fig. 3.40(a). Since in Eq. (3.32) is large, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

b

b �
a

1 � a

IE � (1 � b)IB

b

a

bab

IC � bIB

a

a

IC � a IE

VBE � 0.7 V,

VBCVCE, VEB,

VCE � VEB � VBC � 0

IBIE, IC,

B

C

E

+
+

+

−

−−

VCB

VCE

VBE

B

C

E

IB

IC

IE

(a)

(b)

Figure 3.39
The terminal variables of an npn transistor:
(a) currents, (b) voltages.

B C

E

IB IC

VBE

VCE

+

−

+

−

B

C

E

IB

(a) (b)

VBE

VCE

+

+

−
−

�IB

Figure 3.40
(a) An npn transistor, (b) its dc equivalent model.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when the
transistor is replaced by its equivalent model can we apply nodal analysis.

In fact, transistor circuits provide moti-
vation to study dependent sources.
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Example 3.12

IC

+

−

+

+

−
−

+

−
4 V

6 V

20 kΩ IB

VBE

vo

Output
loopInput

loop

100 Ω

Figure 3.41
For Example 3.12.

Find and in the transistor circuit of Fig. 3.41. Assume that
the transistor operates in the active mode and that b � 50.

voIB, IC,

Solution:
For the input loop, KVL gives

Since V in the active mode,

But

For the output loop, KVL gives

or

Note that in this case.vo � VCE

vo � 6 � 100IC � 6 � 0.825 � 5.175 V

�vo � 100IC � 6 � 0

IC � b IB � 50 	 165 mA � 8.25 mA

IB �
4 � 0.7

20 	 103 � 165 mA

VBE � 0.7

�4 � IB (20 	 103) � VBE � 0

For the transistor circuit in Fig. 3.42, let and 
Determine and 

Answer: 2.876 V, 1.984 V.

VCE.vo

VBE � 0.7 V.b � 100Practice Problem 3.12

+

−

+

+

+

−

−

−
+

−
5 V

12 V
10 kΩ

500 Ω

VBE

VCE

200 Ω vo

Figure 3.42
For Practice Prob. 3.12.
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3.9 Applications: DC Transistor Circuits 111

For the BJT circuit in Fig. 3.43, and . Find 

Solution:

1. Define. The circuit is clearly defined and the problem is clearly
stated. There appear to be no additional questions that need to
be asked.

2. Present. We are to determine the output voltage of the circuit
shown in Fig. 3.43. The circuit contains an ideal transistor with

and 
3. Alternative. We can use mesh analysis to solve for We can

replace the transistor with its equivalent circuit and use nodal
analysis. We can try both approaches and use them to check
each other. As a third check, we can use the equivalent circuit
and solve it using PSpice.

4. Attempt.

■ METHOD 1 Working with Fig. 3.44(a), we start with the first loop.

or
(3.13.1)

3I1 � 2I2 � 2 	 10�5�2 � 100kI1 � 200k(I1 � I2) � 0

vo.
VBE � 0.7 V.b � 150

vo.VBE � 0.7 Vb � 150 Example 3.13

2 V

100 kΩ

+

−

+

−
16 V

200 kΩ

1 kΩ

+

−

vo

Figure 3.43
For Example 3.13.

Figure 3.44
Solution of the problem in Example 3.13: (a) Method 1, (b) Method 2, 
(c) Method 3.

+

−

vo

+

−

1 kΩ

100 kΩ

200 kΩ2 V

16 V

2 V

I1 I2

IBV1

I3

(a)

(b)

+

−

+

−
0.7 V

100 kΩ

200 kΩ

1 kΩ

vo

150IB +

−

(c)

R1

100k

+

−
2 V 0.7 VR2 200k

700.00mV 14.58 V

+

−

R3

1k

F1

F

+

−

+

−
16 V

+

−
16 V
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112 Chapter 3 Methods of Analysis

Now for loop 2.

(3.13.2)

Since we have two equations and two unknowns, we can solve for 
and . Adding Eq. (3.13.1) to (3.13.2) we get;

Since , we can now solve for using loop 3:

■ METHOD 2 Replacing the transistor with its equivalent circuit
produces the circuit shown in Fig. 3.44(b). We can now use nodal
analysis to solve for 

At node number 1: 

At node number 2 we have:

5. Evaluate. The answers check, but to further check we can use
PSpice (Method 3), which gives us the solution shown in 
Fig. 3.44(c).

6. Satisfactory? Clearly, we have obtained the desired answer with
a very high confidence level. We can now present our work as a
solution to the problem.

vo � 16 � 150 	 103 	 9.5 	 10�6 � 14.575 V
150IB � (vo � 16)�1k � 0  or

(0.7 � 2)�100k � 0.7�200k � IB � 0  or  IB � 9.5 mA

V1 � 0.7 V

vo.

�vo � 1kI3 � 16 � 0  or  vo � �1.425 � 16 � 14.575 V

voI3 � �150I2 � �1.425 mA

I1 � 1.3 	 10�5A   and  I2 � (�0.7 � 2.6)10�5�2 � 9.5 mA

I2

I1

200k(I2 � I1) � VBE � 0  or  �2I1 � 2I2 � �0.7 	 10�5

Practice Problem 3.13

Figure 3.45
For Practice Prob. 3.13.

1 V

20 V
120 kΩ

10 kΩ

10 kΩ

+

−

Io

VBE

+

−

vo

+

−

+

−

The transistor circuit in Fig. 3.45 has and V. Find 
and .

Answer: V, 600 m A.12

Io

voVBE � 0.7b � 80

Summary
1. Nodal analysis is the application of Kirchhoff’s current law at the

nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages. Solv-
ing the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysis is the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.

3.10
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Review Questions 113

4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.

5. Nodal analysis is normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis is normally used
when a circuit has fewer mesh equations than node equations.

6. Circuit analysis can be carried out using PSpice.
7. DC transistor circuits can be analyzed using the techniques cov-

ered in this chapter.

3.2 In the circuit of Fig. 3.46, applying KCL at node 2
gives:

(a) 

(b) 

(c) 

(d) 
v2 � v1

4
�

v2 � 12

8
�

v2

6

v1 � v2

4
�

12 � v2

8
�

v2

6

v1 � v2

4
�

v2

8
�

v2

6

v2 � v1

4
�

v2

8
�

v2

6

3.3 For the circuit in Fig. 3.47, and are related as:

(a) (b) 

(c) (d) v1 � �6i � 8 � v2v1 � �6i � 8 � v2

v1 � 6i � 8 � v2v1 � 6i � 8 � v2

v2v1

Review Questions

3.1 At node 1 in the circuit of Fig. 3.46, applying KCL
gives:

(a) 

(b) 

(c) 

(d) 2 �
v1 � 12

3
�

0 � v1

6
�

v2 � v1

4

2 �
12 � v1

3
�

0 � v1

6
�

v1 � v2

4

2 �
v1 � 12

3
�

v1

6
�

v2 � v1

4

2 �
12 � v1

3
�

v1

6
�

v1 � v2

4

2 A

v1

1 2
v2

12 V +
−

3 Ω 4 Ω

6 Ω 6 Ω

8 Ω

Figure 3.46
For Review Questions 3.1 and 3.2.

10 V +
− 6 V+

−

4 Ω

i

2 Ω
Figure 3.48
For Review Questions 3.5 and 3.6.

12 V +
− 4 Ω

6 Ω 8 V v2v1

i

+ −

Figure 3.47
For Review Questions 3.3 and 3.4.

3.4 In the circuit of Fig. 3.47, the voltage is:

(a) V (b) V

(c) 1.6 V (d) 8 V

3.5 The current i in the circuit of Fig. 3.48 is:

(a) A (b) A

(c) 0.667 A (d) 2.667 A

�0.667�2.667

�1.6�8

v2

3.6 The loop equation for the circuit in Fig. 3.48 is:

(a) 

(b) 

(c) 

(d) �10 � 4i � 6 � 2i � 0

10 � 4i � 6 � 2i � 0

10 � 4i � 6 � 2i � 0

�10 � 4i � 6 � 2i � 0
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114 Chapter 3 Methods of Analysis

Problems

Sections 3.2 and 3.3 Nodal Analysis

3.1 Using Fig. 3.50, design a problem to help other
students better understand nodal analysis.

3.3 Find the currents through and the voltage in
the circuit of Fig. 3.52.

voI4I1

9 V12 V

R1 R2

R3
+
−

+
−

Ix

Figure 3.50
For Prob. 3.1 and Prob. 3.39.

3.2 For the circuit in Fig. 3.51, obtain and .v2v1

Figure 3.51
For Prob. 3.2.

Figure 3.52
For Prob. 3.3.

Figure 3.53
For Prob. 3.4.

3 A

6 A

5 Ω10 Ω

2 Ω

v1 v2

4 Ω

8 A 20 A 60 Ω30 Ω20 Ω10 Ω

I1 I2 I3 I4

vo

6 A 2 A

3 A

40 Ω40 Ω10 Ω20 Ω

i1 i2 i3 i4

3.7 In the circuit of Fig. 3.49, current is:

(a) 4 A (b) 3 A (c) 2 A (d) 1 A

i1 3.9 The PSpice part name for a current-controlled
voltage source is:

(a) EX (b) FX (c) HX (d) GX

3.10 Which of the following statements are not true of the
pseudocomponent IPROBE:

(a) It must be connected in series.

(b) It plots the branch current.

(c) It displays the current through the branch in
which it is connected.

(d) It can be used to display voltage by connecting it
in parallel.

(e) It is used only for dc analysis.

(f) It does not correspond to a particular circuit
element.

Answers: 3.1a, 3.2c, 3.3a, 3.4c, 3.5c, 3.6a, 3.7d, 3.8b,
3.9c, 3.10b,d.

i1 i22 A20 V +
−

2 Ω 1 Ω

3 Ω 4 Ω

v
+

−

Figure 3.49
For Review Questions 3.7 and 3.8.

3.8 The voltage v across the current source in the circuit
of Fig. 3.49 is:

(a) 20 V (b) 15 V (c) 10 V (d) 5 V

3.4 Given the circuit in Fig. 3.53, calculate the currents
through .i4i1
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Problems 115

Figure 3.54
For Prob. 3.5.

Figure 3.55
For Prob. 3.6.

3.6 Solve for in the circuit of Fig. 3.55 using nodal
analysis.

V1

30 V +
−

2 kΩ

20 V +
−

5 kΩ
4 kΩ vo

+

−

10 Ω10 V 20 V+
−

+
−

10 Ω

5 Ω

4 Ω

V1

+

−

10 Ω2 A 0.2Vx20 ΩVx

+

−

Figure 3.56
For Prob. 3.7.

3.5 Obtain in the circuit of Fig. 3.54.vo

3.7 Apply nodal analysis to solve for in the circuit of
Fig. 3.56.

Vx

3.8 Using nodal analysis, find in the circuit of Fig. 3.57.vo

Figure 3.57
For Prob. 3.8 and Prob. 3.37.

60 V

5vo4 Ωvo

+

− 20 Ω

6 Ω 20 Ω

+
−

+
−

3.9 Determine in the circuit in Fig. 3.58 using nodal
analysis.

Ib

Figure 3.58
For Prob. 3.9.

24 V +
− 50 Ω 150 Ω

60Ib250 Ω
+ −

Ib

3.10 Find in the circuit of Fig. 3.59.Io

Figure 3.59
For Prob. 3.10.

3.11 Find and the power dissipated in all the resistors
in the circuit of Fig. 3.60.

Vo

Figure 3.60
For Prob. 3.11.

2 Ω 4 Ω8 Ω

1 Ω

4 A 2 Io

Io

60 V +
−

−
+12 Ω 24 V

12 Ω Vo
6 Ω

3.12 Using nodal analysis, determine in the circuit in
Fig. 3.61.

Vo

Figure 3.61
For Prob. 3.12.

20 Ω 10 Ω

20 Ω 10 Ω

40 V +
− 4 Ix

Ix

Vo

+

−
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3.13 Calculate and in the circuit of Fig. 3.62 using
nodal analysis.

v2v1

Figure 3.62
For Prob. 3.13.

3.14 Using nodal analysis, find in the circuit of Fig. 3.63.vo

Figure 3.63
For Prob. 3.14.

3.15 Apply nodal analysis to find and the power
dissipated in each resistor in the circuit of Fig. 3.64.

io

Figure 3.64
For Prob. 3.15.

116 Chapter 3 Methods of Analysis

8 Ω 4 Ω 15 A

2 Ω 10 V v2v1
+ −

2 Ω

12.5 A

8 Ω

+
−

+
−4 Ω 50 Vvo

+

−

1 Ω

100 V

5 S6 S

2 A

io

4 A

3 S10 V

+ −

3.16 Determine voltages through in the circuit of
Fig. 3.65 using nodal analysis.

v3v1

Figure 3.65
For Prob. 3.16.

3.17 Using nodal analysis, find current in the circuit of
Fig. 3.66.

io

Figure 3.66
For Prob. 3.17.

3.18 Determine the node voltages in the circuit in Fig. 3.67
using nodal analysis.

Figure 3.67
For Prob. 3.18.

Figure 3.68
For Prob. 3.19.

1 S 13 V

2 S

v1 v2

2vo

v3

8 S

2 A 4 Svo

+

−
+
−

+ −

60 V

io

3io

10 Ω
8 Ω

2 Ω

+
−

4 Ω

15 A

2
31

2 Ω2 Ω

30 V

+−

8 Ω4 Ω

4 Ω 2 Ω

4 Ω

2 Ω

3 A

12 V

8 Ω

8 Ωv1
v2

v3

5 A

+
–

3.19 Use nodal analysis to find , , and in the circuit
of Fig. 3.68.

v3v2v1
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Problems 117

3.20 For the circuit in Fig. 3.69, find and using
nodal analysis.

v3v2,v1,

Figure 3.69
For Prob. 3.20.

3.21 For the circuit in Fig. 3.70, find and using
nodal analysis.

v2v1

Figure 3.70
For Prob. 3.21.

3 mA

v2v1

2 kΩ

4 kΩ

1 kΩ vo

3vo

+

−

+−

3.22 Determine and in the circuit of Fig. 3.71.v2v1

Figure 3.71
For Prob. 3.22.

3 A
v2

5vo

v1

8 Ω

1 Ω
4 Ω12 V

2 Ω

vo

+
−

–
+

+ −

3.23 Use nodal analysis to find in the circuit of Fig. 3.72.Vo

Figure 3.72
For Prob. 3.23.

+
− 3 A30 V

1 Ω

2 Ω 16 Ω

4 Ω
2Vo

+ −

Vo

+

−

3.24 Use nodal analysis and MATLAB to find in the
circuit of Fig. 3.73.

Vo

Figure 3.73
For Prob. 3.24.

3.25 Use nodal analysis along with MATLAB to determine
the node voltages in Fig. 3.74.

4 Ω

2 Ω1 Ω 2 Ω

2 A 4 A

8 Ω

1 Ω

Vo+ −

8 Ω4 A 20 Ω

10 Ω
10 Ω1 Ω

20 Ω

30 Ω
v3v1

v2

v4

Figure 3.74
For Prob. 3.25.

3.26 Calculate the node voltages , , and in the
circuit of Fig. 3.75.

v3v2v1

Figure 3.75
For Prob. 3.26.

+
− +

−

3 A

15 V 10 V

5 Ω 5 Ω

10 Ω

5 Ω20 Ω 15 Ω

io

4io

v2v1 v3

+
−

2 Ω

1 Ω

i

4 Ω 4 Ω

v3
2i

–+

12 V

v2v1

+ –
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118 Chapter 3 Methods of Analysis

*3.27 Use nodal analysis to determine voltages , , and
in the circuit of Fig. 3.76.v3

v2v1

Figure 3.76
For Prob. 3.27.

*3.28 Use MATLAB to find the voltages at nodes a, b, c,
and d in the circuit of Fig. 3.77.

Figure 3.77
For Prob. 3.28.

2 S2 A 4 S 2 S 4 A

io

1 S

4 S

1 Sv1

3io

v2 v3

10 Ω

60 V

5 Ω

16 Ω
4 Ω

4 Ω

8 Ω20 Ω

8 Ω

90 V

b

c

a

d

+
−+

−

* An asterisk indicates a challenging problem.

3.29 Use MATLAB to solve for the node voltages in the
circuit of Fig. 3.78.

Figure 3.78
For Prob. 3.29.

Figure 3.81
For Prob. 3.32.

3.30 Using nodal analysis, find and in the circuit of
Fig. 3.79.

iovo

Figure 3.79
For Prob. 3.30.

3.31 Find the node voltages for the circuit in Fig. 3.80.

Figure 3.80
For Prob. 3.31.

5 A

V1 V3

V4

V21 S 4 S

2 A
1 S 1 S

2 S 2 S 6 A

3 S

+
−80 V 80 Ω vo

+

−

10 Ω 20 Ω

40 Ω 96 V

+
− 2io4vo

+−

io

4 Ω1 A 1 Ω 4 Ω 10 V

Io

1 Ω

2 Ωv1

2vo4Io
v2 v3

+
−

vo

+−

+ −

10 kΩ4 mA

5 kΩ

v1

20 V10 V v2 v3

12 V+
−

+− + −

3.32 Obtain the node voltages , and in the circuit
of Fig. 3.81.

v3v1, v2
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Sections 3.4 and 3.5 Mesh Analysis

3.33 Which of the circuits in Fig. 3.82 is planar? For the
planar circuit, redraw the circuits with no crossing
branches.

Figure 3.82
For Prob. 3.33.

3.34 Determine which of the circuits in Fig. 3.83 is planar
and redraw it with no crossing branches.

2 Ω

6 Ω

5 Ω

2 A

(a)

4 Ω
3 Ω

1 Ω

(b)

12 V +
− 2 Ω

3 Ω

5 Ω
4 Ω

1 Ω

10 V +
−

3 Ω

5 Ω

2 Ω

7 Ω

4 Ω

(a)

1 Ω

6 Ω

7 Ω

6 Ω1 Ω 3 Ω

4 A

(b)

8 Ω

2 Ω

5 Ω 4 Ω

Figure 3.83
For Prob. 3.34.

12 V

4 Ω

6 Ω 2 Ω

10 V

+
−

i2i1 i3
+ –

Figure 3.84
For Prob. 3.36.

3.35 Rework Prob. 3.5 using mesh analysis.

3.36 Use mesh analysis to obtain i1, i2, and i3 in the
circuit in Fig. 3.84.

Figure 3.85
For Prob. 3.38.

1 Ω

5 A

1 Ω

2 Ω 2 Ω

22.5 

10 A60 V 1 Ω

Io

4 Ω

4 Ω 3 Ω

+
−

+
−

3.39 Using Fig. 3.50 from Prob. 3.1, design a problem to
help other students better understand mesh analysis.

3.37 Solve Prob. 3.8 using mesh analysis.

3.38 Apply mesh analysis to the circuit in Fig. 3.85 and
obtain Io.
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3.43 Use mesh analysis to find and in the circuit of
Fig. 3.89.

iovab

120 Chapter 3 Methods of Analysis

Figure 3.86
For Prob. 3.40.

3.41 Apply mesh analysis to find i in Fig. 3.87.

Figure 3.87
For Prob. 3.41.

56 V +
−

2 kΩ

2 kΩ

6 kΩ 6 kΩ

4 kΩ4 kΩ

io

+
−

+ −

10 Ω

2 Ω

5 Ω
1 Ω

8 V

6 V
i1

i2 i3

i

4 Ω

3.42 Using Fig. 3.88, design a problem to help students
better understand mesh analysis using matrices.

Figure 3.88
For Prob. 3.42.

20 Ω 30 Ω 10 Ω

V3

V2

V1
40 Ω30 Ωi1

i2

i3 +
–

+ –

–
+

Figure 3.89
For Prob. 3.43.

3.44 Use mesh analysis to obtain in the circuit of 
Fig. 3.90.

io

Figure 3.90
For Prob. 3.44.

3.45 Find current i in the circuit of Fig. 3.91.

Figure 3.91
For Prob. 3.45.

3.46 Calculate the mesh currents i1 and i2 in Fig. 3.92.

+
−

20 Ω

20 Ω
30 Ω

30 Ω

20 Ω

80 V

+
−80 V

30 Ω vab

+

−

io

45 A

180 V+
−

4 Ωio 1 Ω

90 V

2 Ω

5 Ω

+ −

4 A

30 V

i
+
− 3 Ω 1 Ω

2 Ω 6 Ω

4 Ω 8 Ω

Figure 3.92
For Prob. 3.46.

i1 i212 V +
− 8 Ω

6 Ω3 Ω

2vo
+
−

+ −vo

3.40 For the bridge network in Fig. 3.86, find using
mesh analysis.

io

3.47 Rework Prob. 3.19 using mesh analysis.
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Problems 121

3.48 Determine the current through the 10-k resistor in
the circuit of Fig. 3.93 using mesh analysis.

�

Figure 3.93
For Prob. 3.48.

3.49 Find and in the circuit of Fig. 3.94.iovo

Figure 3.94
For Prob. 3.49.

3.50 Use mesh analysis to find the current in the circuit
of Fig. 3.95.

io

Figure 3.95
For Prob. 3.50.

6 V

4 V

3 V
10 kΩ

1 kΩ

4 kΩ 2 kΩ 5 kΩ

3 kΩ

+
− +

−

+
−

27 V2io

3 Ω

1 Ω 2 Ω

2 Ω +
−

io

vo

3.51 Apply mesh analysis to find in the circuit of
Fig. 3.96.

vo

Figure 3.96
For Prob. 3.51.

3.52 Use mesh analysis to find and in the circuit
of Fig. 3.97.

i3i2,i1,

Figure 3.97
For Prob. 3.52.

3.53 Find the mesh currents in the circuit of Fig. 3.98
using MATLAB.

Figure 3.98
For Prob. 3.53.

20 V

5 A

2 Ω 8 Ω

1 Ω

40 V

vo

+
−

+
−4 Ω

12 V +−

8 Ω

4 Ω +
−

2 Ωvo

2vo

i2

i3

i1

3 A

+

−

2 kΩ

I5

6 kΩ 8 kΩ

8 kΩ

3 kΩ

I3 I4

1 kΩ 4 kΩ

12 V +
− I2I1

3 mA

3io

10 Ω
4 Ω

35 V +
−

io

8 Ω

2 Ω
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3.58 Find and in the circuit of Fig. 3.103.i3i2,i1,

Figure 3.103
For Prob. 3.58.

3.59 Rework Prob. 3.30 using mesh analysis.

3.60 Calculate the power dissipated in each resistor in the
circuit of Fig. 3.104.

Figure 3.104
For Prob. 3.60.

3.61 Calculate the current gain in the circuit of
Fig. 3.105.

io�is

Figure 3.105
For Prob. 3.61.

3.62 Find the mesh currents and in the network of
Fig. 3.106.

i3i2,i1,

3.54 Find the mesh currents i1, i2, and i3 in the circuit in
Fig. 3.99.

Figure 3.99
For Prob. 3.54.

*3.55 In the circuit of Fig. 3.100, solve for and I3.I2,I1,

Figure 3.100
For Prob. 3.55.

3.56 Determine and in the circuit of Fig. 3.101.v2v1

Figure 3.101
For Prob. 3.56.

Figure 3.102
For Prob. 3.57.

3.57 In the circuit of Fig. 3.102, find the values of R, 
and given that mA.io � 15V2

V1,

122 Chapter 3 Methods of Analysis

1 kΩ 1 kΩ 1 kΩ

12 V12 V

10 V

1 Ω
1 kΩ

+
–

–
+

–
+

i1 i2 i3

4 A 2 Ω

1 A
I3

I1

I2

6 Ω

12 Ω 4 Ω

8 V

+ −

10 V

+ −

12 V

2 Ω 2 Ω

2 Ω+
−

2 Ω

v1

2 Ωv2

+

−

+ −

10 Ω

10 Ω

120 V 30 Ω30 Ω

30 Ω

i3

i2

i1

+
−

56 V

0.5io

4 Ω 8 Ω

1 Ω 2 Ω+
−

io

5vo

20 Ω 10 Ω

40 Ω

io

is 30 Ωvo

+

−
–
+

4 kΩ 8 kΩ 2 kΩ

100 V 4 mA 2i1 40 V+
−

+
−i1 i2 i3

Figure 3.106
For Prob. 3.62.

90 V

V1

io

+

+

−
V2

+

−

−
R

4 kΩ

3 kΩ
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3.63 Find and in the circuit shown in Fig. 3.107.ixvx

Figure 3.107
For Prob. 3.63.

3.64 Find and in the circuit of Fig. 3.108.iovo

Figure 3.108
For Prob. 3.64.

3.65 Use MATLAB to solve for the mesh currents in the
circuit of Fig. 3.109.

Figure 3.109
For Prob. 3.65.

Problems 123

ix

2 Ωvx 4ix

+

−

5 Ω

50 V

3 A

+
−

+
−

vx
4

10 Ω

+
−

+
−

io + −

5 A

250 V 40 Ω

10 Ω

50 Ω 10 Ω

vo

0.2vo

4io

6 Ω

1 Ω1 Ω1 Ω

3 Ω 4 Ω

1 Ω

5 Ω
6 Ω 8 Ω

2 Ω

10 V

12 V

6 V

9 V

i4

i2i1 i3

i5

+−+−

+
− +

−

3.66 Write a set of mesh equations for the circuit in
Fig. 3.110. Use MATLAB to determine the mesh
currents.

8 Ω

10 Ω

6 Ω

2 Ω 2 Ω 6 Ω
8 Ω

4 Ω 4 Ω

30 V 32 V
+
−

+
−

12 V +
− 24 V+

−
+
−

10 Ω

4 Ω8 Ω

40 V

8 Ω
i1 i2

i5i4i3

Figure 3.110
For Prob. 3.66.

Section 3.6 Nodal and Mesh Analyses 
by Inspection

3.67 Obtain the node-voltage equations for the circuit in
Fig. 3.111 by inspection. Then solve for Vo.

Figure 3.111
For Prob. 3.67.

3.68 Using Fig. 3.112, design a problem, to solve for Vo,
to help other students better understand nodal
analysis. Try your best to come up with values to
make the calculations easier.

Figure 3.112
For Prob. 3.68.

5 A

4 Ω 2 Ω

10 Ω 5 Ω3Vo 10 A

Vo+ −

R1

I2

R2 R3

R4I1 V1
+
−Vo

+

−
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3.72 By inspection, write the mesh-current equations for
the circuit in Fig. 3.116.

3.73 Write the mesh-current equations for the circuit in
Fig. 3.117.

Figure 3.117
For Prob. 3.73.

3.74 By inspection, obtain the mesh-current equations for
the circuit in Fig. 3.118.

Figure 3.118
For Prob. 3.74.

3.69 For the circuit shown in Fig. 3.113, write the node-
voltage equations by inspection.

124 Chapter 3 Methods of Analysis

Figure 3.113
For Prob. 3.69.

3.70 Write the node-voltage equations by inspection and
then determine values of and in the circuit of
Fig. 3.114.

V2V1

Figure 3.114
For Prob. 3.70.

3.71 Write the mesh-current equations for the circuit
in Fig. 3.115. Next, determine the values of 
and i3.

i2,i1,

Figure 3.115
For Prob. 3.71.

2 kΩ 2 kΩ 10 mA20 mA

v1 4 kΩ 4 kΩ

1 kΩ

5 mA

v2 v3

1 S20 A 7 A

V2V1

4ix

2 S 5 S

ix

+
−

+
−

30 V

15 V

4 Ω

5 Ω

2 Ω

3 Ω

i1

i3

i2

1 Ω

+
−

+−+−

10 V

4 Ω

5 Ω 2 Ω 4 Ωi1 i2 i3

8 V 4 V
i4

1 Ω

Figure 3.116
For Prob. 3.72.

+
−

+ − +−

+
−

6 V 4 V

1 Ω 1 Ω

3 Ω

1 Ω

i1 i2

i4i3

2 V 3 V

2 Ω

4 Ω

5 Ω

+
−

+ −

+
−

i1

i3

V1

V3

V2
V4

i2

i4

R1 R2 R3

R4

R5

R6

R7

R8

+
−

Section 3.8 Circuit Analysis with PSpice or
MultiSim

3.75 Use PSpice or MultiSim to solve Prob. 3.58.

3.76 Use PSpice or MultiSim to solve Prob. 3.27.
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Problems 125

3.78 Solve Prob. 3.20 using PSpice or MultiSim.

3.79 Rework Prob. 3.28 using PSpice or MultiSim.

3.80 Find the nodal voltages through in the circuit
of Fig. 3.120 using PSpice or MultiSim.

v4v1

Figure 3.120
For Prob. 3.80.

3.81 Use PSpice or MultiSim to solve the problem in
Example 3.4.

3.82 If the Schematics Netlist for a network is as follows,
draw the network.
R_R1 1 2 2K
R_R2 2 0 4K
R_R3 3 0 8K
R_R4 3 4 6K
R_R5 1 3 3K
V_VS 4 0 DC 100
I_IS 0 1 DC 4
F_F1 1 3 VF_F1 2
VF_F1 5 0 0V
E_E1 3 2 1 3 3

+
−

+ −

8 A

20 V

1 Ω

v1

2 Ω
4 Ω

10 Ω 12 Ωv2
v3

Io

6Io

v4

3.77 Solve for and in the circuit of Fig. 3.119 using
PSpice or MultiSim.

V2V1

Figure 3.119
For Prob. 3.77.

2 Ω

2ix

5 Ω

1 Ω5 A 2 A

V2

ix

V1

3.83 The following program is the Schematics Netlist of a
particular circuit. Draw the circuit and determine the
voltage at node 2.
R_R1 1 2 20
R_R2 2 0 50
R_R3 2 3 70
R_R4 3 0 30
V_VS 1 0 20V
I_IS 2 0 DC 2A

Section 3.9 Applications

3.84 Calculate and in the circuit of Fig. 3.121.Iovo

3.87 For the circuit in Fig. 3.123, find the gain vo�vs.

Figure 3.121
For Prob. 3.84.

+
−

+
−15 mV vo

+

−

4 kΩ

50Io

Io

vo
100 20 kΩ

3.85 An audio amplifier with a resistance of 9 supplies
power to a speaker. What should be the resistance of
the speaker for maximum power to be delivered?

3.86 For the simplified transistor circuit of Fig. 3.122,
calculate the voltage vo.

�

+
−

+

−

I

2 kΩ

5 kΩ

1 kΩ

47 mV vo

400I

Figure 3.122
For Prob. 3.86.

+
−

–
+

+

−

+

−
500 Ω 400 Ω

2 kΩ 200 Ω

vs vov1 60v1

Figure 3.123
For Prob. 3.87.
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3.92 Using Fig. 3.128, design a problem to help other
students better understand transistors. Make sure you
use reasonable numbers!

126 Chapter 3 Methods of Analysis

*3.88 Determine the gain of the transistor amplifier
circuit in Fig. 3.124.

vo�vs

Figure 3.124
For Prob. 3.88.

3.89 For the transistor circuit shown in Fig. 3.125, find 
and Let and V.VBE � 0.7b � 100,VCE.

IB

2 kΩ

100 Ω

200 Ω

vs 40Io

Io

vo 10 kΩ
vo

1000
+
−

+
−

+

−

+− −+100 kΩ
15 V

2.25 V

0.7 V

+
−

1 kΩ

3.90 Calculate for the transistor in Fig. 3.126 given that
V.VBE � 0.7b � 150,vo � 4 V,

vs

Figure 3.125
For Prob. 3.89.

+

−
18 V

1 kΩ

vs

10 kΩ

+

−
500 Ω vo

Figure 3.126
For Prob. 3.90.

3.91 For the transistor circuit of Fig. 3.127, find 
and Take V.VBE � 0.7b � 200,vo.

VCE,IB,

+

−
9 V

5 kΩ

3 V

6 kΩ

+

−
400 Ω vo

VCE

+

−

IB

2 kΩ

Figure 3.127
For Prob. 3.91.

+

−IB

V1

R3

VC

R1

R2

Figure 3.128
For Prob. 3.92.

Comprehensive Problem

*3.93 Rework Example 3.11 with hand calculation.
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127

Circuit Theorems
Your success as an engineer will be directly proportional to your ability
to communicate!

—Charles K. Alexander

c h a p t e r

4
Enhancing Your Skills and Your Career

Enhancing Your Communication Skills
Taking a course in circuit analysis is one step in preparing yourself for
a career in electrical engineering. Enhancing your communication skills
while in school should also be part of that preparation, as a large part
of your time will be spent communicating.

People in industry have complained again and again that graduat-
ing engineers are ill-prepared in written and oral communication. An
engineer who communicates effectively becomes a valuable asset.

You can probably speak or write easily and quickly. But how effec-
tively do you communicate? The art of effective communication is of
the utmost importance to your success as an engineer.

For engineers in industry, communication is key to promotability.
Consider the result of a survey of U.S. corporations that asked what
factors influence managerial promotion. The survey includes a listing
of 22 personal qualities and their importance in advancement. You may
be surprised to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence, ambition,
flexibility, maturity, ability to make sound decisions, getting things
done with and through people, and capacity for hard work all ranked
higher. At the top of the list was “ability to communicate.” The higher
your professional career progresses, the more you will need to com-
municate. Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong task you should
always work toward. The best time to begin is while still in school.
Continually look for opportunities to develop and strengthen your read-
ing, writing, listening, and speaking skills. You can do this through
classroom presentations, team projects, active participation in student
organizations, and enrollment in communication courses. The risks are
less now than later in the workplace.

Ability to communicate effectively is re-
garded by many as the most important
step to an executive promotion.
© IT Stock/Punchstock
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Introduction
A major advantage of analyzing circuits using Kirchhoff’s laws as we
did in Chapter 3 is that we can analyze a circuit without tampering
with its original configuration. A major disadvantage of this approach
is that, for a large, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits has led to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theorems include Thevenin’s and Norton’s theorems.
Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

Linearity Property
Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property applies to many cir-
cuit elements, we shall limit its applicability to resistors in this chap-
ter. The property is a combination of both the homogeneity (scaling)
property and the additivity property.

The homogeneity property requires that if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For a resistor, for exam-
ple, Ohm’s law relates the input i to the output v,

(4.1)

If the current is increased by a constant k, then the voltage increases
correspondingly by k; that is,

(4.2)

The additivity property requires that the response to a sum of
inputs is the sum of the responses to each input applied separately.
Using the voltage-current relationship of a resistor, if

(4.3a)

and

(4.3b)

then applying gives

(4.4)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

In general, a circuit is linear if it is both additive and homoge-
neous. A linear circuit consists of only linear elements, linear depend-
ent sources, and independent sources.

v � (i1 � i2)R � i1R � i2R � v1 � v2

(i1 � i2)

v2 � i2R

v1 � i1R

kiR � kv

v � iR

4.2

4.1

128 Chapter 4 Circuit Theorems
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Throughout this book we consider only linear circuits. Note that since
(making it a quadratic function rather than a linear one),

the relationship between power and voltage (or current) is nonlinear.
Therefore, the theorems covered in this chapter are not applicable to power.

To illustrate the linearity principle, consider the linear circuit
shown in Fig. 4.1. The linear circuit has no independent sources inside
it. It is excited by a voltage source which serves as the input. The
circuit is terminated by a load R. We may take the current i through R
as the output. Suppose gives According to the lin-
earity principle, will give By the same token,

must be due to vs � 5 mV.i � 1 mA
i � 0.2 A.vs � 1 V

i � 2 A.vs � 10 V

vs,

p � i2R � v2�R

4.2 Linearity Property 129

A linear circuit is one whose output is linearly related (or directly pro-
portional) to its input.

For example, when current i1 flows
through resistor R, the power is p1 � Ri1

2,
and when current i2 flows through R, the
power is p2 � Ri 2

2. If current i1 � i2 flows
through R, the power absorbed is p3 �
R(i1 � i2)2 � Ri1

2 � Ri 2
2 � 2Ri1i2 � p1 �

p2. Thus, the power relation is nonlinear.

vs R

i

+
− Linear circuit

Figure 4.1
A linear circuit with input and output i.vs

Example 4.1For the circuit in Fig. 4.2, find when and 

Solution:
Applying KVL to the two loops, we obtain

(4.1.1)

(4.1.2)

But Equation (4.1.2) becomes

(4.1.3)

Adding Eqs. (4.1.1) and (4.1.3) yields

Substituting this in Eq. (4.1.1), we get

When 

When 

showing that when the source value is doubled, doubles.Io

Io � i2 �
24

76
 A

vs � 24 V,

Io � i2 �
12

76
 A

vs � 12 V,

�76i2 � vs � 0  1   i2 �
vs

76

2i1 � 12i2 � 0  1   i1 � �6i2

�10i1 � 16i2 � vs � 0

vx � 2i1.

�4i1 � 16i2 � 3vx � vs � 0

12i1 � 4i2 � vs � 0

vs � 24 V.vs � 12 VIo

+
−vs

vx

3vx

i1 i2

2 Ω 8 Ω

4 Ω
6 Ω

4 Ω

–
+

+ − Io

Figure 4.2
For Example 4.1.

Practice Problem 4.1For the circuit in Fig. 4.3, find when and 

Answer: 40 V, 60 V.

is � 45 A.is � 30vo

is

12 Ω

8 Ω4 Ω
+

−
vo

Figure 4.3
For Practice Prob. 4.1.
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Superposition
If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or
mesh analysis as in Chapter 3. Another way is to determine the con-
tribution of each independent source to the variable and then add them
up. The latter approach is known as the superposition.

The idea of superposition rests on the linearity property.

4.3

130 Chapter 4 Circuit Theorems

Example 4.2

Assume that and use linearity to calculate the actual value
of in the circuit of Fig. 4.5.

Answer: 16 V.

Vo

Vo � 1 VPractice Problem 4.2

Io

I4 I2

I3

V2
6 Ω 2 Ω2

5 Ω7 Ω

I1

V1
3 Ω1

4 ΩIs = 15 A

Figure 4.4
For Example 4.2.

Solution:
If A, then and Applying
KCL at node 1 gives

Applying KCL at node 2 gives

Therefore, This shows that assuming gives 
the actual source current of 15 A will give as the actual value.Io � 3 A

Is � 5 A,Io � 1Is � 5 A.

I4 � I3 � I2 � 5 A

V2 � V1 � 2I2 � 8 � 6 � 14 V,  I3 �
V2

7
� 2 A

I2 � I1 � Io � 3 A

I1 � V1�4 � 2 A.V1 � (3 � 5)Io � 8 VIo � 1

Assume A and use linearity to find the actual value of in the
circuit of Fig. 4.4.

IoIo � 1

40 V

12 Ω

8 Ω5 Ω+
−

+

−
Vo

Figure 4.5
For Practice Prob. 4.2.

The superposition principle states that the voltage across (or current
through) an element in a linear circuit is the algebraic sum of the volt-
ages across (or currents through) that element due to each independ-
ent source acting alone.

Superposition is not limited to circuit
analysis but is applicable in many
fields where cause and effect bear a
linear relationship to one another.
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The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of
each independent source separately. However, to apply the superposi-
tion principle, we must keep two things in mind:

1. We consider one independent source at a time while all other inde-
pendent sources are turned off. This implies that we replace every
voltage source by 0 V (or a short circuit), and every current source
by 0 A (or an open circuit). This way we obtain a simpler and more
manageable circuit.

2. Dependent sources are left intact because they are controlled by
circuit variables.

With these in mind, we apply the superposition principle in three
steps:

4.3 Superposition 131

Other terms such as killed, made inac-
tive, deadened, or set equal to zero
are often used to convey the same
idea.

Steps to Apply Superposition Principle:

1. Turn off all independent sources except one source. Find the
output (voltage or current) due to that active source using
the techniques covered in Chapters 2 and 3.

2. Repeat step 1 for each of the other independent sources.
3. Find the total contribution by adding algebraically all the

contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: It may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits
each providing the contribution due to the respective individual source.
However, superposition does help reduce a complex circuit to simpler
circuits through replacement of voltage sources by short circuits and
of current sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of
the voltage or current. If the power value is needed, the current
through (or voltage across) the element must be calculated first using
superposition.

Example 4.3

6 V v 3 A

8 Ω

4 Ω+
−

+

−

Figure 4.6
For Example 4.3.

Use the superposition theorem to find v in the circuit of Fig. 4.6.

Solution:
Since there are two sources, let

where and are the contributions due to the 6-V voltage source
and the 3-A current source, respectively. To obtain we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in
Fig. 4.7(a) gives

12i1 � 6 � 0  1   i1 � 0.5 A

v1,
v2v1

v � v1 � v2
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Thus,

We may also use voltage division to get by writing

To get we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

Hence,

And we find

v � v1 � v2 � 2 � 8 � 10 V

v2 � 4i3 � 8 V

i3 �
8

4 � 8
 (3) � 2 A

v2,

v1 �
4

4 � 8
 (6) � 2 V

v1

v1 � 4i1 � 2 V

132 Chapter 4 Circuit Theorems

+
−6 V i1

8 Ω

v14 Ω

(a)

+

−

3 A

8 Ω

v2

i2

i3

4 Ω

(b)

+

−

Figure 4.7
For Example 4.3: (a) calculating 
(b) calculating v2.

v1,

Practice Problem 4.3
3 Ω 5 Ω

2 Ω 5 A 12 V+
−

+

−
vo

Figure 4.8
For Practice Prob. 4.3.

Find in the circuit of Fig. 4.9 using superposition.

Solution:
The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

(4.4.1)

where and are due to the 4-A current source and 20-V voltage
source respectively. To obtain we turn off the 20-V source so that
we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to
obtain For loop 1,

(4.4.2)

For loop 2,

(4.4.3)�3i1 � 6i2 � 1i3 � 5i¿o � 0

i1 � 4 A

i¿o.

i¿o,
i–oi¿o

io � i¿o � i–o

ioExample 4.4

4 A

20 V

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

5io

io

+ −

Figure 4.9
For Example 4.4.

Using the superposition theorem, find in the circuit of Fig. 4.8.

Answer: 7.4 V.

vo
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For loop 3,

(4.4.4)

But at node 0,

(4.4.5)

Substituting Eqs. (4.4.2) and (4.4.5) into Eqs. (4.4.3) and (4.4.4) gives
two simultaneous equations

(4.4.6)

(4.4.7)

which can be solved to get

(4.4.8)

To obtain we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

(4.4.9)

and for loop 5,

(4.4.10)

But Substituting this in Eqs. (4.4.9) and (4.4.10) gives

(4.4.11)

(4.4.12)

which we solve to get

(4.4.13)

Now substituting Eqs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

io � �
8

17
� �0.4706 A

i–o � �
60

17
 A

i4 � 5i–o � �20

6i4 � 4i–o � 0

i5 � �i–o.

�i4 � 10i5 � 20 � 5i–o � 0

6i4 � i5 � 5i–o � 0

i–o,

i¿o �
52

17
 A

i2 � 5i¿o � 20

3i2 � 2i¿o � 8

i3 � i1 � i¿o � 4 � i¿o

�5i1 � 1i2 � 10i3 � 5i¿o � 0

4.3 Superposition 133

4 A

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

i1 i3io�

5io�

0

(a)

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −
io�

5io�

(b)

20 V

+ −

i1

i2

i3
i5

i4

Figure 4.10
For Example 4.4: Applying superposition to (a) obtain (b) obtain i–o.i¿o,
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134 Chapter 4 Circuit Theorems

Use superposition to find in the circuit of Fig. 4.11.

Answer: V.vx � 31.25

vxPractice Problem 4.4

vx20 Ω

0.1vx4 Ω25 V 5 A+
−

Figure 4.11
For Practice Prob. 4.4.

For the circuit in Fig. 4.12, use the superposition theorem to find i.

Solution:
In this case, we have three sources. Let

where , and are due to the 12-V, 24-V, and 3-A sources respec-
tively. To get , consider the circuit in Fig. 4.13(a). Combining 
(on the right-hand side) in series with gives . The in
parallel with gives . Thus,

To get , consider the circuit in Fig. 4.13(b). Applying mesh analysis
gives

(4.5.1)

(4.5.2)

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives

To get , consider the circuit in Fig. 4.13(c). Using nodal analysis gives

(4.5.3)

(4.5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to and

Thus,

i � i1 � i2 � i3 � 2 � 1 � 1 � 2 A

i3 �
v1

3
� 1 A

v1 � 3

v2 � v1

4
�

v1

4
�

v1

3
  1  v2 �

10

3
 v1

3 �
v2

8
�

v2 � v1

4
  1   24 � 3v2 � 2v1

i3

i2 � ib � �1

7ib � 4ia � 0  1   ia �
7

4
ib

16ia � 4ib � 24 � 0  1   4ia � ib � �6

i2

i1 �
12

6
� 2 A

12 � 4�16 � 3 �4 �
12 �12 �8 �

4 �i1

i3i1, i2

i � i1 � i2 � i3

Example 4.5

+ −

+
−

24 V 8 Ω

4 Ω

3 Ω 3 A12 V

4 Ω

i

Figure 4.12
For Example 4.5.
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Answer: 375 mA.

4.4 Source Transformation 135

8 Ω

4 Ω 4 Ω

3 Ω12 V +
−

3 Ω

3 Ω12 V +
−

(a)

8 Ω24 V

4 Ω 4 Ω

3 Ω

(b)

+ −

ib

ia

8 Ω

4 Ω 4 Ω

3 Ω 3 A

v1
v2

(c)

i1

i2 i3

i1

Figure 4.13
For Example 4.5.

Find I in the circuit of Fig. 4.14 using the superposition principle. Practice Problem 4.5

8 V

8 Ω
2 Ω

2 A

6 Ω

+
− 6 V+

−

I

Figure 4.14
For Practice Prob. 4.5.

Source Transformation
We have noticed that series-parallel combination and wye-delta trans-
formation help simplify circuits. Source transformation is another tool
for simplifying circuits. Basic to these tools is the concept of equiva-
lence. We recall that an equivalent circuit is one whose v-i character-
istics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources
are all independent current (or all independent voltage) sources. It is
therefore expedient in circuit analysis to be able to substitute a voltage
source in series with a resistor for a current source in parallel with a

4.4
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resistor, or vice versa, as shown in Fig. 4.15. Either substitution is
known as a source transformation.

136 Chapter 4 Circuit Theorems

A source transformation is the process of replacing a voltage source
vs in series with a resistor R by a current source is in parallel with a resis-
tor R, or vice versa.

+
−vs

R
a

b

is R

a

b

Figure 4.15
Transformation of independent sources.

The two circuits in Fig. 4.15 are equivalent—provided they have the
same voltage-current relation at terminals It is easy to show that
they are indeed equivalent. If the sources are turned off, the equivalent
resistance at terminals a-b in both circuits is R. Also, when terminals

are short-circuited, the short-circuit current flowing from a to b is
in the circuit on the left-hand side and for the circuit

on the right-hand side. Thus, in order for the two circuits to
be equivalent. Hence, source transformation requires that

(4.5)

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed
to a dependent current source in parallel with the resistor or vice versa
where we make sure that Eq. (4.5) is satisfied.

vs � isR  or  is �
vs

R

vs�R � is

isc � isisc � vs�R
a-b

a-b.

vs

R
a

b

is R

a

b

+
−

Figure 4.16
Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a
source transformation does not affect the remaining part of the circuit.
When applicable, source transformation is a powerful tool that allows
circuit manipulations to ease circuit analysis. However, we should keep
the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source
is directed toward the positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when
, which is the case with an ideal voltage source. However, for

a practical, nonideal voltage source, . Similarly, an ideal cur-
rent source with cannot be replaced by a finite voltage source.
More will be said on ideal and nonideal sources in Section 4.10.1.

R � �
R � 0

R � 0
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4.4 Source Transformation 137

Use source transformation to find in the circuit of Fig. 4.17.

Solution:
We first transform the current and voltage sources to obtain the circuit
in Fig. 4.18(a). Combining the and resistors in series and
transforming the 12-V voltage source gives us Fig. 4.18(b). We now
combine the and resistors in parallel to get . We also
combine the 2-A and 4-A current sources to get a 2-A source. Thus,
by repeatedly applying source transformations, we obtain the circuit in
Fig. 4.18(c).

2-�6-�3-�

2-�4-�

vo Example 4.6

4 Ω 2 Ω

4 A8 Ω 3 Ω12 V +
−

(a)

+

−
vo

4 A8 Ω6 Ω 3 Ω2 A

(b)

2 A8 Ω 2 Ω

(c)

i
+

−
vo

+

−
vo

2 Ω 3 Ω

12 V8 Ω4 Ω 3 A +
−

+

−
vo

Figure 4.17
For Example 4.6.

Figure 4.18
For Example 4.6.

Find in the circuit of Fig. 4.19 using source transformation.io Practice Problem 4.6

4 Ω5 A

5 V

7 Ω 3 A3 Ω

1 Ω

6 Ω

− +
io

Answer: 1.78 A.

Figure 4.19
For Practice Prob. 4.6.

We use current division in Fig. 4.18(c) to get

and

Alternatively, since the and resistors in Fig. 4.18(c) are
in parallel, they have the same voltage across them. Hence,

vo � (8 �  2)(2 A) �
8 � 2

10
 (2) � 3.2 V

vo

2-�8-�

vo � 8i � 8(0.4) � 3.2 V

i �
2

2 � 8
 (2) � 0.4 A
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Applying KVL to the loop containing only the 3-V voltage source, the
resistor, and yields

(4.7.2)

Substituting this into Eq. (4.7.1), we obtain

Alternatively, we may apply KVL to the loop containing , the 4-
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

Thus, V.vx � 3 � i � 7.5

�vx � 4i � vx � 18 � 0  1   i � �4.5 A

�vx

15 � 5i � 3 � i � 0  1   i � �4.5 A

�3 � 1i � vx � 0  1   vx � 3 � i

vx1-�

138 Chapter 4 Circuit Theorems

Find in Fig. 4.20 using source transformation.

Solution:
The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V voltage
source is not transformed because it is not connected in series with any
resistor. The two resistors in parallel combine to give a 
resistor, which is in parallel with the 3-A current source. The current
source is transformed to a voltage source as shown in Fig. 4.21(b).
Notice that the terminals for are intact. Applying KVL around the
loop in Fig. 4.21(b) gives

(4.7.1)�3 � 5i � vx � 18 � 0

vx

1-�2-�

vxExample 4.7
4 Ω

2 Ω
0.25vx

2 Ω6 V 18 V+
−

+
−vx

+

−

Figure 4.20
For Example 4.7.

18 V3 A

4 Ω

2 Ω2 Ω

+ −

+
−

(a)

18 V3 V

4 Ω1 Ω

vx

vxvx

+

−

+ −

+
−

+
−

(b)

i

+

−
vx

Figure 4.21
For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Use source transformation to find in the circuit shown in Fig. 4.22.

Answer: 7.059 mA.

ixPractice Problem 4.7

2ix

5 Ω

24 mA 10 Ω
–
+

ix

Figure 4.22
For Practice Prob. 4.7.

ale80571_ch04_127-174.qxd  11/30/11  12:51 PM  Page 138



Thevenin’s Theorem
It often occurs in practice that a particular element in a circuit is vari-
able (usually called the load) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin’s theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857–1926), a French
telegraph engineer.

a-b

4.5

4.5 Thevenin’s Theorem 139

Linear 
two-terminal
circuit

Load

I a

b

V

+

−

(a)

Load

I a

b

V

+

−

(b)

+
−VTh

RTh

Figure 4.23
Replacing a linear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent
circuit.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source VTh in
series with a resistor RTh, where VTh is the open-circuit voltage at the
terminals and RTh is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age and resistance . To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals in
Fig. 4.23(a) must be equal to the voltage source in Fig. 4.23(b),
since the two circuits are equivalent. Thus is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

(4.6)VTh � voc

VTh

VTh

a-b
a-b

RThVTh

Linear 
two-terminal
circuit

a

b

voc

+

−

(a)

VTh = voc

Linear circuit with
all independent
sources set equal
to zero

a

b

R in

(b)

RTh = R in

Figure 4.24
Finding and .RThVTh

Again, with the load disconnected and terminals open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals in 
Fig. 4.23(a) must be equal to in Fig. 4.23(b) because the two circuits
are equivalent. Thus, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

(4.7)RTh � Rin

RTh

RTh

a-b

a-b
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To apply this idea in finding the Thevenin resistance , we need
to consider two cases.

■ CASE 1 If the network has no dependent sources, we turn off all
independent sources. is the input resistance of the network look-
ing between terminals a and b, as shown in Fig. 4.24(b). 

■ CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply a voltage source at terminals a and b and determine the result-
ing current . Then , as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage . Again . Either
of the two approaches will give the same result. In either approach we
may assume any value of and . For example, we may use 
or A, or even use unspecified values of or .

It often occurs that takes a negative value. In this case, the
negative resistance ( ) implies that the circuit is supplying
power. This is possible in a circuit with dependent sources; Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider a linear circuit terminated by a load , as shown in Fig. 4.26(a).
The current through the load and the voltage across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’s terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

(4.8a)

(4.8b)

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding by mere inspection.VL

VL � RLIL �
RL

RTh � RL
 VTh

IL �
VTh

RTh � RL

VLIL

RL

v � �iR
RTh

iovoio � 1
vo � 1 Viovo

RTh � vo�iovo

io

RTh � vo�ioio

vo

RTh

RTh

140 Chapter 4 Circuit Theorems

vo

Circuit with
all independent
sources set equal
to zero

a

b

(a)

RTh = 

+
−

vo

io

io

iovo

Circuit with
all independent
sources set equal
to zero

a

b

(b)

RTh = 
vo

io

+

−

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals Then find the current through 
and 

Solution:
We find by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an

RTh

36 �.
RL � 6, 16,a-b.

Example 4.8

Figure 4.25
Finding when circuit has dependent
sources.

RTh

Later we will see that an alternative way
of finding RTh is RTh � voc�isc.

Linear 
circuit

a

b

(a)

RL

IL

a

b
(b)

RL

IL

+
−VTh

RTh

Figure 4.26
A circuit with a load: (a) original circuit,
(b) Thevenin equivalent.

Figure 4.27
For Example 4.8.

RL32 V 2 A

4 Ω 1 Ω

12 Ω+
−

a

b
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4.5 Thevenin’s Theorem 141

32 V 2 A

4 Ω 1 Ω

12 Ω+
− VTh

VTh

+

−

(b)

4 Ω 1 Ω

12 Ω

(a)

RTh i1 i2

a

b

a

b

Figure 4.28
For Example 4.8: (a) finding , (b) finding .VThRTh

To find consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

Solving for , we get Thus,

Alternatively, it is even easier to use nodal analysis. We ignore the
resistor since no current flows through it. At the top node, KCL

gives

or

as obtained before. We could also use source transformation to find
The Thevenin equivalent circuit is shown in Fig. 4.29. The current

through is

When 

When 

When 

IL �
30

40
� 0.75 A

RL � 36,

IL �
30

20
� 1.5 A

RL � 16,

IL �
30

10
� 3 A

RL � 6,

IL �
VTh

RTh � RL
�

30

4 � RL

RL

VTh.

96 � 3VTh � 24 � VTh  1   VTh � 30 V

32 � VTh

4
� 2 �

VTh

12

1-�

VTh � 12(i1 � i2) � 12(0.5 � 2.0) � 30 V

i1 � 0.5 A.i1

�32 � 4i1 � 12(i1 � i2) � 0,  i2 � �2 A

VTh,

RL30 V

4 Ω

+
−

a

b

IL

Figure 4.29
The Thevenin equivalent circuit for
Example 4.8.

open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,

RTh � 4 � 12 � 1 �
4 � 12

16
� 1 � 4 �
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142 Chapter 4 Circuit Theorems

Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit of Fig. 4.30. Then find I.

Answer: RTh � 3 �, I � 1.5 A.VTh � 6 V,

Practice Problem 4.8

12 V 2 A

6 Ω 6 Ω

4 Ω 1 Ω+
−

a

b

I

Figure 4.30
For Practice Prob. 4.8.

Example 4.9

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+

−
vx

Figure 4.31
For Example 4.9.

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+
− vo = 1 V

io

(a)

i1

i2

(b)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

voc

+

−

i3

i1 i2i3

+

−
vx

+

−
vx

Figure 4.32
Finding and for Example 4.9.VThRTh

Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a)
results in

But ; hence,

(4.9.1)

For loops 2 and 3, applying KVL produces

(4.9.2)

(4.9.3)6(i3 � i2) � 2i3 � 1 � 0

4i2 � 2(i2 � i1) � 6(i2 � i3) � 0

i1 � �3i2

�4i2 � vx � i1 � i2

�2vx � 2(i1 � i2) � 0  or  vx � i1 � i2

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.

Solution:
This circuit contains a dependent source, unlike the circuit in the
previous example. To find we set the independent source equal to
zero but leave the dependent source alone. Because of the presence of
the dependent source, however, we excite the network with a voltage
source connected to the terminals as indicated in Fig. 4.32(a). We
may set to ease calculation, since the circuit is linear. Our
goal is to find the current through the terminals, and then obtain

(Alternatively, we may insert a 1-A current source, find the
corresponding voltage and obtain )RTh � vo�1.vo,
RTh � 1�io.

io

vo � 1 V
vo

RTh,
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Solving these equations gives

But Hence,

To get , we find in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

(4.9.4)

(4.9.5)

or

(4.9.6)

But Solving these equations leads to 
Hence,

The Thevenin equivalent is as shown in Fig. 4.33.

VTh � voc � 6i2 � 20 V

i2 � 10�3.4(i1 � i2) � vx.

12i2 � 4i1 � 2i3 � 0

4(i2 � i1) � 2(i2 � i3) � 6i2 � 0

�2vx � 2(i3 � i2) � 0  1   vx � i3 � i2

i1 � 5

vocVTh

RTh �
1 V

io
� 6 �

io � �i3 � 1�6 A.

i3 � �
1

6
 A

4.5 Thevenin’s Theorem 143

20 V

6 Ω
a

b

+
−

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Practice Problem 4.9

6 V

3 Ω5 Ω

4 Ω

a

b

1.5Ix
+
−

Ix

Figure 4.34
For Practice Prob. 4.9.

Example 4.10

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: RTh � 444.4 m�.VTh � 5.333 V,

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a resistor in parallel with a
resistor. These are, in turn, in parallel with a dependent

current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externally. In addition, when you have no independent
sources you will not have a value for you will only have
to find RTh.

VTh;

4-�
2-�
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The simplest approach is to excite the circuit with either a
1-V voltage source or a 1-A current source. Since we will end
up with an equivalent resistance (either positive or negative), I
prefer to use the current source and nodal analysis which will
yield a voltage at the output terminals equal to the resistance
(with 1 A flowing in, is equal to 1 times the equivalent
resistance).

As an alternative, the circuit could also be excited by a 1-V
voltage source and mesh analysis could be used to find the
equivalent resistance.

4. Attempt. We start by writing the nodal equation at a in Fig. 4.35(b)
assuming 

(4.10.1)

Since we have two unknowns and only one equation, we will
need a constraint equation.

(4.10.2)

Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

Since 
The negative value of the resistance tells us that, according

to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
supply power (they absorb power); it is the dependent source
that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.

5. Evaluate. First of all, we note that the answer has a negative
value. We know this is not possible in a passive circuit, but in
this circuit we do have an active device (the dependent current
source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and resistor to a series voltage source and

resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use

ix � i2 � i1

2(i2 � i1) � 9i2 � 10 � 0

8ix � 4i1 � 2(i1 � i2) � 0

4-�
4-�

9-�

vo � 1 �  RTh, then RTh �  vo�1 � �4 �.

� (�1 � 1
4 � 1

2)vo � 1  or  vo � �4 V

2(�vo�2) � (vo � 0)�4 � (vo � 0)�2 � (�1) � 0

ix � (0 � vo)�2 � �vo�2 

2ix � (vo � 0)�4 � (vo � 0)�2 � (�1) � 0

io � 1 A.

vo

144 Chapter 4 Circuit Theorems

2ix 4 Ω 2 Ω

a

b

ix

vo

(a)

2ix io4 Ω 2 Ω

a

b

ix

(b)

Figure 4.35
For Example 4.10.

8ix

b

a

ix
−
+ 2 Ω

4 Ω 9 Ω

i2 +
− 10 Vi1

(c)

b

a− 4 Ω 9 Ω

+
− 10 Vi

(d)
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This leads to a new equation for loop 1. Simplifying leads to

or

Substituting the first equation into the second gives

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.

�4i � 9i � 10 � 0  or  i � �10�5 � �2 A

�6i2 � 11i2 � �10  or  i2 � �10�5 � �2 A

�2i1 � 11i2 � �10

�2i1 � 6i2 � 0  or  i1 � 3i2

(4 � 2 � 8)i1 � (�2 � 8)i2 � 0

4.6 Norton’s Theorem 145

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: VTh � 0 V, RTh � �7.5 �.

Practice Problem 4.10

5 Ω 15 Ω

a

b

10 Ω
4vx

+ −
+

−
vx

Figure 4.36
For Practice Prob. 4.10.

Norton’s Theorem
In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

4.6

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source IN in
parallel with a resistor RN, where IN is the short-circuit current through
the terminals and RN is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).
The proof of Norton’s theorem will be given in the next section.

For now, we are mainly concerned with how to get and We find
in the same way we find In fact, from what we know about

source transformation, the Thevenin and Norton resistances are equal;
that is,

(4.9)

To find the Norton current we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

IN,

RN � RTh

RTh.RN

IN.RN

Linear 
two-terminal
circuit

a

b

(a)

(b)

RN

a

b

IN

Figure 4.37
(a) Original circuit, (b) Norton equivalent
circuit.
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that the short-circuit current in Fig. 4.37(b) is This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

(4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: as in Eq. (4.9), and

(4.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since and are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

• The open-circuit voltage across terminals a and b.
• The short-circuit current at terminals a and b.
• The equivalent or input resistance at terminals a and b when

all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

(4.12a)

(4.12b)

(4.12c)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

RTh �
voc

isc
� RN

IN � isc

VTh � voc

Rin

isc

voc

RThIN,VTh,

IN �
VTh

RTh

RN � RTh

IN � isc

IN.
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Linear 
two-terminal
circuit

a

b

isc = IN

Figure 4.38
Finding Norton current IN.

Example 4.11

2 A

8 Ω

8 Ω

5 Ω
4 Ω

12 V

a

b

+
−

The Thevenin and Norton equivalent
circuits are related by a source 
transformation.

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at 
terminals a-b.

Solution:
We find in the same way we find in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Thus,

To find we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the resistor because it has been short-circuited.
Applying mesh analysis, we obtain

From these equations, we obtain

i2 � 1 A � isc � IN

i1 � 2 A,  20i2 � 4i1 � 12 � 0

5-�
IN,

RN � 5 � (8 � 4 � 8) � 5 � 20 �
20 � 5

25
� 4 �

RN.

RThRN
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Alternatively, we may determine from We obtain 
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

and

Hence,

as obtained previously. This also serves to confirm Eq. (4.12c) that
Thus, the Norton equivalent circuit is as

shown in Fig. 4.41.
RTh � voc �isc � 4 �1 � 4 �.

IN �
VTh

RTh
�

4

4
� 1 A

voc � VTh � 5i4 � 4 V

25i4 � 4i3 � 12 � 0  1   i4 � 0.8 A

i3 � 2 A

VThVTh�RTh.IN

4.6 Norton’s Theorem 147

2 A
5 Ω

4 Ω

12 V

a

b

+
−

isc = IN

(b)

2 A 5 Ω

4 Ω

12 V

a

b

+
−

(c)

8 Ω

5 Ω

a

b

4 Ω

(a)

RN

VTh = voc

+

−

i1

i3
i4

i2

8 Ω 8 Ω

8 Ω

8 Ω

8 Ω

Figure 4.40
For Example 4.11; finding: (a) (b) (c) VTh � voc.IN � isc,RN,

1 A 4 Ω

a

b

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Practice Problem 4.11

4 A15 V 6 Ω

a

b

3 Ω

+
−

3 Ω

Figure 4.42
For Practice Prob. 4.11.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: RN � 3 �, IN � 4.5 A.
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Example 4.12

5 Ω

2 ix

 ix

10 V4 Ω

a

b

+
−

Figure 4.43
For Example 4.12.

Practice Problem 4.12

10 A

2vx

6 Ω 2 Ω

a

b

−+
+

−
vx

5 Ω

2ix

vo = 1 V

io
4 Ω

a

b

+
−

(a)

5 Ω

2ix

isc = IN4 Ω

a

b

(b)

10 V+
−

ix ix

Figure 4.44
For Example 4.12: (a) finding (b) finding IN.RN,

Figure 4.45
For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at 
terminals a-b.

Answer: RN � 1 �, IN � 10 A.

Using Norton’s theorem, find and of the circuit in Fig. 4.43 at
terminals a-b.

Solution:
To find we set the independent voltage source equal to zero and
connect a voltage source of (or any unspecified voltage )
to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the

resistor because it is short-circuited. Also due to the short circuit,
the resistor, the voltage source, and the dependent current source
are all in parallel. Hence, At node a, and

To find we short-circuit terminals a and b and find the current
as indicated in Fig. 4.44(b). Note from this figure that the 

resistor, the 10-V voltage source, the resistor, and the dependent
current source are all in parallel. Hence,

At node a, KCL gives

Thus,

IN � 7 A

isc �
10

5
� 2ix � 2 � 2(2.5) � 7 A

ix �
10

4
� 2.5 A

5-�
4-�isc,

IN,

RN �
vo

io
�

1

0.2
� 5 �

 io � 1v
5� � 0.2 A,ix � 0.

5-�
4-�

vovo � 1 V
RN,

INRN
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Derivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources and and two independent current sources and We
may obtain any circuit variable, such as the terminal voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

(4.13)

where and are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, is the contribution to v due to the external current source i,

is the contribution due to the voltage source and so on. We
may collect terms for the internal independent sources together as 
so that Eq. (4.13) becomes

(4.14)

where We now want to evalu-
ate the values of constants and When the terminals a and b are
open-circuited, and Thus, is the open-circuit voltage

which is the same as so

(4.15)

When all the internal sources are turned off, The circuit can
then be replaced by an equivalent resistance which is the same as

and Eq. (4.14) becomes

(4.16)

Substituting the values of and in Eq. (4.14) gives

(4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

(4.18)

where is the contribution to i due to the external voltage source v
and contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, so thatv � 0

D0

C0 
v

i � C0 
v � D0

v � RThi � VTh

B0 A0

v � A0i � RThi  1  A0 � RTh

RTh,
Req,

B0 � 0.

B0 � VTh

VTh,voc,
B0v � B0.i � 0

B0.A0

B0 � A1vs1 � A2vs2 � A3is1 � A4is2.

v � A0i � B0

B0,
vs1,A1vs1

A0i

A4A0, A1, A2, A3,

v � A0i � A1vs1 � A2vs2 � A3is1 � A4is2

is2.is1vs2vs1

4.7
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i
Linear
circuit

a

b

(a)

i

a

b

(b)

v
+

−

v

+

−

VTh
+
−

RTh

Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

v
Linear
circuit

a

b

(a)

v

a

b

(b)

INRN
+
−

+
−

i

i

Figure 4.47
Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.
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where is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current i.e.,

(4.19)

When all the internal independent sources are turned off, and
the circuit can be replaced by an equivalent resistance (or an equiv-
alent conductance ), which is the same as or Thus
Eq. (4.19) becomes

(4.20)

This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and
4.47(b) are equivalent.

Maximum Power Transfer
In many practical situations, a circuit is designed to provide power to
a load. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
a linear circuit can deliver to a load. We assume that we can adjust the
load resistance If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

(4.21)

For a given circuit, and are fixed. By varying the load resist-
ance the power delivered to the load varies as sketched in Fig. 4.49.
We notice from Fig. 4.49 that the power is small for small or large val-
ues of but maximum for some value of between 0 and We
now want to show that this maximum power occurs when is equal
to This is known as the maximum power theorem.RTh.

RL

�.RLRL

RL,
RThVTh

p � i2RL � a VTh

RTh � RL
b2 

RL

RL.

4.8

i �
v

RTh
� IN

RN.RThGeq � 1�Req

Req

D0 � 0

D0 � �IN

IN,
isci � D0 � �isc,
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RLVTh

RTh

+
−

a

b

i

Figure 4.48
The circuit used for maximum power
transfer.

p

RLRTh0

pmax

Figure 4.49
Power delivered to the load as a function
of RL.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (RL � RTh).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to and set the result equal to zero. We
obtain

 � V 
2
Th c (RTh � RL � 2RL)

(RTh � RL)3 d � 0

 
dp

dRL
� V 

2
Th c (RTh � RL)2 � 2RL(RTh � RL)

(RTh � RL)4 d

RL
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This implies that

(4.22)

which yields

(4.23)

showing that the maximum power transfer takes place when the load
resistance equals the Thevenin resistance We can readily confirm
that Eq. (4.23) gives the maximum power by showing that 

The maximum power transferred is obtained by substituting
Eq. (4.23) into Eq. (4.21), for

(4.24)

Equation (4.24) applies only when When we
compute the power delivered to the load using Eq. (4.21).

RL � RTh,RL � RTh.

pmax �
V 

2
Th

4RTh

d2p �dR 
2
L 6 0.

RTh.RL

RL � RTh

0 � (RTh � RL � 2RL) � (RTh � RL)

4.8 Maximum Power Transfer 151

The source and load are said to be
matched when RL � RTh.

Example 4.13Find the value of for maximum power transfer in the circuit of 
Fig. 4.50. Find the maximum power.

RL

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω RL
+
−

a

b

Figure 4.50
For Example 4.13.

Solution:
We need to find the Thevenin resistance and the Thevenin voltage

across the terminals a-b. To get we use the circuit in Fig. 4.51(a)
and obtain

RTh � 2 � 3 � 6 � 12 � 5 �
6 � 12

18
� 9 �

RTh,VTh

RTh

6 Ω 3 Ω 2 Ω

12 Ω
RTh

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω+
− VTh

+

−

(a) (b)

i1 i2

Figure 4.51
For Example 4.13: (a) finding (b) finding VTh.RTh,
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To get we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

Solving for we get Applying KVL around the outer loop
to get across terminals a-b, we obtain

For maximum power transfer,

and the maximum power is

pmax �
VTh

2

4RL
�

222

4 � 9
� 13.44 W

RL � RTh � 9 �

�12 � 6i1 � 3i2 � 2(0) � VTh � 0  1   VTh � 22 V

VTh

i1 � �2�3.i1,

�12 � 18i1 � 12i2 � 0,  i2 � �2 A

VTh,
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Practice Problem 4.13

9 V

4 Ω2 Ω

RL

1 Ω

3vx

+
−

+
−

+ −vx

Figure 4.52
For Practice Prob. 4.13.

Verifying Circuit Theorems with PSpice
In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name ISRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from 0 to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivalent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of in Fig. 4.48 and plotting the power delivered to the load as a
function of According to Fig. 4.49, the maximum power occursRL.

RL

4.9

Determine the value of that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 2.901 W.4.222 �,

RL
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when This is best illustrated with an example, and Ex-
ample 4.15 provides one.

We use VSRC and ISRC as part names for the independent volt-
age and current sources, respectively.

RL � RTh.

4.9 Verifying Circuit Theorems with PSpice 153

Consider the circuit in Fig. 4.31 (see Example 4.9). Use PSpice to find
the Thevenin and Norton equivalent circuits.

Solution:
(a) To find the Thevenin resistance and Thevenin voltage at
the terminals a-b in the circuit in Fig. 4.31, we first use Schematics to
draw the circuit as shown in Fig. 4.53(a). Notice that a probing current
source I2 is inserted at the terminals. Under Analysis/Setput, we select
DC Sweep. In the DC Sweep dialog box, we select Linear for the
Sweep Type and Current Source for the Sweep Var. Type. We enter I2
under the Name box, 0 as Start Value, 1 as End Value, and 0.1 as
Increment. After simulation, we add trace V(I2:–) from the PSpice A/D
window and obtain the plot shown in Fig. 4.53(b). From the plot, we
obtain

These agree with what we got analytically in Example 4.9.

VTh � Zero intercept � 20 V,  RTh � Slope �
26 � 20

1
� 6 �

VThRTh

Example 4.14

R2 R4

2 2

GAIN=2

E1

R4 4 R3 6 I2I1

0

+
−

26 V

24 V

22 V

20 V
0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A

= V(I2:_)

+
−

(b)(a)

Figure 4.53
For Example 4.14: (a) schematic and (b) plot for finding and VTh.RTh

(b) To find the Norton equivalent, we modify the schematic in Fig. 4.53(a)
by replaying the probing current source with a probing voltage source
V1. The result is the schematic in Fig. 4.54(a). Again, in the DC Sweep
dialog box, we select Linear for the Sweep Type and Voltage Source
for the Sweep Var. Type. We enter V1 under Name box, 0 as Start Value,
1 as End Value, and 0.1 as Increment. Under the PSpice A/D Window,
we add trace I (V1) and obtain the plot in Fig. 4.54(b). From the plot,
we obtain

GN � Slope �
3.335 � 3.165

1
� 0.17 S

IN � Zero intercept � 3.335 A
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Rework Practice Prob. 4.9 using PSpice.

Answer: VTh � 5.333 V, RTh � 444.4 m�.

Practice Problem 4.14

RL1 V

1 kΩ

+
−

Figure 4.55
For Example 4.15.

Example 4.15

R2 R1

2 2

GAIN=2

E1

R4 4 R3 6 V1I1

0

+
−

3.4 A

3.3 A

3.2 A

3.1 A
0 V 0.2 V 0.4 V 0.6 V 0.8 V 1.0 V

   I(V1) V_V1

+
−

+
−

(b)(a)

Figure 4.54
For Example 4.14: (a) schematic and (b) plot for finding and IN.GN

Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum
power transfer to 

Solution:
We need to perform a DC Sweep on to determine when the power
across it is maximum. We first draw the circuit using Schematics as
shown in Fig. 4.56. Once the circuit is drawn, we take the following
three steps to further prepare the circuit for a DC Sweep.

The first step involves defining the value of as a parameter,
since we want to vary it. To do this:

1. DCLICKL the value 1k of R2 (representing ) to open up the
Set Attribute Value dialog box.

2. Replace 1k with {RL} and click OK to accept the change.

Note that the curly brackets are necessary.
The second step is to define parameter. To achieve this:

1. Select Draw/Get New Part/Libraries /special.slb.
2. Type PARAM in the PartName box and click OK.
3. DRAG the box to any position near the circuit.
4. CLICKL to end placement mode.
5. DCLICKL to open up the PartName: PARAM dialog box.
6. CLICKL on NAME1 � and enter RL (with no curly brackets)

in the Value box, and CLICKL Save Attr to accept change.
7. CLICKL on VALUE1 � and

CLICKL Save Attr to accept change.
8. Click OK.

and enter 2k in the Value box,

p

RL

RL

RL

RL.

{RL}DC=1 V +
−

0

R1

R2

1k
V1

PARAMETERS:
RL       2k

Figure 4.56
Schematic for the circuit in Fig. 4.55.
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The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

1. Select Analysis/Setput to bring up the DC Sweep dialog box.
2. For the Sweep Type, select Linear (or Octave for a wide range

of ).
3. For the Sweep Var. Type, select Global Parameter.
4. Under the Name box, enter RL.
5. In the Start Value box, enter 100.
6. In the End Value box, enter 5k.
7. In the Increment box, enter 100.
8. Click OK and Close to accept the parameters.

After taking these steps and saving the circuit, we are ready to
simulate. Select Analysis/Simulate. If there are no errors, we select
Add Trace in the PSpice window and type in
the Trace Command box. [The negative sign is needed since I(R2) is
negative.] This gives the plot of the power delivered to as varies
from to . We can also obtain the power absorbed by by
typing in the Trace Command box. Either way,
we obtain the plot in Fig. 4.57. It is evident from the plot that the
maximum power is Notice that the maximum occurs when

as expected analytically.RL � 1 k�,
250 mW.

V(R2:2)*V(R2:2)/RL
RL5 k�100 �

RLRL

�V(R2:2)*I(R2)A/D

RL
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250 uW

150 uW

200 uW

100 uW

50 uW
0 2.0 K 4.0 K 6.0 K

 –V(R2:2)*I(R2)

RL

Figure 4.57
For Example 4.15: the plot of power
across RL.

Practice Problem 4.15Find the maximum power transferred to if the resistor in
Fig. 4.55 is replaced by a resistor.

Answer: 125 mW.

2-k�
1-k�RL

Applications
In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4.10.1 Source Modeling

Source modeling provides an example of the usefulness of the
Thevenin or the Norton equivalent. An active source such as a battery
is often characterized by its Thevenin or Norton equivalent circuit. An
ideal voltage source provides a constant voltage irrespective of the cur-
rent drawn by the load, while an ideal current source supplies a con-
stant current regardless of the load voltage. As Fig. 4.58 shows,
practical voltage and current sources are not ideal, due to their inter-
nal resistances or source resistances and They become ideal as

To show that this is the case, consider the effectRs S  0 and Rp S  �.
Rp.Rs

4.10
vs

Rs

+
−

(a)

is Rp

(b)

Figure 4.58
(a) Practical voltage source, (b) practical
current source.
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of the load on voltage sources, as shown in Fig. 4.59(a). By the volt-
age division principle, the load voltage is

(4.25)

As increases, the load voltage approaches a source voltage as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

1. The load voltage will be constant if the internal resistance of
the source is zero or, at least, In other words, the
smaller is compared with the closer the voltage source is to
being ideal.

RL,Rs

Rs V RL.
Rs

vs,RL

vL �
RL

Rs � RL
 vs
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RLvs

Rs

+
− vL

+

−

(a) (b)

vL

RL
0

vs

Practical source

Ideal source

Figure 4.59
(a) Practical voltage source connected to a load , (b) load volt-
age decreases as decreases.RL

RL

2. When the load is disconnected (i.e., the source is open-circuited so
that ), Thus, may be regarded as the unloaded
source voltage. The connection of the load causes the terminal volt-
age to drop in magnitude; this is known as the loading effect.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

(4.26)

Figure 4.60(b) shows the variation in the load current as the load resist-
ance increases. Again, we notice a drop in current due to the load (load-
ing effect), and load current is constant (ideal current source) when the
internal resistance is very large (i.e., or, at least, ).

Sometimes, we need to know the unloaded source voltage and
the internal resistance of a voltage source. To find and we fol-
low the procedure illustrated in Fig. 4.61. First, we measure the open-
circuit voltage as in Fig. 4.61(a) and set

(4.27)

Then, we connect a variable load across the terminals as in 
Fig. 4.61(b). We adjust the resistance until we measure a load volt-
age of exactly one-half of the open-circuit voltage, 
because now At that point, we disconnect and
measure it. We set

(4.28)

For example, a car battery may have and Rs � 0.05 �.vs � 12 V

Rs � RL

RLRL � RTh � Rs.
vL � voc �2,

RL

RL

vs � voc

voc

Rs,vsRs

vs

Rp W RLRp S  �

iL �
Rp

Rp � RL
 is

vsvoc � vs.RL S  �

RL

(a)

is Rp

IL

(b)

IL

RL0

is

Practical source

Ideal source

Figure 4.60
(a) Practical current source connected to a
load , (b) load current decreases as 
increases.

RLRL

ale80571_ch04_127-174.qxd  11/30/11  12:51 PM  Page 156



4.10 Applications 157

Signal
source

(a)

voc

+

−

Signal
source

(b)

vL

+

−
RL

Figure 4.61
(a) Measuring (b) measuring vL.voc,

The terminal voltage of a voltage source is 12 V when connected to a
2-W load. When the load is disconnected, the terminal voltage rises to
12.4 V. (a) Calculate the source voltage and internal resistance .
(b) Determine the voltage when an load is connected to the source.

Solution:

(a) We replace the source by its Thevenin equivalent. The terminal
voltage when the load is disconnected is the open-circuit voltage,

When the load is connected, as shown in Fig. 4.62(a), and
Hence,

The load current is

The voltage across is the difference between the source voltage 
and the load voltage or

(b) Now that we have the Thevenin equivalent of the source, we
connect the load across the Thevenin equivalent as shown in
Fig. 4.62(b). Using voltage division, we obtain

v �
8

8 � 2.4
 (12.4) � 9.538 V

8-�

12.4 � 12 � 0.4 � RsiL,  Rs �
0.4

IL
� 2.4 �

vL,
vsRs

iL �
vL

RL
�

12

72
�

1

6
 A

pL �
vL

2

RL
  1   RL �

vL
2

pL
�

122

2
� 72 �

pL � 2 W.
vL � 12 V

vs � voc � 12.4 V

8-�
Rsvs

Example 4.16

Rs

(a)

(b)

RLvs

Rs iL

vL

+

−

8 Ω12.4 V v

+

−

2.4 Ω

+
−

+
−

The measured open-circuit voltage across a certain amplifier is 9 V.
The voltage drops to 8 V when a loudspeaker is connected to the
amplifier. Calculate the voltage when a loudspeaker is used
instead.

Answer: 7.2 V.

10-�
20-�

Practice Problem 4.16

Figure 4.62
For Example 4.16.
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4.10.2 Resistance Measurement

Although the ohmmeter method provides the simplest way to measure
resistance, more accurate measurement may be obtained using the
Wheatstone bridge. While ohmmeters are designed to measure resist-
ance in low, mid, or high range, a Wheatstone bridge is used to mea-
sure resistance in the mid range, say, between and Very low
values of resistances are measured with a milliohmmeter, while very
high values are measured with a Megger tester.

The Wheatstone bridge (or resistance bridge) circuit is used in a
number of applications. Here we will use it to measure an unknown
resistance. The unknown resistance is connected to the bridge as
shown in Fig. 4.63. The variable resistance is adjusted until no current
flows through the galvanometer, which is essentially a d’Arsonval
movement operating as a sensitive current-indicating device like an
ammeter in the microamp range. Under this condition and the
bridge is said to be balanced. Since no current flows through the gal-
vanometer, and behave as though they were in series; so do 
and . The fact that no current flows through the galvanometer also
implies that Applying the voltage division principle,

(4.29)

Hence, no current flows through the galvanometer when

or

(4.30)

If and is adjusted until no current flows through the gal-
vanometer, then 

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent
( and ) with respect to the galvanometer terminals. If is the
resistance of the galvanometer, the current through it under the unbal-
anced condition is

(4.31)

Example 4.18 will illustrate this.

I �
VTh

RTh � Rm

RmRThVTh

Rx � R2.
R2R1 � R3,

Rx �
R3

R1
 R2

R2

R1 � R2
�

Rx

R3 � Rx
  1  R2R3 � R1Rx

v1 �
R2

R1 � R2
 v � v2 �

Rx

R3 � Rx
 v

v1 � v2.
Rx

R3R2R1

v1 � v2,

Rx

1 M�.1 �

158 Chapter 4 Circuit Theorems

Historical note: The bridge was
invented by Charles Wheatstone
(1802–1875), a British professor who
also invented the telegraph, as Samuel
Morse did independently in the
United States.

v

R1 R3

R2 Rx

+
−

Galvanometer

v1

+

−

+

−
v2

Figure 4.63
The Wheatstone bridge; is the
resistance to be measured.

Rx

In Fig. 4.63, and The bridge is balanced when
is adjusted to be Determine the unknown resistance .

Solution:
Using Eq. (4.30) gives

Rx �
R3

R1
 R2 �

200

500
 125 � 50 �

Rx125 �.R2

R3 � 200 �.R1 � 500 �Example 4.17
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Solution:
We first need to replace the circuit by its Thevenin equivalent at
terminals a and b. The Thevenin resistance is found using the circuit
in Fig. 4.65(a). Notice that the and resistors are in parallel;
so are the and resistors. The two parallel combinations
form a series combination with respect to terminals a and b. Hence,

To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle gives

Applying KVL around loop ab gives

Having determined the Thevenin equivalent, we find the current
through the galvanometer using Fig. 4.65(c).

The negative sign indicates that the current flows in the direction
opposite to the one assumed, that is, from terminal b to terminal a.

IG �
VTh

RTh � Rm
�

�77

990 � 40
� �74.76 mA

�v1 � VTh � v2 � 0  or  VTh � v1 � v2 � 55 � 132 � �77 V

v2 �
600

600 � 400
 (220) � 132 Vv1 �

1000

1000 � 3000
 (220) � 55 V,

 �
3000 � 1000

3000 � 1000
�

400 � 600

400 � 600
� 750 � 240 � 990 �

 RTh � 3000 � 1000 � 400 � 600

600-�400-�
1-k�3-k�

4.10 Applications 159

A Wheatstone bridge has is adjusted until no cur-
rent flows through the galvanometer. At that point, What
is the value of the unknown resistance?

Answer: 3.2 k�.

R2 � 3.2 k�.
R2R1 � R3 � 1 k�. Practice Problem 4.17

The circuit in Fig. 4.64 represents an unbalanced bridge. If the gal-
vanometer has a resistance of find the current through the
galvanometer.

40 �,
Example 4.18

220 V

400 Ω

600 Ω

+
− G

3 kΩ

1 kΩ

40 Ωa b

Figure 4.64
Unbalanced bridge of Example 4.18.
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Summary
1. A linear network consists of linear elements, linear dependent

sources, and linear independent sources.
2. Network theorems are used to reduce a complex circuit to a sim-

pler one, thereby making circuit analysis much simpler.
3. The superposition principle states that for a circuit having multi-

ple independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at a time.

4. Source transformation is a procedure for transforming a voltage
source in series with a resistor to a current source in parallel with
a resistor, or vice versa.

5. Thevenin’s and Norton’s theorems allow us to isolate a portion of
a network while the remaining portion of the network is replaced
by an equivalent network. The Thevenin equivalent consists of a
voltage source in series with a resistor while the Norton
equivalent consists of a current source in parallel with a resis-
tor The two theorems are related by source transformation.

RN � RTh,  IN �
VTh

RTh

RN.
IN

RTh,VTh

4.11

160 Chapter 4 Circuit Theorems

220 V

400 Ω

600 Ω

+
−

3 kΩ

1 kΩ
a b

+ −
VTh

(b)

VTh

40 Ω
+
−

(c)

400 Ω

600 Ω

3 kΩ

1 kΩ
a b

RTh

(a)

RTh a

b

G

IG

+

−
v1

+

−
v2

Figure 4.65
For Example 4.18: (a) Finding , (b) finding , (c) determining the current through the galvanometer.VThRTh

Obtain the current through the galvanometer, having a resistance of
in the Wheatstone bridge shown in Fig. 4.66.

Answer: 64 mA.

14 �,
Practice Problem 4.18

14 Ω

60 Ω

16 V

40 Ω

20 Ω 30 Ω
G

Figure 4.66
For Practice Prob. 4.18.
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Review Questions 161

6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when that is, when the load resistance is equal
to the Thevenin resistance.

7. The maximum power transfer theorem states that the maximum
power is delivered by a source to the load when is equal to

the Thevenin resistance at the terminals of the load.
8. PSpice can be used to verify the circuit theorems covered in this

chapter.
9. Source modeling and resistance measurement using the Wheat-

stone bridge provide applications for Thevenin’s theorem.

RTh,
RLRL

RL � RTh;

Review Questions

4.1 The current through a branch in a linear network is
2 A when the input source voltage is 10 V. If the
voltage is reduced to 1 V and the polarity is reversed,
the current through the branch is:

(a) �2 A (b) �0.2 A (c) 0.2 A

(d) 2 A (e) 20 A

4.2 For superposition, it is not required that only one
independent source be considered at a time; any
number of independent sources may be considered
simultaneously.

(a) True (b) False

4.3 The superposition principle applies to power
calculation.

(a) True (b) False

4.4 Refer to Fig. 4.67. The Thevenin resistance at
terminals a and b is:

(a) (b) 

(c) (d) 4 �5 �

20 �25 �

4.7 The Norton resistance is exactly equal to the
Thevenin resistance 

(a) True (b) False

4.8 Which pair of circuits in Fig. 4.68 are equivalent?

(a) a and b (b) b and d

(c) a and c (d) c and d

RTh.
RN

50 V 20 Ω+
−

5 Ω

a

b

Figure 4.67
For Review Questions 4.4 to 4.6.

4.5 The Thevenin voltage across terminals a and b of the
circuit in Fig. 4.67 is:

(a) 50 V (b) 40 V

(c) 20 V (d) 10 V

4.6 The Norton current at terminals a and b of the circuit
in Fig. 4.67 is:

(a) 10 A (b) 2.5 A

(c) 2 A (d) 0 A

+
−20 V

5 Ω

(a)

4 A

5 Ω

(b)

5 Ω

(c)

+
−20 V 5 Ω

(d)

4 A

4.9 A load is connected to a network. At the terminals to
which the load is connected, and

The maximum possible power supplied
to the load is:

(a) 160 W (b) 80 W

(c) 40 W (d) 1 W

4.10 The source is supplying the maximum power to the
load when the load resistance equals the source
resistance.

(a) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c,
4.9c, 4.10a.

VTh � 40 V.
RTh � 10 �

Figure 4.68
For Review Question 4.8.
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Figure 4.73
For Prob. 4.5.

4.6 For the linear circuit shown in Fig. 4.74, use linearity
to complete the following table.

Experiment Vs Vo

1 12 V 4 V
2 16 V
3 1 V
4 �2 V

Figure 4.74
For Prob. 4.6.

4.7 Use linearity and the assumption that to
find the actual value of in Fig. 4.75.Vo

Vo � 1 V

Figure 4.75
For Prob. 4.7.

Section 4.3 Superposition

4.8 Using superposition, find in the circuit of Fig. 4.76.
Check with PSpice or MultiSim.

Vo

162 Chapter 4 Circuit Theorems

Problems

Section 4.2 Linearity Property

4.1 Calculate the current in the circuit of Fig. 4.69.
What value of input voltage is necessary to make 
equal to 5 amps?

io

io

4.5 For the circuit in Fig. 4.73, assume and
use linearity to find the actual value of .vo

vo � 1 V,

+
−

io

5 Ω 25 Ω

15 Ω40 Ω30 V

Figure 4.69
For Prob. 4.1.

Figure 4.70
For Prob. 4.2.

4.2 Using Fig. 4.70, design a problem to help other
students better understand linearity.

R2 R4

R3R1I R5

+

−
vo

4.3 (a) In the circuit of Fig. 4.71, calculate and 
when 

(b) Find and when 

(c) What are and when each of the 
resistors is replaced by a resistor and
vs � 10 V?

10-�
1-�iovo

vs � 10 V.iovo

vs � 1 V.
iovo

+
−

1 Ω

1 Ω

1 Ω 1 Ωvs

1 Ω

io
+

−
vo

Figure 4.71
For Prob. 4.3.

4.4 Use linearity to determine in the circuit of Fig. 4.72.io

2 Ω3 Ω

4 Ω6 Ω 9 A

io

Figure 4.72
For Prob. 4.4.

2 Ω 3 Ω

4 Ω6 Ω

vo 2 Ω

6 Ω15 V +
−

Linear
circuit

+
Vo
–

Vs −
+

4 V −
+ 3 Ω

1 Ω 4 Ω

2 Ω Vo

+

–

9 V+
−

3 V+
−

3 Ω
5 Ω

4 Ω 1 ΩVo

Figure 4.76
For Prob. 4.8.
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4.9 Given that I � 4 amps when Vs � 40 volts and Is � 4
amps and I � 1 amp when Vs � 20 volts and Is � 0,
use superposition and linearity to determine the value
of I when Vs � 60 volts and Is � �2 amps.

Problems 163

Figure 4.77
For Prob. 4.9.

4.10 Using Fig. 4.78, design a problem to help other
students better understand superposition. Note, the
letter k is a gain you can specify to make the
problem easier to solve but must not be zero.

Figure 4.78
For Prob. 4.10.

4.11 Use the superposition principle to find and in
the circuit of Fig. 4.79.

voio

Figure 4.79
For Prob. 4.11.

4.12 Determine in the circuit of Fig. 4.80 using the
superposition principle.

vo

Figure 4.80
For Prob. 4.12.

4.13 Use superposition to find in the circuit of Fig. 4.81.vo

4.14 Apply the superposition principle to find in the
circuit of Fig. 4.82.

vo

Figure 4.82
For Prob. 4.14.

4.15 For the circuit in Fig. 4.83, use superposition to find i.
Calculate the power delivered to the resistor.3-�

Figure 4.83
For Probs. 4.15 and 4.56.

Figure 4.84
For Prob. 4.16.

Figure 4.81
For Prob. 4.13.

Vs
+
− I Is

V I

a

b

R
kVab

+ −

+
− Vab

+

−

20 Ω

4io6 A 40 Ω

io 10 Ω

vo+ −

30 V−
+

12 V

5 Ω6 Ω

2 A

4 Ω

12 Ω3 Ω+
− 19 V+

−

+ −vo

2 A

4 A

10 Ω

8 Ω

5 Ω12 V

−+

vo

+

−

+
−

6 Ω

2 Ω

3 Ω1 A

2 A

20 V

4 Ω

+

−
vo

20 V
2 A

3 Ω
2 Ω

1 Ω
4 Ω

16 V−
+

i

+
−

12 V

3 Ω4 Ω

4 A

2 Ω

5 Ω10 Ω+
− 2 A

io

4.16 Given the circuit in Fig. 4.84, use superposition to
obtain i0.
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4.17 Use superposition to obtain in the circuit of 
Fig. 4.85. Check your result using PSpice or
MultiSim.

vx

Figure 4.85
For Prob. 4.17.

4.18 Use superposition to find in the circuit of Fig. 4.86.Vo

Figure 4.86
For Prob. 4.18.

4.19 Use superposition to solve for in the circuit of 
Fig. 4.87.

vx

Figure 4.87
For Prob. 4.19.

Section 4.4 Source Transformation

4.20 Use source transformation to reduce the circuit in
Fig. 4.88 to a single voltage source in series with a
single resistor.

4.21 Using Fig. 4.89, design a problem to help other
students better understand source transformation.

Figure 4.89
For Prob. 4.21.

4.22 For the circuit in Fig. 4.90, use source
transformation to find i.

Figure 4.90
For Prob. 4.22.

4.23 Referring to Fig. 4.91, use source transformation to
determine the current and power absorbed by the

resistor.8-�

Figure 4.91
For Prob. 4.23.

4.24 Use source transformation to find the voltage in
the circuit of Fig. 4.92.

Vx

164 Chapter 4 Circuit Theorems

90 V 6 A

30 Ω 10 Ω 20 Ω

60 Ω 30 Ω+
− 40 V+

−

+ −vx

1 Ω

2 Ω
0.5Vo

2 A 4 Ω10 V +
− Vo

+

−

8 Ω2 Ω 6 A 4 A

− +

ix

4ix

+

−
vx

3 A

16 V12 V +
−

+
−

20 Ω10 Ω 40 Ω

Figure 4.88
For Prob. 4.20.

V I

R1

R2
+
−

io

+

−
vo

5 Ω 10 Ω

4 Ω5 Ω2 A 20 V+
−

i

3 A 15 V

3 Ω8 Ω

10 Ω 6 Ω −
+

40 V +
− 10 Ω 2Vx

3 A

10 Ω8 Ω

Vx+ −

Figure 4.92
For Prob. 4.24.
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4.25 Obtain in the circuit of Fig. 4.93 using source
transformation. Check your result using PSpice or
MultiSim.

vo

Figure 4.93
For Prob. 4.25.

4.26 Use source transformation to find in the circuit of
Fig. 4.94.

io

Figure 4.94
For Prob. 4.26.

4.27 Apply source transformation to find in the circuit
of Fig. 4.95.

vx

Figure 4.95
For Probs. 4.27 and 4.40.

4.28 Use source transformation to find in Fig. 4.96.Io

4.29 Use source transformation to find in the circuit of
Fig. 4.97.

vo

Figure 4.97
For Prob. 4.29.

4.30 Use source transformation on the circuit shown in
Fig 4.98 to find ix.

Figure 4.98
For Prob. 4.30.

4.31 Determine in the circuit of Fig. 4.99 using source
transformation.

vx

Figure 4.99
For Prob. 4.31.

Problems 165

3 A

9 Ω

2 Ω

2 A

30 V

5 Ω4 Ω 6 A

+ −
+ −vo

3 A 4 Ω

+
− 20 V6 A

io

5 Ω

2 Ω

50 V 8 A

10 Ω 12 Ω 20 Ω

40 Ω+
− 40 V+

−

a b

+ −vx

1 Ω 4 ΩIo

3 Ω Vo8 V −
+

+ −Vo

1
3

Figure 4.96
For Prob. 4.28.

4 kΩ

1 kΩ3 mA

2 kΩ
3vo

− +
+

−
vo

24 Ω 60 Ω

10 Ω30 Ω

ix

12 V 0.7ix−
+

+
−

3 Ω 6 Ω

2vx8 Ω12 V
+
−

+ −vx

4.32 Use source transformation to find in the circuit of
Fig. 4.100.

ix

Figure 4.100
For Prob. 4.32.

10 Ω

15 Ω
0.5ix

40 Ω60 V +
− 50 Ω

ix
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Sections 4.5 and 4.6 Thevenin’s and Norton’s
Theorems

4.33 Determine the Thevenin equivalent circuit, shown in
Fig. 4.101, as seen by the 5-ohm resistor.

Then calculate the current flowing through the 5-ohm
resistor.

166 Chapter 4 Circuit Theorems

Figure 4.101
For Prob. 4.33.

4.34 Using Fig. 4.102, design a problem that will help
other students better understand Thevenin equivalent
circuits.

Figure 4.102
For Probs. 4.34 and 4.49.

4.35 Use Thevenin’s theorem to find in Prob. 4.12.

4.36 Solve for the current i in the circuit of Fig. 4.103
using Thevenin’s theorem. (Hint: Find the Thevenin
equivalent seen by the 12- resistor.)�

vo

Figure 4.103
For Prob. 4.36.

4.37 Find the Norton equivalent with respect to terminals
in the circuit shown in Fig. 4.104.a-b

4 A 10 Ω

10 Ω

5 Ω

R3R1

I

V R2

a

b

+
−

12 Ω

30 V

40 Ω
+
−

10 Ω

50 V +
−

i

Figure 4.104
For Prob. 4.37.

4.38 Apply Thevenin’s theorem to find in the circuit of
Fig. 4.105.

Vo

Figure 4.105
For Prob. 4.38.

4.39 Obtain the Thevenin equivalent at terminals of
the circuit shown in Fig. 4.106.

a-b

Figure 4.106
For Prob. 4.39.

4.40 Find the Thevenin equivalent at terminals of the
circuit in Fig. 4.107.

a-b

12 Ω40 Ω

20 Ω

120 V

2 A

a

b

+
−

5 Ω

4 Ω 1 Ω

16 Ω3 A Vo

12 V

10 Ω
+

–

−
+

24 V

3 A

a

b

5 Ω

10 Ω

16 Ω10 Ω

+
−

Figure 4.107
For Prob. 4.40.

10 kΩ 20 kΩ

a

b

+ −Vo

70 V −
+

−
+ 4Vo
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4.41 Find the Thevenin and Norton equivalents at
terminals of the circuit shown in Fig. 4.108.a-b

Figure 4.108
For Prob. 4.41.

*4.42 For the circuit in Fig. 4.109, find the Thevenin
equivalent between terminals a and b.

Figure 4.109
For Prob. 4.42.

4.43 Find the Thevenin equivalent looking into terminals
of the circuit in Fig. 4.110 and solve for ix.a-b

Figure 4.110
For Prob. 4.43.

4.44 For the circuit in Fig. 4.111, obtain the Thevenin
equivalent as seen from terminals:

(a) (b) b-ca-b

4.45 Find the Thevenin equivalent of the circuit in 
Fig. 4.112 as seen by looking into terminals a and b.

Figure 4.112
For Prob. 4.45.

4.46 Using Fig. 4.113, design a problem to help other
students better understand Norton equivalent circuits.

Figure 4.113
For Prob. 4.46.

4.47 Obtain the Thevenin and Norton equivalent circuits
of the circuit in Fig. 4.114 with respect to terminals a
and b.

Figure 4.114
For Prob. 4.47.

4.48 Determine the Norton equivalent at terminals a-b for
the circuit in Fig. 4.115.

Problems 167

6 Ω

14 Ω

5 Ω3 A1 A

14 V

a

b

+−

20 Ω

20 Ω10 Ω

10 Ω

5 A 10 Ω

20 V

30 V +
−

−
+

10 Ω

a b

20 V 2 A

10 Ω 6 Ω

10 Ω+
− 5 Ω

a b

ix

4 Ω24 V

5 Ω2 Ω

1 Ω3 Ω

2 A

a

b

c

+
−

Figure 4.111
For Prob. 4.44.

* An asterisk indicates a challenging problem.

4 A 4 Ω

a

b

6 Ω

6 Ω

I

a

b

R1 R3

R2

12 Ω

60 Ω30 V Vx 2Vx

a

b

+

–
−
+

2 A

a

b

4 Ω

2 Ω
10io

io

−+

Figure 4.115
For Prob. 4.48.

4.49 Find the Norton equivalent looking into terminals
of the circuit in Fig. 4.102. Let ,

, , , and .R3 � 20 �R2 � 40 �R1 � 10 �I � 3 A
V � 40 Va-b
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4.50 Obtain the Norton equivalent of the circuit in
Fig. 4.116 to the left of terminals Use the
result to find current i.

a-b.

Figure 4.116
For Prob. 4.50.

4.51 Given the circuit in Fig. 4.117, obtain the Norton
equivalent as viewed from terminals:

(a) (b) c-da-b

Figure 4.117
For Prob. 4.51.

4.52 For the transistor model in Fig. 4.118, obtain the
Thevenin equivalent at terminals a-b.

Figure 4.118
For Prob. 4.52.

4.53 Find the Norton equivalent at terminals of the
circuit in Fig. 4.119.

a-b

Figure 4.119
For Prob. 4.53.

4.54 Find the Thevenin equivalent between terminals 
of the circuit in Fig. 4.120.

a-b

Figure 4.120
For Prob. 4.54.

*4.55 Obtain the Norton equivalent at terminals of the
circuit in Fig. 4.121.

a-b

Figure 4.121
For Prob. 4.55.

4.56 Use Norton’s theorem to find in the circuit of
Fig. 4.122.

Vo

Figure 4.122
For Prob. 4.56.
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2 A

a

b

4 A4 Ω 5 Ω

12 V6 Ω
+ −

i

120 V

c

a b

d

6 A 2 Ω3 Ω

4 Ω6 Ω

+
−

6 V 20io

3 kΩ

2 kΩ+
−

a

b

io

2 Ω6 Ω

0.25vo

3 Ω18 V +
− vo

+

−

a

b

1 kΩ

50 Ω3 V

Io 40Io2Vx Vx

a

b

+

–
−
+ +

−

2 V 80I

8 kΩ

50 kΩ+
−

a

b

0.001Vab
+
−

I

+

−
Vab

36 V

10 kΩ2 kΩ12 kΩ

24 kΩ 1 kΩ3 mA−
+ Vo

+

−

4.57 Obtain the Thevenin and Norton equivalent circuits
at terminals for the circuit in Fig. 4.123.a-b

50 V

3 Ω 2 Ω

10 Ω+
−

a

b

0.5vx6 Ω
+

−
vx

Figure 4.123
For Probs. 4.57 and 4.79.
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4.58 The network in Fig. 4.124 models a bipolar transistor
common-emitter amplifier connected to a load. Find
the Thevenin resistance seen by the load.

*4.62 Find the Thevenin equivalent of the circuit in
Fig. 4.128.

Problems 169

vs

R1
bib

RL
+
− R2

ib

Figure 4.124
For Prob. 4.58.

4.59 Determine the Thevenin and Norton equivalents at
terminals of the circuit in Fig. 4.125.a-b

8 A

10 Ω 20 Ω

50 Ω 40 Ω

a b

Figure 4.125
For Probs. 4.59 and 4.80.

*4.60 For the circuit in Fig. 4.126, find the Thevenin and
Norton equivalent circuits at terminals a-b.

+ −
18 V

3 A

4 Ω 6 Ω

5 Ω

a b

2 A

10 V

+ −

Figure 4.126
For Probs. 4.60 and 4.81.

*4.61 Obtain the Thevenin and Norton equivalent circuits
at terminals of the circuit in Fig. 4.127.a-b

12 V

6 Ω
2 Ω

6 Ω

2 Ω

6 Ω
+
− 12 V

2 Ω

+
−

12 V+
−

a

b

Figure 4.127
For Prob. 4.61.

10 Ω

20 Ω40 Ω

+ −

io

0.1io

2vo

+

−
vo

b

a

Figure 4.128
For Prob. 4.62.

4.63 Find the Norton equivalent for the circuit in
Fig. 4.129.

Figure 4.129
For Prob. 4.63.

4.64 Obtain the Thevenin equivalent seen at terminals 
of the circuit in Fig. 4.130.

a-b

Figure 4.130
For Prob. 4.64.

0.5vo

10 Ω

+

−
vo 20 Ω

10ix

4 Ω

2 Ω

1 Ω

+
−

ix

a

b

4.65 For the circuit shown in Fig. 4.131, determine the
relationship between and I0.Vo

4 Ω 2 Ω

12 Ω32 V

Io

Vo

+

−
−
+

Figure 4.131
For Prob. 4.65.
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Section 4.8 Maximum Power Transfer

4.66 Find the maximum power that can be delivered to
the resistor R in the circuit of Fig. 4.132.

4.70 Determine the maximum power delivered to the
variable resistor R shown in the circuit of Fig. 4.136.

170 Chapter 4 Circuit Theorems

R3 Ω

2 Ω

5 Ω20 V 6 A+
−

− +

10 V

Figure 4.132
For Prob. 4.66.

4.67 The variable resistor R in Fig. 4.133 is adjusted until
it absorbs the maximum power from the circuit. 
(a) Calculate the value of R for maximum power. 
(b) Determine the maximum power absorbed by R.

Figure 4.133
For Prob. 4.67.

*4.68 Compute the value of R that results in maximum
power transfer to the 10- resistor in Fig. 4.134.
Find the maximum power.

�

Figure 4.134
For Prob. 4.68.

4.69 Find the maximum power transferred to resistor R in
the circuit of Fig. 4.135.

10 Ω

20 Ω80 Ω

90 Ω

40 V

−+ R

+
−

+
−

R

20 Ω
10 Ω

8 V

12 V

R40 kΩ 30 kΩ100 V +
− 0.003vo

22 kΩ10 kΩ

+

−
vo

Figure 4.135
For Prob. 4.69.

R

6 Ω

5 Ω

15 Ω

5 Ω

+ −

4 V

3 Vx

Vx

−
+

Figure 4.136
For Prob. 4.70.

4.71 For the circuit in Fig. 4.137, what resistor connected
across terminals will absorb maximum power
from the circuit? What is that power?

a-b

Figure 4.137
For Prob. 4.71.

4.72 (a) For the circuit in Fig. 4.138, obtain the Thevenin
equivalent at terminals 

(b) Calculate the current in 

(c) Find for maximum power deliverable to 

(d) Determine that maximum power.

RL.RL

RL � 8 �.

a-b.

Figure 4.138
For Prob. 4.72.

8 V 120vo

3 kΩ 10 kΩ

40 kΩ1 kΩ+
−

a

b

–
+

+

−
vo

6 Ω4 Ω

2 A

20 V

4 A 2 Ω

a

b

RL

+ −
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4.73 Determine the maximum power that can be delivered
to the variable resistor R in the circuit of Fig. 4.139.

4.80 Use PSpice or MultiSim to find the Thevenin
equivalent circuit at terminals of the circuit in
Fig. 4.125.

4.81 For the circuit in Fig. 4.126, use PSpice or MultiSim
to find the Thevenin equivalent at terminals 

Section 4.10 Applications

4.82 A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 
calculate the power dissipated by the bulb.

4.83 The following results were obtained from
measurements taken between the two terminals of a
resistive network.

Terminal Voltage 12 V 0 V
Terminal Current 0 A 1.5 A

Find the Thevenin equivalent of the network.

4.84 When connected to a 4- resistor, a battery has a
terminal voltage of 10.8 V but produces 12 V on an
open circuit. Determine the Thevenin equivalent
circuit for the battery.

4.85 The Thevenin equivalent at terminals of the
linear network shown in Fig. 4.142 is to be
determined by measurement. When a 10-k resistor
is connected to terminals a-b, the voltage is
measured as 6 V. When a 30-k resistor is connected
to the terminals, is measured as 12 V. Determine:
(a) the Thevenin equivalent at terminals a-b, (b) 
when a 20-k resistor is connected to terminals a-b.�

Vab

Vab

�
Vab

� 

a-b

� 

2 �,

a-b.

a-b

Problems 171

Figure 4.139
For Prob. 4.73.

20 Ω

25 Ω10 Ω

5 Ω

60 V
R

−
+

4.74 For the bridge circuit shown in Fig. 4.140, find the
load for maximum power transfer and the
maximum power absorbed by the load.

RL

R3
RL

R4

R1

R2

vs
+
−

Figure 4.140
For Prob. 4.74.

*4.75 For the circuit in Fig. 4.141, determine the value of
R such that the maximum power delivered to the
load is 3 mW.

3 V2 V1 V
RL

R

R

R

+
−

+
−

+
−

Figure 4.141
For Prob. 4.75.

Section 4.9 Verifying Circuit Theorems
with PSpice

4.76 Solve Prob. 4.34 using PSpice or MultiSim. Let
, , , , and
.

4.77 Use PSpice or MultiSim to solve Prob. 4.44.

4.78 Use PSpice or MultiSim to solve Prob. 4.52.

4.79 Obtain the Thevenin equivalent of the circuit in
Fig. 4.123 using PSpice or MultiSim.

R3 � 20 �
R2 � 40 �R1 � 10 �I � 3 AV � 40 V

Linear

network

a

b

Figure 4.142
For Prob. 4.85.

4.86 A black box with a circuit in it is connected to a
variable resistor. An ideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
as shown in Fig. 4.143. The results are shown in the
table on the next page.

Black
box

V

A

i

R

Figure 4.143
For Prob. 4.86.
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(a) Find i when 

(b) Determine the maximum power from the box.

R(�) V(V) i(A)

2 3 1.5
8 8 1.0

14 10.5 0.75

4.87 A transducer is modeled with a current source and
a parallel resistance The current at the terminals
of the source is measured to be 9.975 mA when an
ammeter with an internal resistance of is used.

(a) If adding a 2-k resistor across the source
terminals causes the ammeter reading to fall to
9.876 mA, calculate and 

(b) What will the ammeter reading be if the
resistance between the source terminals is
changed to 4 k ?

4.88 Consider the circuit in Fig. 4.144. An ammeter with
internal resistance is inserted between A and B to
measure Determine the reading of the ammeter if:
(a) (b) (Hint: Find the
Thevenin equivalent circuit at terminals )a-b.

Ri � 0 �.Ri � 500 �,
Io.

Ri

�

Rs.Is

�

20 �

Rs.
Is

R � 4 �. 4.90 The Wheatstone bridge circuit shown in Fig. 4.146 is
used to measure the resistance of a strain gauge. The
adjustable resistor has a linear taper with a maximum
value of 100 If the resistance of the strain gauge
is found to be what fraction of the full slider
travel is the slider when the bridge is balanced?

42.6 �,
�.

172 Chapter 4 Circuit Theorems

4 mA30 kΩ

10 kΩ

2 kΩ 5 kΩ

20 kΩ 60 V

Io

ba

−
+

Figure 4.144
For Prob. 4.88.

4.89 Consider the circuit in Fig. 4.145. (a) Replace the
resistor by a zero resistance ammeter and
determine the ammeter reading. (b) To verify the
reciprocity theorem, interchange the ammeter and
the 12-V source and determine the ammeter reading
again.

RL

20 kΩ

15 kΩ

10 kΩ

12 kΩ

12 V

RL

−
+

Figure 4.145
For Prob. 4.89.

4 kΩ

100 Ω

2 kΩ

+
−vs

Rs

Rx

G

Figure 4.146
For Prob. 4.90.

4.91 (a) In the Wheatstone bridge circuit of Fig. 4.147,
select the values of and such that the bridge
can measure in the range of 0–10 �.Rx

R3R1

R3

Rx

R1

V +
−

G

50 Ω

Figure 4.147
For Prob. 4.91.

(b) Repeat for the range of 0–100 

*4.92 Consider the bridge circuit of Fig. 4.148. Is the
bridge balanced? If the 10-k resistor is replaced by
an 18-k resistor, what resistor connected between
terminals absorbs the maximum power? What is
this power?

a-b
�

�

�.

220 V

2 kΩ

3 kΩ 6 kΩ

5 kΩ 10 kΩ

+
− a b

Figure 4.148
For Prob. 4.92.
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Comprehensive Problems 173

Comprehensive Problems

4.93 The circuit in Fig. 4.149 models a common-emitter
transistor amplifier. Find using source
transformation.

ix

*4.96 A resistance array is connected to a load resistor R
and a 9-V battery as shown in Fig. 4.151.

(a) Find the value of R such that 

(b) Calculate the value of R that will draw the
maximum current. What is the maximum current?

Vo � 1.8 V.

vs

Rs

+
− �ixRo

ix

Figure 4.149
For Prob. 4.93.

4.94 An attenuator is an interface circuit that reduces the
voltage level without changing the output resistance.

(a) By specifying and of the interface circuit in
Fig. 4.150, design an attenuator that will meet the
following requirements:

(b) Using the interface designed in part (a), calculate
the current through a load of when
Vg � 12 V.

RL � 50 �

Vo

Vg
� 0.125,  Req � RTh � Rg � 100 �

RpRs

60 Ω 10 Ω

10 Ω

8 Ω 8 Ω

R

10 Ω 40 Ω

9 V+ −

3

4

1

2

+ −Vo

Figure 4.151
For Prob. 4.96.

Figure 4.150
For Prob. 4.94.

Vg

Rg Rs

RL

Req

+
− Rp Vo

+

−

Attenuator
Load

*4.95 A dc voltmeter with a sensitivity of is used
to find the Thevenin equivalent of a linear network.
Readings on two scales are as follows:

(a) 0–10 V scale: 4 V (b) 0–50 V scale: 5 V

Obtain the Thevenin voltage and the Thevenin
resistance of the network.

20 k�/V

4.97 A common-emitter amplifier circuit is shown in 
Fig. 4.152. Obtain the Thevenin equivalent to the
left of points B and E.

RL

Rc

E

4 kΩ

6 kΩ

12 V
B +

−

Figure 4.152
For Prob. 4.97.

*4.98 For Practice Prob. 4.18, determine the current
through the 40- resistor and the power dissipated
by the resistor.

�
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Electronic Instrumentation used in
medical research.
© Royalty-Free/Corbis

Operational
Amplifiers
He who will not reason is a bigot; he who cannot is a fool; and he
who dares not is a slave.

—Lord Byron

c h a p t e r

5

Enhancing Your Career

Career in Electronic Instrumentation
Engineering involves applying physical principles to design devices for
the benefit of humanity. But physical principles cannot be understood
without measurement. In fact, physicists often say that physics is the
science that measures reality. Just as measurements are a tool for under-
standing the physical world, instruments are tools for measurement.
The operational amplifier introduced in this chapter is a building block
of modern electronic instrumentation. Therefore, mastery of operational
amplifier fundamentals is paramount to any practical application of
electronic circuits.

Electronic instruments are used in all fields of science and engi-
neering. They have proliferated in science and technology to the extent
that it would be ridiculous to have a scientific or technical education
without exposure to electronic instruments. For example, physicists,
physiologists, chemists, and biologists must learn to use electronic
instruments. For electrical engineering students in particular, the skill
in operating digital and analog electronic instruments is crucial. Such
instruments include ammeters, voltmeters, ohmmeters, oscilloscopes,
spectrum analyzers, and signal generators.

Beyond developing the skill for operating the instruments, some
electrical engineers specialize in designing and constructing electronic
instruments. These engineers derive pleasure in building their own
instruments. Most of them invent and patent their inventions. Special-
ists in electronic instruments find employment in medical schools, hos-
pitals, research laboratories, aircraft industries, and thousands of other
industries where electronic instruments are routinely used.

175
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Introduction
Having learned the basic laws and theorems for circuit analysis, we are
now ready to study an active circuit element of paramount importance:
the operational amplifier, or op amp for short. The op amp is a versa-
tile circuit building block.

The op amp is an electronic unit that behaves like a voltage-controlled
voltage source.

It can also be used in making a voltage- or current-controlled current
source. An op amp can sum signals, amplify a signal, integrate it, or
differentiate it. The ability of the op amp to perform these mathemat-
ical operations is the reason it is called an operational amplifier. It is
also the reason for the widespread use of op amps in analog design.
Op amps are popular in practical circuit designs because they are ver-
satile, inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the
nonideal op amp. Using nodal analysis as a tool, we consider ideal op
amp circuits such as the inverter, voltage follower, summer, and dif-
ference amplifier. We will also analyze op amp circuits with PSpice.
Finally, we learn how an op amp is used in digital-to-analog convert-
ers and instrumentation amplifiers.

Operational Amplifiers
An operational amplifier is designed so that it performs some mathe-
matical operations when external components, such as resistors and
capacitors, are connected to its terminals. Thus, 

An op amp is an active circuit element designed to perform mathe-
matical operations of addition, subtraction, multiplication, division, dif-
ferentiation, and integration.

The op amp is an electronic device consisting of a complex
arrangement of resistors, transistors, capacitors, and diodes. A full dis-
cussion of what is inside the op amp is beyond the scope of this book.
It will suffice to treat the op amp as a circuit building block and sim-
ply study what takes place at its terminals.

Op amps are commercially available in integrated circuit packages
in several forms. Figure 5.1 shows a typical op amp package. A typical
one is the eight-pin dual in-line package (or DIP), shown in Fig. 5.2(a).
Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern
to us. The five important terminals are:

1. The inverting input, pin 2.
2. The noninverting input, pin 3.
3. The output, pin 6.
4. The positive power supply V�, pin 7.
5. The negative power supply V�, pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as
shown, the op amp has two inputs and one output. The inputs are

5.2

5.1

176 Chapter 5 Operational Amplifiers

The pin diagram in Fig. 5.2(a)
corresponds to the 741 general-
purpose op amp made by Fairchild
Semiconductor.

Figure 5.1
A typical operational amplifier. 
Courtesy of Tech America.

An op amp may also be regarded as a
voltage amplifier with very high gain.

The term operational amplifier was in-
troduced in 1947 by John Ragazzini
and his colleagues, in their work on
analog computers for the National
Defense Research Council after World
War II. The first op amps used vacuum
tubes rather than transistors.
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marked with minus (�) and plus (�) to specify inverting and nonin-
verting inputs, respectively. An input applied to the noninverting ter-
minal will appear with the same polarity at the output, while an input
applied to the inverting terminal will appear inverted at the output.

As an active element, the op amp must be powered by a voltage
supply as typically shown in Fig. 5.3. Although the power supplies are
often ignored in op amp circuit diagrams for the sake of simplicity, the
power supply currents must not be overlooked. By KCL,

(5.1)

The equivalent circuit model of an op amp is shown in Fig. 5.4.
The output section consists of a voltage-controlled source in series with
the output resistance Ro. It is evident from Fig. 5.4 that the input resis-
tance Ri is the Thevenin equivalent resistance seen at the input termi-
nals, while the output resistance Ro is the Thevenin equivalent resistance
seen at the output. The differential input voltage vd is given by

(5.2)

where v1 is the voltage between the inverting terminal and ground and
v2 is the voltage between the noninverting terminal and ground. The
op amp senses the difference between the two inputs, multiplies it by
the gain A, and causes the resulting voltage to appear at the output.
Thus, the output vo is given by

(5.3)

A is called the open-loop voltage gain because it is the gain of the op
amp without any external feedback from output to input. Table 5.1

vo � Avd � A(v2 � v1)

vd � v2 � v1

io � i1 � i2 � i� � i�

5.2 Operational Amplifiers 177

Figure 5.2
A typical op amp: (a) pin configuration, (b) circuit symbol.

+

−1Balance

2Inverting input

3Noninverting input

4V − 5 Balance

6 Output

7 V +

8 No connection

(a) (b)

2Inverting input

3Noninverting input

4
V −

V +

1 5

Offset Null

6 Output

7

7

4

6

VCC

VCC

+

−

+

−i o

i1

i2

i +

i −

2

3

v1

v2

vo

+
−

+

−
vd Ri

Ro

Avd

Figure 5.3
Powering the op amp.

Figure 5.4
The equivalent circuit of the nonideal
op amp.

Sometimes, voltage gain is expressed
in decibels (dB), as discussed in
Chapter 14.

A dB � 20 log10 ATABLE 5.1

Typical ranges for op amp parameters.

Parameter Typical range Ideal values

Open-loop gain, A 105 to 108 �
Input resistance, Ri 105 to 1013 � ��
Output resistance, Ro 10 to 100 � 0�
Supply voltage, VCC 5 to 24 V
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shows typical values of voltage gain A, input resistance Ri, output
resistance Ro, and supply voltage VCC.

The concept of feedback is crucial to our understanding of op amp
circuits. A negative feedback is achieved when the output is fed back
to the inverting terminal of the op amp. As Example 5.1 shows, when
there is a feedback path from output to input, the ratio of the output
voltage to the input voltage is called the closed-loop gain. As a result
of the negative feedback, it can be shown that the closed-loop gain is
almost insensitive to the open-loop gain A of the op amp. For this rea-
son, op amps are used in circuits with feedback paths.

A practical limitation of the op amp is that the magnitude of its
output voltage cannot exceed |VCC |. In other words, the output voltage
is dependent on and is limited by the power supply voltage. Figure 5.5
illustrates that the op amp can operate in three modes, depending on
the differential input voltage vd:

1. Positive saturation, vo � VCC.
2. Linear region, �VCC � vo � Avd � VCC.
3. Negative saturation, vo � �VCC.

If we attempt to increase vd beyond the linear range, the op amp
becomes saturated and yields vo � VCC or vo � �VCC. Throughout
this book, we will assume that our op amps operate in the linear mode.
This means that the output voltage is restricted by

(5.4)

Although we shall always operate the op amp in the linear region, the
possibility of saturation must be borne in mind when one designs with
op amps, to avoid designing op amp circuits that will not work in the
laboratory.

�VCC � vo � VCC

178 Chapter 5 Operational Amplifiers

Example 5.1 A 741 op amp has an open-loop voltage gain of 2 � 105, input resis-
tance of 2 M�, and output resistance of 50 �. The op amp is used in
the circuit of Fig. 5.6(a). Find the closed-loop gain vo�vs. Determine
current i when vs � 2 V.

Throughout this book, we assume that
an op amp operates in the linear range.
Keep in mind the voltage constraint on
the op amp in this mode.

Figure 5.5
Op amp output voltage vo as a function of
the differential input voltage vd.

Positive saturation

Negative saturation

vd

vo

VCC

−VCC

0

10 kΩ

20 kΩ

vs

i

vo

+

−

+
−

1

O

(a) (b)

+

−
741

10 kΩ

20 kΩ

vs

i

i

Ro = 50 Ω

Ri = 2 MΩ+
−

1 O

+
− Avd

v1 vo

−

+
vd

Figure 5.6
For Example 5.1: (a) original circuit, (b) the equivalent circuit.
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Solution:
Using the op amp model in Fig. 5.4, we obtain the equivalent circuit
of Fig. 5.6(a) as shown in Fig. 5.6(b). We now solve the circuit in
Fig. 5.6(b) by using nodal analysis. At node 1, KCL gives

Multiplying through by 2000 � 103, we obtain

or

(5.1.1)

At node O,

But vd � �v1 and A � 200,000. Then

(5.1.2)

Substituting v1 from Eq. (5.1.1) into Eq. (5.1.2) gives

This is closed-loop gain, because the 20-k� feedback resistor closes
the loop between the output and input terminals. When vs � 2 V, vo �
�3.9999398 V. From Eq. (5.1.1), we obtain v1 � 20.066667 �V. Thus,

It is evident that working with a nonideal op amp is tedious, as we are
dealing with very large numbers.

i �  
v1 � vo

20 � 103 � 0.19999 mA

0 � 26,667,067vo � 53,333,333vs  1  
vo

vs
� �1.9999699

v1 � vo � 400(vo � 200,000v1)

v1 � vo

20 � 103 �
vo � Avd

50

2vs � 3v1 � vo  1  v1 �
2vs � vo

3

200vs � 301v1 � 100vo

vs � v1

10 � 103 �
v1

2000 � 103 �
v1 � vo

20 � 103

5.3 Ideal Op Amp 179

Practice Problem 5.1If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7,
calculate the closed-loop gain vo�vs. Find io when vs � 1 V.

Answer: 9.00041, 657 �A.

40 kΩ
20 kΩ5 kΩ

vs

vo

io

+
− +

−

+

−
741

Figure 5.7
For Practice Prob. 5.1.

Ideal Op Amp
To facilitate the understanding of op amp circuits, we will assume ideal
op amps. An op amp is ideal if it has the following characteristics:

1. Infinite open-loop gain, 
2. Infinite input resistance, 
3. Zero output resistance, Ro � 0.

Ri � �.
A � �.

5.3
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An ideal op amp is an amplifier with infinite open-loop gain, infinite
input resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approxi-
mate analysis, most modern amplifiers have such large gains and
input impedances that the approximate analysis is a good one. Unless
stated otherwise, we will assume from now on that every op amp is
ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8,
which is derived from the nonideal model in Fig. 5.4. Two important
characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

(5.5)

This is due to infinite input resistance. An infinite resistance
between the input terminals implies that an open circuit exists there
and current cannot enter the op amp. But the output current is not
necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is equal to zero; i.e.,

(5.6)

or

(5.7)

Thus, an ideal op amp has zero current into its two input ter-
minals and the voltage between the two input terminals is equal
to zero. Equations (5.5) and (5.7) are extremely important
and should be regarded as the key handles to analyzing op amp
circuits.

v1 � v2

vd � v2 � v1 � 0

i1 � 0,  i2 � 0

180 Chapter 5 Operational Amplifiers

i2 = 0

i1 = 0

v1

v2 = v1

+

−

vo

+

−
vd

+

−

+

−

+

−

40 kΩ

20 kΩ
5 kΩ

vs

i1 = 0

i2 = 0

i0

+
−

v1

v2

O

+

−

+

−
vo

Figure 5.8
Ideal op amp model.

The two characteristics can be ex-
ploited by noting that for voltage cal-
culations the input port behaves as a
short circuit, while for current calcula-
tions the input port behaves as an
open circuit.

Example 5.2 Rework Practice Prob. 5.1 using the ideal op amp model.

Solution:
We may replace the op amp in Fig. 5.7 by its equivalent model in
Fig. 5.9 as we did in Example 5.1. But we do not really need to do
this. We just need to keep Eqs. (5.5) and (5.7) in mind as we analyze
the circuit in Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in
Fig. 5.9. Notice that

(5.2.1)

Since i1 � 0, the 40-k� and 5-k� resistors are in series; the same
current flows through them. v1 is the voltage across the 5-k� resistor.
Hence, using the voltage division principle,

(5.2.2)v1 �
5

5 � 40
 vo �

vo

9

v2 � vs

Figure 5.9
For Example 5.2.
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According to Eq. (5.7),

(5.2.3)

Substituting Eqs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-
loop gain,

(5.2.4)

which is very close to the value of 9.00041 obtained with the nonideal
model in Practice Prob. 5.1. This shows that negligibly small error
results from assuming ideal op amp characteristics. 

At node O,

(5.2.5)

From Eq. (5.2.4), when vs � 1 V, vo � 9 V. Substituting for vo � 9 V
in Eq. (5.2.5) produces

This, again, is close to the value of 0.657 mA obtained in Practice
Prob. 5.1 with the nonideal model.

io � 0.2 � 0.45 � 0.65 mA

io �
vo

40 � 5
 �

vo

20
 mA

vs �
vo

9
   1  

vo

vs
� 9

v2 � v1
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Practice Problem 5.2Repeat Example 5.1 using the ideal op amp model.

Answer: �2, 200 �A.

Figure 5.10
The inverting amplifier.

R1

Rf

v i
vo

+

−

+
− v2

v1
0 A

0 V

+

−

+

−1

i1

i2
Inverting Amplifier

In this and the following sections, we consider some useful op amp
circuits that often serve as modules for designing more complex cir-
cuits. The first of such op amp circuits is the inverting amplifier shown
in Fig. 5.10. In this circuit, the noninverting input is grounded, vi is
connected to the inverting input through R1, and the feedback resistor
Rf is connected between the inverting input and output. Our goal is to
obtain the relationship between the input voltage vi and the output volt-
age vo. Applying KCL at node 1,

(5.8)

But v1 � v2 � 0 for an ideal op amp, since the noninverting terminal
is grounded. Hence,

vi

R1
 � �

vo

Rf
 

i1 � i2 1 
vi � v1

R1
�

v1 � vo

Rf

5.4

A key feature of the inverting amplifier
is that both the input signal and the
feedback are applied at the inverting
terminal of the op amp.
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or

(5.9)

The voltage gain is Av � vo�vi � �Rf�R1. The designation of the cir-
cuit in Fig. 5.10 as an inverter arises from the negative sign. Thus,

An inverting amplifier reverses the polarity of the input signal while
amplifying it.

Notice that the gain is the feedback resistance divided by the
input resistance which means that the gain depends only on the
external elements connected to the op amp. In view of Eq. (5.9), an
equivalent circuit for the inverting amplifier is shown in Fig. 5.11.
The inverting amplifier is used, for example, in a current-to-voltage
converter.

vo � �
Rf

R1
 vi
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Note there are two types of gains: The
one here is the closed-loop voltage
gain Av, while the op amp itself has an
open-loop voltage gain A.

–
+

+

−
vi

+

−
voR1

Rf 

R1
vi

Figure 5.11
An equivalent circuit for the inverter in
Fig. 5.10.

Example 5.3 Refer to the op amp in Fig. 5.12. If vi � 0.5 V, calculate: (a) the output
voltage vo, and (b) the current in the 10-k� resistor.

Solution:
(a) Using Eq. (5.9),

(b) The current through the 10-k� resistor is

i �
vi � 0

R1
�

0.5 � 0

10 � 103 � 50 mA

vo � �2.5vi � �2.5(0.5) � �1.25 V

vo

vi
� �

Rf

R1
� �

25

10
� �2.5

10 kΩ

25 kΩ

vi vo

+

−

+
−

+
−

Figure 5.12
For Example 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the
current through the feedback resistor.

Answer: �3.15 V, 26.25 �A.

Practice Problem 5.3

4 kΩ

280 kΩ

45 mV vo

+

−

+
−

+
−

Figure 5.13
For Practice Prob. 5.3.
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5.5 Noninverting Amplifier 183

Example 5.4Determine vo in the op amp circuit shown in Fig. 5.14.

Solution:
Applying KCL at node a,

But va � vb � 2 V for an ideal op amp, because of the zero voltage
drop across the input terminals of the op amp. Hence,

Notice that if vb � 0 � va, then vo � �12, as expected from Eq. (5.9).

vo � 6 � 12 � �6 V

va � vo � 12 � 2va  1  vo � 3va � 12

va � vo

40 k�
�

6 � va

20 k�

20 kΩ

40 kΩ

6 V vo

+

−

2 V +
−

+
−

a

b +
−

Figure 5.14
For Example 5.4.

Practice Problem 5.4Two kinds of current-to-voltage converters (also known as transresis-
tance amplifiers) are shown in Fig. 5.15.

(a) Show that for the converter in Fig. 5.15(a),

(b) Show that for the converter in Fig. 5.15(b),

Answer: Proof.

vo

is
� �R1a1 �

R3

R1
�

R3

R2
b

vo

is
� �R

Figure 5.15
For Practice Prob. 5.4.

Figure 5.16
The noninverting amplifier.

R

is vo

+

−

(a)

+
−

R1

is

R2

vo

+

−

(b)

R3

+
−

Noninverting Amplifier
Another important application of the op amp is the noninverting ampli-
fier shown in Fig. 5.16. In this case, the input voltage vi is applied
directly at the noninverting input terminal, and resistor R1 is connected

5.5

R1

Rf

vo

+

−

v1

v2

vi
+
−

i2

i1

+
−
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between the ground and the inverting terminal. We are interested in the
output voltage and the voltage gain. Application of KCL at the invert-
ing terminal gives

(5.10)

But v1 � v2 � vi. Equation (5.10) becomes

or

(5.11)

The voltage gain is Av � vo�vi � 1 � Rf�R1, which does not have a
negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed to provide a
positive voltage gain.

Again we notice that the gain depends only on the external resistors.
Notice that if feedback resistor Rf � 0 (short circuit) or R1 � �

(open circuit) or both, the gain becomes 1. Under these conditions
(Rf � 0 and R1 � �), the circuit in Fig. 5.16 becomes that shown
in Fig. 5.17, which is called a voltage follower (or unity gain
amplifier) because the output follows the input. Thus, for a voltage
follower

(5.12)

Such a circuit has a very high input impedance and is therefore use-
ful as an intermediate-stage (or buffer) amplifier to isolate one circuit
from another, as portrayed in Fig. 5.18. The voltage follower mini-
mizes interaction between the two stages and eliminates interstage
loading.

vo � vi

vo � a1 �
Rf

R1
b vi

�vi

R1
�

vi � vo

Rf

i1 � i2 1 
0 � v1

R1
�

v1 � vo

Rf
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Example 5.5 For the op amp circuit in Fig. 5.19, calculate the output voltage vo.

Solution:
We may solve this in two ways: using superposition and using nodal
analysis.

■ METHOD 1 Using superposition, we let

vo � vo1 � vo2

vo = vi

+

−

vi
+
−

+
−

Figure 5.17
The voltage follower.

+
−

vi

+

−
vo

+

−

First
stage

Second
stage

Figure 5.18
A voltage follower used to isolate two
cascaded stages of a circuit.

ale80571_ch05_175-214.qxd  11/30/11  12:56 PM  Page 184



where vo1 is due to the 6-V voltage source, and vo2 is due to the 4-V
input. To get vo1, we set the 4-V source equal to zero. Under this
condition, the circuit becomes an inverter. Hence Eq. (5.9) gives

To get vo2, we set the 6-V source equal to zero. The circuit becomes
a noninverting amplifier so that Eq. (5.11) applies.

Thus,

■ METHOD 2 Applying KCL at node a,

But va � vb � 4, and so

or vo � �1 V, as before.

6 � 4

4
�

4 � vo

10
  1  5 � 4 � vo

6 � va

4
�

va � vo

10

vo � vo1 � vo2 � �15 � 14 � �1 V

vo2 � a1 �
10

4
b 4 � 14 V

vo1 � �
10

4
 (6) � �15 V
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Practice Problem 5.5Calculate vo in the circuit of Fig. 5.20.

Answer: 7 V.

5 kΩ

4 kΩ

2 kΩ

3 V vo

+

−

+
− 8 kΩ

+
−

Figure 5.20
For Practice Prob. 5.5.

Summing Amplifier
Besides amplification, the op amp can perform addition and subtrac-
tion. The addition is performed by the summing amplifier covered in
this section; the subtraction is performed by the difference amplifier
covered in the next section.

A summing amplifier is an op amp circuit that combines several inputs
and produces an output that is the weighted sum of the inputs.

The summing amplifier, shown in Fig. 5.21, is a variation of the
inverting amplifier. It takes advantage of the fact that the inverting con-
figuration can handle many inputs at the same time. We keep in mind

5.6

i1

i2

i3

v1

v2

v3

i

i

+

−

vo

0

0

R1 Rf

R2

R3

a
+

−

Figure 5.21
The summing amplifier.

4 kΩ

10 kΩ

6 V vo

+

−

+
− 4 V +

−

a

b +
−

Figure 5.19
For Example 5.5.
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that the current entering each op amp input is zero. Applying KCL at
node a gives

(5.13)

But

(5.14)

We note that va � 0 and substitute Eq. (5.14) into Eq. (5.13). We get

(5.15)

indicating that the output voltage is a weighted sum of the inputs. For
this reason, the circuit in Fig. 5.21 is called a summer. Needless to say,
the summer can have more than three inputs.

vo � �aRf

R1
 v1 �

Rf

R2
 v2 �

Rf

R3
 v3b

i3 �
v3 � va

R3
, i �

va � vo

Rf

i1 �
v1 � va

R1
, i2 �

v2 � va

R2

i � i1 � i2 � i3
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Example 5.6 Calculate vo and io in the op amp circuit in Fig. 5.22.

Solution:
This is a summer with two inputs. Using Eq. (5.15) gives

The current io is the sum of the currents through the 10-k� and 2-k�
resistors. Both of these resistors have voltage vo � �8 V across them,
since va � vb � 0. Hence,

io �
vo � 0

10
�

vo � 0

2
 mA � �0.8 � 4 � �4.8 mA

vo � � c 10

5
 (2) �

10

2.5
 (1) d � �(4 � 4) � �8 V

10 kΩ5 kΩ

2.5 kΩ

2 kΩ

io

vo

a

b

1 V+
−

+
− +

−

2 V
+
−

Figure 5.22
For Example 5.6.
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Answer: �3.8 V, �1.425 mA.

5.7 Difference Amplifier 187

Practice Problem 5.6Find vo and io in the op amp circuit shown in Fig. 5.23.

Figure 5.23
For Practice Prob. 5.6.

vo

io

+

−

20 kΩ

10 kΩ

6 kΩ

8 kΩ

4 kΩ+
−

+
−

+
−

1.2 V
2 V

1.5 V

+
−

Difference Amplifier
Difference (or differential) amplifiers are used in various applications
where there is a need to amplify the difference between two input sig-
nals. They are first cousins of the instrumentation amplifier, the most
useful and popular amplifier, which we will discuss in Section 5.10.

A difference amplifier is a device that amplifies the difference between
two inputs but rejects any signals common to the two inputs.

Consider the op amp circuit shown in Fig. 5.24. Keep in mind that
zero currents enter the op amp terminals. Applying KCL to node a,

or

(5.16)vo � aR2

R1
� 1b va �

R2

R1
 v1

v1 � va

R1
�

va � vo

R2

5.7
The difference amplifier is also known
as the subtractor, for reasons to be
shown later.

v1

v2

+

−

vo

0

0

+

−
R1

R2

R3

R4

va

vb

+
−

+
−

Figure 5.24
Difference amplifier.
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Applying KCL to node b,

or

(5.17)

But va � vb. Substituting Eq. (5.17) into Eq. (5.16) yields

or

(5.18)

Since a difference amplifier must reject a signal common to the two
inputs, the amplifier must have the property that vo � 0 when v1 � v2.
This property exists when

(5.19)

Thus, when the op amp circuit is a difference amplifier, Eq. (5.18)
becomes

(5.20)

If R2 � R1 and R3 � R4, the difference amplifier becomes a subtractor,
with the output

(5.21)vo � v2 � v1

vo �
R2

R1
 (v2 � v1)

R1

R2
�

R3

R4

vo �
R2(1 � R1�R2)

R1(1 � R3�R4)
 v2 �

R2

R1
 v1

vo � aR2

R1
� 1b 

R4

R3 � R4
v2 �

R2

R1
 v1

vb �
R4

R3 � R4
v2

v2 � vb

R3
�

vb � 0

R4
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Example 5.7 Design an op amp circuit with inputs v1 and v2 such that 
vo � �5v1 � 3v2.

Solution:
The circuit requires that

(5.7.1)

This circuit can be realized in two ways.

Design 1 If we desire to use only one op amp, we can use the op
amp circuit of Fig. 5.24. Comparing Eq. (5.7.1) with Eq. (5.18), we see

(5.7.2)
R2

R1
� 5  1  R2 � 5R1

vo � 3v2 � 5v1
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Also,

or

(5.7.3)

If we choose R1 � 10 k� and R3 � 20 k�, then R2 � 50 k� and
R4 � 20 k�.

Design 2 If we desire to use more than one op amp, we may cascade
an inverting amplifier and a two-input inverting summer, as shown in
Fig. 5.25. For the summer,

(5.7.4)

and for the inverter,

(5.7.5)

Combining Eqs. (5.7.4) and (5.7.5) gives

which is the desired result. In Fig. 5.25, we may select R1 � 10 k�
and R3 � 20 k� or R1 � R3 � 10 k�.

vo � 3v2 � 5v1

va � �3v2

vo � �va � 5v1

2 � 1 �
R3

R4
  1  R3 � R4

5
(1 � R1�R2)

(1 � R3�R4)
� 3  1  

6
5

1 � R3�R4
�

3

5
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vo

5R1
R3

R1

va +
−+

−

v1

v2

3R3
5R1

Figure 5.25
For Example 5.7.

Practice Problem 5.7Design a difference amplifier with gain 7.5.

Answer: Typical: R1 � R3 � 20k�, R2 � R4 � 150 k�.

Example 5.8An instrumentation amplifier shown in Fig. 5.26 is an amplifier of low-
level signals used in process control or measurement applications and
commercially available in single-package units. Show that

Solution:
We recognize that the amplifier A3 in Fig. 5.26 is a difference amplifier.
Thus, from Eq. (5.20),

(5.8.1)

Since the op amps A1 and A2 draw no current, current i flows through
the three resistors as though they were in series. Hence,

(5.8.2)vo1 � vo2 � i(R3 � R4 � R3) � i(2R3 � R4)

vo �
R2

R1
 (vo2 � vo1)

vo �
R2

R1
 a1 �

2R3

R4
b (v2 � v1)
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But

and va � v1, vb � v2. Therefore,

(5.8.3)

Inserting Eqs. (5.8.2) and (5.8.3) into Eq. (5.8.1) gives

as required. We will discuss the instrumentation amplifier in detail in
Section 5.10.

vo �
R2

R1
 a1 �

2R3

R4
b (v2 � v1)

i �
v1 � v2

R4

i �
va � vb

R4
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vo1

vo2

v1

v2

0

0

vo

+

−

+

−

+

−

A1

A2

A3

R3

R4

R1

R1

R2

R2

R3

va

vb

+
−

+
−

i

Figure 5.26
Instrumentation amplifier; for Example 5.8.

Obtain io in the instrumentation amplifier circuit of Fig. 5.27.Practice Problem 5.8

Figure 5.27
Instrumentation amplifier; for Practice Prob. 5.8.

Answer: �800 �A.

+

−

+

−

+

−
io

20 kΩ

20 kΩ

40 kΩ

50 kΩ40 kΩ

6.98 V

7 V
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Cascaded Op Amp Circuits
As we know, op amp circuits are modules or building blocks for
designing complex circuits. It is often necessary in practical applica-
tions to connect op amp circuits in cascade (i.e., head to tail) to achieve
a large overall gain. In general, two circuits are cascaded when they
are connected in tandem, one behind another in a single file.

A cascade connection is a head-to-tail arrangement of two or more op
amp circuits such that the output of one is the input of the next.

When op amp circuits are cascaded, each circuit in the string is
called a stage; the original input signal is increased by the gain of the
individual stage. Op amp circuits have the advantage that they can be
cascaded without changing their input-output relationships. This is due to
the fact that each (ideal) op amp circuit has infinite input resistance and
zero output resistance. Figure 5.28 displays a block diagram represen-
tation of three op amp circuits in cascade. Since the output of one stage
is the input to the next stage, the overall gain of the cascade connection
is the product of the gains of the individual op amp circuits, or

(5.22)

Although the cascade connection does not affect the op amp input-
output relationships, care must be exercised in the design of an actual
op amp circuit to ensure that the load due to the next stage in the cas-
cade does not saturate the op amp.

A � A1 A2 A3

5.8

5.8 Cascaded Op Amp Circuits 191

Stage 1
v2 = A1v1

+

−
v1 

+

−

+

−
A1

Stage 2
A2

v3 = A2v2 vo = A3v3

+

−

Stage 3
A3

Figure 5.28
A three-stage cascaded connection.

Example 5.9Find vo and io in the circuit in Fig. 5.29.

Solution:
This circuit consists of two noninverting amplifiers cascaded. At the
output of the first op amp,

At the output of the second op amp,

The required current io is the current through the 10-k� resistor.

io �
vo � vb

10
 mA

vo �  a1 �
10

4
b va � (1 � 2.5)100 � 350 mV

va �  a1 �
12

3
b (20) � 100 mV

10 kΩ
12 kΩ

4 kΩ

20 mV vo

+

−

+
−

3 kΩ

a

b
io

+
− +

−

Figure 5.29
For Example 5.9.
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But vb � va � 100 mV. Hence,

io �
(350 � 100) � 10�3

10 � 103  � 25 mA

192 Chapter 5 Operational Amplifiers

Determine vo and io in the op amp circuit in Fig. 5.30.

Answer: 6 V, 24 �A.

Practice Problem 5.9

Figure 5.30
For Practice Prob. 5.9.

200 kΩ
50 kΩ

1.2 V vo

+

−

+
−

io

+
−

+
−

Example 5.10 If v1 � 1 V and v2 � 2 V, find vo in the op amp circuit of Fig. 5.31.

Solution:

1. Define. The problem is clearly defined.
2. Present. With an input of v1 of 1 V and of v2 of 2 V, determine

the output voltage of the circuit shown in Figure 5.31. The op
amp circuit is actually composed of three circuits. The first
circuit acts as an amplifier of gain �3(�6 k��2 k�) for v1 and
the second functions as an amplifier of gain �2(�8 k��4 k�)
for v2. The last circuit serves as a summer of two different gains
for the output of the other two circuits.

3. Alternative. There are different ways of working with this circuit.
Since it involves ideal op amps, then a purely mathematical

+
−

+
−

+
−

A

B

C
5 kΩ

15 kΩ

v1

10 kΩ

2 kΩ

4 kΩ

8 kΩ

6 kΩ

v2

vo

a

b

Figure 5.31
For Example 5.10.
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approach will work quite easily. A second approach would be to
use PSpice as a confirmation of the math.

4. Attempt. Let the output of the first op amp circuit be designated
as v11 and the output of the second op amp circuit be designated
as v22. Then we get

In the third circuit we have

5. Evaluate. In order to properly evaluate our solution, we need to
identify a reasonable check. Here we can easily use PSpice to
provide that check.

Now we can simulate this in PSpice. We see the results are
shown in Fig. 5.32.

 � 6 � 2.667 � 8.667 V

 � �2(�3) � (2�3)(�4)

 vo � �(10 k��5 k�) v11 � 3�(10 k��15 k�) v22 4

 v22 � �2v2 � �2 � 2 � �4 V

 v11 � �3v1 � �3 � 1 � �3 V,
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We note that we obtain the same results using two entirely
different techniques (the first is to treat the op amp circuits as
just gains and a summer and the second is to use circuit analysis
with PSpice). This is a very good method of assuring that we
have the correct answer.

6. Satisfactory? We are satisfied we have obtained the asked for
results. We can now present our work as a solution to the
problem.

R6

2 kΩ

R4

6 kΩ

+

−

−3.000

+

−
1 V

v1

OPAMP

U1

R7

4 kΩ

R5

8 kΩ

+

−

−4.000

+

−
2 V

v2

OPAMP

U2

R1

10 kΩ

R2

5 kΩ

R3

15 kΩ

+

−

8.667 V

OPAMP

U3

Figure 5.32
For Example 5.10.
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Op Amp Circuit Analysis with PSpice
PSpice for Windows does not have a model for an ideal op amp, although
one may create one as a subcircuit using the Create Subcircuit line in
the Tools menu. Rather than creating an ideal op amp, we will use one
of the four nonideal, commercially available op amps supplied in the
PSpice library eval.slb. The op amp models have the part names LF411,
LM111, LM324, and uA741, as shown in Fig. 5.34. Each of them can
be obtained from Draw/Get New Part/libraries . . . /eval.lib or by sim-
ply selecting Draw/Get New Part and typing the part name in the
PartName dialog box, as usual. Note that each of them requires dc sup-
plies, without which the op amp will not work. The dc supplies should
be connected as shown in Fig. 5.3.

5.9
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If v1 � 7 V and v2 � 3.1 V, find vo in the op amp circuit of 
Fig. 5.33.

Practice Problem 5.10

Figure 5.33
For Practice Prob. 5.10.

Answer: 10 V.

+
−

+
−

+
−

+
−

+
−

10 kΩ

v1

v2

vo

50 kΩ

20 kΩ

30 kΩ

60 kΩ

+

−

LM324

2

3

1

4 U1A

11

V+

V−

+

−

LM111

3

2

7V+

V−

U2
8 5

6

1
4

G
BB /S

(c) Five–
connection
op amp subcircuit

(b) Op amp
subcircuit

+

−

uA741

2

3
U3

4

V+

V−

+

−

LF411

2

3

6

7
5

1

U4

4

V+

V−

7
5

1

6052

051

B2

B1

(d) Five–connection 
op amp subcircuit

(a) JFET–input op
amp subcircuit

Figure 5.34
Nonideal op amp model available in PSpice.
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After saving the schematic, we simulate the circuit by selecting
Analysis/Simulate and have the results displayed on VIEWPOINT and
IPROBE. From the results, the closed-loop gain is

and i � 0.1999 mA, in agreement with the results obtained analytically
in Example 5.1.

vo

vs
�

�3.9983

2
� �1.99915

5.9 Op Amp Circuit Analysis with PSpice 195

Example 5.11Use PSpice to solve the op amp circuit for Example 5.1.

Solution:
Using Schematics, we draw the circuit in Fig. 5.6(a) as shown in
Fig. 5.35. Notice that the positive terminal of the voltage source vs is
connected to the inverting terminal (pin 2) via the 10-k� resistor, while
the noninverting terminal (pin 3) is grounded as required in Fig. 5.6(a).
Also, notice how the op amp is powered; the positive power supply
terminal V� (pin 7) is connected to a 15-V dc voltage source, while
the negative power supply terminal V� (pin 4) is connected to �15 V.
Pins 1 and 5 are left floating because they are used for offset null
adjustment, which does not concern us in this chapter. Besides adding
the dc power supplies to the original circuit in Fig. 5.6(a), we have also
added pseudocomponents VIEWPOINT and IPROBE to respectively
measure the output voltage vo at pin 6 and the required current i
through the 20-k� resistor.

+

−

uA741

2

3
U1

4

V+

V−

7
5

1

6052

051

+
− +

−

+

−

20 K

R2
1.999E–04

V3

15 V 0

15 V

V2

10 K

R1

VS 2 V

0

–3.9983

Figure 5.35
Schematic for Example 5.11.

Practice Problem 5.11Rework Practice Prob. 5.1 using PSpice.

Answer: 9.0027, 650.2 �A.
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Applications
The op amp is a fundamental building block in modern electronic
instrumentation. It is used extensively in many devices, along with
resistors and other passive elements. Its numerous practical applications
include instrumentation amplifiers, digital-to-analog converters, analog
computers, level shifters, filters, calibration circuits, inverters, sum-
mers, integrators, differentiators, subtractors, logarithmic amplifiers,
comparators, gyrators, oscillators, rectifiers, regulators, voltage-to-
current converters, current-to-voltage converters, and clippers. Some of
these we have already considered. We will consider two more applica-
tions here: the digital-to-analog converter and the instrumentation
amplifier.

5.10.1 Digital-to-Analog Converter

The digital-to-analog converter (DAC) transforms digital signals into
analog form. A typical example of a four-bit DAC is illustrated in
Fig. 5.36(a). The four-bit DAC can be realized in many ways. A sim-
ple realization is the binary weighted ladder, shown in Fig. 5.36(b).
The bits are weights according to the magnitude of their place value,
by descending value of Rf�Rn so that each lesser bit has half the
weight of the next higher. This is obviously an inverting summing
amplifier. The output is related to the inputs as shown in Eq. (5.15).
Thus,

(5.23)

Input V1 is called the most significant bit (MSB), while input V4 is the
least significant bit (LSB). Each of the four binary inputs V1, . . . , V4

can assume only two voltage levels: 0 or 1 V. By using the proper input
and feedback resistor values, the DAC provides a single output that is
proportional to the inputs.

�Vo �
Rf

R1
V1 �

Rf

R2
V2 �

Rf

R3
V3 �

Rf

R4
V4

5.10
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In practice, the voltage levels may be
typically 0 and ; 5 V.

Analog
output

Digital
input

(0000–1111)

Four-bit
DAC

(a)

+
−

V1 V2 V3 V4

R1 R2 R3 R4

Rf

VoMSB LSB

(b)

Figure 5.36
Four-bit DAC: (a) block diagram, 
(b) binary weighted ladder type.

Example 5.12 In the op amp circuit of Fig. 5.36(b), let Rf � 10 k�, R1 � 10 k�, 
R2 � 20 k�, R3 � 40 k�, and R4 � 80 k�. Obtain the analog output
for binary inputs [0000], [0001], [0010], . . . , [1111].

Solution:
Substituting the given values of the input and feedback resistors in
Eq. (5.23) gives

Using this equation, a digital input [V1V2V3V4] � [0000] produces an ana-
log output of �Vo � 0 V; [V1V2V3V4] � [0001] gives �Vo � 0.125 V.

 � V1 � 0.5V2 � 0.25V3 � 0.125V4

 �Vo �
Rf

R1
 V1 �

Rf

R2
 V2 �

Rf

R3
 V3 �

Rf

R4
 V4

ale80571_ch05_175-214.qxd  11/30/11  12:56 PM  Page 196



Similarly,

Table 5.2 summarizes the result of the digital-to-analog conversion.
Note that we have assumed that each bit has a value of 0.125 V. Thus,
in this system, we cannot represent a voltage between 1.000 and 1.125,
for example. This lack of resolution is a major limitation of digital-to-
analog conversions. For greater accuracy, a word representation with a
greater number of bits is required. Even then a digital representation
of an analog voltage is never exact. In spite of this inexact represen-
tation, digital representation has been used to accomplish remarkable
things such as audio CDs and digital photography.

 � 1.875 V

 3V1 V2 V3 V4 4 � 31111 4  1  �Vo � 1 � 0.5 � 0.25 � 0.125
      o
 3V1 V2 V3 V4 4 � 30100 4  1  �Vo � 0.5 V

 3V1 V2 V3 V4 4 � 30011 4  1  �Vo � 0.25 � 0.125 � 0.375 V

 3V1 V2 V3 V4 4 � 30010 4  1  �Vo � 0.25 V
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TABLE 5.2

Input and output values of the four-bit DAC.

Binary input Output
[V1V2V3V4] Decimal value �Vo

0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0.375
0100 4 0.5
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 1.0
1001 9 1.125
1010 10 1.25
1011 11 1.375
1100 12 1.5
1101 13 1.625
1110 14 1.75
1111 15 1.875

Practice Problem 5.12A three-bit DAC is shown in Fig. 5.37.

(a) Determine |Vo| for [V1V2V3] � [010].
(b) Find |Vo| if [V1V2V3] � [110].
(c) If |Vo| � 1.25 V is desired, what should be [V1V2V3]?
(d) To get |Vo| � 1.75 V, what should be [V1V2V3]?

Answer: 0.5 V, 1.5 V, [101], [111].

Figure 5.37
Three-bit DAC; for Practice Prob. 5.12.

+
−

10 kΩ

20 kΩ

40 kΩ

10 kΩ
v1

v2

v3

vo
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5.10.2 Instrumentation Amplifiers

One of the most useful and versatile op amp circuits for precision
measurement and process control is the instrumentation amplifier (IA),
so called because of its widespread use in measurement systems. Typ-
ical applications of IAs include isolation amplifiers, thermocouple
amplifiers, and data acquisition systems.

The instrumentation amplifier is an extension of the difference
amplifier in that it amplifies the difference between its input signals.
As shown in Fig. 5.26 (see Example 5.8), an instrumentation amplifier
typically consists of three op amps and seven resistors. For conven-
ience, the amplifier is shown again in Fig. 5.38(a), where the resistors are
made equal except for the external gain-setting resistor RG, connected
between the gain set terminals. Figure 5.38(b) shows its schematic
symbol. Example 5.8 showed that

(5.24)vo � Av(v2 � v1)
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+

−
RG

Small differential signals riding on larger
common-mode signals

Instrumentation amplifier Amplified differential signal,
no common-mode signal

Figure 5.39
The IA rejects common voltages but amplifies small signal voltages.
Floyd, Thomas, L, Electronic Devices, 4th edition, © 1995, p. 795. Reprinted by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.

where the voltage gain is

(5.25)

As shown in Fig. 5.39, the instrumentation amplifier amplifies small
differential signal voltages superimposed on larger common-mode

Av � 1 �
2R

RG

+
−

+
−

+
−

1

2

3

R

R

R

R

R

R

RG

v1

v2

vo

Inverting input

Gain set

Gain set

Noninverting input

Output

(a) (b)

+

−

Figure 5.38
(a) The instrumentation amplifier with an external resistance to adjust the gain, (b) schematic diagram.
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voltages. Since the common-mode voltages are equal, they cancel each
other.

The IA has three major characteristics:

1. The voltage gain is adjusted by one external resistor RG.
2. The input impedance of both inputs is very high and does not vary

as the gain is adjusted.
3. The output vo depends on the difference between the inputs v1

and v2, not on the voltage common to them (common-mode
voltage).

Due to the widespread use of IAs, manufacturers have developed
these amplifiers on single-package units. A typical example is the
LH0036, developed by National Semiconductor. The gain can be var-
ied from 1 to 1,000 by an external resistor whose value may vary from
100 � to 10 k�.

5.11 Summary 199

Example 5.13In Fig. 5.38, let R � 10 k�, v1 � 2.011 V, and v2 � 2.017 V. If RG

is adjusted to 500 �, determine: (a) the voltage gain, (b) the output
voltage vo.

Solution:
(a) The voltage gain is

(b) The output voltage is

vo � Av(v2 � v1) � 41(2.017 � 2.011) � 41(6) mV � 246 mV

Av � 1 �
2R

RG
� 1 �

2 � 10,000

500
� 41

Practice Problem 5.13Determine the value of the external gain-setting resistor RG required
for the IA in Fig. 5.38 to produce a gain of 142 when R � 25 k�.

Answer: 354.6 �.

Summary
1. The op amp is a high-gain amplifier that has high input resistance

and low output resistance.
2. Table 5.3 summarizes the op amp circuits considered in this chap-

ter. The expression for the gain of each amplifier circuit holds
whether the inputs are dc, ac, or time-varying in general.

5.11
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3. An ideal op amp has an infinite input resistance, a zero output
resistance, and an infinite gain.

4. For an ideal op amp, the current into each of its two input termi-
nals is zero, and the voltage across its input terminals is negligi-
bly small.

5. In an inverting amplifier, the output voltage is a negative multiple
of the input.

6. In a noninverting amplifier, the output is a positive multiple of the
input.

7. In a voltage follower, the output follows the input.
8. In a summing amplifier, the output is the weighted sum of the

inputs.
9. In a difference amplifier, the output is proportional to the differ-

ence of the two inputs.
10. Op amp circuits may be cascaded without changing their input-

output relationships.
11. PSpice can be used to analyze an op amp circuit.
12. Typical applications of the op amp considered in this chapter include

the digital-to-analog converter and the instrumentation amplifier.
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TABLE 5.3

Summary of basic op amp circuits.

Op amp circuit Name/output-input relationship

Inverting amplifier

Noninverting amplifier

Voltage follower
vo � vi

Summer

Difference amplifier

vo �
R2

R1
 (v2 � v1)

vo � �aRf

R1
 v1 �

Rf

R2
 v2 �

Rf

R3
 v3b

vo � a1 �
R2

R1
b vi

vo � �
R2

R1
 vi

+
−

R2

R1
v i vo

vo

R1

+
−

vi

R2

+
− vov i

v1

v2

v3

vo

R1

R2

R3

Rf

+
−

+
−

R2R1
v1

R1 R2
v2

vo
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Review Questions

5.1 The two input terminals of an op amp are labeled as:

(a) high and low.

(b) positive and negative.

(c) inverting and noninverting.

(d) differential and nondifferential.

5.2 For an ideal op amp, which of the following statements
are not true?

(a) The differential voltage across the input terminals
is zero.

(b) The current into the input terminals is zero.

(c) The current from the output terminal is zero.

(d) The input resistance is zero.

(e) The output resistance is zero.

5.3 For the circuit in Fig. 5.40, voltage vo is:

(a) �6 V (b) �5 V

(c) �1.2 V (d) �0.2 V

5.6 If vs � 8 mV in the circuit of Fig. 5.41, the output
voltage is:

(a) �44 mV (b) �8 mV

(c) 4 mV (d) 7 mV

5.7 Refer to Fig. 5.41. If vs � 8 mV, voltage va is:

(a) �8 mV (b) 0 mV

(c) 10�3 mV (d) 8 mV

5.8 The power absorbed by the 4-k� resistor in 
Fig. 5.42 is:

(a) 9 mW (b) 4 mW

(c) 2 mW (d) 1 mW

+
−

+
−

2 kΩ

ix

vo1 V

10 kΩ

3 kΩ
+

−

Figure 5.40
For Review Questions 5.3 and 5.4.

Figure 5.42
For Review Questions 5.8.

5.4 For the circuit in Fig. 5.40, current ix is:

(a) 0.6 mA (b) 0.5 mA

(c) 0.2 mA (d) 1�12 mA

5.5 If vs � 0 in the circuit of Fig. 5.41, current io is:

(a) �10 mA (b) �2.5 mA

(c) 10�12 mA (d) 10�14 mA

Figure 5.41
For Review Questions 5.5, 5.6, and 5.7.

+

−

+
− +

−

4 kΩ

io

vo
10 mV

8 kΩ

2 kΩ
+

−
vs

a

+
−6 V 2 kΩ vo

+

−

4 kΩ
−
+

5.9 Which of these amplifiers is used in a digital-to-analog
converter?

(a) noninverter

(b) voltage follower

(c) summer

(d) difference amplifier

5.10 Difference amplifiers are used in (please check all that
apply):

(a) instrumentation amplifiers

(b) voltage followers

(c) voltage regulators

(d) buffers

(e) summing amplifiers

(f ) subtracting amplifiers

Answers: 5.1c, 5.2c,d, 5.3b, 5.4b, 5.5a, 5.6c, 5.7d, 5.8b,
5.9c, 5.10a,f.
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5.6 Using the same parameters for the 741 op amp in
Example 5.1, find vo in the op amp circuit of
Fig. 5.45.

5.9 Determine vo for each of the op amp circuits in
Fig. 5.48.

202 Chapter 5 Operational Amplifiers

Problems

Section 5.2 Operational Amplifiers

5.1 The equivalent model of a certain op amp is shown
in Fig. 5.43. Determine:

(a) the input resistance

(b) the output resistance

(c) the voltage gain in dB

5.7 The op amp in Fig. 5.46 has Ri � 100 k�, 
Ro � 100 �, A � 100,000. Find the differential
voltage vd and the output voltage vo.

Figure 5.45
For Prob. 5.6.

Figure 5.46
For Prob. 5.7.

Figure 5.47
For Prob. 5.8.

Figure 5.44
For Prob. 5.5.

Figure 5.43
For Prob. 5.1.

60 Ω

+

−
vd +

−1.5 MΩ 8 × 104vd

5.2 The open-loop gain of an op amp is 100,000. Calculate
the output voltage when there are inputs of �10 �V
on the inverting terminal and �20 �V on the
noninverting terminal.

5.3 Determine the output voltage when �20 �V is
applied to the inverting terminal of an op amp and
�30 �V to its noninverting terminal. Assume that
the op amp has an open-loop gain of 200,000.

5.4 The output voltage of an op amp is �4 V when the
noninverting input is 1 mV. If the open-loop gain
of the op amp is 2 � 106, what is the inverting 
input?

5.5 For the op amp circuit of Fig. 5.44, the op amp has
an open-loop gain of 100,000, an input resistance of
10 k�, and an output resistance of 100 �. Find the
voltage gain vo�vi using the nonideal model of the
op amp.

+
−

+

−

vovi

+
−

+

−

+ −

vo741

1 mV

−

+

+

−

10 kΩ 100 kΩ

vo

vd

+
−1 mV

+

−

Section 5.3 Ideal Op Amp

5.8 Obtain vo for each of the op amp circuits in Fig. 5.47.

2 kΩ

(a)

vo

+

−

1 mA

2 V

10 kΩ

(b)

vo+
−1 V 2 kΩ

+

−

+
−

+
− +

−
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5.10 Find the gain vo�vs of the circuit in Fig. 5.49.

5.13 Find vo and io in the circuit of Fig. 5.52.

Problems 203

Figure 5.48
For Prob. 5.9.

Figure 5.51
For Prob. 5.12.

Figure 5.52
For Prob. 5.13.

Figure 5.53
For Prob. 5.14.

Figure 5.49
For Prob. 5.10.

Figure 5.50
For Prob. 5.11.

Figure 5.54
For Prob. 5.15.

+

−

+
− 4 V

2 kΩ

vo
1 mA

+
− 1 V 2 kΩ vo

+

−

+
−3 V

+
−

−
+

10 kΩ

10 kΩ

vo

+

−

+
−

20 kΩ

+
−vs

5.11 Using Fig. 5.50, design a problem to help other
students better understand how ideal op amps work.

+

−

R3

R1

+
−

io

+

−

R2

R4
R5V vo

5.12 Calculate the voltage ratio vo�vs for the op amp
circuit of Fig. 5.51. Assume that the op amp is 
ideal.

5 kΩ

25 kΩ

vs vo

+

−

+
−

+
−

10 kΩ

50 kΩ

vo

+

−

+
−1 V

100 kΩ
90 kΩ

10 kΩ
io

10 kΩ

+
−

5.14 Determine the output voltage vo in the circuit of
Fig. 5.53.

5 kΩ vo

+

−

2 mA

20 kΩ

10 kΩ

10 kΩ

+
−

Section 5.4 Inverting Amplifier

5.15 (a) Determine the ratio vo�is in the op amp circuit of
Fig. 5.54.

(b) Evaluate the ratio for R1 � 20 k�, R2 � 25 k�,
R3 � 40 k�.

is

R1 R3

R2

+
−

+

−
vo
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5.16 Using Fig. 5.55, design a problem to help students
better understand inverting op amps.

5.21 Calculate vo in the op amp circuit of Fig. 5.60.
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R4

R2

V

R1

R3

iy
ix

–

+

−
+

Figure 5.55
For Prob. 5.16.

Figure 5.58
For Prob. 5.19.

Figure 5.59
For Prob. 5.20.

Figure 5.60
For Prob. 5.21.

Figure 5.61
For Prob. 5.23.

Figure 5.56
For Prob. 5.17.

Figure 5.57
For Prob. 5.18.

5.17 Calculate the gain vo�vi when the switch in Fig. 5.56
is in:

(a) position 1 (b) position 2 (c) position 3.

10 kΩ

1

vo

+

−

5 kΩ

+
−vi

2 MΩ

80 kΩ

12 kΩ

2

3

+
−

*5.18 For the circuit shown in Figure 5.57, solve for the
Thevenin equivalent circuit looking into terminals A
and B.

+

−

7.5 V +
−

10 kΩ

10 kΩ

2.5 Ω

5.19 Determine io in the circuit of Fig. 5.58.

* An asterisk indicates a challenging problem.

750 mV

2 kΩ
4 kΩ

io
+
−

4 kΩ 10 kΩ2 kΩ

+
−

5.20 In the circuit of Fig. 5.59, calculate vo of vs � 2 V.

+
− +

−9 V

4 kΩ 4 kΩ
2 kΩ

8 kΩ

vo

+

−
vs

+
−

+

−

vo

+

−

3 V +
− 1 V +

−

10 kΩ

4 kΩ

5.22 Design an inverting amplifier with a gain of �15.

5.23 For the op amp circuit in Fig. 5.61, find the voltage
gain vo�vs.

+
+

−

−

Rf

R1

R2vs vo

+

–
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5.24 In the circuit shown in Fig. 5.62, find k in the voltage
transfer function vo � kvs.

5.28 Find io in the op amp circuit of Fig. 5.66.

Problems 205

Figure 5.62
For Prob. 5.24.

Figure 5.66
For Prob. 5.28.

Figure 5.67
For Prob. 5.29.

Figure 5.68
For Prob. 5.30.

Figure 5.69
For Prob. 5.31.

Figure 5.63
For Prob. 5.25.

Figure 5.64
For Prob. 5.26.

Figure 5.65
For Prob. 5.27.

Section 5.5 Noninverting Amplifier

5.25 Calculate vo in the op amp circuit of Fig. 5.63.

5.26 Using Fig. 5.64, design a problem to help other
students better understand noninverting op amps.

5.27 Find vo in the op amp circuit of Fig. 5.65.

Rf

vo

vs

R1 R2

R4R3

+
+

−

−

+
−

+
−3.7 V

12 kΩ
+
−

+

−
vo20 kΩ

R2 R3
R1

+−V

io

+
−

7.5 V +
−

16 Ω 8 Ω
+
−

24 Ω

+

−
vo12 Ω

v2v1

5.29 Determine the voltage gain vo�vi of the op amp
circuit in Fig. 5.67.

5.30 In the circuit shown in Fig. 5.68, find ix and the
power absorbed by the 20-k� resistor.

5.31 For the circuit in Fig. 5.69, find ix.

+
− 0.4 V 20 kΩ10 kΩ

io

50 kΩ

+
−

R2 
R1

R2

R1

vo
vi

+

+

–

−

−

+

+
−1.2 V 30 kΩ 20 kΩ

ix

60 kΩ
+
−

+
−

+

−

6 kΩ

6 kΩ

3 kΩ4 mA vo

12 kΩ

ix
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5.32 Calculate ix and vo in the circuit of Fig. 5.70. Find
the power dissipated by the 60-k� resistor.

Section 5.6 Summing Amplifier

5.37 Determine the output of the summing amplifier in
Fig. 5.74.

206 Chapter 5 Operational Amplifiers

5.33 Refer to the op amp circuit in Fig. 5.71. Calculate ix
and the power absorbed by the 3-k� resistor.

5.34 Given the op amp circuit shown in Fig. 5.72, express
vo in terms of v1 and v2.

5.35 Design a noninverting amplifier with a gain of 7.5. 

5.36 For the circuit shown in Fig. 5.73, find the Thevenin
equivalent at terminals a-b. (Hint: To find RTh, apply
a current source io and calculate vo.)

+

−
vo

+
− 30 kΩ60 kΩ

ix

4 mV

20 kΩ

50 kΩ

10 kΩ

+
−

Figure 5.70
For Prob. 5.32.

Figure 5.73
For Prob. 5.36.

Figure 5.74
For Prob. 5.37.

Figure 5.75
For Prob. 5.38.

Figure 5.76
For Prob. 5.39.

Figure 5.71
For Prob. 5.33.

Figure 5.72
For Prob. 5.34.

+
−

4 kΩ 2 kΩ

ix

1 mA 3 kΩ

1 kΩ

+

–

v1

v2

vin

R1

R2
R4

R3

vo

+
−

R1

R2

vs

a

b

+
−

−
+

30 kΩ
10 kΩ2 V

20 kΩ−2 V

30 kΩ4.5 V

+ −

+−

+−

vo

+

−

+
−

5.38 Using Fig. 5.75, design a problem to help other
students better understand summing amplifiers.

R5

R1
V1

R2
V2

R4
V4

+ −

+ −

R3
V3

+−

+−

vo

+

−

+

−

5.39 For the op amp circuit in Fig. 5.76, determine the
value of v2 in order to make vo � �16.5 V.

10 kΩ

20 kΩ

50 kΩ

50 kΩ
+2 V

–1 V

vo
v2

+
−
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5.40 Referring to the circuit shown in Fig. 5.77,
determine Vo in terms of V1 and V2.

5.46 Using only two op amps, design a circuit to solve

Section 5.7 Difference Amplifier

5.47 The circuit in Fig. 5.79 is for a difference amplifier.
Find vo given that v1 � 1 V and v2 � 2 V.

�vout �
v1 � v2

3
�

v3

2

Problems 207

Figure 5.77
For Prob. 5.40.

Figure 5.79
For Prob. 5.47.

Figure 5.80
For Prob. 5.48.

Figure 5.78
For Prob. 5.44.

+

−

V1
+
−

100 kΩ
10 Ω

40 Ω

200 kΩ100 kΩ

+

−

Vo

V2
+
−

5.41 An averaging amplifier is a summer that provides
an output equal to the average of the inputs. By
using proper input and feedback resistor values,
one can get

Using a feedback resistor of 10 k�, design an
averaging amplifier with four inputs.

5.42 A three-input summing amplifier has input resistors
with R1 � R2 � R3 � 75 k�. To produce an
averaging amplifier, what value of feedback resistor
is needed?

5.43 A four-input summing amplifier has R1 � R2 �
R3 � R4 � 80 k�. What value of feedback resistor
is needed to make it an averaging amplifier?

5.44 Show that the output voltage vo of the circuit in
Fig. 5.78 is

vo �
(R3 � R4)

R3(R1 � R2)
 (R2v1 � R1v2)

�vout � 1
4 
(v1 � v2 � v3 � v4)

R4

R3

R1

R2

vo

v1

v2

+

−

5.45 Design an op amp circuit to perform the following
operation:

All resistances must be � 100 k�.

vo � 3v1 � 2v2

5.48 The circuit in Fig. 5.80 is a differential amplifier
driven by a bridge. Find vo.

+

−

vo

+

−

v2
+
−

v1
+
−

30 kΩ

2 kΩ

2 kΩ

20 kΩ

20 kΩ

80 kΩ20 kΩ

80 kΩ

vo+ 10 mV

40 kΩ

10 kΩ

60 kΩ

30 kΩ

+
−

5.49 Design a difference amplifier to have a gain of 4 and
a common-mode input resistance of 20 k� at each
input.

5.50 Design a circuit to amplify the difference between
two inputs by 2.5.

(a) Use only one op amp.

(b) Use two op amps.

ale80571_ch05_175-214.qxd  11/30/11  12:57 PM  Page 207



5.51 Using two op amps, design a subtractor.

*5.52 Design an op amp circuit such that

Let all the resistors be in the range of 20 to 200 k�.

*5.53 The ordinary difference amplifier for fixed-gain
operation is shown in Fig. 5.81(a). It is simple and
reliable unless gain is made variable. One way of
providing gain adjustment without losing simplicity
and accuracy is to use the circuit in Fig. 5.81(b).
Another way is to use the circuit in Fig. 5.81(c).
Show that:

(a) for the circuit in Fig. 5.81(a),

(b) for the circuit in Fig. 5.81(b),

(c) for the circuit in Fig. 5.81(c),

vo

vi
�

R2

R1
 a1 �

R2

2RG
b

vo

vi
�

R2

R1

1

1 �
R1

2RG

vo

vi
�

R2

R1

vo � 4v1 � 6v2 � 3v3 � 5v4

Section 5.8 Cascaded Op Amp Circuits

5.54 Determine the voltage transfer ratio vo�vs in the op
amp circuit of Fig. 5.82, where R � 10 k�.
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R1

R2

R2

R2

R1

(a)

R2

RG

(b)

R1
2

R1
2

R1
2

R1
2

vi

+

−

+

−

+

−

vi
+

−

vo

+

−

vo

+

−

vo

R2
2

R2
2

R2
2

R2
2

(c)

R1

R1

RG

+

−

vi

+

− +

−

Figure 5.81
For Prob. 5.53.

Figure 5.82
For Prob. 5.54.

Figure 5.83
For Prob. 5.56.

R

−
++

−

R

R

R
R

+

+

−−

vo
vs

5.55 In a certain electronic device, a three-stage amplifier
is desired, whose overall voltage gain is 42 dB. The
individual voltage gains of the first two stages are to
be equal, while the gain of the third is to be one-
fourth of each of the first two. Calculate the voltage
gain of each.

5.56 Using Fig. 5.83, design a problem to help other
students better understand cascaded op amps.

+
−+

−

R2 R4

R3
R1

vi

+

−
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5.57 Find vo in the op amp circuit of Fig. 5.84. 5.61 Determine vo in the circuit of Fig. 5.88.

Problems 209

Figure 5.84
For Prob. 5.57.

Figure 5.88
For Prob. 5.61.

Figure 5.89
For Prob. 5.62.

Figure 5.90
For Prob. 5.63.

Figure 5.91
For Prob. 5.64.

Figure 5.85
For Prob. 5.58.

Figure 5.86
For Prob. 5.59.

Figure 5.87
For Prob. 5.60.

25 kΩ

100 kΩ
50 kΩ

50 kΩ 100 kΩ 100 kΩ
vo

vs2

vs1

+
−

+
−

+
−

50 kΩ

5.58 Calculate io in the op amp circuit of Fig. 5.85.

0.6 V +
− 4 kΩ

io

1 kΩ

10 kΩ

5 kΩ

2 kΩ
+
−

+
−

3 kΩ

5.59 In the op amp circuit of Fig. 5.86, determine the
voltage gain vo�vs. Take R � 10 k�.

+
−

+
−

2R 4R

R

+
−vs

R

vo

+

−

5.60 Calculate vo�vi in the op amp circuit of Fig. 5.87.

10 kΩ

2 kΩ
10 kΩ

5 kΩ

4 kΩ

+
− +

− +

−

vo

+

−

vi

+
−

20 kΩ 10 kΩ

10 kΩ0.4 V

−0.2 V

+
−

+
−

40 kΩ

+
−

vo

20 kΩ

5.62 Obtain the closed-loop voltage gain vo�vi of the
circuit in Fig. 5.89.

Rf

R2

R1

+
−

+
−

vi

R3

voR4
+
−

+

−

5.63 Determine the gain vo�vi of the circuit in Fig. 5.90.

+
−

+
+

− −

R3

R2

R1

R4

R5

R6 vo
vi

+

−

5.64 For the op amp circuit shown in Fig. 5.91, find 
vo�vs.

vs vo

+

–

G

G

G4

G3

G1

G2
+
–+

–

−
+
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5.65 Find vo in the op amp circuit of Fig. 5.92. 5.68 Find vo in the circuit of Fig. 5.95, assuming that 
Rf � � (open circuit).

210 Chapter 5 Operational Amplifiers

50 kΩ 10 kΩ
20 kΩ

30 kΩ

8 kΩ
40 kΩ

6 mV vo

+

–

+
–

+
−

+
–

−
+

Figure 5.92
For Prob. 5.65.

Figure 5.95
For Probs. 5.68 and 5.69.

Figure 5.93
For Prob. 5.66.

Figure 5.94
For Prob. 5.67.

Figure 5.96
For Prob. 5.70.

5.66 For the circuit in Fig. 5.93, find vo.

+
−

+
−

+
−

+
−

+
−

25 kΩ

10 kΩ

40 kΩ 100 kΩ

20 kΩ

6 V

4 V

2 V

20 kΩ

vo

+

−

5.67 Obtain the output vo in the circuit of Fig. 5.94.

+
−

+
−

+
−

80 kΩ 80 kΩ

20 kΩ

0.3 V

40 kΩ

20 kΩ

vo

+
−

+
−

0.7 V

+
−

15 mV +
−

15 kΩ

6 kΩ

5 kΩ

Rf

+
− +

−

1 kΩ
2 kΩ

+

−
vo

5.69 Repeat the previous problem if Rf � 10 k�.

5.70 Determine vo in the op amp circuit of Fig. 5.96.

+
−

30 kΩ

A
C

40 kΩ

10 kΩ

1 V

20 kΩ

60 kΩ

+
−

10 kΩ

2 V

+
−

20 kΩ

B

3 V

+
−

10 kΩ

4 V

10 kΩ

vo+

−
+

−

+

−
10 kΩ
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5.71 Determine vo in the op amp circuit of Fig. 5.97. 5.74 Find io in the op amp circuit of Fig. 5.100.

Problems 211

Figure 5.97
For Prob. 5.71.

Figure 5.100
For Prob. 5.74.

Figure 5.101
For Prob. 5.78.

Figure 5.102
For Prob. 5.79.

Figure 5.98
For Prob. 5.72.

Figure 5.99
For Prob. 5.73.

100 kΩ
40 kΩ

80 kΩ

20 kΩ

10 kΩ

10 kΩ

50 kΩ
30 kΩ

5 kΩ

20 kΩ

1.5 V

2.25 V

vo

+

–

+
−

+
–

+
−+

−

−
+

−
+

5.72 Find the load voltage vL in the circuit of Fig. 5.98.

+
−

+
−
+
−

100 kΩ 250 kΩ

1.8 V 2 kΩ+
−

+
−

+

−
vL

20 kΩ

5.73 Determine the load voltage vL in the circuit of
Fig. 5.99.

50 kΩ

10 kΩ

5 kΩ

1.8 V
4 kΩ vL

+

−+
−

+

−
+

−

+
−

+
−
+
−

100 kΩ 32 kΩ

10 kΩ

20 kΩ

1.6 kΩ

0.9 V

+
−

0.6 V+
−

+
−

io

Section 5.9 Op Amp Circuit Analysis with 
PSpice

5.75 Rework Example 5.11 using the nonideal op amp
LM324 instead of uA741.

5.76 Solve Prob. 5.19 using PSpice or MultiSim and 
op amp uA741.

5.77 Solve Prob. 5.48 using PSpice or MultiSim and 
op amp LM324.

5.78 Use PSpice or MultiSim to obtain vo in the circuit of
Fig. 5.101.

+
−

20 kΩ 30 kΩ10 kΩ

1 V +
−

+
−

+
−

40 kΩ

2 V +
−

+
−

vo

+

−

5.79 Determine vo in the op amp circuit of Fig. 5.102,
using PSpice or MultiSim.

vo

+
−

20 kΩ

5 V

1 V

10 kΩ

+
−

+
−

20 kΩ 10 kΩ 40 kΩ

+
−

100 kΩ

+

−
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5.80 Use PSpice or MultiSim to solve Prob. 5.70.

5.81 Use PSpice or MultiSim to verify the results in
Example 5.9. Assume nonideal op amps LM324.

Section 5.10 Applications

5.82 A five-bit DAC covers a voltage range of 0 to 7.75 V.
Calculate how much voltage each bit is worth.

5.83 Design a six-bit digital-to-analog converter.

(a) If |Vo| � 1.1875 V is desired, what should
[V1V2V3V4V5V6] be?

(b) Calculate |Vo| if [V1V2V3V4V5V6] � [011011].

(c) What is the maximum value |Vo| can assume?

*5.84 A four-bit R-2R ladder DAC is presented in Fig. 5.103.

(a) Show that the output voltage is given by

(b) If Rf � 12 k� and R � 10 k�, find |Vo| for
[V1V2V3V4] � [1011] and [V1V2V3V4] � [0101].

�Vo � Rf aV1

2R
�

V2

4R
�

V3

8R
�

V4

16R
b

5.86 Design a voltage controlled ideal current source
(within the operating limits of the op amp) where the
output current is equal to .200 vs(t) mA
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R

R

R

2R

Vo+
−V1

V2

V3

V4

2R

2R

2R

2R

Rf

Figure 5.103
For Prob. 5.84.

Figure 5.105
For Prob. 5.87.

Figure 5.106
For Prob. 5.88.

Figure 5.104
For Prob. 5.85.

5.85 In the op amp circuit of Fig. 5.104, find the value of
R so that the power absorbed by the 10-k� resistor is
10 mW. Take vs � 2 V.

R
vs

+
−

−
+

40 kΩ

10 kΩ

v2

v1

vo

R4

R3R2

R1
+

−

+

−

*5.88 Figure 5.106 shows an instrumentation amplifier
driven by a bridge. Obtain the gain vo�vi of the
amplifier.

25 kΩ

10 kΩ

10 kΩ

500 kΩ

vo

25 kΩ

2 kΩ

30 kΩ20 kΩ

vi

80 kΩ40 kΩ

500 kΩ

+
−

+
−

+
−

5.87 Figure 5.105 displays a two-op-amp instrumentation
amplifier. Derive an expression for vo in terms of v1

and v2. How can this amplifier be used as a
subtractor?
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Comprehensive Problems 213

Figure 5.107
For Prob. 5.90.

Figure 5.109
For Prob. 5.92.

Figure 5.110
For Prob. 5.93.

Figure 5.108
For Prob. 5.91.

Comprehensive Problems

5.89 Design a circuit that provides a relationship between
output voltage vo and input voltage vs such that 
vo � 12vs � 10. Two op amps, a 6-V battery, and
several resistors are available.

5.90 The op amp circuit in Fig. 5.107 is a current
amplifier. Find the current gain io�is of the amplifier.

5.92 Refer to the bridge amplifier shown in Fig. 5.109.
Determine the voltage gain vo�vi.

5.91 A noninverting current amplifier is portrayed in
Fig. 5.108. Calculate the gain io�is. Take R1 � 8 k�
and R2 � 1 k�.

*5.93 A voltage-to-current converter is shown in Fig. 5.110,
which means that iL � Avi if R1R2 � R3R4. Find the
constant term A.

+
−

20 kΩ

4 kΩ

5 kΩ 2 kΩis

io

+
−

R1

R2

R2

is

io

+
−

60 kΩ

vi

voRL

+

−

+
−

+
−

50 kΩ

20 kΩ

30 kΩ

+
−

R3

R1

iL

R2

vi

RL

R4

+

−
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215

Capacitors and
Inductors
But in science the credit goes to the man who convinces the world, not
to the man to whom the idea first occurs.

—Francis Darwin

c h a p t e r

6

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.c), “an ability to design a system,
component, or process to meet desired needs.”
The “ability to design a system, component, or process to meet
desired needs” is why engineers are hired. That is why this is the
most important technical skill that an engineer has. Interestingly, your
success as an engineer is directly proportional to your ability to com-
municate but your being able to design is why you will be hired in
the first place.

Design takes place when you have what is termed an open-ended
problem that eventually is defined by the solution. Within the context
of this course or textbook, we can only explore some of the elements
of design. Pursuing all of the steps of our problem-solving technique
teaches you several of the most important elements of the design
process.

Probably the most important part of design is clearly defining what
the system, component, process, or, in our case, problem is. Rarely is
an engineer given a perfectly clear assignment. Therefore, as a student,
you can develop and enhance this skill by asking yourself, your col-
leagues, or your professors questions designed to clarify the problem
statement.

Exploring alternative solutions is another important part of the
design process. Again, as a student, you can practice this part of the
design process on almost every problem you work.

Evaluating your solutions is critical to any engineering assignment.
Again, this is a skill that you as a student can practice on every prob-
lem you work.

Photo by Charles Alexander
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Introduction
So far we have limited our study to resistive circuits. In this chapter,
we shall introduce two new and important passive linear circuit ele-
ments: the capacitor and the inductor. Unlike resistors, which dissipate
energy, capacitors and inductors do not dissipate but store energy,
which can be retrieved at a later time. For this reason, capacitors and
inductors are called storage elements.

The application of resistive circuits is quite limited. With the intro-
duction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the cir-
cuit analysis techniques covered in Chapters 3 and 4 are equally appli-
cable to circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to com-
bine them in series or in parallel. Later, we do the same for inductors.
As typical applications, we explore how capacitors are combined with
op amps to form integrators, differentiators, and analog computers.

Capacitors
A capacitor is a passive element designed to store energy in its elec-
tric field. Besides resistors, capacitors are the most common electrical
components. Capacitors are used extensively in electronics, communi-
cations, computers, and power systems. For example, they are used in
the tuning circuits of radio receivers and as dynamic memory elements
in computer systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

6.2

6.1

216 Chapter 6 Capacitors and Inductors

In contrast to a resistor, which spends
or dissipates energy irreversibly, an
inductor or capacitor stores or releases
energy (i.e., has a memory).

Metal plates,
each with area A

d

Dielectric with permittivity �

Figure 6.1
A typical capacitor.

−

−

−

−q+q

+

+

+

+

+

+

−+
v

Figure 6.2
A capacitor with applied voltage v.

Alternatively, capacitance is the amount
of charge stored per plate for a unit
voltage difference in a capacitor.

A capacitor consists of two conducting plates separated by an insu-
lator (or dielectric).

In many practical applications, the plates may be aluminum foil while
the dielectric may be air, ceramic, paper, or mica.

When a voltage source is connected to the capacitor, as in
Fig. 6.2, the source deposits a positive charge q on one plate and a neg-
ative charge on the other. The capacitor is said to store the electric
charge. The amount of charge stored, represented by q, is directly pro-
portional to the applied voltage so that

(6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791–1867). From Eq. (6.1),
we may derive the following definition.

q � Cv

v

�q

v

Capacitance is the ratio of the charge on one plate of a capacitor to
the voltage difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad � 1 coulomb/volt.

ale80571_ch06_215-252.qxd  11/30/11  1:00 PM  Page 216



Although the capacitance C of a capacitor is the ratio of the charge
q per plate to the applied voltage it does not depend on q or It
depends on the physical dimensions of the capacitor. For example, for
the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

(6.2)

where A is the surface area of each plate, d is the distance between
the plates, and is the permittivity of the dielectric material between
the plates. Although Eq. (6.2) applies to only parallel-plate capacitors,
we may infer from it that, in general, three factors determine the value
of the capacitance:

1. The surface area of the plates—the larger the area, the greater the
capacitance.

2. The spacing between the plates—the smaller the spacing, the greater
the capacitance.

3. The permittivity of the material—the higher the permittivity, the
greater the capacitance.

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad 
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the cir-
cuit symbols for fixed and variable capacitors. Note that according to the
passive sign convention, if and or if and the
capacitor is being charged, and if the capacitor is discharging.

Figure 6.4 shows common types of fixed-value capacitors. Poly-
ester capacitors are light in weight, stable, and their change with tem-
perature is predictable. Instead of polyester, other dielectric materials
such as mica and polystyrene may be used. Film capacitors are rolled
and housed in metal or plastic films. Electrolytic capacitors produce
very high capacitance. Figure 6.5 shows the most common types of
variable capacitors. The capacitance of a trimmer (or padder) capacitor

v � i 6 0,
i 6 0,v 6 0i 7 0v 7 0

(mF)

�

C �
� A

d

v.v,
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Michael Faraday (1791–1867), an English chemist and physicist,
was probably the greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by work-
ing with the great chemist Sir Humphry Davy at the Royal Institu-
tion, where he worked for 54 years. He made several contributions
in all areas of physical science and coined such words as electroly-
sis, anode, and cathode. His discovery of electromagnetic induction
in 1831 was a major breakthrough in engineering because it provided
a way of generating electricity. The electric motor and generator oper-
ate on this principle. The unit of capacitance, the farad, was named
in his honor.

Historical

Capacitor voltage rating and capaci-
tance are typically inversely rated due
to the relationships in Eqs. (6.1) and
(6.2). Arcing occurs if d is small and V
is high.

Figure 6.3
Circuit symbols for capacitors: (a) fixed
capacitor, (b) variable capacitor.

i iC

v+ −

C

v+ −
(a) (b)

The Burndy Library Collection
at The Huntington Library, 
San Marino, California.
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is often placed in parallel with another capacitor so that the equivalent
capacitance can be varied slightly. The capacitance of the variable air
capacitor (meshed plates) is varied by turning the shaft. Variable capac-
itors are used in radio receivers allowing one to tune to various sta-
tions. In addition, capacitors are used to block dc, pass ac, shift phase,
store energy, start motors, and suppress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

(6.3)

differentiating both sides of Eq. (6.1) gives

(6.4)

This is the current-voltage relationship for a capacitor, assuming the
passive sign convention. The relationship is illustrated in Fig. 6.6 for
a capacitor whose capacitance is independent of voltage. Capacitors
that satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor,
the plot of the current-voltage relationship is not a straight line.
Although some capacitors are nonlinear, most are linear. We will
assume linear capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

(6.5)

or

(6.6)

where is the voltage across the capacitor at time 
Equation (6.6) shows that capacitor voltage depends on the past history

t0.v(t0) � q(t0)�C

v(t) �
1

C
 �

t

t0

 i (t)dt � v(t0)

v(t) �
1

C
 �

t

��

 i (t)dt

i � C 

dv
dt

i �
dq

dt
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(a) (b) (c)

Figure 6.4
Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
Courtesy of Tech America.

Figure 6.5
Variable capacitors: (a) trimmer capacitor,
(b) filmtrim capacitor.
Courtesy of Johanson.

According to Eq. (6.4), for a capacitor
to carry current, its voltage must vary
with time. Hence, for constant voltage,
i 0.�

Slope = C

dv/dt0

i

Figure 6.6
Current-voltage relationship of a capacitor.

(a)

(b)
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of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

(6.7)

The energy stored in the capacitor is therefore

(6.8)

We note that because the capacitor was uncharged at
Thus,

(6.9)

Using Eq. (6.1), we may rewrite Eq. (6.9) as

(6.10)

Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be
retrieved, since an ideal capacitor cannot dissipate energy. In fact, the
word capacitor is derived from this element’s capacity to store energy
in an electric field.

We should note the following important properties of a capacitor:

1. Note from Eq. (6.4) that when the voltage across a capacitor is not
changing with time (i.e., dc voltage), the current through the capac-
itor is zero. Thus,

w �
q2

2C

w �
1

2
 Cv2

t � ��.
v(��) � 0,

w ��
t

��
 
p(t) dt � C �

t

��
 
v 

dv
dt

 dt � C �
v(t)

v(��)
 
v dv �

1

2
 Cv2 ` v(t)

v(��)

p � vi � C v 

dv
dt
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A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a capacitor,
the capacitor charges.

2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage requires
an infinite current, which is physically impossible. For example,
the voltage across a capacitor may take the form shown in
Fig. 6.7(a), whereas it is not physically possible for the capacitor
voltage to take the form shown in Fig. 6.7(b) because of the abrupt
changes. Conversely, the current through a capacitor can change
instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power from
the circuit when storing energy in its field and returns previously
stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage resistance,
as shown in Fig. 6.8. The leakage resistance may be as high as

v

t

(a)

v

t

(b)

Figure 6.7
Voltage across a capacitor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

An alternative way of looking at this is
using Eq. (6.9), which indicates that
energy is proportional to voltage
squared. Since injecting or extracting
energy can only be done over some
finite time, voltage cannot change
instantaneously across a capacitor.

Leakage resistance

Capacitance

Figure 6.8
Circuit model of a nonideal capacitor.
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and can be neglected for most practical applications. For
this reason, we will assume ideal capacitors in this book.
100 M�

220 Chapter 6 Capacitors and Inductors

Example 6.1 (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:

(a) Since 

(b) The energy stored is

w �
1

2
 Cv2 �

1

2
� 3 � 10�12 � 400 � 600 pJ

q � 3 � 10�12 � 20 � 60 pC

q � Cv,

What is the voltage across a capacitor if the charge on one plate
is 0.12 mC? How much energy is stored?

Answer: 26.67 A, 1.6 mJ.

4.5-mFPractice Problem 6.1

The voltage across a capacitor is

Calculate the current through it.

Solution:
By definition, the current is

 � �5 � 10�6 � 6000 � 10 sin 6000t � �0.3 sin 6000t A

 i(t) � C 
dv
dt

� 5 � 10�6 
d

dt
 (10 cos 6000t)

v(t) � 10 cos 6000t V

5-mFExample 6.2

If a capacitor is connected to a voltage source with

determine the current through the capacitor.

Answer: 1.5 cos 2000t A.

v(t) � 75 sin 2000t V

10-mFPractice Problem 6.2

Determine the voltage across a capacitor if the current through it is

Assume that the initial capacitor voltage is zero.

i(t) � 6e�3000t mA

2-mFExample 6.3
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Solution:

Since and ,

 �
3 � 103

�3000
 e�3000t `

0

t

� (1 � e�3000t) V

 v �
1

2 � 10�6 �
t

0

 6e�3000t dt � 10�3

v(0) � 0v �
1

C
 �

t

0

 i dt � v(0)
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Practice Problem 6.3

Determine the current through a capacitor whose voltage is
shown in Fig. 6.9.

Solution:
The voltage waveform can be described mathematically as

Since and , we take the derivative of to obtain

Thus the current waveform is as shown in Fig. 6.10.

� d 10 mA  0 6 t 6 1

�10 mA  1 6 t 6 3

10 mA  3 6 t 6 4

0  otherwise

i(t) � 200 � 10�6 � d 50  0 6 t 6 1

�50  1 6 t 6 3

50  3 6 t 6 4

0  otherwise

vC � 200 mFi � C dv�dt

v(t) � d 50t V  0 6 t 6 1

100 � 50t V  1 6 t 6 3

�200 � 50t V  3 6 t 6 4

0  otherwise

200-mF Example 6.4
v (t)

0
4321

50

−50

t

Figure 6.9
For Example 6.4.

i (mA)

0
4321

10

−10

t

Figure 6.10
For Example 6.4.

An initially uncharged 1-mF capacitor has the current shown in
Fig. 6.11 across it. Calculate the voltage across it at and

Answer: 100 mV, 400 mV.

t � 5 ms.
t � 2 ms

Practice Problem 6.4
i (mA)

0
642

100

t (ms)

Figure 6.11
For Practice Prob. 6.4.

The current through a capacitor is 
Calculate the voltage across it at and Take 

Answer: 1.736 V.93.14 mV,

v(0) � 0.t � 5 ms.t � 1 ms
i(t) � 50 sin 120 p t mA.100-mF
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Solution:
Under dc conditions, we replace each capacitor with an open circuit,
as shown in Fig. 6.12(b). The current through the series combination
of the and resistors is obtained by current division as

Hence, the voltages and across the capacitors are

and the energies stored in them are

 w2 �
1

2
 C2v2

2 �
1

2
 (4 � 10�3)(8)2 � 128 mJ

 w1 �
1

2
 C1v1

2 �
1

2
 (2 � 10�3)(4)2 � 16 mJ

v1 � 2000i � 4 V  v2 � 4000i � 8 V

v2v1

i �
3

3 � 2 � 4
 (6 mA) � 2 mA

4-k�2-k�
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Example 6.5 Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc
conditions.

Figure 6.12
For Example 6.5.

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

Answer: , 3.375 mJ.20.25 mJ

Practice Problem 6.5

50 V +
− 6 kΩ

1 kΩ

30 �F

20 �F

3 kΩ

Figure 6.13
For Practice Prob. 6.5.

Series and Parallel Capacitors
We know from resistive circuits that the series-parallel combination is a
powerful tool for reducing circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encoun-
tered. We desire to replace these capacitors by a single equivalent
capacitor 

In order to obtain the equivalent capacitor of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is

Ceq

Ceq.

6.3

v1+ −

v2

+

−
6 mA 3 kΩ

5 kΩ
4 kΩ

2 kΩ

2 mF

4 mF

(a)

6 mA 3 kΩ

5 kΩ

4 kΩ

2 kΩ

(b)

i
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in Fig. 6.14(b). Note that the capacitors have the same voltage across
them. Applying KCL to Fig. 6.14(a),

(6.11)

But Hence,

(6.12)

where

(6.13)Ceq � C1 � C2 � C3 � p � CN

 � aa
N

k�1
Ckb dv

dt
� Ceq 

dv
dt

 i � C1 

dv
dt

� C2 

dv
dt

� C3 

dv
dt

� p � CN 

dv
dt

ik � Ck dv�dt.

i � i1 � i2 � i3 � p � iN

v
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i C1

(a)

i1

C2 C3 CN

iN

v
+

−

i

(b)

Ceq v
+

−

i2 i3

Figure 6.14
(a) Parallel-connected N capacitors, 
(b) equivalent circuit for the parallel
capacitors.

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

We now obtain of N capacitors connected in series by com-
paring the circuit in Fig. 6.15(a) with the equivalent circuit in
Fig. 6.15(b). Note that the same current i flows (and consequently
the same charge) through the capacitors. Applying KVL to the loop
in Fig. 6.15(a),

(6.14)

But Therefore,

(6.15)

where

(6.16)
1

Ceq
�

1

C1
�

1

C2
�

1

C3
� p �

1

CN

 �
1

Ceq
 �

t

t0

 i (t) dt � v(t0)

 � p � vN 

(t0)

 � a 1

C1
�

1

C2
� p �

1

CN
b �

t

t0

 i (t) dt � v1(t0) � v2 

(t0)

� p �
1

CN
 �

t

t0

 i (t) dt � vN (t0)

 v �
1

C1
 �

t

t0

 i (t) dt � v1(t0) �
1

C2
 �

t

t0

 i (t) dt � v2 (t0)

vk �
1

Ck
 �

t

t0

 i (t) dt � vk 

(t0).

v � v1 � v2 � v3 � p � vN

Ceq

v

C1

(a)

C2 C3 CN

v1 v2 v3 vN
+
−

i

+ −+ −+ − + −

v

(b)

Ceq v+
−

i

+

−

Figure 6.15
(a) Series-connected N capacitors, 
(b) equivalent circuit for the series 
capacitor.
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The initial voltage across is required by KVL to be the sum
of the capacitor voltages at Or according to Eq. (6.15),

Thus, according to Eq. (6.16),

v(t0) � v1(t0) � v2(t0) � p � vN (t0)

t0.
Ceqv(t0)
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The equivalent capacitance of series-connected capacitors is the
reciprocal of the sum of the reciprocals of the individual capacitances.

Note that capacitors in series combine in the same manner as resistors
in parallel. For (i.e., two capacitors in series), Eq. (6.16)
becomes

or

(6.17)Ceq �
C1C2

C1 � C2

1

Ceq
�

1

C1
�

1

C2

N � 2

Example 6.6 Find the equivalent capacitance seen between terminals a and b of the
circuit in Fig. 6.16.

a

b

Ceq

5 �F

20 �F 20 �F6 �F

60 �F

Figure 6.16
For Example 6.6.

Solution:
The and capacitors are in series; their equivalent capaci-
tance is

This capacitor is in parallel with the and capacitors;
their combined capacitance is 

This capacitor is in series with the capacitor. Hence, the
equivalent capacitance for the entire circuit is

Ceq �
30 � 60

30 � 60
� 20 mF

60-mF30-mF

4 � 6 � 20 � 30 mF

20-mF6-mF4-mF

20 � 5

20 � 5
� 4 mF

5-mF20-mF
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Find the equivalent capacitance seen at the terminals of the circuit in
Fig. 6.17.

Answer: 40 mF.

Practice Problem 6.6

Ceq
120 �F20 �F70 �F

60 �F

50 �F

Figure 6.17
For Practice Prob. 6.6.

Example 6.7

20 mF40 mF

30 mF20 mF

30 V +
−

v1 v2

v3

+

−

+ − + −

Figure 6.18
For Example 6.7.

Ceq30 V +
−

Figure 6.19
Equivalent circuit for Fig. 6.18.

Practice Problem 6.7

30 �F20 �F

60 �F40 �F

90 V +
−

v1 v3

v2 v4

+ − + −
+

−

+

−

Figure 6.20
For Practice Prob. 6.7.

For the circuit in Fig. 6.18, find the voltage across each capacitor.

Solution:
We first find the equivalent capacitance , shown in Fig. 6.19. The two
parallel capacitors in Fig. 6.18 can be combined to get 
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

The total charge is

This is the charge on the 20-mF and 30-mF capacitors, because they are
in series with the 30-V source. (A crude way to see this is to imagine
that charge acts like current, since ) Therefore,

Having determined and , we now use KVL to determine by

Alternatively, since the 40-mF and 20-mF capacitors are in parallel,
they have the same voltage and their combined capacitance is 

This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

v3 �
q

60 mF
�

0.3

60 � 10�3 � 5 V

20 � 60 mF.
40 �v3

v3 � 30 � v1 � v2 � 5 V

v3v2v1

v1 �
q

C1
�

0.3

20 � 10�3 � 15 V  v2 �
q

C2
�

0.3

30 � 10�3 � 10 V

i � dq�dt.

q � Ceq 
v � 10 � 10�3 � 30 � 0.3 C

Ceq �
1

1
60 � 1

30 � 1
20

 mF � 10 mF

60 mF.40 � 20 �
Ceq

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: v4 � 30 V.v3 � 15 V,v2 � 45 V,v1 � 45 V,
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Inductors
An inductor is a passive element designed to store energy in its mag-
netic field. Inductors find numerous applications in electronic and
power systems. They are used in power supplies, transformers, radios,
TVs, radars, and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.

6.4
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An inductor consists of a coil of conducting wire.

If current is allowed to pass through an inductor, it is found that the
voltage across the inductor is directly proportional to the time rate of
change of the current. Using the passive sign convention,

(6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of
the American inventor Joseph Henry (1797–1878). It is clear from
Eq. (6.18) that 1 henry equals 1 volt-second per ampere.

v � L 

di

dt

Length, �
Cross-sectional area, A

Core material

Number of turns, N

Figure 6.21
Typical form of an inductor.

In view of Eq. (6.18), for an inductor
to have voltage across its terminals, its
current must vary with time. Hence,
v � 0 for constant current through
the inductor.

Inductance is the property whereby an inductor exhibits opposition
to the change of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for
the inductor, (solenoid) shown in Fig. 6.21,

(6.19)

where N is the number of turns, is the length, A is the cross-sectional
area, and is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys ( ), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are
shown in Fig. 6.22. The circuit symbols for inductors are shown in
Fig. 6.23, following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose

mH

m

/

L �
N 

2mA

/

(a)

(b)

(c)

Figure 6.22
Various types of inductors: (a) solenoidal
wound inductor, (b) toroidal inductor,
(c) chip inductor.
Courtesy of Tech America.
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inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eq. (6.18) will
not be a straight line because its inductance varies with current. We
will assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

Integrating gives

(6.20)

or

(6.21)

where is the total current for and The
idea of making is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eq. (6.18). The power delivered to
the inductor is

(6.22)

The energy stored is

(6.23)

 � L �
t

��

 i di �
1

2
 Li2(t) �

1

2
 Li2(��)

 w � �
t

��

 p(t) dt � L�
t

�� 

 

di

dt
 idt

p � vi � aL 

di

dt
bi

i(��) � 0
i(��) � 0.�� 6 t 6 t0i(t0)

i �
1

L
 �

t

t0

 v
 

(t) dt � i (t0)

i �
1

L
 �

t

��

 v
 

(t) dt

di �
1

L
 v dt
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Joseph Henry (1797–1878), an American physicist, discovered induc-
tance and constructed an electric motor.

Born in Albany, New York, Henry graduated from Albany Acad-
emy and taught philosophy at Princeton University from 1832 to 1846.
He was the first secretary of the Smithsonian Institution. He conducted
several experiments on electromagnetism and developed powerful elec-
tromagnets that could lift objects weighing thousands of pounds. Inter-
estingly, Joseph Henry discovered electromagnetic induction before
Faraday but failed to publish his findings. The unit of inductance, the
henry, was named after him.

Historical

Slope = L

di /dt0

v

i i i

(a)

v L

+

−

(b)

v L

+

−

(c)

v L

+

−

Figure 6.23
Circuit symbols for inductors: (a) air-core,
(b) iron-core, (c) variable iron-core.

Figure 6.24
Voltage-current relationship of an inductor.
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Since 

(6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

w �
1

2
 Li2

i (��) � 0,
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An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not phys-
ically possible. Thus, an inductor opposes an abrupt change in the
current through it. For example, the current through an inductor
may take the form shown in Fig. 6.25(a), whereas the inductor cur-
rent cannot take the form shown in Fig. 6.25(b) in real-life situa-
tions due to the discontinuities. However, the voltage across an
inductor can change abruptly.

3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time. The
inductor takes power from the circuit when storing energy and
delivers power to the circuit when returning previously stored
energy.

4. A practical, nonideal inductor has a significant resistive component,
as shown in Fig. 6.26. This is due to the fact that the inductor is
made of a conducting material such as copper, which has some
resistance. This resistance is called the winding resistance , and
it appears in series with the inductance of the inductor. The pres-
ence of makes it both an energy storage device and an energy
dissipation device. Since is usually very small, it is ignored in
most cases. The nonideal inductor also has a winding capacitance

due to the capacitive coupling between the conducting coils. 
is very small and can be ignored in most cases, except at high fre-
quencies. We will assume ideal inductors in this book.

CwCw

Rw

Rw

Rw

i

t

(a)

i

t

(b)

L Rw

Cw

Figure 6.25
Current through an inductor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

Figure 6.26
Circuit model for a practical inductor.

Since an inductor is often made of a
highly conducting wire, it has a very
small resistance.

Example 6.8 The current through a 0.1-H inductor is Find the volt-
age across the inductor and the energy stored in it.

Solution:
Since and 

v � 0.1
d

dt
 (10te�5t) � e�5t � t(�5)e�5t � e�5t(1 � 5t) V

L � 0.1 H,v � L di�dt

i(t) � 10te�5t A.
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The energy stored is

w �
1

2
 Li2 �

1

2
 (0.1)100t 

2e�10t � 5t 
2e�10t J

6.4 Inductors 229

Practice Problem 6.8

Find the current through a 5-H inductor if the voltage across it is

Also, find the energy stored at Assume 

Solution:

Since and 

The power and the energy stored is then

Alternatively, we can obtain the energy stored using Eq. (6.24), by
writing

as obtained before.

w 0 5
0

�
1

2
 Li2(5) �

1

2
 Li(0) �

1

2
 (5)(2 � 53)2 � 0 � 156.25 kJ

w � �  p dt � �
5

0
 
60t 

5 dt � 60 

t 
6

6
 25

0

� 156.25 kJ

p � vi � 60t 
5,

i �
1

5
 �

t

0

 30t 
2 dt � 0 � 6 �

t 
3

3
� 2t 

3 A

L � 5 H,i �
1

L
 �

t

t0

 v(t) dt � i (t0)

i(v) 7 0.t � 5 s.

v(t) � b30t2,  t 7 0

0,   t 6 0

Example 6.9

The terminal voltage of a 2-H inductor is Find the
current flowing through it at and the energy stored in it at 
Assume 

Answer: �18 A, 320 J.

i(0) � 2 A.
t � 4 s.t � 4 s

v � 10(1 � t) V. Practice Problem 6.9

If the current through a 1-mH inductor is find
the terminal voltage and the energy stored.

Answer: �6 sin 100t mV, 1.8 cos2 (100t) mJ.

i(t) � 60 cos 100t mA,
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Series and Parallel Inductors
Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig. 6.29(a),
with the equivalent circuit shown in Fig. 6.29(b). The inductors have
the same current through them. Applying KVL to the loop,

(6.25)

Substituting results in

(6.26)

where

(6.27)Leq � L1 � L2 � L3 � p � LN

 � aa
N

k�1
Lkb 

di

dt
� Leq 

di

dt

 � (L1 � L2 � L3 � p � LN)
di

dt

 v � L1
di

dt
� L2 

di

dt
� L3 

di

dt
� p � LN 

di

dt

vk � Lk di�dt

v � v1 � v2 � v3 � p � vN

6.5
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Example 6.10 Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, 
and (b) the energy stored in the capacitor and inductor.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident
from Fig. 6.27(b) that

The voltage is the same as the voltage across the resistor. Hence,

(b) The energy in the capacitor is

and that in the inductor is

wL �
1

2
 LiL

2 �
1

2
 (2)(22) � 4 J

wC �
1

2
CvC

2 �
1

2
 (1)(102) � 50 J

vC � 5i � 10 V

5-�vC

i � iL �
12

1 � 5
� 2 A

iL,
vC,

12 V

1 F

+
−

4 Ω

5 Ω1 Ω

2 H

i

iL

vC

+

−

(a)

vC

+

−

12 V +
−

4 Ω

5 Ω1 Ωi

iL

(b)

Figure 6.27
For Example 6.10.

Determine and the energy stored in the capacitor and inductor
in the circuit of Fig. 6.28 under dc conditions.

Answer: 15 V, 7.5 A, 450 J, 168.75 J.

vC, iL,Practice Problem 6.10

10 A 4 F6 Ω 2 Ω

6 HiL

vC

+

−

Figure 6.28
For Practice Prob. 6.10.

L1

(a)

L2 L3 LNi

v

+

−

(b)

Leq

i

v

+

−

+ −v1
+ −v2

+ −v3
+ −vN

. . .

Figure 6.29
(a) A series connection of N inductors, 
(b) equivalent circuit for the series 
inductors.
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Thus,

6.5 Series and Parallel Inductors 231

The equivalent inductance of series-connected inductors is the sum
of the individual inductances.

Inductors in series are combined in exactly the same way as resistors
in series.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The induc-
tors have the same voltage across them. Using KCL,

(6.28)

But hence,

(6.29)

where

(6.30)

The initial current through at is expected by KCL to be
the sum of the inductor currents at Thus, according to Eq. (6.29),

According to Eq. (6.30),

i(t0) � i1(t0) � i2(t0) � p � iN 
(t0)

t0.
t � t0Leqi(t0)

1

Leq
�

1

L1
�

1

L2
�

1

L3
� p �

1

LN

 � aa  
N

k�1

1

Lk
b �

t

t0

 v dt � a
N

k�1
ik(t0) �

1

Leq
 �

t

t0

 v dt � i(t0)

   � p � iN  
(t0)

 � a 1

L1
�

1

L2
 � p �

1

LN
b �

t

t0

 v dt � i1(t0) � i2(t0)

  � p �
1

LN
 �

t

t0

 v dt � iN  
(t0)

 i �
1

L1
 �

t

t0
 
v dt � i1(t0) �

1

L2
 �

t

t0
 
v dt � i2(t0)

ik �
1

Lk
 �

t

t0

 v dt � ik 

(t0);

i � i1 � i2 � i3 � p � iN

The equivalent inductance of parallel inductors is the reciprocal of the
sum of the reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as
resistors in parallel.

For two inductors in parallel , Eq. (6.30) becomes

(6.31)

As long as all the elements are of the same type, the transforma-
tions for resistors discussed in Section 2.7 can be extended to capacitors
and inductors.

¢-Y

1

Leq
�

1

L1
�

1

L2
  or  Leq �

L1L2

L1 � L2

(N � 2)

(a)

v

+

−

(b)

Leq

i

v

+

−

L1 L2 L3 LN

i

i1 i2 i3 iN

Figure 6.30
(a) A parallel connection of N inductors,
(b) equivalent circuit for the parallel
inductors.
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It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.

232 Chapter 6 Capacitors and Inductors

TABLE 6.1

Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

p or w:

Series:

Parallel:

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

† Passive sign convention is assumed.

Leq �
L1L2

L1 � L2
Ceq � C1 � C2Req �

R1R2

R1 � R2

Leq � L1 � L2Ceq �
C1C2

C1 � C2
Req � R1 � R2

w �
1

2
 Li2w �

1

2
 Cv2p � i2R �

v2

R

i �
1

L
 �

t

t0

 v(t) dt� i(t0)i � C 

dv
dt

i � v�Ri-v:

v � L 

di

dt
v �

1

C
 �

t

t0

 i(t) dt� v(t0)v � i Rv-i:

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:
The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in parallel with
the 7-H inductor so that they are combined, to give

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq � 4 � 6 � 8 � 18 H

7 � 42

7 � 42
� 6 H

Example 6.11

4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31
For Example 6.11.

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

Practice Problem 6.11

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Answer: 25 mH.

Figure 6.32
For Practice Prob. 6.11.
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6.6 Applications 233

Example 6.12For the circuit in Fig. 6.33, If 
find: (a) ; (b) , , and ; (c) and 

Solution:

(a) From Since 

(b) The equivalent inductance is

Thus,

and

Since 

(c) The current is obtained as

Similarly,

Note that i1(t) � i2(t) � i(t).

 � �e�10t 0 t
0

� 1 mA � �e�10t � 1 � 1 � �e�10t mA

 i2(t) �
1

12
 �

t

0
 
v2 dt � i2(0) �

120

12
 �

t

0
 
e�10t dt � 1 mA

 � �3e�10t 0 t
0

� 5 mA � �3e�10t � 3 � 5 � 8 � 3e�10t mA

 i1(t) �
1

4
 �

t

0

 v2 dt � i1(0) �
120

4
 �

t

0

 e�10t dt � 5 mA

i1

v2(t) � v(t) � v1(t) � 120e�10t mV

v � v1 � v2,

v1(t) � 2 

di

dt
� 2(�4)(�10)e�10t mV � 80e�10t mV

v(t) � Leq 

di

dt
� 5(4)(�1)(�10)e�10t mV � 200e�10t mV

Leq � 2 � 4 � 12 � 2 � 3 � 5 H

i1(0) � i(0) � i2(0) � 4 � (�1) � 5 mA

i1 � i2,
i �i(0) � 4(2 � 1) � 4 mA.i(t) � 4(2 � e�10t) mA,

i2(t).i1(t)v2(t)v1(t)v(t)i1(0)
i2(0) � �1 mA,i(t) � 4(2 � e�10t) mA.

2 H

12 H4 Hv

+

−

v2

v1
+

+ −

−

i

i1 i2

Figure 6.33
For Example 6.12.

Practice Problem 6.12

3 H

6 H
8 Hv

+

−

v2

+

−

i

i1

i2

+ −v1

Figure 6.34
For Practice Prob. 6.12.

Applications
Circuit elements such as resistors and capacitors are commercially
available in either discrete form or integrated-circuit (IC) form. Unlike
capacitors and resistors, inductors with appreciable inductance are dif-
ficult to produce on IC substrates. Therefore, inductors (coils) usually

6.6

In the circuit of Fig. 6.34, If find:
(a) (b) and (c) and 

Answer: (a) 0.8 A, (b) 
(c) �28.8e�2t V.�7.2e�2t V,�36e�2t V,

(�0.4 � 1.8e�2t) A,(�0.4 � 1.2e�2t) A,

v(t).v2(t),v1(t),i(t);i2(t)i2(0);
i(0) � 1.4 A,i1(t) � 0.6e�2t A.
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come in discrete form and tend to be more bulky and expensive. For
this reason, inductors are not as versatile as capacitors and resistors,
and they are more limited in applications. However, there are several
applications in which inductors have no practical substitute. They are
routinely used in relays, delays, sensing devices, pick-up heads, tele-
phone circuits, radio and TV receivers, power supplies, electric motors,
microphones, and loudspeakers, to mention a few.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary volt-
age or current sources. Thus, they can be used for generating a large
amount of current or voltage for a short period of time.

2. Capacitors oppose any abrupt change in voltage, while inductors
oppose any abrupt change in current. This property makes induc-
tors useful for spark or arc suppression and for converting pulsat-
ing dc voltage into relatively smooth dc voltage.

3. Capacitors and inductors are frequency sensitive. This property
makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
computer.

6.6.1 Integrator

Important op amp circuits that use energy-storage elements include
integrators and differentiators. These op amp circuits often involve
resistors and capacitors; inductors (coils) tend to be more bulky and
expensive.

The op amp integrator is used in numerous applications, especially
in analog computers, to be discussed in Section 6.6.3.

234 Chapter 6 Capacitors and Inductors

An integrator is an op amp circuit whose output is proportional to the
integral of the input signal.

If the feedback resistor in the familiar inverting amplifier of
Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator,
as shown in Fig. 6.35(b). It is interesting that we can obtain a mathe-
matical representation of integration this way. At node a in Fig. 6.35(b),

(6.32)

But

Substituting these in Eq. (6.32), we obtain

(6.33a)

(6.33b)dvo � �
1

RC
 vi dt

vi

R
� �C  

dvo

dt

iR �
vi

R
,  iC � �C  

dvo

dt

iR � iC

Rf

R1

Rf

i1 v1

i2

vi

+

−

vo

+

−

v2

0 A

0 V

+

−

+

−

(a)

1

R

a

C

iR

iC

vi

+

−

vo

+

−

+

−

(b)

Figure 6.35
Replacing the feedback resistor in the
inverting amplifier in (a) produces an 
integrator in (b).
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Integrating both sides gives

(6.34)

To ensure that , it is always necessary to discharge the integra-
tor’s capacitor prior to the application of a signal. Assuming 

(6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to the integral of the input. In practice, the op amp inte-
grator requires a feedback resistor to reduce dc gain and prevent satu-
ration. Care must be taken that the op amp operates within the linear
range so that it does not saturate.

vo � �
1

RC
 �

t

0

 vi 

(t)dt

vo 

(0) � 0,
vo 

(0) � 0

vo(t) � vo(0) � �
1

RC
 �

t

0

 vi(t) dt

6.6 Applications 235

vo

v1

v2

2 �F
3 MΩ

100 kΩ

+
−

Figure 6.36
For Example 6.13.

If and find in the op amp circuit
in Fig. 6.36. Assume that the voltage across the capacitor is initially zero.

Solution:
This is a summing integrator, and

 � � 

1

6
 
10

2
 sin 2t �

1

0.2
 
0.5t 

2

2
� �0.833 sin 2t � 1.25t 

2 mV

 � 

1

100 � 103 � 2 � 10�6 �
t

0

 0.5t dt

 � � 

1

3 � 106 � 2 � 10�6 �
t

0
 
10 cos (2t)  dt

 vo � � 

1

R1C
 �  v1 dt �

1

R2C
 �  v2 dt

vov2 � 0.5t mV,v1 � 10 cos 2t mV Example 6.13

Practice Problem 6.13

6.6.2 Differentiator

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is a differentiator, shown in Fig. 6.37. Applying KCL
at node a,

(6.36)iR � iC

The integrator in Fig. 6.35(b) has , Determine
the output voltage when a dc voltage of 2.5 mV is applied at 
Assume that the op amp is initially nulled.

Answer: �1.25t mV.

t � 0.
C � 20 mF.R � 100 k�
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But

Substituting these in Eq. (6.36) yields

(6.37)

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the
circuit is exaggerated by the differentiator. For this reason, the differ-
entiator circuit in Fig. 6.37 is not as useful and popular as the inte-
grator. It is seldom used in practice.

vo � �RC  

dvi

dt

iR � �
vo

R
,  iC � C  

dvi

dt
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R

a

CiC

iR

vi

+

−
vo

+

−

+
−

Figure 6.37
An op amp differentiator.

Example 6.14

vo
vi

+

−

(a)

+
−

0.2 �F

5 kΩ

+
−

(b)

vo(V)

86420

4

t (ms)

Figure 6.38
For Example 6.14.

vo (V)

8642

2

0

−2

t (ms)

Figure 6.39
Output of the circuit in Fig. 6.38(a).

Practice Problem 6.14

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input
voltage in Fig. 6.38(b). Take at 

Solution:
This is a differentiator with

For , we can express the input voltage in Fig. 6.38(b) as

This is repeated for Using Eq. (6.37), the output is
obtained as

Thus, the output is as sketched in Fig. 6.39.

vo � �RC 

dvi

dt
� e�2 V  0 6 t 6 2 ms

2 V  2 6 t 6 4 ms

4 6 t 6 8 ms.

vi � e2000t  0 6 t 6 2 ms

8 � 2000t  2 6 t 6 4 ms

0 6 t 6 4 ms

RC � 5 � 103 � 0.2 � 10�6 � 10�3 s

t � 0.vo � 0

The differentiator in Fig. 6.37 has and Given
that determine the output 

Answer: �12.5 mV.

vo.vi � 1.25t V,
C � 0.1 mF.R � 100 k�
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6.6.3 Analog Computer

Op amps were initially developed for electronic analog computers.
Analog computers can be programmed to solve mathematical models of
mechanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits: integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
positive scaling. The best way to illustrate how an analog computer solves
a differential equation is with an example.

Suppose we desire the solution of the equation

(6.38)

where a, b, and c are constants, and is an arbitrary forcing func-
tion. The solution is obtained by first solving the highest-order deriv-
ative term. Solving for yields

(6.39)

To obtain , the term is integrated and inverted. Finally,
to obtain x, the term is integrated and inverted. The forcing func-
tion is injected at the proper point. Thus, the analog computer for solv-
ing Eq. (6.38) is implemented by connecting the necessary summers,
inverters, and integrators. A plotter or oscilloscope may be used to view
the output x, or or depending on where it is connected
in the system.

Although the above example is on a second-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time interval.

The analog computers with vacuum tubes were built in the 1950s and
1960s. Recently their use has declined. They have been superseded by
modern digital computers. However, we still study analog computers for
two reasons. First, the availability of integrated op amps has made it pos-
sible to build analog computers easily and cheaply. Second, understand-
ing analog computers helps with the appreciation of the digital computers.

d 
2x�dt  

2,dx�dt,

dx�dt
d 

2x�dt 
2dx�dt

d 
2x

dt 
2 �

f (t)
a

�
b
a

  
dx

dt
�

c
a

 x

d 
2x�dt 

2

f  (t)

a 

d 
2x

dt 
2 � b 

dx

dt
� cx � f (t),  t 7 0

x(t)
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Design an analog computer circuit to solve the differential equation:

subject to , where the prime refers to the time
derivative.

Solution:

1. Define. We have a clearly defined problem and expected solution.
I might remind the student that many times the problem is not so
well defined and this portion of the problem-solving process could

vo(0) � �4, v¿o(0) � 1

d 
2vo

dt 
2 � 2 

dvo

dt
� vo � 10 sin 4t,  t 7 0

Example 6.15
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require much more effort. If this is so, then you should always
keep in mind that time spent here will result in much less effort
later and most likely save you a lot of frustration in the process.

2. Present. Clearly, using the devices developed in Section 6.6.3
will allow us to create the desired analog computer circuit. We
will need the integrator circuits (possibly combined with a
summing capability) and one or more inverter circuits.

3. Alternative. The approach for solving this problem is straight-
forward. We will need to pick the correct values of resistances
and capacitors to allow us to realize the equation we are repre-
senting. The final output of the circuit will give the desired result.

4. Attempt. There are an infinite number of possibilities for
picking the resistors and capacitors, many of which will result
in correct solutions. Extreme values of resistors and capacitors
will result in incorrect outputs. For example, low values of
resistors will overload the electronics. Picking values of
resistors that are too large will cause the op amps to stop
functioning as ideal devices. The limits can be determined from
the characteristics of the real op amp.

We first solve for the second derivative as

(6.15.1)

Solving this requires some mathematical operations, including
summing, scaling, and integration. Integrating both sides of
Eq. (6.15.1) gives

(6.15.2)
where We implement Eq. (6.15.2) using the summing
integrator shown in Fig. 6.40(a). The values of the resistors and
capacitors have been chosen so that for the term

Other terms in the summing integrator of Eq. (6.15.2) are
implemented accordingly. The initial condition is
implemented by connecting a 1-V battery with a switch across the
capacitor as shown in Fig. 6.40(a).

The next step is to obtain by integrating and
inverting the result,

(6.15.3)

This is implemented with the circuit in Fig. 6.40(b) with the
battery giving the initial condition of V. We now combine the
two circuits in Fig. 6.40(a) and (b) to obtain the complete circuit
shown in Fig. 6.40(c). When the input signal is applied,
we open the switches at to obtain the output waveform ,
which may be viewed on an oscilloscope.

vot � 0
10 sin 4t

�4

vo � ��
t

0
 
a�dvo(t)

dt
b dt � v(0)

dvo�dtvo

dvo(0)�dt � 1

�
1

RC
 �

t

0

 vo(t) dt

RC � 1

v¿o 

(0) � 1.

dvo

dt
� ��

t

0
 
a�10  sin  (4t) � 2 

dvo(t)

dt
� vo(t)b dt � v¿o 

(0)

d2vo

dt 

2 � 10 sin 4t � 2 

dvo

dt
� vo
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5. Evaluate. The answer looks correct, but is it? If an actual
solution for is desired, then a good check would be to first
find the solution by realizing the circuit in PSpice. This result
could then be compared with a solution using the differential
solution capability of MATLAB.

Since all we need to do is check the circuit and confirm that
it represents the equation, we have an easier technique to use.
We just go through the circuit and see if it generates the desired
equation.

However, we still have choices to make. We could go through
the circuit from left to right but that would involve differentiating
the result to obtain the original equation. An easier approach
would be to go from right to left. This is the approach we will
use to check the answer.

Starting with the output, we see that the right-hand op
amp is nothing more than an inverter with a gain of one. This
means that the output of the middle circuit is The following
represents the action of the middle circuit.

where is the initial voltage across the capacitor.
We check the circuit on the left the same way.

dvo

dt
� �a �

 t

 0

�
d 

2vo

dt 
2  dt � v¿o(0)b � �a�dvo

dt
� v¿o(0) � v¿o(0)b

vo(0) � �4 V

 � �(vo(t) � vo(0) � vo(0))

 �vo � �a �
t

0

 
dvo

dt
 dt � vo(0)b � �avo 2

0

t

� vo(0)b

�vo.

vo,

vo
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(a)

1 �F1 MΩ

1 V

0.5 MΩ

1 MΩ
dvo

dt
dvo

dt

t = 0

−10 sin (4t)

vo

(b)

1 �F

4 V

1 MΩ
1 MΩdvo

dt

t = 0

−vo
vo

1 MΩ
+
−

+
−

+
−

+−

− +

1 V

dvo

dt

1 �F

1 MΩ 1 V

0.5 MΩ

1 MΩ

t = 0

10 sin (4t)

vo

(c)

1 �F

4 V

1 MΩ 1 MΩ

t = 0

vo

1 MΩ

+
−

+
−

+
−

+
−

+−
− +

Figure 6.40
For Example 6.15.
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Now all we need to verify is that the input to the first op amp is

Looking at the input we see that it is equal to

which does produce from the original equation.
6. Satisfactory? The solution we have obtained is satisfactory. We

can now present this work as a solution to the problem.

�d2vo�dt2

�10 sin(4t) � vo �
1�10�6

0.5 M�
  
dvo

dt
� �10 sin(4t) � vo � 2 

dvo

dt

�d 
2vo�dt 

2.
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Design an analog computer circuit to solve the differential equation:

subject to , 

Answer: See Fig. 6.41, where RC � 1 s.

v¿o(0) � 0.vo(0) � 2

d 
2vo

dt 
2 � 3 

dvo

dt
� 2vo � 4 cos 10t,  t 7 0

Practice Problem 6.15

d2vo

dt2

d2vo

dt2

cos (10t)

2 V
t = 0

vo

+
−

C

R
R

2

R

C

R

R

R

R
3

R
4  

+
−

+
−

+
−

+
−

+
−

R
R

Figure 6.41
For Practice Prob. 6.15.

Summary
1. The current through a capacitor is directly proportional to the time

rate of change of the voltage across it.

The current through a capacitor is zero unless the voltage is chang-
ing. Thus, a capacitor acts like an open circuit to a dc source.

i � C 

dv
dt

6.7
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Review Questions 241

2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

The voltage across a capacitor cannot change instantly.
3. Capacitors in series and in parallel are combined in the same way

as conductances.
4. The voltage across an inductor is directly proportional to the time

rate of change of the current through it.

The voltage across the inductor is zero unless the current is chang-
ing. Thus, an inductor acts like a short circuit to a dc source.

5. The current through an inductor is directly proportional to the time
integral of the voltage across it.

The current through an inductor cannot change instantly.
6. Inductors in series and in parallel are combined in the same way

resistors in series and in parallel are combined.
7. At any given time t, the energy stored in a capacitor is while

the energy stored in an inductor is 
8. Three application circuits, the integrator, the differentiator, and the

analog computer, can be realized using resistors, capacitors, and
op amps.

1
2 
Li2.

1
2 
Cv2,

i �
1

L
 �

t

��

 v dt �
1

L
 �

t

t0

 v dt � i(t0)

v � L 

di

dt

v �
1

C
 �

t

��

 i dt �
1

C
 �

t

t0

 i dt � v(t0)

Review Questions

6.1 What charge is on a 5-F capacitor when it is
connected across a 120-V source?

(a) 600 C (b) 300 C

(c) 24 C (d) 12 C

6.2 Capacitance is measured in:

(a) coulombs (b) joules

(c) henrys (d) farads

6.3 When the total charge in a capacitor is doubled, the
energy stored:

(a) remains the same (b) is halved

(c) is doubled (d) is quadrupled

6.4 Can the voltage waveform in Fig. 6.42 be associated
with a real capacitor?

(a) Yes (b) No

6.5 The total capacitance of two 40-mF series-connected
capacitors in parallel with a 4-mF capacitor is:

(a) 3.8 mF (b) 5 mF (c) 24 mF

(d) 44 mF (e) 84 mF

0
21

10

−10

t

v (t)

Figure 6.42
For Review Question 6.4.
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6.6 In Fig. 6.43, if and the
element is:

(a) a resistor (b) a capacitor (c) an inductor

v � sin 4t,i � cos 4t 6.9 Inductors in parallel can be combined just like
resistors in parallel.

(a) True (b) False

6.10 For the circuit in Fig. 6.44, the voltage divider
formula is:

(a) (b) 

(c) (d) v1 �
L1

L1 � L2
 vsv1 �

L2

L1 � L2
 vs

v1 �
L1 � L2

L2
 vsv1 �

L1 � L2

L1
 vs
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v +
−

i

Element

Figure 6.43
For Review Question 6.6.

6.7 A 5-H inductor changes its current by 3 A in 0.2 s. The
voltage produced at the terminals of the inductor is:

(a) 75 V (b) 8.888 V

(c) 3 V (d) 1.2 V

6.8 If the current through a 10-mH inductor increases
from zero to 2 A, how much energy is stored in the
inductor?

(a) 40 mJ (b) 20 mJ

(c) 10 mJ (d) 5 mJ

vs
+
− v2

v1

L1

L2

+

−

+ −

Figure 6.44
For Review Question 6.10.

Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c, 6.6b, 6.7a, 6.8b,
6.9a, 6.10d.

Problems

Section 6.2 Capacitors

6.1 If the voltage across a 7.5-F capacitor is 
find the current and the power.

6.2 A capacitor has energy 
Determine the current through the capacitor.

6.3 Design a problem to help other students better
understand how capacitors work.

6.4 A current of A flows through a 5-F capacitor.
Find the voltage across the capacitor given that

6.5 The voltage across a capacitor is shown in
Fig. 6.45. Find the current waveform.

4-mF

v(0) � 1 V.
v(t)

4 sin 4t

w(t) � 10 cos2 377t J.50-mF

2te�3t V,

6.6 The voltage waveform in Fig. 6.46 is applied across
a capacitor. Draw the current waveform
through it.

55-mF

0

10

−10

8642 t (ms)

v (t) V

Figure 6.45
For Prob. 6.5.

v (t) V

0
6 8 10 1242

10

−10

t (ms)

Figure 6.46
For Prob. 6.6.

6.7 At , the voltage across a 25-mF capacitor is 10 V.
Calculate the voltage across the capacitor for 
when current 5t mA flows through it.

6.8 A 4-mF capacitor has the terminal voltage

If the capacitor has an initial current of 2 A, find:

(a) the constants A and B,

(b) the energy stored in the capacitor at 

(c) the capacitor current for t 7 0.

t � 0,

v � b  50 V,   t � 0

Ae�100t � Be�600t V,  t 	 0

t 7 0
t � 0
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6.9 The current through a 0.5-F capacitor is 
Determine the voltage and power at Assume

6.10 The voltage across a 5-mF capacitor is shown in
Fig. 6.47. Determine the current through the capacitor.

v(0) � 0.
t � 2 s.

6(1 � e�t) A. 6.15 Two capacitors ( and ) are connected 
to a 100-V source. Find the energy stored in each
capacitor if they are connected in:

(a) parallel (b) series

6.16 The equivalent capacitance at terminals a-b in the
circuit of Fig. 6.50 is Calculate the value of C.30 mF.

75 mF25 mF

Problems 243

16

0 1 2 3 4

v (t) (V)

t (�s)

Figure 6.47
For Prob. 6.10.

6.11 A 4-mF capacitor has the current waveform shown in
Fig. 6.48. Assuming that sketch the
voltage waveform v(t).

v(0) � 10 V,

i(t) (mA)

0
8642

15

10

5

−5

−10

t (s)

Figure 6.48
For Prob. 6.11.

6.12 A voltage of appears across a parallel
combination of a 100-mF capacitor and a 
resistor. Calculate the power absorbed by the parallel
combination.

6.13 Find the voltage across the capacitors in the circuit
of Fig. 6.49 under dc conditions.

12-�
30e�2000t V

40 Ω

60 V

20 Ω

10 Ω 50 Ω

v2v1C1 C2
+
−

+

−

+

−

Figure 6.49
For Prob. 6.13.

Section 6.3 Series and Parallel Capacitors

6.14 Series-connected 20-pF and 60-pF capacitors are
placed in parallel with series-connected 30-pF and
70-pF capacitors. Determine the equivalent
capacitance.

14 �F

80 �F

C

a

b

Figure 6.50
For Prob. 6.16.

6.17 Determine the equivalent capacitance for each of the
circuits of Fig. 6.51.

4 F

4 F

6 F3 F

12 F

(a)

6 F

4 F 2 F5 F

(b)

2 F

3 F

(c)

6 F3 F

4 F

Figure 6.51
For Prob. 6.17.

6.18 Find in the circuit of Fig. 6.52 if all capacitors
are 4 mF.

Ceq

Ceq

Figure 6.52
For Prob. 6.18.
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6.19 Find the equivalent capacitance between terminals
a and b in the circuit of Fig. 6.53. All capacitances
are in mF.

6.23 Using Fig. 6.57, design a problem that will help
other students better understand how capacitors work
together when connected in series and in parallel.

244 Chapter 6 Capacitors and Inductors

12

12

40

80

50
30

20

60

10

a

b

Figure 6.53
For Prob. 6.19.

6.20 Find the equivalent capacitance at terminals a-b of
the circuit in Fig. 6.54.

3 �F

2 �F 2 �F 2 �F

1 �F 1 �F

3 �F 3 �F 3 �F

b

a

Figure 6.54
For Prob. 6.20.

6.21 Determine the equivalent capacitance at terminals
a-b of the circuit in Fig. 6.55.

6 �F 4 �F5 �F

3 �F 12 �F2 �F

a

b

Figure 6.55
For Prob. 6.21.

6.22 Obtain the equivalent capacitance of the circuit in
Fig. 6.56.

40 �F

20 �F

 ba

35 �F 5 �F

10 �F

15 �F 15 �F

10 �F

Figure 6.56
For Prob. 6.22.

C2

C3

C1

C4

+
−V

Figure 6.57
For Prob. 6.23.

6.24 For the circuit in Figure 6.58, determine (a) the
voltage across each capacitor and (b) the energy
stored in each capacitor.

60 �F 20 �F

14 �F 80 �F30 �F+
−90 V

Figure 6.58
For Prob. 6.24.

6.25 (a) Show that the voltage-division rule for two
capacitors in series as in Fig. 6.59(a) is

assuming that the initial conditions are zero.

v1 �
C2

C1 � C2
  vs,  v2 �

C1

C1 � C2
  vs

C1is C2

(b)

C1

vs

v1

v2 C2

(a)

+
−

+

−

+ − i1 i2

Figure 6.59
For Prob. 6.25.
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(b) For two capacitors in parallel as in Fig. 6.59(b),
show that the current-division rule is

assuming that the initial conditions are zero.

6.26 Three capacitors, and
are connected in parallel across a

150-V source. Determine:

(a) the total capacitance,

(b) the charge on each capacitor,

(c) the total energy stored in the parallel
combination.

6.27 Given that four capacitors can be connected in
series and in parallel, find the minimum and
maximum values that can be obtained by such
series/parallel combinations.

*6.28 Obtain the equivalent capacitance of the network
shown in Fig. 6.60.

4-mF

C3 � 20 mF,
C1 � 5 mF, C2 � 10 mF,

i1 �
C1

C1 � C2
 is,  i2 �

C2

C1 � C2
 is

6.30 Assuming that the capacitors are initially uncharged,
find in the circuit of Fig. 6.62.vo(t)

Problems 245

30 �F

20 �F10 �F

50 �F40 �F

Figure 6.60
For Prob. 6.28.

6.29 Determine for each circuit in Fig. 6.61.Ceq

C

C
C

C

CCeq

(a)

C

CC

C

Ceq

(b)

Figure 6.61
For Prob. 6.29.

* An asterisk indicates a challenging problem.

Figure 6.62
For Prob. 6.30.

6.32 In the circuit of Fig. 6.64, let and
Determine: (a) 

and (b) the energy in each capacitor at
t � 0.5 s.

v2(t),
v1(t)v1(0) � 50 V, v2(0) � 20 V.

is � 50e�2t mA

Figure 6.63
For Prob. 6.31.

Figure 6.64
For Prob. 6.32.

is +

−
vo(t)

6 �F

3 �F

is (mA)

0
21

90

t (s)

6.31 If find and in the circuit of
Fig. 6.63.

i2(t)v(t), i1(t),v(0) � 0,

i1

is

i2

v6 �F 4 �F

is (mA)

53 41 2

30

0

−30

t

+

−

v1

v220 �F

12 �F

40 �Fis

+ –

+

–
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6.33 Obtain the Thevenin equivalent at the terminals, a-b,
of the circuit shown in Fig. 6.65. Please note that
Thevenin equivalent circuits do not generally exist
for circuits involving capacitors and resistors. This is
a special case where the Thevenin equivalent circuit
does exist.

6.41 The voltage across a 2-H inductor is 
If the initial current through the inductor is 0.3 A,
find the current and the energy stored in the inductor
at 

6.42 If the voltage waveform in Fig. 6.67 is applied
across the terminals of a 5-H inductor, calculate the
current through the inductor. Assume i(0) � �1 A.

t � 1 s.

20 (1 � e�2t) V.
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3 F

45 V

2 F

5 F

a

b

−
+

Figure 6.65
For Prob. 6.33.

Section 6.4 Inductors

6.34 The current through a 10-mH inductor is 
Find the voltage and the power at 

6.35 An inductor has a linear change in current from
50 mA to 100 mA in 2 ms and induces a voltage of
160 mV. Calculate the value of the inductor.

6.36 Design a problem to help other students better
understand how inductors work.

6.37 The current through a 12-mH inductor is 
Find the voltage, across the inductor for 

and the energy stored at 

6.38 The current through a 40-mH inductor is

Find the voltage 

6.39 The voltage across a 200-mH inductor is given by

Determine the current through the inductor.
Assume that 

6.40 The current through a 5-mH inductor is shown in
Fig. 6.66. Determine the voltage across the inductor
at and 5 ms.t � 1, 3,

i(0) � 1 A.
i(t)

v(t) � 3t2 � 2t � 4 V  for t 7 0.

v(t).

i(t) � b 0,   t 6 0

te�2t A,  t 7 0

t � p
200 s.p�200 s,

0 6 t 6
4 sin 100t A.

t � 3 s.
10e�t�2 A.

0
42

10

6 t (ms)

i(A)

Figure 6.66
For Prob. 6.40.

v (t) (V) 

5421 3

10

0
t

Figure 6.67
For Prob. 6.42.

6.43 The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

*6.44 A 100-mH inductor is connected in parallel with a
resistor. The current through the inductor is

(a) Find the voltage across
the inductor. (b) Find the voltage across the
resistor. (c) Does (d) Calculate
the energy in the inductor at 

6.45 If the voltage waveform in Fig. 6.68 is applied to a
10-mH inductor, find the inductor current 
Assume i(0) � 0.

i(t).

t � 0.
vR(t) � vL(t) � 0?

vR

vLi(t) � 50e�400t mA.
2-k�

v (t)

0
21

5

–5

t

Figure 6.68
For Prob. 6.45.

6.46 Find and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.69 under dc
conditions.

vC, iL,

5 Ω

2 Ω

4 Ω

2 F

3 A 0.5 H

vC

+

−

iL

Figure 6.69
For Prob. 6.46.
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6.47 For the circuit in Fig. 6.70, calculate the value of R that
will make the energy stored in the capacitor the same
as that stored in the inductor under dc conditions.

6.52 Using Fig. 6.74, design a problem to help other
students better understand how inductors behave
when connected in series and when connected in
parallel.

Problems 247

R

2 Ω5 A 4 mH

160 �F

Figure 6.70
For Prob. 6.47.

6.48 Under steady-state dc conditions, find i and in the
circuit in Fig. 6.71.

v

5 mA 30 kΩ 6 �F 20 kΩ

2 mHi

v
+

−

Figure 6.71
For Prob. 6.48.

Section 6.5 Series and Parallel Inductors

6.49 Find the equivalent inductance of the circuit in
Fig. 6.72. Assume all inductors are 10 mH.

Figure 6.72
For Prob. 6.49.

6.50 An energy-storage network consists of series-
connected 16-mH and 14-mH inductors in parallel
with series-connected 24-mH and 36-mH inductors.
Calculate the equivalent inductance.

6.51 Determine at terminals a-b of the circuit in
Fig. 6.73.

Leq

60 mH

20 mH

30 mH

25 mH

10 mH

a b

Figure 6.73
For Prob. 6.51.

L4

L2 L3

L5L1
L6

Leq

Figure 6.74
For Prob. 6.52.

6.53 Find at the terminals of the circuit in Fig. 6.75.Leq

8 mH6 mH

8 mH

12 mH

4 mH
6 mH

5 mH

8 mH10 mH

a

b

Figure 6.75
For Prob. 6.53.

6.54 Find the equivalent inductance looking into the
terminals of the circuit in Fig. 6.76.

9 H

6 H4 H

3 H12 H

10 H

a b

Figure 6.76
For Prob. 6.54.
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6.55 Find in each of the circuits in Fig. 6.77.Leq

6.59 (a) For two inductors in series as in Fig. 6.81(a),
show that the voltage division principle is

assuming that the initial conditions are zero.

(b) For two inductors in parallel as in Fig. 6.81(b),
show that the current-division principle is

assuming that the initial conditions are zero.

i1 �
L2

L1 � L2
 is,  i2 �

L1

L1 � L2
 is

v1 �
L1

L1 � L2
  vs,  v2 �

L2

L1 � L2
  vs

248 Chapter 6 Capacitors and Inductors

Leq

(a)

L

LL

L

L

Leq

L

L

L L

L

(b)

Figure 6.77
For Prob. 6.55.

6.56 Find in the circuit of Fig. 6.78.Leq

L

L

L

L L

Leq

L

L
L

Figure 6.78
For Prob. 6.56.

*6.57 Determine that may be used to represent the
inductive network of Fig. 6.79 at the terminals.

Leq

3 H

4 H

5 H
Leq

+ −
i

a

b

dt
di2

Figure 6.79
For Prob. 6.57.

6.58 The current waveform in Fig. 6.80 flows through a
3-H inductor. Sketch the voltage across the inductor
over the interval 0 6 t 6 6 s.

i(t)

0

2

3 4 5 621 t

Figure 6.80
For Prob. 6.58.

vs
+
−

+

−
v2

+ −v1

L1

L2

(a)

is L1 L2

(b)

i1 i2

Figure 6.81
For Prob. 6.59.

6.60 In the circuit of Fig. 6.82, Determine
and for t 7 0.vo(t)io(t)

io(0) � 2 A.

3 H 5 H

io (t)

4e–2t A
+

−
vo

Figure 6.82
For Prob. 6.60.
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6.62 Consider the circuit in Fig. 6.84. Given that
for and 

find: (a) (b) and i2(t).i1(t)i2(0),
i1(0) � �10 mA,t 7 0v(t) � 12e�3t mV

6.65 The inductors in Fig. 6.87 are initially charged and are
connected to the black box at If 

and find:

(a) the energy initially stored in each inductor,

(b) the total energy delivered to the black box from
to 

(c) and 

(d) i(t), t 	 0.

i2(t), t 	 0,i1(t)

t � �,t � 0

v(t) � 50e�200t mV, t 	 0,i2(0) � �2 A,
i1(0) � 4 A,t � 0.

Problems 249

6.61 Consider the circuit in Fig. 6.83. Find: (a) 
and if (b) (c) energy stored
in the 20-mH inductor at t � 1 s.

vo(t),is � 3e�t mA,i2(t)
Leq, i1(t),

is 20 mH

4 mH

6 mH

i2i1

Leq

+
vo

–

Figure 6.83
For Prob. 6.61.

25 mH

60 mH20 mHv(t)

+

–

i2(t)i1(t)

Figure 6.84
For Prob. 6.62.

6.63 In the circuit of Fig. 6.85, sketch vo.

+
2 H i2(t)i1(t)

i1(t) (A)

vo
–

3

0 3 6

i2(t) (A)

t (s)t (s)

4

0 2 4 6

Figure 6.85
For Prob. 6.63.

t = 0 A

5 Ω
+

–

4 Ω B

0.5 H12 V 6 A

i

v
+
–

Figure 6.86
For Prob. 6.64.

i1 i2

20 H5 Hv

+

−

Black box

i(t)

t = 0

Figure 6.87
For Prob. 6.65.

6.66 The current i(t) through a 20-mH inductor is equal,
in magnitude, to the voltage across it for all values of
time. If find i(t).

Section 6.6 Applications

6.67 An op amp integrator has and 
If the input voltage is 

obtain the output voltage.
vi � 10 sin 50t mV,0.04 mF.

C �R � 50 k�

i(0) � 2 A,

6.64 The switch in Fig. 6.86 has been in position A for a
long time. At the switch moves from position
A to B. The switch is a make-before-break type so
that there is no interruption in the inductor current.
Find: 

(a) for 

(b) just after the switch has been moved to position B, 

(c) long after the switch is in position B.v(t)

v

t 7 0,i(t)

t � 0,
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6.68 A 10-V dc voltage is applied to an integrator with
at How long will it

take for the op amp to saturate if the saturation
voltages are and Assume that the
initial capacitor voltage was zero.

6.69 An op amp integrator with and
has the input waveform shown in 

Fig. 6.88. Plot the output waveform.
C � 1 mF

R � 4 M�

�12 V?�12 V

t � 0.R � 50 k�, C � 100 mF

6.75 An op amp differentiator has and 
The input voltage is a ramp 

Find the output voltage.

6.76 A voltage waveform has the following characteristics:
a positive slope of 20 V/s for 5 ms followed by a
negative slope of 10 V/s for 10 ms. If the waveform
is applied to a differentiator with 

sketch the output voltage waveform.C � 10 mF,
R � 50 k�,

r(t) � 12t mV.10 mF.
C �R � 250 k�
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1 V

2 �F

10 kΩ
20 kΩ

vo

+
−

0.5 �F

+

−

+
−

+
−

Figure 6.89
For Prob. 6.72.

6.70 Using a single op amp, a capacitor, and resistors of
or less, design a circuit to implement

Assume at 

6.71 Show how you would use a single op amp to generate

If the integrating capacitor is obtain the
other component values.

6.72 At calculate due to the cascaded
integrators in Fig. 6.89. Assume that the integrators
are reset to 0 V at t � 0.

vot � 1.5 ms,

C � 2 mF,

vo � ��
t

0
 
(v1 � 4v2 � 10v3) dt

t � 0.vo � 0

vo � �50 �
t

0

 vi(t) dt

100 k�

vo

vi
+
−

+

−

R

R

R

C

R

+
−

Figure 6.90
For Prob. 6.73.

(a)

v (t)

0

10

3 421 t (ms)

−10

vo
vi

+
−

+

−

20 kΩ

0.01 �F

(b)

+
−

Figure 6.91
For Prob. 6.74.

vi (mV)

0

20

10

–10

–20

3 4 5 621 t (ms)

Figure 6.88
For Prob. 6.69.

6.74 The triangular waveform in Fig. 6.91(a) is applied to
the input of the op amp differentiator in Fig. 6.91(b).
Plot the output.

6.73 Show that the circuit in Fig. 6.90 is a noninverting
integrator.
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*6.77 The output of the op amp circuit in Fig. 6.92(a) is
shown in Fig. 6.92(b). Let and

Determine the input voltage waveform
and sketch it.
C � 1 mF.

Ri � Rf � 1 M�
vo

6.81 Design an analog computer to simulate the following
equation:

6.82 Design an op amp circuit such that

where and are the input voltage and output
voltage, respectively.

vovs

vo � 10vs � 2 �  vs dt

d 
2v

dt 
2 � 5v � �2f  (t)
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(b)

(a)

0

4

3 421 t (s)

−4

vo
v i

vo

Ri

C

Rf

+
−

+

−

+
−

Figure 6.92
For Prob. 6.77.

6.78 Design an analog computer to simulate

where and v¿0(0) � 0.v0(0) � 2

d 
2vo

dt 
2 � 2 

dvo

dt
� vo � 10 sin 2t

vo(t)

−f (t)

1 �F
1 �F

1 MΩ
1 MΩ

1 MΩ

100 kΩ 200 kΩ

500 kΩ

100 kΩ

+
−

+
−

+
−

+
−

Figure 6.93
For Prob. 6.80.

6.79 Design an analog computer circuit to solve the
following ordinary differential equation.

where 

6.80 Figure 6.93 presents an analog computer designed
to solve a differential equation. Assuming is
known, set up the equation for f (t).

f (t)

y(0) � 1 V.

dy(t)

dt
� 4y(t) � f (t)

Comprehensive Problems

6.83 Your laboratory has available a large number of
capacitors rated at 300 V. To design a

capacitor bank of rated at 600 V, how many
capacitors are needed and how would you

connect them?
10-mF

40 mF
10-mF

6.84 An 8-mH inductor is used in a fusion power
experiment. If the current through the inductor is

find the power being
delivered to the inductor and the energy stored in it
at t � 0.5 s.

i(t) � 5 sin2 p t mA, t 7 0,
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v (V)

0

5

−5

3 421 t (ms)

(a)

(b)

i (A)

4

3 4210 t (ms)

Figure 6.94
For Prob. 6.85.

6.85 A square-wave generator produces the voltage
waveform shown in Fig. 6.94(a). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.94(b)? Calculate the value of the
component, assuming that it is initially uncharged.

6.86 An electric motor can be modeled as a series
combination of a resistor and 200-mH inductor.
If a current flows through the series
combination, find the voltage across the combination.

i(t) � 2te�10t A
12-�
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253

First-Order Circuits
We live in deeds, not years; in thoughts, not breaths; in feelings, not in
figures on a dial. We should count time in heart-throbs. He most lives
who thinks most, feels the noblest, acts the best.

—P. J. Bailey

c h a p t e r

7

Enhancing Your Career

Careers in Computer Engineering 
Electrical engineering education has gone through drastic changes in
recent decades. Most departments have come to be known as Department
of Electrical and Computer Engineering, emphasizing the rapid changes
due to computers. Computers occupy a prominent place in modern soci-
ety and education. They have become commonplace and are helping to
change the face of research, development, production, business, and enter-
tainment. The scientist, engineer, doctor, attorney, teacher, airline pilot,
businessperson—almost anyone benefits from a computer’s abilities to
store large amounts of information and to process that information in very
short periods of time. The internet, a computer communication network,
is essential in business, education, and library science. Computer usage
continues to grow by leaps and bounds.

An education in computer engineering should provide breadth in soft-
ware, hardware design, and basic modeling techniques. It should include
courses in data structures, digital systems, computer architecture, micro-
processors, interfacing, software engineering, and operating systems.

Electrical engineers who specialize in computer engineering find
jobs in computer industries and in numerous fields where computers
are being used. Companies that produce software are growing rapidly
in number and size and providing employment for those who are skilled
in programming. An excellent way to advance one’s knowledge of
computers is to join the IEEE Computer Society, which sponsors
diverse magazines, journals, and conferences.

Computer design of very large scale
integrated (VLSI) circuits.
Courtesy Brian Fast, Cleveland State
University
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A first-order circuit is characterized by a first-order differential
equation.

Introduction
Now that we have considered the three passive elements (resistors,
capacitors, and inductors) and one active element (the op amp) indi-
vidually, we are prepared to consider circuits that contain various com-
binations of two or three of the passive elements. In this chapter, we
shall examine two types of simple circuits: a circuit comprising a resis-
tor and capacitor and a circuit comprising a resistor and an inductor.
These are called RC and RL circuits, respectively. As simple as these
circuits are, they find continual applications in electronics, communi-
cations, and control systems, as we shall see.

We carry out the analysis of RC and RL circuits by applying
Kirchhoff’s laws, as we did for resistive circuits. The only difference
is that applying Kirchhoff’s laws to purely resistive circuits results in
algebraic equations, while applying the laws to RC and RL circuits pro-
duces differential equations, which are more difficult to solve than
algebraic equations. The differential equations resulting from analyz-
ing RC and RL circuits are of the first order. Hence, the circuits are
collectively known as first-order circuits.

7.1

254 Chapter 7 First-Order Circuits

In addition to there being two types of first-order circuits (RC and
RL), there are two ways to excite the circuits. The first way is by ini-
tial conditions of the storage elements in the circuits. In these so-called
source-free circuits, we assume that energy is initially stored in the
capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may
have dependent sources. The second way of exciting first-order circuits
is by independent sources. In this chapter, the independent sources we
will consider are dc sources. (In later chapters, we shall consider sinu-
soidal and exponential sources.) The two types of first-order circuits
and the two ways of exciting them add up to the four possible situa-
tions we will study in this chapter.

Finally, we consider four typical applications of RC and RL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile
ignition circuit.

The Source-Free RC Circuit
A source-free RC circuit occurs when its dc source is suddenly dis-
connected. The energy already stored in the capacitor is released to the
resistors.

Consider a series combination of a resistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of
resistors and capacitors.) Our objective is to determine the circuit
response, which, for pedagogic reasons, we assume to be the voltage

7.2

Figure 7.1
A source-free RC circuit.

A circuit response is the manner in
which the circuit reacts to an
excitation.

v

+

−

iRiC

RC
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The natural response of a circuit refers to the behavior (in terms of
voltages and currents) of the circuit itself, with no external sources of
excitation.

across the capacitor. Since the capacitor is initially charged, we
can assume that at time the initial voltage is

(7.1)

with the corresponding value of the energy stored as

(7.2)

Applying KCL at the top node of the circuit in Fig. 7.1 yields

(7.3)

By definition, and Thus,

(7.4a)

or

(7.4b)

This is a first-order differential equation, since only the first derivative
of v is involved. To solve it, we rearrange the terms as

(7.5)

Integrating both sides, we get

where is the integration constant. Thus,

(7.6)

Taking powers of e produces

But from the initial conditions, Hence,

(7.7)

This shows that the voltage response of the RC circuit is an exponen-
tial decay of the initial voltage. Since the response is due to the initial
energy stored and the physical characteristics of the circuit and not due
to some external voltage or current source, it is called the natural
response of the circuit.

v(t) � V0 e�t�RC

v(0) � A � V0.

v(t) � Ae�t�RC

ln  

v
A

� � 

t

RC

ln  A

ln  v � � 

t

RC
� ln  A

dv
v

� � 

1

RC
  dt

dv
dt

�
v

RC
� 0

C  

dv
dt

�
v
R

� 0

iR � v�R.iC � C dv�dt

iC � iR � 0

w(0) �
1

2
 CV 

2
0

v(0) � V0

t � 0,
v(t)

7.2 The Source-Free RC Circuit 255

The natural response is illustrated graphically in Fig. 7.2. Note that at
we have the correct initial condition as in Eq. (7.1). As t

increases, the voltage decreases toward zero. The rapidity with which
t � 0,

The natural response depends on the
nature of the circuit alone, with no ex-
ternal sources. In fact, the circuit has a
response only because of the energy
initially stored in the capacitor.
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the voltage decreases is expressed in terms of the time constant,
denoted by the lowercase Greek letter tau.t,

256 Chapter 7 First-Order Circuits

Figure 7.2
The voltage response of the RC circuit.

V0e−t ⁄� 

� t

0.368V0

V0

v

0

The time constant of a circuit is the time required for the response to
decay to a factor of 1�e or 36.8 percent of its initial value.1

This implies that at Eq. (7.7) becomes

or

(7.8)

In terms of the time constant, Eq. (7.7) can be written as

(7.9)

With a calculator it is easy to show that the value of is as
shown in Table 7.1. It is evident from Table 7.1 that the voltage 
is less than percent of after (five time constants). Thus, it is
customary to assume that the capacitor is fully discharged (or charged)
after five time constants. In other words, it takes for the circuit to
reach its final state or steady state when no changes take place with
time. Notice that for every time interval of the voltage is reduced
by 36.8 percent of its previous value, 
regardless of the value of t.

Observe from Eq. (7.8) that the smaller the time constant, the more
rapidly the voltage decreases, that is, the faster the response. This is
illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due
to quick dissipation of energy stored, whereas a circuit with a large
time constant gives a slow response because it takes longer to reach
steady state. At any rate, whether the time constant is small or large,
the circuit reaches steady state in five time constants.

With the voltage in Eq. (7.9), we can find the current 

(7.10)iR(t) �
v(t)

R
�

V0

R
 e�t�t

iR(t),v(t)

v(t � t) � v(t)�e � 0.368v(t),
t,

5t

5tV01
v(t)

v(t)�V0

v(t) � V0e�t�t

t � RC

V0e�t�RC � V0e�1 � 0.368V0

t � t,

1 The time constant may be viewed from another perspective. Evaluating the derivative
of in Eq. (7.7) at we obtain

Thus, the time constant is the initial rate of decay, or the time taken for to decay
from unity to zero, assuming a constant rate of decay. This initial slope interpretation of
the time constant is often used in the laboratory to find graphically from the response
curve displayed on an oscilloscope. To find from the response curve, draw the tangent
to the curve at as shown in Fig. 7.3. The tangent intercepts with the time axis at
t � t.

t � 0,
t

t

v�V0

d

dt
 a v

V0
b 2

t�0

� �
1

t
 e�t�t 2

t�0

� �
1

t

t � 0,v(t)

TABLE 7.1

Values of v(t)�V0 e�t��.

t

0.36788
2 0.13534
3 0.04979
4 0.01832
5 0.00674t

t

t

t

t

v(t)�V0

�

Figure 7.3
Graphical determination of the time
constant from the response curve.t

� 2� 3� 4� 5� t (s)0

v
V0

0.37

0.25

0.75

1.0

0.50
Tangent at t = 0
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The power dissipated in the resistor is

(7.11)

The energy absorbed by the resistor up to time t is

(7.12)

Notice that as which is the same as 
the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

wC (0),t S  �, wR(�)
 
S  

1
2CV 0

2,

� � 

tV 0
2

2R
 e�2l�t 2 t

0

�
1

2
 CV 0 

2(1 � e�2t�t),  t � RC

 wR(t) � �
t

0
 
p(l) dl � �

t

0

 
V 

2
0

R
 e�2l�t dl

p(t) � viR �
V 

2
0

R
 e�2t�t
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Figure 7.4
Plot of for various values of the time constant.v�V0 � e�t�t

The Key to Working with a Source-Free RC Circuit
Is Finding:

1. The initial voltage across the capacitor.
2. The time constant t.

v(0) � V0

With these two items, we obtain the response as the capacitor voltage
Once the capacitor voltage is first obtained,

other variables (capacitor current resistor voltage and resistor cur-
rent ) can be determined. In finding the time constant R is
often the Thevenin equivalent resistance at the terminals of the capacitor;
that is, we take out the capacitor C and find at its terminals.R � RTh

t � RC,iR

vR,iC,
vC(t) � v(t) � v(0)e�t�t.

The time constant is the same regard-
less of what the output is defined
to be.

When a circuit contains a single
capacitor and several resistors and
dependent sources, the Thevenin
equivalent can be found at the
terminals of the capacitor to form a
simple RC circuit. Also, one can use
Thevenin’s theorem when several
capacitors can be combined to form
a single equivalent capacitor.

In Fig. 7.5, let Find and for 

Solution:
We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuit in Fig. 7.1. We find the equivalent resistance or the Thevenin

t 7 0.ixvC, vx,vC (0) � 15 V. Example 7.1

0 t

1

3 4 51 2

v
V0

e−t ⁄�=

� = 0.5

� = 1

� = 2
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resistance at the capacitor terminals. Our objective is always to first
obtain capacitor voltage From this, we can determine and 

The and resistors in series can be combined to give a
resistor. This resistor in parallel with the resistor can

be combined so that the equivalent resistance is

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. The time constant is

Thus,

From Fig. 7.5, we can use voltage division to get so

Finally,

ix �
vx

12
� 0.75e�2.5t A

vx �
12

12 � 8
 v � 0.6(15e�2.5t) � 9e�2.5t V

vx;
v � v(0)e�t�t � 15e�t�0.4 V,  vC � v � 15e�2.5t V

t � ReqC � 4(0.1) � 0.4 s

Req �
20 � 5

20 � 5
� 4 �

5-�20-�20-�
12-�8-�

ix.vxvC.
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Figure 7.5
For Example 7.1.

Figure 7.6
Equivalent circuit for the circuit in
Fig. 7.5.

Practice Problem 7.1

Figure 7.7
For Practice Prob. 7.1.

The switch in the circuit in Fig. 7.8 has been closed for a long time,
and it is opened at Find for Calculate the initial
energy stored in the capacitor.

Solution:
For the switch is closed; the capacitor is an open circuit to dc,
as represented in Fig. 7.9(a). Using voltage division

Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at is the same at or

vC (0) � V0 � 15 V

t � 0,t � 0�

vC (t) �
9

9 � 3
 (20) � 15 V,  t 6 0

t 6 0,

t � 0.v(t)t � 0.
Example 7.2

Figure 7.8
For Example 7.2.

5 Ω

8 Ω

12 ΩvC vx

ix
+

−

+

−
0.1 F

v

+

−

Req 0.1 F

12 Ω

8 Ω

vC  F6 Ω

io

+

−
vx

+

−
1
3

3 Ω

20 V
+

−
v9 Ω

t = 0
1 Ω

20 mF+
−

Refer to the circuit in Fig. 7.7. Let Determine 
and for 

Answer: 60e�0.25t V, 20e�0.25t V, �5e�0.25t A.

t � 0.io

vC 
, vx 

,vC 
(0) � 60 V.
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For the switch is opened, and we have the RC circuit
shown in Fig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is
source free; the independent source in Fig. 7.8 is needed to provide

or the initial energy in the capacitor.] The and resistors
in series give

The time constant is

Thus, the voltage across the capacitor for is

or

The initial energy stored in the capacitor is

wC (0) �
1

2
 Cv2

C (0) �
1

2
� 20 � 10�3 � 152 � 2.25 J

v(t) � 15e�5t V

v(t) � vC (0)e�t�t � 15e�t�0.2 V

t � 0

t � ReqC � 10 � 20 � 10�3 � 0.2 s

Req � 1 � 9 � 10 �

9-�1-�V0

t 7 0,
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Figure 7.9
For Example 7.2: (a) (b) t 7 0.t 6 0,

If the switch in Fig. 7.10 opens at find for and 

Answer: 5.333 J.8e�2t V,

wC (0).t � 0v(t)t � 0, Practice Problem 7.2

Figure 7.10
For Practice Prob. 7.2.The Source-Free RL Circuit

Consider the series connection of a resistor and an inductor, as shown
in Fig. 7.11. Our goal is to determine the circuit response, which we
will assume to be the current through the inductor. We select the
inductor current as the response in order to take advantage of the idea
that the inductor current cannot change instantaneously. At we
assume that the inductor has an initial current or

(7.13)

with the corresponding energy stored in the inductor as

(7.14)

Applying KVL around the loop in Fig. 7.11,

(7.15)

But and Thus,

L 

di

dt
� Ri � 0

vR � iR.vL � L di�dt

vL � vR � 0

w(0) �
1

2
 L I 

2
0

i(0) � I0

I0,
t � 0,

i(t)

7.3

Figure 7.11
A source-free RL circuit.

9 Ω

1 Ω

vC(0)

3 Ω

+

−

+
−20 V

(a)

9 Ω

1 Ω

(b)

+

−
Vo = 15 V 20 mF

6 Ω

+
−24 V

+

−
v 12 Ω 4 Ω

t = 0

  F1
6

vL+

−

RL

i

vR

+

−
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or

(7.16)

Rearranging terms and integrating gives

or

(7.17)

Taking the powers of e, we have

(7.18)

This shows that the natural response of the RL circuit is an exponen-
tial decay of the initial current. The current response is shown in
Fig. 7.12. It is evident from Eq. (7.18) that the time constant for the
RL circuit is

(7.19)

with again having the unit of seconds. Thus, Eq. (7.18) may be
written as

(7.20)

With the current in Eq. (7.20), we can find the voltage across the
resistor as

(7.21)

The power dissipated in the resistor is

(7.22)

The energy absorbed by the resistor is

or

(7.23)

Note that as which is the same as 
the initial energy stored in the inductor as in Eq. (7.14). Again, the
energy initially stored in the inductor is eventually dissipated in
the resistor.

wL(0),t S  �, wR(�)
 
S  

1
2 
L I 0

2,

wR 
(t) �

1

2
 L I 

2
0 (1 � e�2t�t)

wR(t) � �
t

0
 
p(l) dl � �

t

0
 
I 

2
0 e

�2l�t dl � � 

t

2
  I 0

2 Re�2l�t 2 t
0

,  t �
L

R

p � vR 
i � I 

2
0 Re�2t�t

vR 
(t) � i R � I0 Re�t�t

i(t) � I0e�t�t

t

t �
L

R

i(t) � I0e�Rt�L

ln  
i(t)

I0
� � 

Rt

L

ln  i 2 i(t)
I0

� � 

Rt

L
 2 t

0

  1  ln  i(t) � ln  I0 � � 

Rt

L
� 0

�
i(t)

I0

 

di

i
� ��

t

0

 
R

L
 dt

di

dt
�

R

L
 i � 0
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Figure 7.12
The current response of the RL circuit.

The smaller the time constant of a
circuit, the faster the rate of decay of
the response. The larger the time con-
stant, the slower the rate of decay of
the response. At any rate, the response
decays to less than 1 percent of its
initial value (i.e., reaches steady state)
after 5t.

t

Figure 7.12 shows an initial slope inter-
pretation may be given to t.

Tangent at t = 0

I0e−t ⁄ � 

� t

0.368I0

I0

i(t)

0
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In summary:

7.3 The Source-Free RL Circuit 261

The Key to Working with a Source-Free RL Circuit
Is to Find:

1. The initial current through the inductor.
2. The time constant of the circuit.t

i(0) � I0

With the two items, we obtain the response as the inductor current
Once we determine the inductor current 

other variables (inductor voltage resistor voltage and resistor
current ) can be obtained. Note that in general, R in Eq. (7.19) is the
Thevenin resistance at the terminals of the inductor.

iR

vR,vL,
iL,iL(t) � i(t) � i(0)e�t�t.

When a circuit has a single inductor
and several resistors and dependent
sources, the Thevenin equivalent can
be found at the terminals of the induc-
tor to form a simple RL circuit. Also,
one can use Thevenin’s theorem when
several inductors can be combined to
form a single equivalent inductor.

Assuming that calculate and in the circuit of
Fig. 7.13.

Solution:
There are two ways we can solve this problem. One way is to obtain
the equivalent resistance at the inductor terminals and then use
Eq. (7.20). The other way is to start from scratch by using Kirchhoff’s
voltage law. Whichever approach is taken, it is always better to first
obtain the inductor current.

■ METHOD 1 The equivalent resistance is the same as the
Thevenin resistance at the inductor terminals. Because of the depend-
ent source, we insert a voltage source with at the inductor
terminals a-b, as in Fig. 7.14(a). (We could also insert a 1-A current
source at the terminals.) Applying KVL to the two loops results in

(7.3.1)

(7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives

i1 � �3 A,  io � �i1 � 3 A

6i2 � 2i1 � 3i1 � 0  1  i2 �
5

6
 i1

2(i1 � i2) � 1 � 0  1  i1 � i2 � � 

1

2

vo � 1 V

ix (t)i(t)i(0) � 10 A, Example 7.3

Figure 7.13
For Example 7.3.

Figure 7.14
Solving the circuit in Fig. 7.13.

2 Ω

4 Ω

0.5 H +
−

i

3i

ix

4 Ω

2 Ωvo = 1 V +
−

+
−

io

i1 i2 3i1

(a)

a

b

4 Ω

2 Ω +
−i1 i2 3i

(b)

0.5 H
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Hence,

The time constant is

Thus, the current through the inductor is

■ METHOD 2 We may directly apply KVL to the circuit as in
Fig. 7.14(b). For loop 1,

or

(7.3.3)

For loop 2,

(7.3.4)

Substituting Eq. (7.3.4) into Eq. (7.3.3) gives

Rearranging terms,

Since we may replace with i and integrate:

or

Taking the powers of e, we finally obtain

which is the same as by Method 1.
The voltage across the inductor is

v � L 
di

dt
� 0.5(10) a� 

2

3
b e�(2�3)t � � 

10

3
 e�(2�3)t V

i(t) � i(0)e�(2�3)t � 10e�(2�3)t A,  t 7 0

ln 

i(t)

i(0)
� � 

2

3
 t

ln  i 2 i(t)
i(0)

� � 

2

3
 t 2

0

t

i1i1 � i,

di1
i1

� � 

2

3
 dt

di1
dt

�
2

3
 i1 � 0

6i2 � 2i1 � 3i1 � 0  1  i2 �
5

6
 i1

di1
dt

� 4i1 � 4i2 � 0

1

2
 
di1
dt

� 2(i1 � i2) � 0

i(t) � i(0)e�t�t � 10e�(2�3)t A,  t 7 0

t �
L

Req
�

1
2
1
3

�
3

2
 s

Req � RTh �
vo

io
�

1

3
 �
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7.3 The Source-Free RL Circuit 263

Practice Problem 7.3

Figure 7.15
For Practice Prob. 7.3.

The switch in the circuit of Fig. 7.16 has been closed for a long time.
At the switch is opened. Calculate for 

Solution:
When the switch is closed, and the inductor acts as a short
circuit to dc. The resistor is short-circuited; the resulting circuit
is shown in Fig. 7.17(a). To get in Fig. 7.17(a), we combine the 
and resistors in parallel to get

Hence,

We obtain from in Fig. 7.17(a) using current division, by
writing

Since the current through an inductor cannot change instantaneously,

When the switch is open and the voltage source is
disconnected. We now have the source-free RL circuit in Fig. 7.17(b).
Combining the resistors, we have

The time constant is

Thus,

i(t) � i(0)e�t�t � 6e�4t A

t �
L

Req
�

2

8
�

1

4
 s

Req � (12 � 4)  � 16 � 8 �

t 7 0,

i(0) � i(0�) � 6 A

i(t) �
12

12 � 4
 i1 � 6 A,  t 6 0

i1i(t)

i1 �
40

2 � 3
� 8 A

4 � 12

4 � 12
� 3 �

12-�
4-�i1

16-�
t 6 0,

t 7 0.i(t)t � 0,
Example 7.4

Figure 7.16
For Example 7.4.

Figure 7.17
Solving the circuit of Fig. 7.16: (a) for

(b) for t 7 0.t 6 0,

2 Ω
6 Ω

1 Ω

+
− 2vx

2 H

i + −vx

2 Ω 4 Ω

+
− 40 V 16 Ω12 Ω 2 H

t = 0

i(t)

4 Ω

12 Ω

2 Ω

+
−

i1

2 H

i(t)

40 V

i(t)

(a)

16 Ω12 Ω

4 Ω

(b)

Since the inductor and the resistor are in parallel,

ix (t) �
v
2

� �1.6667e�(2�3)t A,  t 7 0

2-�

Find i and in the circuit of Fig. 7.15. Let 

Answer: 12e�2t A, �12e�2t V, t 	  0.

i(0) � 12 A.vx
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264 Chapter 7 First-Order Circuits

For the circuit in Fig. 7.18, find for 

Answer: 5e�2t A, t 7 0.

t 7 0.i(t)Practice Problem 7.4

Figure 7.18
For Practice Prob. 7.4.

In the circuit shown in Fig. 7.19, find and i for all time, assum-
ing that the switch was open for a long time.

Solution:
It is better to first find the inductor current i and then obtain other
quantities from it.

For the switch is open. Since the inductor acts like a short
circuit to dc, the resistor is short-circuited, so that we have the
circuit shown in Fig. 7.20(a). Hence, and

Thus, 
For the switch is closed, so that the voltage source is short-

circuited. We now have a source-free RL circuit as shown in
Fig. 7.20(b). At the inductor terminals,

so that the time constant is

Hence,

Since the inductor is in parallel with the and resistors,

and

io(t) �
vL

6
� � 

2

3
e�t A,  t 7 0

vo(t) � �vL � �L 
di

dt
� �2(�2e�t) � 4e�t V,  t 7 0

3-�6-�

i(t) � i(0)e�t�t � 2e�t A,  t 7 0

t �
L

RTh
� 1 s

R
 Th � 3  � 6 � 2 �

t 7 0,
i(0) � 2.

vo (t) � 3i(t) � 6 V,  t 6 0

i(t) �
10

2 � 3
� 2 A,  t 6 0

io � 0,
6-�

t 6 0,

io, vo,Example 7.5

Figure 7.19
For Example 7.5.

Figure 7.20
The circuit in Fig. 7.19 for: (a) 
(b) t 7 0.

t 6 0,

5 Ω15 A

12 Ω

24 Ω

8 Ω

2 H

t = 0

i(t)

10 V 6 Ω 2 Ht = 0

iio+ −vo

3 Ω2 Ω

+
−

2 Ω

+
−10 V 6 Ω

iio

(a)

+ −vo

(b)

6 Ω

3 Ω

+ −vo

3 Ω

2 H

iio

vL

+

−
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Thus, for all time,

We notice that the inductor current is continuous at while the
current through the resistor drops from 0 to at and
the voltage across the resistor drops from 6 to 4 at We also
notice that the time constant is the same regardless of what the output
is defined to be. Figure 7.21 plots i and io.

t � 0.3-�
t � 0,�2�36-�

t � 0,

i(t) � b 2 A, t 6 0

2e�t A,  t � 0

io(t) � c 0 A, t 6 0

� 

2

3
e�t A,  t 7 0

  ,  vo(t) � b 6 V,   t 6 0

4e�t V,  t 7 0

7.4 Singularity Functions 265

Figure 7.21
A plot of i and io.

Determine and for all t in the circuit shown in Fig. 7.22.
Assume that the switch was closed for a long time. It should be noted
that opening a switch in series with an ideal current source creates an
infinite voltage at the current source terminals. Clearly this is impossi-
ble. For the purposes of problem solving, we can place a shunt resis-
tor in parallel with the source (which now makes it a voltage source
in series with a resistor). In more practical circuits, devices that act like
current sources are, for the most part, electronic circuits. These circuits
will allow the source to act like an ideal current source over its oper-
ating range but voltage-limit it when the load resistor becomes too large
(as in an open circuit).

Answer:

vo � b 32 V, t 6 0

10.667e�2t V,  t 7 0

i � b 16 A, t 6 0

16e�2t A,  t � 0
 ,  io � b 8 A, t 6 0

�5.333e�2t A,  t 7 0
,

voi, io, Practice Problem 7.5

Figure 7.22
For Practice Prob. 7.5.

Singularity Functions
Before going on with the second half of this chapter, we need to digress
and consider some mathematical concepts that will aid our under-
standing of transient analysis. A basic understanding of singularity
functions will help us make sense of the response of first-order circuits
to a sudden application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
ful in circuit analysis. They serve as good approximations to the
switching signals that arise in circuits with switching operations. They
are helpful in the neat, compact description of some circuit phenom-
ena, especially the step response of RC or RL circuits to be discussed
in the next sections. By definition,

7.4

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

t

2
i(t)

2
3− io(t)

1 H

4 Ω 2 Ω

3 Ω

24 A

it = 0

io

vo

+

−
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The unit step function u (t) is 0 for negative values of t and 1 for pos-
itive values of t.

The three most widely used singularity functions in circuit analy-
sis are the unit step, the unit impulse, and the unit ramp functions.

266 Chapter 7 First-Order Circuits

In mathematical terms,

(7.24)

The unit step function is undefined at where it changes abruptly
from 0 to 1. It is dimensionless, like other mathematical functions such
as sine and cosine. Figure 7.23 depicts the unit step function. If the
abrupt change occurs at (where ) instead of the unit
step function becomes

(7.25)

which is the same as saying that is delayed by seconds, as shown
in Fig. 7.24(a). To get Eq. (7.25) from Eq. (7.24), we simply replace
every t by If the change is at the unit step function
becomes

(7.26)

meaning that is advanced by seconds, as shown in Fig. 7.24(b).
We use the step function to represent an abrupt change in voltage

or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

(7.27)

may be expressed in terms of the unit step function as

(7.28)

If we let then is simply the step voltage A voltage
source of is shown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). It is evident in Fig. 7.25(b) that terminals a-b are short-
circuited ( ) for and that appears at the terminalsv � V0t 6 0v � 0

V0 u (t)
V0 u (t).v(t)t0 � 0,

v(t) � V0 
u (t � t0)

v(t) � b 0, t 6 t0
V0,  t 7 t0

t0u (t)

u (t � t0) � b 0,  t 6 �t0
1, t 7 �t0

t � �t0,t � t0.

t0u (t)

u (t � t0) � b 0,  t 6 t0
1, t 7 t0

t � 0,t0 7 0t � t0

t � 0,

u (t) � b 0, t 6 0

1,  t 7 0

Figure 7.25
(a) Voltage source of (b) its equivalent circuit.V0u(t),

Figure 7.23
The unit step function.

Figure 7.24
(a) The unit step function delayed by 
(b) the unit step advanced by t0.

t0,

Alternatively, we may derive
Eqs. (7.25) and (7.26) from Eq. (7.24)
by writing u [f (t )] 1, f (t ) 0,
where f (t ) may be t t0 or t t0.��

7�

0 t

1

u(t)

0 t

1

u(t − t0)

t0

(a)

0 t

u(t + t0)

−t0

(b)

1

+
−

(a)

V0u(t) +
−

(b)

V0

b

a

b

a
t = 0

=
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for Similarly, a current source of is shown in Fig. 7.26(a),
while its equivalent circuit is in Fig. 7.26(b). Notice that for 
there is an open circuit ( ), and that flows for t 7 0.i � I0i � 0

t 6 0,
I0 u (t)t 7 0.

7.4 Singularity Functions 267

Figure 7.26
(a) Current source of (b) its equivalent circuit.I0u (t),

The derivative of the unit step function is the unit impulse
function which we write as

(7.29)

The unit impulse function—also known as the delta function—is
shown in Fig. 7.27.

d(t) �
d

dt
 u (t) � c 0, t 6 0

Undefined,  t � 0

0, t 7 0

d(t),
u (t)

The unit impulse function (t ) is zero everywhere except at t 0,
where it is undefined.

�d

Impulsive currents and voltages occur in electric circuits as a result of
switching operations or impulsive sources. Although the unit impulse
function is not physically realizable (just like ideal sources, ideal
resistors, etc.), it is a very useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized as a very short duration pulse of unit area. This
may be expressed mathematically as

(7.30)

where denotes the time just before and is the time
just after For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, as in Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an
impulse function has an area of 10. Figure 7.28 shows the
impulse functions and 

To illustrate how the impulse function affects other functions, let
us evaluate the integral

(7.31)�
b

a
  
f (t)d (t � t0) dt

�4d (t � 3).5d (t � 2), 10d(t),
10d (t)

t � 0.
t � 0�t � 0t � 0�

�
0�

0�
 
d(t) dt � 1

Figure 7.27
The unit impulse function.

Figure 7.28
Three impulse functions.

(a)

I0u(t)

(b)

I0

b

a

b

a
t = 0 i

=

0 t

(∞)�(t)

5�(t + 2)

10�(t)

−4�(t − 3)

10 2 3 t−1−2
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268 Chapter 7 First-Order Circuits

Figure 7.29
The unit ramp function.

Figure 7.30
The unit ramp function: (a) delayed by 
(b) advanced by t0.

t0,

The unit ramp function is zero for negative values of t and has a unit
slope for positive values of t.

Figure 7.29 shows the unit ramp function. In general, a ramp is a func-
tion that changes at a constant rate.

The unit ramp function may be delayed or advanced as shown in
Fig. 7.30. For the delayed unit ramp function,

(7.36)

and for the advanced unit ramp function,

(7.37)

We should keep in mind that the three singularity functions
(impulse, step, and ramp) are related by differentiation as

(7.38)d(t) �
du (t)

dt
,  u (t) �

dr (t)

dt

r (t � t0) � b 0, t 
 �t0
t � t0,  t � �t0

r (t � t0) � b 0, t 
 t0
t � t0,  t � t0

0 t

1

r(t)

1

(a)

0 t−t0 + 1−t0

1

r(t + t0)

r (t − t0)

(b)

0 tt0 + 1t0

1

where Since except at the integrand
is zero except at Thus,

or

(7.32)

This shows that when a function is integrated with the impulse func-
tion, we obtain the value of the function at the point where the impulse
occurs. This is a highly useful property of the impulse function known
as the sampling or sifting property. The special case of Eq. (7.31) is
for Then Eq. (7.32) becomes

(7.33)

Integrating the unit step function results in the unit ramp func-
tion we write

(7.34)

or

(7.35)r (t) � b 0,  t 
 0

t, t � 0

r (t) � �
t

��
  
u (l) dl � tu (t)

r (t);
u (t)

�
0�

0�
 
f (t) d(t) dt � f (0)

t0 � 0.

�
b

a
  
f (t)d(t � t0) dt � f (t0)

 � f (t0) �
b

a
  
d(t � t0) dt � f (t0)

 �
b

a
  
f  (t)d(t � t0) dt � �

b

a
  
f  (t0)

 
d(t � t0) dt

t0.
t � t0,d(t � t0) � 0a 6 t0 6 b.
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or by integration as

(7.39)

Although there are many more singularity functions, we are only inter-
ested in these three (the impulse function, the unit step function, and
the ramp function) at this point.

u (t) � �
t

��
 
d(l) dl,  r (t) � �

t

��
 
u (l) dl

7.4 Singularity Functions 269

Express the voltage pulse in Fig. 7.31 in terms of the unit step. Cal-
culate its derivative and sketch it.

Solution:
The type of pulse in Fig. 7.31 is called the gate function. It may be
regarded as a step function that switches on at one value of t and
switches off at another value of t. The gate function shown in Fig. 7.31
switches on at and switches off at It consists of the
sum of two unit step functions as shown in Fig. 7.32(a). From the
figure, it is evident that

Taking the derivative of this gives

which is shown in Fig. 7.32(b). We can obtain Fig. 7.32(b) directly
from Fig. 7.31 by simply observing that there is a sudden increase by
10 V at leading to At there is a sudden
decrease by 10 V leading to �10 V d(t � 5).

t � 5 s,10d(t � 2).t � 2 s

dv
dt

� 10[d(t � 2) � d(t � 5)]

v(t) � 10u (t � 2) � 10u (t � 5) � 10[u (t � 2) � u (t � 5)]

t � 5 s.t � 2 s

Example 7.6

Gate functions are used along
with switches to pass or block
another signal.

Figure 7.31
For Example 7.6.

Figure 7.32
(a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.

0 t

10

v (t)

3 4 51 2

0 t21

10

10u(t − 2) −10u(t − 5)

(a)

1 2
0

3 4 5 t

10

−10

+

(b)

10

3 4 5 t1 2
0

−10

dv
dt
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270 Chapter 7 First-Order Circuits

Express the current pulse in Fig. 7.33 in terms of the unit step. Find
its integral and sketch it.

Answer:
See Fig. 7.34.r (t � 4)].
10[u (t) � 2u (t � 2) � u (t � 4)], 10[r (t) � 2r (t � 2) �

Practice Problem 7.6

Figure 7.33
For Practice Prob. 7.6.

Figure 7.34
Integral of in Fig. 7.33.i(t)

Express the sawtooth function shown in Fig. 7.35 in terms of singu-
larity functions.

Solution:
There are three ways of solving this problem. The first method is by
mere observation of the given function, while the other methods
involve some graphical manipulations of the function.

■ METHOD 1 By looking at the sketch of in Fig. 7.35, it is
not hard to notice that the given function is a combination of sin-
gularity functions. So we let

(7.7.1)

The function is the ramp function of slope 5, shown in Fig. 7.36(a);
that is,

(7.7.2)v1(t) � 5r (t)

v1(t)

v(t) � v1(t) � v2(t) � p

v(t)
v(t)

Example 7.7

Figure 7.35
For Example 7.7.

Figure 7.36
Partial decomposition of in Fig. 7.35.v(t)

0
t

10

−10

i(t)

2 4

20 4 t

20

i dt∫

0 t

10

v(t)

2

0 t

10

v1(t)

2 0 t

10

v1 + v2

2
0

t

−10

v2(t)

2
+

(a) (b) (c)

=
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Since goes to infinity, we need another function at in order to
get We let this function be which is a ramp function of slope 
as shown in Fig. 7.36(b); that is,

(7.7.3)

Adding and gives us the signal in Fig. 7.36(c). Obviously, this is
not the same as in Fig. 7.35. But the difference is simply a constant
10 units for By adding a third signal where

(7.7.4)

we get as shown in Fig. 7.37. Substituting Eqs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) � 5r (t) � 5r (t � 2) � 10u (t � 2)

v(t),

v3 � �10u (t � 2)

v3,t 7 2 s.
v(t)
v2v1

v2(t) � �5r (t � 2)

�5,v2,v(t).
t � 2 sv1(t)

7.4 Singularity Functions 271

Figure 7.37
Complete decomposition of in Fig. 7.35.v(t)

■ METHOD 2 A close observation of Fig. 7.35 reveals that is
a multiplication of two functions: a ramp function and a gate function.
Thus,

the same as before.

■ METHOD 3 This method is similar to Method 2. We observe
from Fig. 7.35 that is a multiplication of a ramp function and a
unit step function, as shown in Fig. 7.38. Thus,

If we replace by then we can replace by
Hence,

which can be simplified as in Method 2 to get the same result.

v(t) � 5r (t)[1 � u (t � 2)]

1 � u (t � 2).
u (�t � 2)1 � u (t),u (�t)

v(t) � 5r (t)u (�t � 2)

v(t)

 � 5r (t) � 5r (t � 2) � 10u (t � 2)

 � 5r (t) � 5(t � 2)u (t � 2) � 10u (t � 2)

 � 5r (t) � 5(t � 2 � 2)u (t � 2)

 � 5tu (t) � 5tu (t � 2)

 v(t) � 5t[u (t) � u (t � 2)]

v(t)

0 t

10

v1 + v2

2

+

(c)(a)

=
0 t

10

v(t)

2
0

t

−10

v3(t)

2

(b)
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Refer to Fig. 7.39. Express in terms of singularity functions.

Answer: 2u (t) � 2r (t) � 4r (t � 2) � 2r (t � 3) A.

i(t)Practice Problem 7.7

Figure 7.38
Decomposition of in Fig. 7.35.v(t)

Figure 7.39
For Practice Prob. 7.7.

Given the signal

express in terms of step and ramp functions.

Solution:
The signal may be regarded as the sum of three functions specified
within the three intervals and 

For may be regarded as 3 multiplied by where
for and 0 for Within the time interval
the function may be considered as multiplied by a

gated function For the function may be
regarded as multiplied by the unit step function Thus,

One may avoid the trouble of using by replacing it with
Then

Alternatively, we may plot and apply Method 1 from Example 7.7.g(t)

g(t) � 3[1 � u (t)] � 2u (t) � 2r (t � 1) � 3 � 5u (t) � 2r (t � 1)

1 � u (t).
u (�t)

 � 3u (�t) � 2u (t) � 2r (t � 1)

 � 3u (�t) � 2u (t) � 2(t � 1)u (t � 1)

 � 3u (�t) � 2u (t) � (2t � 4 � 2)u (t � 1)

 g(t) � 3u (�t) � 2[u (t) � u (t � 1)] � (2t � 4)u (t � 1)

u (t � 1).2t � 4
t 7 1,[u (t) � u (t � 1)].

�20 6 t 6 1,
t 7 0.t 6 0u (�t) � 1

u (�t),t 6 0, g(t)
t 7 1.t 6 0, 0 6 t 6 1,

g(t)

g(t)

g(t) � c 3,  t 6 0

�2,  0 6 t 6 1

2t � 4,  t 7 1

Example 7.8

0 t

10

5r(t)

2

×
0 t

u(−t + 2)

2

1

i(t) (A)

1
0

2 3 t (s)

2

−2
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If

express in terms of the singularity functions.

Answer: �4u (t) �  2u (t �2) �  3r (t �2) �  10u(t �6) �  3r(t � 6).

h (t)

h (t) � d0,   t 6 0

�4,   0 6 t 6 2

3t � 8,  2 6 t 6 6

0,   t 7 6

Practice Problem 7.8

Example 7.9Evaluate the following integrals involving the impulse function:

Solution:
For the first integral, we apply the sifting property in Eq. (7.32).

Similarly, for the second integral,

 � e�1 cos 1 � e1 sin (�1) � 0.1988 � 2.2873 � �2.0885

 � e�t cos t 0 t�1 � e�t sin t 0 t��1

�
�

��
 
[d(t � 1)e�t cos t � d(t � 1)e�t sin t] dt

�
10

0
 
(t2 � 4t � 2)d(t � 2) dt � (t2 � 4t � 2) 0 t�2 � 4 � 8 � 2 � 10

�
�

��
 
[d (t � 1)e�t cos t � d(t � 1)e�t sin t]dt

�
10

0
 
(t2 � 4t � 2) d (t � 2) dt

Evaluate the following integrals:

Answer: 28, �1.

�
�

��
 
(t3 � 5t2 � 10)d(t � 3) dt,  �

10

0
 
d(t � p) cos 3t dt

Practice Problem 7.9

Step Response of an RC Circuit
When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response
is known as a step response.

7.5

The step response of a circuit is its behavior when the excitation is the
step function, which may be a voltage or a current source.
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The step response is the response of the circuit due to a sudden appli-
cation of a dc voltage or current source.

Consider the RC circuit in Fig. 7.40(a) which can be replaced by
the circuit in Fig. 7.40(b), where is a constant dc voltage source.
Again, we select the capacitor voltage as the circuit response to be
determined. We assume an initial voltage on the capacitor, although
this is not necessary for the step response. Since the voltage of a capac-
itor cannot change instantaneously,

(7.40)

where is the voltage across the capacitor just before switching and
is its voltage immediately after switching. Applying KCL, we have

or

(7.41)

where v is the voltage across the capacitor. For Eq. (7.41) becomes

(7.42)

Rearranging terms gives

or

(7.43)

Integrating both sides and introducing the initial conditions,

or

(7.44)

Taking the exponential of both sides

or
(7.45)

Thus,

(7.46)v(t) � bV0,   t 6 0

Vs � (V0 � Vs)e
�t/t,  t 7 0

v(t) � Vs � (V0 � Vs)e
�t�t,  t 7 0

 v � Vs � (V0 � Vs)e
�t�t

 
v � Vs

V0 � Vs
� e�t�t,  t � RC

ln 

v � Vs

V0 � Vs
� � 

t

RC

ln(v(t) � Vs) � ln(V0 � Vs) � � 

t

RC
� 0

ln(v � Vs) 2v(t)

V0

� � 

t

RC
2 t
0

dv
v � Vs

� � 

dt

RC

dv
dt

� � 

v � Vs

RC

dv
dt

�
v

RC
�

Vs

RC

t 7 0,

dv
dt

�
v

RC
�

Vs

RC
 u (t)

C  

dv
dt

�
v � Vsu (t)

R
� 0

v(0�)
v(0�)

v(0�) � v(0�) � V0

V0

Vs

274 Chapter 7 First-Order Circuits

Figure 7.40
An RC circuit with voltage step input.

R

C

t = 0

+
−Vs

+

−
v

(a)

Vsu(t)

R

C+
−

+

−
v

(b)
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This is known as the complete response (or total response) of the RC
circuit to a sudden application of a dc voltage source, assuming the
capacitor is initially charged. The reason for the term “complete” will
become evident a little later. Assuming that a plot of is
shown in Fig. 7.41.

If we assume that the capacitor is uncharged initially, we set
in Eq. (7.46) so that

(7.47)

which can be written alternatively as

(7.48)

This is the complete step response of the RC circuit when the capaci-
tor is initially uncharged. The current through the capacitor is obtained
from Eq. (7.47) using We get

or

(7.49)

Figure 7.42 shows the plots of capacitor voltage and capacitor cur-
rent 

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let us reexamine Eq. (7.45), which is
more general than Eq. (7.48). It is evident that has two components.
Classically there are two ways of decomposing this into two compo-
nents. The first is to break it into a “natural response and a forced
response’’ and the second is to break it into a “transient response and
a steady-state response.’’ Starting with the natural response and forced
response, we write the total or complete response as

or
(7.50)

where

and

We are familiar with the natural response of the circuit, as discussed
in Section 7.2. is known as the forced response because it is pro-
duced by the circuit when an external “force’’ (a voltage source in this
case) is applied. It represents what the circuit is forced to do by the
input excitation. The natural response eventually dies out along with
the transient component of the forced response, leaving only the steady-
state component of the forced response.

vf

vn

vf � Vs(1 � e�t�t)

vn � Voe�t�t

v � vn � vf

Complete response � natural response
stored energy

� forced response
independent source

v(t)

i(t).
v(t)

i (t) �
Vs

R
 e�t�tu (t)

i(t) � C  

dv
dt

�
C
t

 Vse
�t�t,  t � RC,  t 7 0

i(t) � C dv�dt.

v(t) � Vs(1 � e�t�t)u(t)

v(t) � b0, t 6 0

Vs(1 � e�t�t),  t 7 0

V0 � 0

v(t)Vs 7 V0,

7.5 Step Response of an RC Circuit 275

Figure 7.41
Response of an RC circuit with initially
charged capacitor.

Figure 7.42
Step response of an RC circuit with
initially uncharged capacitor: (a) voltage
response, (b) current response.

0 t

Vs

v(t)

V0

0 t

Vs

v(t)

(a)

0 t

i(t)

Vs
R

(b)
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Another way of looking at the complete response is to break into
two components—one temporary and the other permanent, i.e.,

or

(7.51)

where

(7.52a)

and

(7.52b)

The transient response is temporary; it is the portion of the com-
plete response that decays to zero as time approaches infinity. Thus,

vt

vss � Vs

vt � (Vo � Vs)e
�t�t

v � vt � vss

Complete response � transient response
temporary part

� steady-state response
permanent part

276 Chapter 7 First-Order Circuits

The transient response is the circuit’s temporary response that will die
out with time.

The steady-state response is the portion of the complete response
that remains after the transient reponse has died out. Thus,

vss

The first decomposition of the complete response is in terms of the
source of the responses, while the second decomposition is in terms of
the permanency of the responses. Under certain conditions, the natural
response and transient response are the same. The same can be said
about the forced response and steady-state response.

Whichever way we look at it, the complete response in Eq. (7.45)
may be written as

(7.53)

where is the initial voltage at and is the final or steady-
state value. Thus, to find the step response of an RC circuit requires
three things:

v(�)t � 0�v(0)

v(t) � v(�) � [v(0) � v(�)]e�t�t

The steady-state response is the behavior of the circuit a long time
after an external excitation is applied.

1. The initial capacitor voltage 
2. The final capacitor voltage 
3. The time constant t.

v(�).
v(0).

We obtain item 1 from the given circuit for and items 2 and 3
from the circuit for Once these items are determined, we obtaint 7 0.

t 6 0

This is the same as saying that the com-
plete response is the sum of the tran-
sient response and the steady-state
response.

Once we know x (0), x( ), and ,
almost all the circuit problems in this
chapter can be solved using the
formula

x(t) � x(�) � 3x(0) � x(�) 4e�t�t

t�
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the response using Eq. (7.53). This technique equally applies to RL cir-
cuits, as we shall see in the next section.

Note that if the switch changes position at time instead of
at there is a time delay in the response so that Eq. (7.53)
becomes

(7.54)

where is the initial value at Keep in mind that Eq. (7.53)
or (7.54) applies only to step responses, that is, when the input exci-
tation is constant.

t � t0
�.v(t0)

v(t) � v(�) � [v(t0) � v(�)]e�(t�t0)�t

t � 0,
t � t0

7.5 Step Response of an RC Circuit 277

The switch in Fig. 7.43 has been in position A for a long time. At 
the switch moves to B. Determine for and calculate its value
at and 4 s.t � 1 s

t 7 0v(t)
t � 0, Example 7.10

Figure 7.43
For Example 7.10.

Solution:
For the switch is at position A. The capacitor acts like an open
circuit to dc, but v is the same as the voltage across the resistor.
Hence, the voltage across the capacitor just before is obtained
by voltage division as

Using the fact that the capacitor voltage cannot change instantaneously,

For the switch is in position B. The Thevenin resistance
connected to the capacitor is and the time constant is

Since the capacitor acts like an open circuit to dc at steady state,
Thus,

At 

At 

v(4) � 30 � 15e�2 � 27.97 V

t � 4,

v(1) � 30 � 15e�0.5 � 20.9 V

t � 1,

 � 30 � (15 � 30)e�t�2 � (30 � 15e�0.5t
 ) V

 v(t) � v(�) � [v(0) � v(�)]e�t�t

v(�) � 30 V.

t � RThC � 4 � 103 � 0.5 � 10�3 � 2 s

RTh � 4 k�,
t 7 0,

v(0) � v(0�) � v(0�) � 15 V

v(0�) �
5

5 � 3
 (24) � 15 V

t � 0
5-k�

t 6 0,

3 kΩ

24 V 30 Vv5 kΩ 0.5 mF

4 kΩ

+
−

+
−

t = 0

A B

+

−
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Solution:
The resistor current i can be discontinuous at while the capacitor
voltage cannot. Hence, it is always better to find and then obtain i
from

By definition of the unit step function,

For the switch is closed and so that the 
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor
acts like an open circuit. Hence, the circuit becomes that shown in
Fig. 7.46(a) for From this circuit we obtain

Since the capacitor voltage cannot change instantaneously,

For the switch is opened and the 10-V voltage source is
disconnected from the circuit. The voltage source is now operative,
so the circuit becomes that shown in Fig. 7.46(b). After a long time, the
circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain by using voltage division, writing

v(�) �
20

20 � 10
 (30) � 20 V

v(�)

30u(t)
t 7 0,

v(0) � v(0�) � 10 V

v � 10 V,  i � � 

v
10

� �1 A

t 6 0.

v.

30u(t)30u(t) � 0,t 6 0,

30u(t) � b 0,  t 6 0

30,  t 7 0

v.
vv

t � 0,

278 Chapter 7 First-Order Circuits

Find for in the circuit of Fig. 7.44. Assume the switch has
been open for a long time and is closed at Calculate at

Answer: (9.375 � 5.625e�2t) V for all t 7 0, 7.63 V.

t � 0.5.
v(t)t � 0.

t 7 0v(t)Practice Problem 7.10

Figure 7.44
For Practice Prob. 7.10.

In Fig. 7.45, the switch has been closed for a long time and is opened
at Find i and for all time.vt � 0.

Example 7.11

Figure 7.45
For Example 7.11.

Figure 7.46
Solution of Example 7.11: (a) for 
(b) for t 7 0.

t 6 0,

2 Ω

15 V 7.5 Vv

6 Ω

+
−

+
−

t = 0

  F1
3

+

−

10 Ω

30u(t) V 10 Vv20 Ω+
−

+
−

i t = 0

  F1
4

+

−

10 Ω

10 V
+

−
v20 Ω +

−

i

(a)

10 Ω

30 V
+

−
v20 Ω+

−

i

(b)

  F1
4
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The Thevenin resistance at the capacitor terminals is

and the time constant is

Thus,

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents
through the resistor and the capacitor; that is,

Notice from Fig. 7.46(b) that is satisfied, as expected.
Hence,

Notice that the capacitor voltage is continuous while the resistor current
is not.

 i � b�1 A,   t 6 0

(1 � e�0.6t) A,    t 7 0

 v � b10 V,   t 6 0

(20 � 10e�0.6t) V,   t � 0

v � 10i � 30

 � 1 � 0.5e�0.6t � 0.25(�0.6)(�10)e�0.6t � (1 � e�0.6t) A

 i �
v
20

� C  

dv
dt

20-�

 � 20 � (10 � 20)e�(3�5)t � (20 � 10e�0.6t) V

 v(t) � v(�) � [v(0) � v(�)]e�t�t

t � RTh C �
20

3
�

1

4
�

5

3
 s

RTh � 10 � 20 �
10 � 20

30
�

20

3
 �

7.5 Step Response of an RC Circuit 279

Practice Problem 7.11The switch in Fig. 7.47 is closed at Find and for all time.
Note that for and 0 for Also, u(�t) � 1 � u(t).t 7 0.t 6 0u(�t) � 1

v(t)i(t)t � 0.

Figure 7.47
For Practice Prob. 7.11.

Answer:

v � b20 V,  t 6 0

10(1 � e�1.5t) V,  t 7 0

i (t) � b0,  t 6 0

�2(1 � e�1.5t) A,  t 7 0,

5 Ω

+
−20u(−t) V 10 Ω0.2 F 3 Av

i t = 0

+

−
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Step Response of an RL Circuit
Consider the RL circuit in Fig. 7.48(a), which may be replaced by the
circuit in Fig. 7.48(b). Again, our goal is to find the inductor current i
as the circuit response. Rather than apply Kirchhoff’s laws, we will use
the simple technique in Eqs. (7.50) through (7.53). Let the response be
the sum of the transient response and the steady-state response,

(7.55)

We know that the transient response is always a decaying exponential,
that is,

(7.56)

where A is a constant to be determined.
The steady-state response is the value of the current a long time after

the switch in Fig. 7.48(a) is closed. We know that the transient response
essentially dies out after five time constants. At that time, the inductor
becomes a short circuit, and the voltage across it is zero. The entire
source voltage appears across R. Thus, the steady-state response is

(7.57)

Substituting Eqs. (7.56) and (7.57) into Eq. (7.55) gives

(7.58)

We now determine the constant A from the initial value of i. Let be
the initial current through the inductor, which may come from a source
other than Since the current through the inductor cannot change
instantaneously,

(7.59)

Thus, at Eq. (7.58) becomes

From this, we obtain A as 

Substituting for A in Eq. (7.58), we get

(7.60)

This is the complete response of the RL circuit. It is illustrated in
Fig. 7.49. The response in Eq. (7.60) may be written as

(7.61)i(t) � i(�) � [i(0) � i(�)]e�t�t

i(t) �
Vs

R
� aI0 �

Vs

R
be�t�t

A � I0 �
Vs

R

I0 � A �
Vs

R

t � 0,

i(0�) � i(0�) � I0

Vs.

I0

i � Ae�t�t �
Vs

R

iss �
Vs

R

Vs

it � Ae�t�t,  t �
L

R

i � it � iss

7.6

280 Chapter 7 First-Order Circuits

Figure 7.48
An RL circuit with a step input voltage.

Figure 7.49
Total response of the RL circuit with 
initial inductor current I0.

R

Vs

t = 0
i

+
−

+

−
v (t)L

(a)

i

R

Vsu(t) +
−

+

−
v (t)L

(b)

0 t

i(t)

Vs
R

I0
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where and are the initial and final values of i, respectively.
Thus, to find the step response of an RL circuit requires three things:

i(�)i(0)

7.6 Step Response of an RL Circuit 281

1. The initial inductor current at 
2. The final inductor current 
3. The time constant t.

i(�).
t � 0.i(0)

We obtain item 1 from the given circuit for and items 2 and 3
from the circuit for Once these items are determined, we obtain
the response using Eq. (7.61). Keep in mind that this technique applies
only for step responses.

Again, if the switching takes place at time instead of 
Eq. (7.61) becomes

(7.62)

If then

(7.63a)

or

(7.63b)

This is the step response of the RL circuit with no initial inductor cur-
rent. The voltage across the inductor is obtained from Eq. (7.63) using

We get

or

(7.64)

Figure 7.50 shows the step responses in Eqs. (7.63) and (7.64).

v(t) � Vse
�t�tu(t)

v(t) � L 

di

dt
� Vs 

L

tR
 e�t�t,  t �

L

R
,  t 7 0

v � L di�dt.

i(t) �
Vs

R
 (1 � e�t�t)u(t)

i(t) � c0,   t 6 0
Vs

R
 (1 � e�t�t),  t 7 0

I0 � 0,

i(t) � i(�) � [i(t0) � i(�)]e�(t�t0)�t

t � 0,t � t0

t 7 0.
t 6 0

Figure 7.50
Step responses of an RL circuit with no initial inductor
current: (a) current response, (b) voltage response.

0 t

v(t)

0 t

i(t)

Vs
R

(a) (b)

Vs
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Find in the circuit of Fig. 7.51 for Assume that the switch
has been closed for a long time.

Solution:
When the resistor is short-circuited, and the inductor acts
like a short circuit. The current through the inductor at (i.e., just
before ) is

Since the inductor current cannot change instantaneously,

When the switch is open. The and resistors are in series,
so that

The Thevenin resistance across the inductor terminals is

For the time constant,

Thus,

Check: In Fig. 7.51, for KVL must be satisfied; that is,

This confirms the result.

 5i � L 

di

dt
� [10 � 15e�15t] � c 1

3
 (3)(�15)e�15t d � 10

 10 � 5i � L 

di

dt

t 7 0,

 � 2 � (5 � 2)e�15t � 2 � 3e�15t A,  t 7 0

 i(t) � i(�) � [i(0) � i(�)]e�t�t

t �
L

RTh
�

1
3

5
�

1

15
 s

RTh � 2 � 3 � 5 �

i(�) �
10

2 � 3
� 2 A

3-�2-�t 7 0,

i(0) � i(0�) � i(0�) � 5 A

i(0�) �
10

2
� 5 A

t � 0
t � 0�

3-�t 6 0,

t 7 0.i(t)Example 7.12

Figure 7.51
For Example 7.12.

The switch in Fig. 7.52 has been closed for a long time. It opens at
Find for 

Answer: t 7 0.(4 � 2e�10t) A for all

t 7 0.i(t)t � 0.
Practice Problem 7.12

Figure 7.52
For Practice Prob. 7.12.

2 Ω 3 Ω

+
−10 V

i

t = 0

  H1
3

1.5 H

10 Ω5 Ω 6 At = 0

i
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7.6 Step Response of an RL Circuit 283

At switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later.
Find for Calculate i for and t � 5 s.t � 2 st 7 0.i(t)

t � 0, Example 7.13

Figure 7.53
For Example 7.13.

Solution:
We need to consider the three time intervals and

separately. For switches and are open so that 
Since the inductor current cannot change instantly,

For is closed so that the and resistors are
in series. (Remember, at this time, is still open.) Hence, assuming
for now that is closed forever,

Thus,

For is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor
current because the current cannot change abruptly. Thus, the initial
current is

To find let be the voltage at node P in Fig. 7.53. Using KCL,

The Thevenin resistance at the inductor terminals is

and

t �
L

RTh
�

5
22
3

�
15

22
 s

RTh � 4 � 2 � 6 �
4 � 2

6
� 6 �

22

3
 �

 i(�) �
v
6

�
30

11
� 2.727 A

 
40 � v

4
�

10 � v
2

�
v
6
  1  v �

180

11
 V

vi(�),

i(4) � i(4�) � 4(1 � e�8) � 4 A

t � 4, S2

 � 4 � (0 � 4)e�2t � 4(1 � e�2t) A,  0 
 t 
 4

 i(t) � i(�) � [i(0) � i(�)]e�t�t

t �
L

RTh
�

5

10
�

1

2
 s

i(�) �
40

4 � 6
� 4 A,  RTh � 4 � 6 � 10 �

S1

S2

6-�4-�0 
 t 
 4, S1

i(0�) � i(0) � i(0�) � 0

i � 0.S2S1t 6 0,t � 4
t 
 0, 0 
 t 
 4,

4 Ω 6 Ω

+
−

+
−

40 V

10 V

2 Ω 5 H

i

t = 0

t = 4

S1

S2

P
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Hence,

We need in the exponential because of the time delay. Thus,

Putting all this together,

At 

At 

i(5) � 2.727 � 1.273e�1.4667 � 3.02 A

t � 5,
i(2) � 4(1 � e�4) � 3.93 A

t � 2,

i(t) � c0,  t 
 0

4(1 � e�2t),  0 
 t 
 4

2.727 � 1.273e�1.4667(t�4),  t � 4

 � 2.727 � 1.273e�1.4667(t�4),  t � 4

 i(t) � 2.727 � (4 � 2.727)e�(t�4)�t,   t �
15

22

(t � 4)

i(t) � i(�) � [i(4) � i(�)]e�(t�4)�t,  t � 4
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Switch in Fig. 7.54 is closed at and switch is closed at
Calculate for all t. Find and 

Answer:

i(3) � 3.589 A.i(1) � 1.9997 A,

i(t) � c0,  t 6 0

2(1 � e�9t),  0 6 t 6 2

3.6 � 1.6e�5(t�2),  t 7 2

i(3).i(1)i(t)t � 2 s.
S2t � 0,S1Practice Problem 7.13

Figure 7.54
For Practice Prob. 7.13.

First-Order Op Amp Circuits
An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are
examples of first-order op amp circuits. Again, for practical reasons,
inductors are hardly ever used in op amp circuits; therefore, the op amp
circuits we consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp cir-
cuit to one that we can easily handle. The following three examples
illustrate the concepts. The first one deals with a source-free op amp
circuit, while the other two involve step responses. The three examples
have been carefully selected to cover all possible RC types of op amp
circuits, depending on the location of the capacitor with respect to the
op amp; that is, the capacitor can be located in the input, the output,
or the feedback loop.

7.7

10 Ω

15 Ω

20 Ω

6 A 5 H

t = 0

S1

t = 2

S2

i(t)

ale80571_ch07_253-312.qxd  11/30/11  1:10 PM  Page 284



Solution:
This problem can be solved in two ways:

■ METHOD 1 Consider the circuit in Fig. 7.55(a). Let us derive the
appropriate differential equation using nodal analysis. If is the volt-
age at node 1, at that node, KCL gives

(7.14.1)

Since nodes 2 and 3 must be at the same potential, the potential at node
2 is zero. Thus, or and Eq. (7.14.1) becomes

(7.14.2)

This is similar to Eq. (7.4b) so that the solution is obtained the same
way as in Section 7.2, i.e.,

(7.14.3)

where is the initial voltage across the capacitor. But 
and Hence,

(7.14.4)

Applying KCL at node 2 gives

or

(7.14.5)

Now we can find as

vo � �80 � 103 � 5 � 10�6(�30e�10t) � 12e�10t V,  t 7 0

v0

vo � �Rf C  

dv
dt

C  

dv
dt

�
0 � vo

Rf

v(t) � 3e�10t

t � 20 � 103 � 5 � 10�6 � 0.1.
v(0) � 3 � V0V0

v(t) � V0e�t�t,  t � R1C

dv
dt

�
v

CR1
� 0

v1 � vv1 � 0 � v

0 � v1

R1
� C  

dv
dt

v1
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Example 7.14For the op amp circuit in Fig. 7.55(a), find for given that
Let and C � 5 mF.Rf � 80 k�, R1 � 20 k�,v(0) � 3 V.

t 7 0,vo

Figure 7.55
For Example 7.14.

vo

v +

−

R1

Rf

(a)

+ − 3

21 1

vo (0
+)

3 V +

−

(b)

+ −
3

2

vo

v +

−

(c)

80 kΩ80 kΩ

20 kΩ20 kΩ

1 AC

−+

C

+
−

+
−

+
−
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■ METHOD 2 Let us apply the short-cut method from Eq. (7.53).
We need to find and Since we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain

or Since the circuit is source free, To find
we need the equivalent resistance across the capacitor terminals.

If we remove the capacitor and replace it by a 1-A current source, we
have the circuit shown in Fig. 7.55(c). Applying KVL to the input loop
yields

Then

and Thus,

as before.

 � 0 � (12 � 0)e�10t � 12e�10t V,  t 7 0

 vo(t) � vo(�) � [vo(0) � vo(�)]e�t�t

t � ReqC � 0.1.

Req �
v
1

� 20 k�

20,000(1) � v � 0  1  v � 20 kV

Reqt,
v(�) � 0 V.vo(0�) � 12 V.

3

20,000
�

0 � vo(0�)

80,000
� 0

v(0�) � v(0�) � 3 V,t.vo(0�), vo(�),
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For the op amp circuit in Fig. 7.56, find for if 
Assume that and 

Answer: �4e�2t V, t 7 0 .

C � 10 mF.R1 � 10 k�,Rf � 50 k�,
v(0) � 4 V.t 7 0voPractice Problem 7.14

Figure 7.56
For Practice Prob. 7.14.

Determine and in the circuit of Fig. 7.57.

Solution:
This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eq. (7.53) and write

(7.15.1)v(t) � v(�) � [v(0) � v(�)]e�t�t,  t 7 0

vo(t)v(t)Example 7.15

vo

+

−

R1

Rf

v+ −

C

+
−
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where we need only find the time constant the initial value and
the final value Notice that this applies strictly to the capacitor
voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute
an RC circuit, with

(7.15.2)

For the switch is open and there is no voltage across the
capacitor. Hence, For we obtain the voltage at node
1 by voltage division as

(7.15.3)

Since there is no storage element in the input loop, remains constant
for all t. At steady state, the capacitor acts like an open circuit so that
the op amp circuit is a noninverting amplifier. Thus,

(7.15.4)

But

(7.15.5)

so that

Substituting and into Eq. (7.15.1) gives

(7.15.6)

From Eqs. (7.15.3), (7.15.5), and (7.15.6), we obtain

(7.15.7)vo(t) � v1(t) � v(t) � 7 � 5e�20t V,  t 7 0

v(t) � �5 � [0 � (�5)]e�20t � 5(e�20t � 1) V,  t 7 0

v(�)t, v(0),

v(�) � 2 � 7 � �5 V

v1 � vo � v

vo(�) � a1 �
50

20
b v1 � 3.5 � 2 � 7 V

v1

v1 �
20

20 � 10
 3 � 2 V

t 7 0,v(0) � 0.
t 6 0,

t � RC � 50 � 103 � 10�6 � 0.05

v(�).
v(0),t,

7.7 First-Order Op Amp Circuits 287

Figure 7.57
For Example 7.15.

Figure 7.58
For Practice Prob. 7.15.

Find and in the op amp circuit of Fig. 7.58.

Answer: (Note, the voltage across the capacitor and the output voltage
must be both equal to zero, for since the input was zero for all

) 40 (e�10t � 1) u(t) mV.40(1 � e�10t) u(t) mV,t 6 0.
t 6 0,

vo(t)v(t) Practice Problem 7.15

vo

v1

+

−

3 V

v+ −

1 �F

50 kΩ

20 kΩ
20 kΩ+

−

t = 0
10 kΩ

+
−

vo

+

−

4 mV

v+ −

1 �F

100 kΩ

+
−

t = 0
10 kΩ

+
−
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To obtain consider the circuit in Fig. 7.60(b), where is the
output resistance of the op amp. Since we are assuming an ideal op amp,

and

Substituting the given numerical values,

The Thevenin equivalent circuit is shown in Fig. 7.61, which is similar
to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,

where Thus, the step response
for is

vo(t) � 2.5(e�100t � 1)u(t) V
t 7 0
t � RThC � 5 � 103 � 2 � 10�6 � 0.01.

vo(t) � �2.5(1 � e�t�t)u(t)

RTh �
R2R3

R2 � R3
� 5 k�

VTh � � 

R3

R2 � R3
 
Rf

R1
 vi � � 

10

20
 
50

20
 2u(t) � �2.5u(t)

RTh � R2 � R3 �
R2R3

R2 � R3

Ro � 0,

RoRTh,
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Example 7.16 Find the step response for in the op amp circuit of Fig. 7.59.
Let 

Solution:
Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor is located in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivalent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin
equivalent at its terminals. To obtain consider the circuit in
Fig. 7.60(a). Since the circuit is an inverting amplifier,

By voltage division,

VTh �
R3

R2 � R3
 Vab � � 

R3

R2 � R3
 
Rf

R1
 vi

Vab � � 

Rf

R1
 vi

VTh,

2 mF.
R2 � R3 � 10 k�, C �Rf � 50 k�,R1 � 20 k�,vi � 2u (t) V,

t 7 0vo(t)

Figure 7.59
For Example 7.16.

Figure 7.60
Obtaining and across the capacitor in Fig. 7.59.RThVTh

Figure 7.61
Thevenin equivalent circuit of the circuit
in Fig. 7.59.

vi vo
+
− C

+

−

R1

Rf

R2

R3

+
−

vi
+
−

R1

Rf

R2

R3

+

−

Vab VTh

+

−

a

b

(a) (b)

RThRo

R2

R3

+
−

5 kΩ

+
−−2.5u(t) 2 �F
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Transient Analysis with PSpice
As we discussed in Section 7.5, the transient response is the temporary
response of the circuit that soon disappears. PSpice can be used to
obtain the transient response of a circuit with storage elements. Sec-
tion D.4 in Appendix D provides a review of transient analysis using
PSpice for Windows. It is recommended that you read Section D.4
before continuing with this section.

If necessary, dc PSpice analysis is first carried out to determine the
initial conditions. Then the initial conditions are used in the transient
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, all capacitors should be
open-circuited while all inductors should be short-circuited.

7.8

7.8 Transient Analysis with PSpice 289

Practice Problem 7.16Obtain the step response for the circuit in Fig. 7.62. Let

Answer: 13.5(1 � e�50t)u(t) V.

C � 2 mF.R2 � R3 � 10 k�,Rf � 40 k�,R1 � 20 k�,
vi � 4.5u(t) V,vo(t)

Figure 7.62
For Practice Prob. 7.16.

Example 7.17Use PSpice to find the response for in the circuit of Fig. 7.63.

Solution:
Solving this problem by hand gives 

so that

To use PSpice, we first draw the schematic as shown in Fig. 7.64.
We recall from Appendix D that the part name for a closed switch is
Sw_tclose. We do not need to specify the initial condition of the
inductor because PSpice will determine that from the circuit. By
selecting Analysis/Setup/Transient, we set Print Step to 25 ms and
Final Step to After saving the circuit, we simulate by
selecting Analysis/Simulate. In the PSpice A/D window, we select
Trace/Add and display –I(L1) as the current through the inductor.
Figure 7.65 shows the plot of which agrees with that obtained by
hand calculation.

i(t),

5t � 2.5 s.

i(t) � i(�) � 3 i(0) � i(�) 4e�t�t � 2(1 � e�2t),  t 7 0

t � 3�6 � 0.5 s,
RTh � 6,i(0) � 0, i(�) � 2 A,

t 7 0 i(t)

PSpice uses “transient” to mean “func-
tion of time.” Therefore, the transient
response in PSpice may not actually
die out as expected.

Figure 7.63
For Example 7.17.

Figure 7.64
The schematic of the circuit in Fig. 7.63.

1.5 A

0.5 A

2.0 A

1.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s

 -I(L1)

Time

Figure 7.65
For Example 7.17; the response of the 
circuit in Fig. 7.63.

Rf

+
−

R1

R2

R3

vovi

+

−
C

+
−

4 Ω

2 Ω6 A 3 H

t = 0
i(t)

R2

26 A 3 H

IDC

R1 L1

tClose = 0
1 2

U1 4

0
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Note that the negative sign on I(L1) is needed because the current
enters through the upper terminal of the inductor, which happens to be
the negative terminal after one counterclockwise rotation. A way to avoid
the negative sign is to ensure that current enters pin 1 of the inductor.
To obtain this desired direction of positive current flow, the initially
horizontal inductor symbol should be rotated counterclockwise 
and placed in the desired location.

270�

290 Chapter 7 First-Order Circuits

For the circuit in Fig. 7.66, use Pspice to find for 

Answer: The response is similar in shape
to that in Fig. 7.65.

t 7 0.v(t) � 8(1 � e�t) V,

t 7 0.v(t)Practice Problem 7.17

3 Ω

+
−12 V 6 Ω 0.5 F

+

−
v (t)

t = 0

Figure 7.66
For Practice Prob. 7.17.

Example 7.18

12 Ω

+
−30 V 3 Ω6 Ω6 Ω

0.1 F

4 A

+ −t = 0 t = 0

(a)

v (t)

6 Ω 6 Ω

12 Ω

+
−

0.1 F

+ −v (t)

30 V

(b)

10 Ω

+
−

0.1 F

+ −v (t)

10 V

(c)

Figure 7.67
For Example 7.18. Original circuit (a), circuit (b), and
reduced circuit for t 7 0 (c).

for t 7 0

In the circuit of Fig. 7.67(a), determine the response v(t).
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Solution:

1. Define. The problem is clearly stated and the circuit is clearly
labeled.

2. Present. Given the circuit shown in Fig. 7.67(a), determine the
response 

3. Alternative. We can solve this circuit using circuit analysis
techniques, nodal analysis, mesh analysis, or PSpice. Let us
solve the problem using circuit analysis techniques (this time
Thevenin equivalent circuits) and then check the answer using
two methods of PSpice.

4. Attempt. For time the switch on the left is open and the
switch on the right is closed. Assume that the switch on the right
has been closed long enough for the circuit to reach steady state;
then the capacitor acts like an open circuit and the current from
the 4-A source flows through the parallel combination of the 
and producing a voltage equal
to 

At the switch on the left closes and the switch on
the right opens, producing the circuit shown in Fig. 7.67(b).

The easiest way to complete the solution is to find the
Thevenin equivalent circuit as seen by the capacitor. The open-
circuit voltage (with the capacitor removed) is equal to the
voltage drop across the resistor on the left, or 10 V (the
voltage drops uniformly across the resistor, 20 V, and
across the resistor, 10 V). This is The resistance
looking in where the capacitor was is equal to 

which is This produces the Thevenin
equivalent circuit shown in Fig. 7.67(c). Matching up the
boundary conditions and 

we get

5. Evaluate. There are two ways of solving the problem using
PSpice.

■ METHOD 1 One way is to first do the dc PSpice analysis to
determine the initial capacitor voltage. The schematic of the revelant
circuit is in Fig. 7.68(a). Two pseudocomponent VIEWPOINTs are
inserted to measure the voltages at nodes 1 and 2. When the circuit
is simulated, we obtain the displayed values in Fig. 7.68(a) as

and Thus, the initial capacitor voltage is 
The PSpice transient analysis uses this value along

with the schematic in Fig. 7.68(b). Once the circuit in Fig. 7.68(b)
is drawn, we insert the capacitor initial voltage as We
select Analysis/Setup/Transient and set Print Step to 0.1 s and
Final Step to After saving the circuit, we select Analysis/
Simulate to simulate the circuit. In the PSpice A/D window, we
select Trace/Add and display 

as the capacitor voltage The plot of is shown in
Fig. 7.69. This agrees with the result obtained by hand calculation,
v(t) � 10 � 18 e�t V.

v(t)v(t).V(C1:2)
V(R2:2) � V(R3:2) or V(C1:1) �

4t � 4 s.

IC � �8.

V1 � V2 � �8 V.
v(0) �V2 � 8 V.V1 � 0 V

v(t) � 10 � 18e�t V

RC � 1,
t �(v(0) � �8 V and v(�) � 10 V)

Req.72�18 � 6 � 10 �,
12 � 6 � 6 �

VTh.6-�
12-�

6-�

t � 0,
8 V � �v(0).2 � 4 �

3-� resistors (6 � 3 � 18�9 � 2),
6-�

6 0,

v(t).

7.8 Transient Analysis with PSpice 291
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■ METHOD 2 We can simulate the circuit in Fig. 7.67 directly,
since PSpice can handle the open and closed switches and determine
the initial conditions automatically. Using this approach, the schematic
is drawn as shown in Fig. 7.70. After drawing the circuit, we select
Analysis/Setup/Transient and set Print Step to 0.1 s and Final Step
to We save the circuit, then select Analysis/Simulate to sim-
ulate the circuit. In the PSpice A/D window, we select Trace/Add and
display as the capacitor voltage The plot of

is the same as that shown in Fig. 7.69.v(t)
v(t).V(R2:2) � V(R3:2)

4t � 4 s.
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0.0000 8.0000

6 4A

0.1

1

R3 3R4 I1

2

6R2

0

C1

(a)

6

12

R2 6R330 V

0

R1

(b)

+
−

0.1 

C1

V1

5 V

−5 V

10 V

0 V

−10 V
0 s 1.0 s 2.0 s 3.0 s 4.0 s

  V(R2:2) − V(R3:2)
Time

Figure 7.68
(a) Schematic for dc analysis to get , (b) schematic
for transient analysis used in getting the response v(t).

v(0)

Figure 7.69
Response for the circuit in Fig. 7.67.v(t)

R1

630 V 4 AR2 6R3 3R4 I1

tClose = 0
1 2

12 U1

1 2

U2

0

+
−

tOpen = 0

0.1 

C1

V1

Figure 7.70
For Example 7.18.

6. Satisfactory? Clearly, we have found the value of the output
response as required by the problem statement. Checking
does validate that solution. We can present all this as a complete
solution to the problem.

v(t),
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Applications
The various devices in which RC and RL circuits find applications
include filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stants of the RC or RL circuits. We will consider four simple applica-
tions here. The first two are RC circuits, the last two are RL circuits.

7.9.1 Delay Circuits

An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the capac-
itor connected in parallel with a neon lamp. The voltage source can pro-
vide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at a rate determined
by the circuit’s time constant, The lamp will act as an open(R1 � R2)C.

7.9

7.9 Applications 293

The switch in Fig. 7.71 was open for a long time but closed at 
If find for by hand and also by PSpice.

Answer: The plot of obtained by PSpice analy-
sis is shown in Fig. 7.72.

i(t)i(t) � 6 � 4e�5t A.

t 7 0i(t)i(0) � 10 A,
t � 0. Practice Problem 7.18

5 Ω

30 Ω12 A 2 H

t = 0

6 Ω

i(t)

9 A

10 A

7 A

8 A

6 A
0 s 0.5 s 1.0 s

  I(L1)

Time

Figure 7.71
For Practice Prob. 7.18.

Figure 7.72
For Practice Prob. 7.18.

R1
R2

110 V C 0.1 �F

S

+

−

70 V
Neon
lamp

Figure 7.73
An RC delay circuit.
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circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor discharges through it. Due to the low resistance
of the lamp when on, the capacitor voltage drops fast and the lamp turns
off. The lamp acts again as an open circuit and the capacitor recharges.
By adjusting we can introduce either short or long time delays into
the circuit and make the lamp fire, recharge, and fire repeatedly every
time constant because it takes a time period to get
the capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

tt � (R1 � R2)C,

R2,

294 Chapter 7 First-Order Circuits

Consider the circuit in Fig. 7.73, and assume that 
(a) Calculate the extreme limits of the time con-

stant of the circuit. (b) How long does it take for the lamp to glow for
the first time after the switch is closed? Let assume its largest value.

Solution:

(a) The smallest value for is and the corresponding time constant
for the circuit is

The largest value for is and the corresponding time constant
for the circuit is

Thus, by proper circuit design, the time constant can be adjusted to
introduce a proper time delay in the circuit.
(b) Assuming that the capacitor is initially uncharged, while

But

where as calculated in part (a). The lamp glows when
If at then

or

Taking the natural logarithm of both sides gives

A more general formula for finding is

The lamp will fire repeatedly every seconds if and only if v (t0) 6 v (�).t0

t0 � t ln 

�v(�)

v(t0) � v(�)

t0

t0 � t ln 

11

4
� 0.4 ln  2.75 � 0.4046 s

e�t0�t �
4

11
  1  et0�t �

11

4

70 � 110[1 � e�t0�t]  1  
7

11
� 1 � e�t0�t

t � t0,vC 
(t) � 70 VvC � 70 V.

t � 0.4 s,

vC 
(t) � vC 

(�) � [vC 
(0) � vC 

(�)]e�t�t � 110[1 � e�t�t]

vC 

(�) � 110.
vC 

(0) � 0,

t � (R1 � R2)C � (1.5 � 2.5) � 106 � 0.1 � 10�6 � 0.4 s

2.5 M�,R2

t � (R1 � R2)C � (1.5 � 106 � 0) � 0.1 � 10�6 � 0.15 s

0 �,R2

R2

0 6 R2 6 2.5 M�.
R1 � 1.5 M�,Example 7.19
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7.9.2 Photoflash Unit

An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any
abrupt change in voltage. Figure 7.75 shows a simplified circuit. It con-
sists essentially of a high-voltage dc supply, a current-limiting large
resistor and a capacitor C in parallel with the flashlamp of low
resistance When the switch is in position 1, the capacitor charges
slowly due to the large time constant ( ). As shown in
Fig. 7.76(a), the capacitor voltage rises gradually from zero to while
its current decreases gradually from to zero. The charging
time is approximately five times the time constant,

(7.65)

With the switch in position 2, the capacitor voltage is discharged.
The low resistance of the photolamp permits a high discharge
current with peak in a short duration, as depicted in
Fig. 7.76(b). Discharging takes place in approximately five times the
time constant,

(7.66)tdischarge � 5R2C

I2 � Vs�R2

R2

tcharge � 5R1C

I1 � Vs�R1

Vs,
t1 � R1C

R2.
R1,

7.9 Applications 295

The RC circuit in Fig. 7.74 is designed to operate an alarm which
activates when the current through it exceeds If 

find the range of the time delay that the variable resistor can
create.

Answer: Between 47.23 ms and 124 ms.

6 k�,
0 
 R 
120 mA.

Practice Problem 7.19

10 kΩ R

9 V 80 �F 4 kΩ

S

+

−

Alarm

Figure 7.74
For Practice Prob. 7.19.

R1

+
−

High
voltage
dc supply R2

C vvs

1

2
i

+

−

Figure 7.75
Circuit for a flash unit providing slow
charge in position 1 and fast discharge in
position 2.

Figures 7.76
(a) Capacitor voltage showing slow charge and fast discharge, (b) capacitor
current showing low charging current and high discharge current
I2 � Vs�R2.

I1 � Vs�R1

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such a circuit also finds applications in electric spot
welding and the radar transmitter tube.

0 t

Vs

v

0

(a) (b)

−I2

I1

i
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7.9.3 Relay Circuits

A magnetically controlled switch is called a relay. A relay is essen-
tially an electromagnetic device used to open or close a switch that
controls another circuit. Figure 7.77(a) shows a typical relay circuit.

296 Chapter 7 First-Order Circuits

An electronic flashgun has a current-limiting resistor and 
electrolytic capacitor charged to 240 V. If the lamp resistance is 
find: (a) the peak charging current, (b) the time required for the capac-
itor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (e) the average power dissipated by the
lamp.

Solution:

(a) The peak charging current is

(b) From Eq. (7.65),

(c) The peak discharging current is

(d) The energy stored is

(e) The energy stored in the capacitor is dissipated across the lamp
during the discharging period. From Eq. (7.66),

Thus, the average power dissipated is

p �
W

tdischarge
�

57.6

0.12
� 480 watts

tdischarge � 5R2C � 5 � 12 � 2000 � 10�6 � 0.12 s

W �
1

2
 CV 

2
s �

1

2
� 2000 � 10�6 � 2402 � 57.6 J

I2 �
Vs

R2
�

240

12
� 20  A

tcharge � 5R1C � 5 � 6 � 103 � 2000 � 10�6 � 60 s � 1 minute

I1 �
Vs

R1
�

240

6 � 103 � 40 mA

12 �,
2000-mF6-k�Example 7.20

Practice Problem 7.20 The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?
(b) What is the energy stored in the capacitor?
(c) If the flash fires in 0.8 ms, what is the average current through

the flashtube?
(d) How much power is delivered to the flashtube?
(e) After a picture has been taken, the capacitor needs to be

recharged by a power unit that supplies a maximum of 5 mA.
How much time does it take to charge the capacitor?

Answer: (a) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8 kW, (e) 32 s.
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The coil circuit is an RL circuit like that in Fig. 7.77(b), where R and
L are the resistance and inductance of the coil. When switch in
Fig. 7.77(a) is closed, the coil circuit is energized. The coil current
gradually increases and produces a magnetic field. Eventually the mag-
netic field is sufficiently strong to pull the movable contact in the other
circuit and close switch At this point, the relay is said to be pulled
in. The time interval between the closure of switches and is
called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

S2S1td

S2.

S1

7.9 Applications 297

S2

Coil

Magnetic fieldS1

S1

Vs

(a) (b)

Vs

R

L

Figure 7.77
A relay circuit.

Example 7.21The coil of a certain relay is operated by a 12-V battery. If the coil has
a resistance of and an inductance of 30 mH and the current
needed to pull in is 50 mA, calculate the relay delay time.

Solution:
The current through the coil is given by

where

Thus,

If then

or

e�td�t �
3

8
  1  etd�t �

8

3

50 � 80[1 � e�td�t]  1  
5

8
� 1 � e�td�t

i(td) � 50 mA,

i(t) � 80[1 � e�t�t] mA

t �
L

R
�

30 � 10�3

150
� 0.2 ms

i(0) � 0,  i(�) �
12

150
� 80 mA

i(t) � i(�) � [i(0) � i(�)]e�t�t

150 �
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By taking the natural logarithm of both sides, we get

Alternatively, we may find using

td � t ln 

i(0) � i(�)

i(td) � i(�)

td

td � t ln 

8

3
� 0.2 ln 

8

3
 ms � 0.1962 ms

298 Chapter 7 First-Order Circuits

A relay has a resistance of 200 and an inductance of 500 mH. The
relay contacts close when the current through the coil reaches 350 mA.
What time elapses between the application of 110 V to the coil and
contact closure?

Answer: 2.529 ms.

�Practice Problem 7.21

7.9.4 Automobile Ignition Circuit

The ability of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.

The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentially consists of a
pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across
the air gap, thereby igniting the fuel. But how can such a large volt-
age be obtained from the car battery, which supplies only 12 V? This
is achieved by means of an inductor (the spark coil) L. Since the volt-
age across the inductor is we can make large by cre-
ating a large change in current in a very short time. When the ignition
switch in Fig. 7.78 is closed, the current through the inductor increases
gradually and reaches the final value of where 
Again, the time taken for the inductor to charge is five times the time
constant of the circuit 

(7.67)

Since at steady state, i is constant, and the inductor voltage
When the switch suddenly opens, a large voltage is developed

across the inductor (due to the rapidly collapsing field) causing a spark
or arc in the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.

v � 0.
di�dt � 0

tcharge � 5 

L

R

(t � L�R),

Vs � 12 V.i � Vs�R,

di�dtv � L di�dt,

R

Vs v
+

−

i
Spark
plug

Air gap

L

Figure 7.78
Circuit for an automobile ignition system.
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Summary
1. The analysis in this chapter is applicable to any circuit that can be

reduced to an equivalent circuit comprising a resistor and a single
energy-storage element (inductor or capacitor). Such a circuit is
first-order because its behavior is described by a first-order differ-
ential equation. When analyzing RC and RL circuits, one must
always keep in mind that the capacitor is an open circuit to steady-
state dc conditions while the inductor is a short circuit to steady-
state dc conditions.

2. The natural response is obtained when no independent source is
present. It has the general form

where x represents current through (or voltage across) a resistor, a
capacitor, or an inductor, and is the initial value of x. Because
most practical resistors, capacitors, and inductors always have losses,
the natural response is a transient response, i.e. it dies out with time.

3. The time constant is the time required for a response to decay
to of its initial value. For RC circuits, and for RL cir-
cuits, t � L�R.

t � RCl�e
t

x(0)

x(t) � x(0)e�t�t

7.10

7.10 Summary 299

A solenoid with resistance and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery sup-
plies 12 V, determine: the final current through the solenoid when the
switch is closed, the energy stored in the coil, and the voltage across
the air gap, assuming that the switch takes to open.

Solution:
The final current through the coil is

The energy stored in the coil is

The voltage across the gap is

V � L 

¢I

¢t
� 6 � 10�3 �

3

1 � 10�6 � 18 kV

W �
1

2
 L I 

2 �
1

2
� 6 � 10�3 � 32 � 27 mJ

I �
Vs

R
�

12

4
� 3 A

1 ms

4 � Example 7.22

The spark coil of an automobile ignition system has a 20-mH inductance
and a resistance. With a supply voltage of 12 V, calculate: the
time needed for the coil to fully charge, the energy stored in the coil,
and the voltage developed at the spark gap if the switch opens in 

Answer: 20 ms, 57.6 mJ, and 24 kV.

2 ms.

5-�
Practice Problem 7.22
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300 Chapter 7 First-Order Circuits

4. The singularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function is

The unit impulse function is

The unit ramp function is

5. The steady-state response is the behavior of the circuit after an
independent source has been applied for a long time. The transient
response is the component of the complete response that dies out
with time.

6. The total or complete response consists of the steady-state
response and the transient response.

7. The step response is the response of the circuit to a sudden appli-
cation of a dc current or voltage. Finding the step response of a
first-order circuit requires the initial value the final value

and the time constant With these three items, we obtain
the step response as

A more general form of this equation is

Or we may write it as

8. PSpice is very useful for obtaining the transient response of a circuit.
9. Four practical applications of RC and RL circuits are: a delay circuit,

a photoflash unit, a relay circuit, and an automobile ignition circuit.

Instantaneous value � Final � [Initial � Final]e�(t�t0)�t

x(t) � x(�) � [x(t0
�) � x(�)]e�(t�t0)�t

x(t) � x(�) � [x(0�) � x(�)]e�t�t

t.x(�),
x(0�),

r (t) � b0,  t 
 0

t,  t � 0

d (t) � c0,  t 6 0

Undefined,  t � 0

0,  t 7 0

u (t) � b0,  t 6 0

1, t 7 0

u (t)

Review Questions

7.1 An RC circuit has and The time
constant is:

(a) 0.5 s (b) 2 s (c) 4 s

(d) 8 s (e) 15 s

7.2 The time constant for an RL circuit with 
and is:

(a) 0.5 s (b) 2 s (c) 4 s

(d) 8 s (e) 15 s

7.3 A capacitor in an RC circuit with and
is being charged. The time required for theC � 4 F

R � 2 �

L � 4 H
R � 2 �

C � 4 F.R � 2 � capacitor voltage to reach 63.2 percent of its steady-
state value is:

(a) 2 s (b) 4 s (c) 8 s

(d) 16 s (e) none of the above

7.4 An RL circuit has and The time
needed for the inductor current to reach 40 percent
of its steady-state value is:

(a) 0.5 s (b) 1 s (c) 2 s

(d) 4 s (e) none of the above

L � 4 H.R � 2 �
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7.5 In the circuit of Fig. 7.79, the capacitor voltage just
before is:

(a) 10 V (b) 7 V (c) 6 V

(d) 4 V (e) 0 V

t � 0

7.8 In the circuit of Fig. 7.80, is:

(a) 10 A (b) 6 A (c) 4 A

(d) 2 A (e) 0 A

7.9 If changes from 2 V to 4 V at we may
express as:

(a) (b) 

(c) (d) 

(e) 

7.10 The pulse in Fig. 7.116(a) can be expressed in terms
of singularity functions as:

(a) (b) 

(c) (d) 

Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8e,
7.9c,d, 7.10b.

2u(t) � 4u(t � 1) V2u(t) � 4u(t � 1) V

2u(t) � 2u(t � 1) V2u(t) � 2u(t � 1) V

4u(t) � 2 V

2 � 2u(t) V2u(�t) � 4u(t) V

2u(t) Vd(t) V

vs

t � 0,vs

i(�)

Problems 301

v(t)10 V
2 Ω

3 Ω

+
−

+

− t = 0

7 F

Figure 7.79
For Review Questions 7.5 and 7.6.

7.6 In the circuit in Fig. 7.79, is:

(a) 10 V (b) 7 V (c) 6 V

(d) 4 V (e) 0 V

7.7 For the circuit in Fig. 7.80, the inductor current just
before is:

(a) 8 A (b) 6 A (c) 4 A

(d) 2 A (e) 0 A

t � 0

v(�)

10 A

3 Ω

2 Ω
5 H

i(t)

t = 0

Figure 7.80
For Review Questions 7.7 and 7.8.

Problems

Section 7.2 The Source-Free RC Circuit

7.1 In the circuit shown in Fig. 7.81

(a) Find the values of R and C.

(b) Calculate the time constant 

(c) Determine the time required for the voltage to
decay half its initial value at t � 0.

t.

i(t) � 8e�200t mA, t 7 0

v(t) � 56e�200t V, t 7 0

7.2 Find the time constant for the RC circuit in Fig. 7.82.

CR

i

v
+

−

Figure 7.81
For Prob. 7.1.

+
− 80 Ω

120 Ω 12 Ω

50 V 200 mF

40 kΩ 30 kΩ

10 kΩ 20 kΩ

100 pF

Figure 7.82
For Prob. 7.2.

Figure 7.83
For Prob. 7.3.

7.3 Determine the time constant for the circuit in Fig. 7.83.
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7.4 The switch in Fig. 7.84 has been in position A for a
long time. Assume the switch moves instantaneously
from A to B at Find for t 7 0.vt � 0.

302 Chapter 7 First-Order Circuits

Figure 7.84
For Prob. 7.4.

7.5 Using Fig. 7.85, design a problem to help other
students better understand source-free RC circuits.

Figure 7.85
For Prob. 7.5.

7.6 The switch in Fig. 7.86 has been closed for a long
time, and it opens at Find for t � 0.v(t)t � 0.

Figure 7.86
For Prob. 7.6.

7.7 Assuming that the switch in Fig. 7.87 has been in
position A for a long time and is moved to position B
at Then at second, the switch moves
from B to C. Find for t � 0.vC (t)

t � 1t � 0,

Figure 7.87
For Prob. 7.7.

7.8 For the circuit in Fig. 7.88, if

(a) Find R and C.

(b) Determine the time constant.

(c) Calculate the initial energy in the capacitor.

(d) Obtain the time it takes to dissipate 50 percent of
the initial energy.

v � 10e�4t V  and  i � 0.2 e�4t A,  t 7 0

+
−

2 kΩ

5 kΩ

40 V
B

A

10 �F v
+

−

+
−v

i

t = 0

C

R1

R2

R3

40 V +
− 2 kΩ

10 kΩ

40 �F
+

–
v (t)

t = 0

12 V

1 kΩ
2 mF

B

A

C

10 kΩ

500 kΩ

+
−

Figure 7.88
For Prob. 7.8.

7.9 The switch in Fig. 7.89 opens at Find for
t 7 0.

vot � 0.

Figure 7.89
For Prob. 7.9.

7.10 For the circuit in Fig. 7.90, find for 
Determine the time necessary for the capacitor
voltage to decay to one-third of its value at t � 0.

t 7 0.vo(t)

Figure 7.90
For Prob. 7.10.

Figure 7.91
For Prob. 7.11.

Section 7.3 The Source-Free RL Circuit

7.11 For the circuit in Fig. 7.91, find for t 7 0.io

R v

i

C
+

−

6 V 4 kΩ 3 mF

2 kΩ

+
−

t = 0

vo

+

−

36 V 20 �F3 kΩ

9 kΩ

+
−

t = 0

vo

+

−

4 Ω 4 H

+
−24 V 4 Ω 8 Ω

t = 0

io
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7.12 Using Fig. 7.92, design a problem to help other
students better understand source-free RL circuits.

7.16 Determine the time constant for each of the circuits
in Fig. 7.96.

Problems 303

Figure 7.96
For Prob. 7.16.

7.17 Consider the circuit of Fig. 7.97. Find if
and v(t) � 0.i(0) � 6 A

vo(t)

Figure 7.97
For Prob. 7.17.

7.18 For the circuit in Fig. 7.98, determine when
and v(t) � 0.i(0) � 5 A

vo(t)

Figure 7.98
For Prob. 7.18.

7.19 In the circuit of Fig. 7.99, find for if
i(0) � 6 A.

t 7 0i(t)

Figure 7.99
For Prob. 7.19.

Figure 7.92
For Prob. 7.12.

R1

+
−v R2

i(t)

t = 0

L

7.13 In the circuit of Fig. 7.93,

(a) Find R, L, and .

(b) Calculate the energy dissipated in the resistance
for 0 6 t 6 0.5 ms.

t

i(t) � 5e�103t mA, t 7 0

v(t) � 80e�103t V, t 7 0

Figure 7.93
For Prob. 7.13.

7.14 Calculate the time constant of the circuit in Fig. 7.94.

Figure 7.94
For Prob. 7.14.

7.15 Find the time constant for each of the circuits in
Fig. 7.95.

Figure 7.95
For Prob. 7.15.

LR

i

v
+

−

5 mH 30 kΩ40 kΩ

20 kΩ 10 kΩ

5 H

10 Ω

(a)

2 Ω

40 Ω

(b)

40 Ω

48 Ω

160 Ω

20 mH

L

R1

R2

R3

(a)

R1 R2

L2L1

R3

(b)

vo(t)v(t)

1 Ω

3 Ω +

−

+
− i(t)

  H1
4

vo(t)v(t) 3 Ω

+

−

+
−

i(t)

2 Ω

0.4 H

40 Ω10 Ω 0.5i

6 Hi
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7.27 Express in Fig. 7.105 in terms of step functions.v(t)

7.20 For the circuit in Fig. 7.100,

and

(a) Find L and R.

(b) Determine the time constant.

(c) Calculate the initial energy in the inductor.

(d) What fraction of the initial energy is dissipated
in 10 ms?

i � 30e�50t A,  t 7 0

v � 90e�50t V

Section 7.4 Singularity Functions

7.24 Express the following signals in terms of singularity
functions.

(a) 

(b) 

(c) 

(d) 

7.25 Design a problem to help other students better
understand singularity functions.

7.26 Express the signals in Fig. 7.104 in terms of
singularity functions.

y(t) � c 2,  t 6 0

�5,  0 6 t 6 1

0,  t 7 1

x(t) � d t � 1,  1 6 t 6 2

1,  2 6 t 6 3

4 � t,  3 6 t 6 4

0,  Otherwise

i(t) � d 0,  t 6 1

�10,  1 6 t 6 3

10,  3 6 t 6 5

0,  t 7 5

v(t) � e 0, t 6 0

�5, t 7 0

304 Chapter 7 First-Order Circuits

R

i

+

−
vL

Figure 7.100
For Prob. 7.20.

7.21 In the circuit of Fig. 7.101, find the value of R for
which the steady-state energy stored in the inductor
will be 1 J.

40 Ω R

+
−60 V 2 H80 Ω

Figure 7.101
For Prob. 7.21.

7.22 Find and for in the circuit of Fig. 7.102
if i(0) � 10 A.

t 7 0v(t)i(t)

Figure 7.102
For Prob. 7.22.

5 Ω 20 Ω

1 Ω

2 H +

−
v(t)

i(t)

7.23 Consider the circuit in Fig. 7.103. Given that
find and for t 7 0.vxvovo(0) � 10 V,

3 Ω

1 Ω 2 Ω vo

+

−
vx   H1

3

+

−

Figure 7.103
For Prob. 7.23.

0 t

1

−1

v1(t)

1

−1

(a)

0
1 2 t

−1

−2

v4(t)

(d)

0 2 4 6 t

2

4

v3(t)

(c)

0 2 4 t

2

v2(t)

(b)

Figure 7.104
For Prob. 7.26.
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7.35 Find the solution to the following differential
equations:

(a) 

(b) 

7.36 Solve for in the following differential equations,
subject to the stated initial condition.

(a) 

(b) 

7.37 A circuit is described by

(a) What is the time constant of the circuit?

(b) What is the final value of v?

(c) If find for 

7.38 A circuit is described by

Find for given that 

Section 7.5 Step Response of an RC Circuit

7.39 Calculate the capacitor voltage for and 
for each of the circuits in Fig. 7.106.

t 7 0t 6 0

i(0) � 0.t 7 0i(t)

di

dt
� 3i � 2u(t)

t � 0.v(t)v(0) � 2,

v(�),

4 

dv
dt

� v � 10

2 dv�dt � v � 3u(t),  v(0) � �6

dv�dt � v � u(t),  v(0) � 0

v

2 

di

dt
� 3i � 0,  i(0) � 2

dv
dt

� 2v � 0,  v(0) � �1 V

Problems 305

0 321−1

15

10

5

−10

−5
t

v(t)

Figure 7.105
For Prob. 7.27.

7.28 Sketch the waveform represented by

7.29 Sketch the following functions:

(a) 

(b) 

(c) 

7.30 Evaluate the following integrals involving the
impulse functions:

(a) 

(b) 

7.31 Evaluate the following integrals:

(a) 

(b) 

7.32 Evaluate the following integrals:

(a) 

(b) 

(c) 

7.33 The voltage across a 10-mH inductor is
Find the inductor current, assuming

that the inductor is initially uncharged.

7.34 Evaluate the following derivatives:

(a) 

(b) 

(c) 
d

dt
 [sin 4tu(t � 3)]

d

dt
 [r (t � 6)u(t � 2)]

d

dt
 [u(t � 1)u(t � 1)]

15d(t � 2) mV.

�
5

1
 
(t � 6)2d(t � 2) dt

�
4

0
 
r (t � 1) dt

�
t

1
 
u(l) dl

�
�

��
 
[5d(t) � e�td(t) � cos 2p td(t)] dt

�
�

��
 
e�4t2d(t � 2) dt

�
�

��
 
4t2 cos 2p td(t � 0.5) dt

�
�

��
 
4t2d(t � 1) dt

z(t) � cos 4td(t � 1)

y(t) � 10e�(t�1)u(t),

x(t) � 10e�tu(t � 1),

� r (t � 3) � u(t � 4)

i(t) � r (t) � r (t � 1) � u(t � 2) � r (t � 2)

+
−

1 Ω

4 Ω

20 V

12 V

+

−
t = 0

v 2 F

(a)

(b)

3 Ω

2 A4 Ω

+ −
+
− t = 0

2 F

v

Figure 7.106
For Prob. 7.39.

7.40 Find the capacitor voltage for and for
each of the circuits in Fig. 7.107.

t 7 0t 6 0
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7.41 Using Fig. 7.108, design a problem to help other
students better understand the step response of an RC
circuit.

Figure 7.108
For Prob. 7.41.

7.42 (a) If the switch in Fig. 7.109 has been open for a
long time and is closed at find 

(b) Suppose that the switch has been closed for a
long time and is opened at Find vo(t).t � 0.

vo(t).t � 0,

Figure 7.109
For Prob. 7.42.

Figure 7.110
For Prob. 7.43.

7.44 The switch in Fig. 7.111 has been in position a for a
long time. At it moves to position b. Calculate

for all t 7 0.i(t)
t � 0,

306 Chapter 7 First-Order Circuits

3 Ω 2 Ω

+
− 3 F

+

−
v12 V 4 V +

−

t = 0

(a)

Figure 7.107
For Prob. 7.40.

C
+

−
vo

R1

R2v

t = 0

+
−

(b)

4 Ω

2 Ω 5 F6 A
+

−
v

t = 0

3 F
+

−
vo

2 Ω

4 Ω12 V +
−

t = 0

7.43 Consider the circuit in Fig. 7.110. Find for 
and t 7 0.

t 6 0i(t)

3 F

40 Ω 30 Ω

50 Ω0.5i80 V +
−

t = 0

i

Figure 7.111
For Prob. 7.44.

7.45 Find in the circuit of Fig. 7.112 when 
Assume that vo(0) � 5 V.

vs � 30u(t) V.vo

Figure 7.112
For Prob. 7.45.

7.46 For the circuit in Fig. 7.113, Find v(t).is(t) � 5u(t).

Figure 7.113
For Prob. 7.46.

7.47 Determine for in the circuit of Fig. 7.114
if v(0) � 0.

t 7 0v(t)

Figure 7.114
For Prob. 7.47.

2 F

6 Ω

3 Ω60 V +
− 24 V +

−

i

t = 0a

b

+
− 40 kΩ

10 kΩ20 kΩ

vo

+

−
vs 3 �F

is
+

0.25 F
–

6 Ω

2 Ω

v

3u(t − 1) A 3u(t) A8 Ω2 Ω

+ −

0.1 F

v
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7.48 Find and in the circuit of Fig. 7.115.i(t)v(t)

Figure 7.118
For Prob. 7.52.

7.53 Determine the inductor current for both 
and for each of the circuits in Fig. 7.119.t 7 0

t 6 0i(t)

Figure 7.119
For Prob. 7.53.

7.54 Obtain the inductor current for both and 
in each of the circuits in Fig. 7.120.

t 7 0t 6 0

Figure 7.120
For Prob. 7.54.

Problems 307

* An asterisk indicates a challenging problem.

Figure 7.115
For Prob. 7.48.

7.49 If the waveform in Fig. 7.116(a) is applied to the
circuit of Fig. 7.116(b), find Assume v(0) � 0.v(t).

Figure 7.116
For Prob. 7.49 and Review Question 7.10.

*7.50 In the circuit of Fig. 7.117, find for Let
and C � 0.25 mF.R3 � 2 k�,R1 � R2 � 1 k�,

t 7 0.ix

Figure 7.117
For Prob. 7.50.

Section 7.6 Step Response of an RL Circuit

7.51 Rather than applying the short-cut technique used in
Section 7.6, use KVL to obtain Eq. (7.60).

7.52 Using Fig. 7.118, design a problem to help other
students better understand the step response of an RL
circuit.

vu(–t) A 10 Ω
+

−
0.1 F

20 Ω

i

0 1 t (s)

2

is (A)

(a)

vis 4 Ω
+

−0.5 F

6 Ω

(b)

R2

R130 mA

t = 0

R3

ix

C

R2

v L

i

+
−

t = 0

R1

25 V 4 H

i

(a)

+
− t = 0

2 Ω3 Ω

4 Ω6 A 2 Ω 3 H

i

t = 0

(b)

4 Ω2 A
12 Ω

3.5 H

i

4 Ω

(a)

t = 0

2 Ω 3 Ω
6 Ω

10 V 2 H

i

(b)

+
−

24 V +
−

t = 0
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7.55 Find for and in the circuit of
Fig. 7.121.

t 7 0t 6 0v(t)

308 Chapter 7 First-Order Circuits

Figure 7.121
For Prob. 7.55.

7.56 For the network shown in Fig. 7.122, find for
t 7 0.

v(t)

Figure 7.122
For Prob. 7.56.

*7.57 Find and for in the circuit of
Fig. 7.123.

t 7 0i2(t)i1(t)

Figure 7.123
For Prob. 7.57.

7.58 Rework Prob. 7.17 if and

7.59 Determine the step response to in
the circuit of Fig. 7.124.

vs � 18u (t)vo(t)

v(t) � 20u(t) V.
i(0) � 10 A

7.60 Find for in the circuit of Fig. 7.125 if the
initial current in the inductor is zero.

t 7 0v(t)

Figure 7.125
For Prob. 7.60.

7.61 In the circuit in Fig. 7.126, changes from 5 A to 10 A
at that is, Find and i.vis � 5u(�t) � 10u(t).t � 0;

is

Figure 7.126
For Prob. 7.61.

7.62 For the circuit in Fig. 7.127, calculate if i(0) � 0.i(t)

Figure 7.127
For Prob. 7.62.

7.63 Obtain and in the circuit of Fig. 7.128.i(t)v(t)

Figure 7.128
For Prob. 7.63.

Figure 7.129
For Prob. 7.64.

8 Ω
4io

3 Ω

0.5 H

2 Ω

20 V +
−

24 V +
−

t = 0

+
−

io

+

−
v

Figure 7.124
For Prob. 7.59.

7.64 Determine the value of and the total energy
dissipated by the circuit from to .
The value of is equal to volts.340 � 40u(t) 4vin(t)

t � � sect � 0 sec
iL(t)

6 Ω

12 Ω2 A 0.5 H20 Ω

5 Ω

+

−
v

+
− 20 V

t = 0

6 Ω5 A

2.5 H

5 Ω 20 Ω

4 H

i1 i2

t = 0

3 Ω

6 Ω

vs

1.5 H

4 Ω
+
− +

−
vo

5 Ω 20 Ω4u(t) A 8 H
+

−
v

4 Ωis 0.5 H
+

−
v

i

3 Ω 6 Ω

+
−u(t − 1) V u(t) V2 H

i

+
−

5 Ω

+
−10u(−t) V 20 Ω 0.5 H

i

+

−
v

10 H40 Ω

40 Ω

+
−vin(t)

iL(t)
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Problems 309

7.65 If the input pulse in Fig. 7.130(a) is applied to the
circuit in Fig. 7.130(b), determine the response i(t).

Figure 7.130
For Prob. 7.65.

Section 7.7 First-order Op Amp Circuits

7.66 Using Fig. 7.131, design a problem to help other
students better understand first-order op amp
circuits.

Figure 7.131
For Prob. 7.66.

7.67 If find for in the op amp
circuit in Fig. 7.132. Let and C � 1 mF.R � 10 k�

t 7 0vo(t)v(0) � 5 V,

7.69 For the op amp circuit in Fig. 7.134, find for
t 7 0.

vo(t)

Figure 7.134
For Prob. 7.69.

7.70 Determine for when in the op
amp circuit of Fig. 7.135.

vs � 20 mVt 7 0vo

Figure 7.135
For Prob. 7.70.

7.71 For the op amp circuit in Fig. 7.136, suppose 
and Find for t 7 0.v(t)vs � 3 V.

v0 � 0

Figure 7.136
For Prob. 7.71.

Figure 7.132
For Prob. 7.67.

7.68 Obtain for in the circuit of Fig. 7.133.t 7 0vo

Figure 7.133
For Prob. 7.68.

5 Ω

+
− vs 20 Ω 2 H

i

(b)(a)

0 t (s)

vs (V)

10

1

vo

+

−

C

R2

+
−

R1

+
−

vs

R

R

R v

vo

+

−
C

+
−

10 kΩ
10 kΩ

+
− vo

+

−
25 �F

t = 0

4 V

+
−

20 kΩ 100 kΩ10 kΩ

+
−

vo

+

−

25 mF

t = 0

4 V +
−

20 kΩ

+
−

vo

vs 5 �F

t = 0

+
−

+
−

vvs

+

−

+
−

10 kΩ

20 kΩ10 kΩ

10 �F
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Section 7.8 Transient Analysis with PSpice

7.76 Repeat Prob. 7.49 using PSpice or MultiSim.

7.77 The switch in Fig. 7.141 opens at Use PSpice
or MultiSim to determine for t 7 0.v(t)

t � 0.

Figure 7.141
For Prob. 7.77.

7.78 The switch in Fig. 7.142 moves from position a to b
at Use PSpice or MultiSim to find for
t 7 0.

i(t)t � 0.

Figure 7.142
For Prob. 7.78.

7.79 In the circuit of Fig. 7.143, the switch has been in
position a for a long time but moves instantaneously
to position b at Determine io(t).t � 0.

Figure 7.143
For Prob. 7.79.

7.80 In the circuit of Fig. 7.144, assume that the switch
has been in position a for a long time, find:

(a) and 

(b) 

(c) and vo(�).i2(�),i1(�),

iL(t)

vo(0)i1(0), i2 (0),

310 Chapter 7 First-Order Circuits

Figure 7.137
For Prob. 7.72.

7.73 For the op amp circuit of Fig. 7.138, let 
and Find v0.v(0) � 1V.C � 20 mF,Rf � 20 k�,

R1 � 10 k�,

Figure 7.138
For Prob. 7.73.

7.74 Determine for in the circuit of Fig. 7.139.
Let and assume that the capacitor is
initially uncharged.

is � 10u (t) mA
t 7 0vo(t)

Figure 7.139
For Prob. 7.74.

7.75 In the circuit of Fig. 7.140, find and given that
and v(0) � 1 V.vs � 4u(t) V

io,vo

Figure 7.140
For Prob. 7.75.

4 V

0.1 H

5 Ω 4 Ω

3 Ωt = 0

12 V

io

+
−

+
−

b

a

7.72 Find in the op amp circuit in Fig. 7.137. Assume
that and C � 10 mF.R � 10 k�,v(0) � �2 V,

io

R+
−

v

3u(t)

io+ −

C

+
−

+
−4u(t)

+
−

R1

Rf

C

vo

+

−

v+ −

10 kΩ

50 kΩ vo

+

−

is

2 �F

+
−

vo

vs
2 �F

10 kΩ

20 kΩ
+ −v

+
−

io

+
−

5 Ω

4 Ω5 A 6 Ω 20 Ω +
− 30 V

t = 0 + −v

100 mF

4 Ω
6 Ω

3 Ω+
−108 V 6 Ω 2 H

i(t)t = 0

a

b
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Figure 7.144
For Prob. 7.80.

7.81 Repeat Prob. 7.65 using PSpice or MultiSim.

Section 7.9 Applications

7.82 In designing a signal-switching circuit, it was found
that a capacitor was needed for a time
constant of 3 ms. What value resistor is necessary for
the circuit?

7.83 An RC circuit consists of a series connection of a
120-V source, a switch, a resistor, and a

capacitor. The circuit is used in estimating the
speed of a horse running a 4-km racetrack. The
switch closes when the horse begins and opens when
the horse crosses the finish line. Assuming that the
capacitor charges to 85.6 V, calculate the speed of
the horse.

7.84 The resistance of a 160-mH coil is Find the
time required for the current to build up to 60
percent of its final value when voltage is applied to
the coil.

7.85 A simple relaxation oscillator circuit is shown in
Fig. 7.145. The neon lamp fires when its voltage
reaches 75 V and turns off when its voltage drops to
30 V. Its resistance is when on and infinitely
high when off.

(a) For how long is the lamp on each time the
capacitor discharges?

(b) What is the time interval between light flashes?

120 �

8 �.

15-mF
34-M�

100-mF

Figure 7.145
For Prob. 7.85.

7.86 Figure 7.146 shows a circuit for setting the length of
time voltage is applied to the electrodes of a welding
machine. The time is taken as how long it takes the
capacitor to charge from 0 to 8 V. What is the time
range covered by the variable resistor?

Comprehensive Problems 311

30 V +
− 3 Ω

10 Ω

5 Ω 6 Ω 4 H

i2 iLi1

a

b

+

–
vo

t = 0

Figure 7.146
For Prob. 7.86.

7.87 A 120-V dc generator energizes a motor whose coil
has an inductance of 50 H and a resistance of 
A field discharge resistor of is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.147. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

400 �
100 �.

Comprehensive Problems

7.88 The circuit in Fig. 7.148(a) can be designed as
an approximate differentiator or an integrator,
depending on whether the output is taken across
the resistor or the capacitor, and also on the time
constant of the circuit and the width T of
the input pulse in Fig. 7.148(b). The circuit is a
differentiator if say or an
integrator if say t 7 10T.t W T,

t 6 0.1T,t V T,

t � RC

Figure 7.147
For Prob. 7.87.

(a) What is the minimum pulse width that will allow
a differentiator output to appear across the
capacitor?

(b) If the output is to be an integrated form of the
input, what is the maximum value the pulse
width can assume?

120 V

4 MΩ

Neon lamp6 �F

+

−

100 kΩ to 1 MΩ

12 V 2 �F
Welding 
control 
unit

Electrode

+
−120 V 400 Ω

Circuit breaker

Motor
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7.89 An RL circuit may be used as a differentiator if the
output is taken across the inductor and (say

), where T is the width of the input pulse.
If R is fixed at determine the maximum
value of L required to differentiate a pulse with

7.90 An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage by a factor of 10. As shown in Fig. 7.149,
the oscilloscope has internal resistance and
capacitance while the probe has an internal
resistance If is fixed at find and 
for the circuit to have a time constant of 15 ms.

CsRs6 M�,RpRp.
Cs,

Rs

vi

T � 10 ms.

200 k�,
t 6 0.1T

t V T

312 Chapter 7 First-Order Circuits

Figure 7.148
For Prob. 7.88.

Figure 7.151
For Prob. 7.92.

Figure 7.149
For Prob. 7.90.

7.91 The circuit in Fig. 7.150 is used by a biology student
to study “frog kick.” She noticed that the frog kicked
a little when the switch was closed but kicked
violently for 5 s when the switch was opened. Model
the frog as a resistor and calculate its resistance.
Assume that it takes 10 mA for the frog to kick
violently.

Figure 7.150
For Prob. 7.91.

7.92 To move a spot of a cathode-ray tube across the
screen requires a linear increase in the voltage across
the deflection plates, as shown in Fig. 7.151. Given
that the capacitance of the plates is 4 nF, sketch the
current flowing through the plates.

300 kΩ

+
− 200 pFvi

(a)

0 T t

Vm

vi

(b)

vovi

Probe Scope

Rp

Cs

+

−

+

−

Rs

50 Ω

2 H

+

−
12 V

Switch
Frog

Rise time = 2 ms Drop time = 5 �s
t

10

v (V)

(not to scale)
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Second-Order
Circuits
Everyone who can earn a masters degree in engineering must earn a
masters degree in engineering in order to maximize the success of their
career! If you want to do research, state-of-the-art engineering, teach in
a university, or start your own business, you really need to earn a doctoral
degree! 

—Charles K. Alexander

c h a p t e r

8

Enhancing Your Career

To increase your engineering career opportunities after graduation,
develop a strong fundamental understanding in a broad set of engineer-
ing areas. When possible, this might best be accomplished by working
toward a graduate degree immediately upon receiving your undergradu-
ate degree.

Each degree in engineering represents certain skills the student
acquires. At the Bachelor degree level, you learn the language of engi-
neering and the fundamentals of engineering and design. At the Mas-
ter’s level, you acquire the ability to do advanced engineering projects
and to communicate your work effectively both orally and in writing.
The Ph.D. represents a thorough understanding of the fundamentals of
electrical engineering and a mastery of the skills necessary both for
working at the frontiers of an engineering area and for communicating
one’s effort to others.

If you have no idea what career you should pursue after gradua-
tion, a graduate degree program will enhance your ability to explore
career options. Since your undergraduate degree will only provide you
with the fundamentals of engineering, a Master’s degree in engineer-
ing supplemented by business courses benefits more engineering stu-
dents than does getting a Master’s of Business Administration (MBA).
The best time to get your MBA is after you have been a practicing
engineer for some years and decide your career path would be
enhanced by strengthening your business skills.

Engineers should constantly educate themselves, formally and
informally, taking advantage of all means of education. Perhaps there
is no better way to enhance your career than to join a professional soci-
ety such as IEEE and be an active member.

Enhancing your career involves under-
standing your goals, adapting to changes,
anticipating opportunities, and planning
your own niche.
© 2005 Institute of Electrical and
Electronics Engineers (IEEE).
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314 Chapter 8 Second-Order Circuits

A second-order circuit is characterized by a second-order differen-
tial equation. It consists of resistors and the equivalent of two energy
storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the ini-
tial conditions of the storage elements. Although these circuits may
contain dependent sources, they are free of independent sources.
These source-free circuits will give natural responses as expected.
Later we will consider circuits that are excited by independent
sources. These circuits will give both the transient response and the
steady-state response. We consider only dc independent sources in
this chapter. The case of sinusoidal and exponential sources is deferred
to later chapters.

We begin by learning how to obtain the initial conditions for the
circuit variables and their derivatives, as this is crucial to analyzing
second-order circuits. Then we consider series and parallel RLC cir-
cuits such as shown in Fig. 8.1 for the two cases of excitation: by
initial conditions of the energy storage elements and by step inputs.
Later we examine other types of second-order circuits, including op
amp circuits. We will consider PSpice analysis of second-order cir-
cuits. Finally, we will consider the automobile ignition system and
smoothing circuits as typical applications of the circuits treated in this
chapter. Other applications such as resonant circuits and filters will
be covered in Chapter 14.

Finding Initial and Final Values
Perhaps the major problem students face in handling second-order cir-
cuits is finding the initial and final conditions on circuit variables.
Students are usually comfortable getting the initial and final values
of v and i but often have difficulty finding the initial values of their

8.2

Figure 8.1
Typical examples of second-order circuits:
(a) series RLC circuit, (b) parallel RLC
circuit, (c) RL circuit, (d) RC circuit.

vs

R

R

L

C+
−

(a)

is C LR

(b)

vs

R1 R2

+
−

(c)

is C2C1

(d)

L1 L2

Introduction
In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known as second-order circuits because their responses are described
by differential equations that contain second derivatives.

Typical examples of second-order circuits are RLC circuits, in
which the three kinds of passive elements are present. Examples of
such circuits are shown in Fig. 8.1(a) and (b). Other examples are RL
and RC circuits, as shown in Fig. 8.1(c) and (d). It is apparent from
Fig. 8.1 that a second-order circuit may have two storage elements of
different type or the same type (provided elements of the same type
cannot be represented by an equivalent single element). An op amp cir-
cuit with two storage elements may also be a second-order circuit. As
with first-order circuits, a second-order circuit may contain several
resistors and dependent and independent sources.

8.1
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derivatives: and . For this reason, this section is explicitly
devoted to the subtleties of getting ,
and Unless otherwise stated in this chapter, v denotes capacitor
voltage, while i is the inductor current.

There are two key points to keep in mind in determining the ini-
tial conditions.

First—as always in circuit analysis—we must carefully handle the
polarity of voltage across the capacitor and the direction of the cur-
rent through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them
accordingly.

Second, keep in mind that the capacitor voltage is always contin-
uous so that

(8.1a)

and the inductor current is always continuous so that

(8.1b)

where denotes the time just before a switching event and
is the time just after the switching event, assuming that the

switching event takes place at .
Thus, in finding initial conditions, we first focus on those vari-

ables that cannot change abruptly, capacitor voltage and inductor cur-
rent, by applying Eq. (8.1). The following examples illustrate these
ideas.

t � 0
t � 0�

t � 0�

i(0�) � i(0�)

v(0�) � v(0�)

i(t)
v(t)

v(�).
v(0), i(0), dv(0)�dt, di(0)�dt, i(�)

di�dtdv�dt

8.2 Finding Initial and Final Values 315

The switch in Fig. 8.2 has been closed for a long time. It is open at
. Find: (a) , (b) , (c) .

Solution:

(a) If the switch is closed a long time before , it means that the
circuit has reached dc steady state at At dc steady state, the
inductor acts like a short circuit, while the capacitor acts like an open
circuit, so we have the circuit in Fig. 8.3(a) at Thus,

i(0�) �
12

4 � 2
� 2 A,  v(0�) � 2i(0�) � 4 V

t � 0�.

t � 0.
t � 0

i(�), v(�)di(0�)�dt, dv(0�)�dti(0�), v(0�)t � 0
Example 8.1

Figure 8.2
For Example 8.1.

Figure 8.3
Equivalent circuit of that in Fig. 8.2 for: (a) (b) (c) t S �.t � 0�,t � 0�,

12 V

4 Ω 0.25 H

+
− 0.1 F

i

v
+

−
2 Ω

t = 0

12 V

4 Ω 0.25 H

+
− 0.1 F

i

(b)

12 V

4 Ω

+
−

i

v

+

−
2 Ω

(a)

12 V

4 Ω

+
−

i

v

+

−

(c)

+ −vL

v
+

−

ale80571_ch08_313-367.qxd  11/30/11  1:13 PM  Page 315



As the inductor current and the capacitor voltage cannot change
abruptly,

(b) At the switch is open; the equivalent circuit is as shown in
Fig. 8.3(b). The same current flows through both the inductor and
capacitor. Hence,

Since , and

Similarly, since We now obtain by
applying KVL to the loop in Fig. 8.3(b). The result is

or

Thus,

(c) For the circuit undergoes transience. But as the
circuit reaches steady state again. The inductor acts like a short circuit
and the capacitor like an open circuit, so that the circuit in Fig. 8.3(b)
becomes that shown in Fig. 8.3(c), from which we have

i(�) � 0 A,  v(�) � 12 V

t S �,t 7 0,

di(0�)

dt
�

vL(0�)

L
�

0

0.25
� 0 A/s

vL(0�) � 12 � 8 � 4 � 0

�12 � 4i(0�) � vL(0�) � v(0�) � 0

vLL di�dt � vL 
, di�dt � vL�L.

dv(0�)

dt
�

iC 
(0�)

C
�

2

0.1
� 20 V/s

C dv�dt � iC, dv�dt � iC�C

iC 
(0�) � i(0�) � 2 A

t � 0�,

i(0�) � i(0�) � 2 A,  v(0�) � v(0�) � 4 V

316 Chapter 8 Second-Order Circuits

Practice Problem 8.1 The switch in Fig. 8.4 was open for a long time but closed at 
Determine: (a) (b) (c) i(�), v(�).di(0�)�dt, dv(0�)�dt,i(0�), v(0�),

t � 0.

Figure 8.4
For Practice Prob. 8.1.

Answer: (a) 2 A, 4 V, (b) 50 A/s, 0 V/s, (c) 12 A, 24 V.

10 Ω

24 Vv
+

−
2 Ω +

−

i

t = 0

0.4 H

 F1
20
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8.2 Finding Initial and Final Values 317

Example 8.2In the circuit of Fig. 8.5, calculate: (a) 
(b) (c) iL(�), vC 

(�), vR(�).diL(0�)�dt, dvC 
(0�)�dt, dvR(0�)�dt,

iL(0�), vC 
(0�), vR(0�),

Figure 8.5
For Example 8.2.

Solution:

(a) For At since the circuit has reached
steady state, the inductor can be replaced by a short circuit, while the
capacitor is replaced by an open circuit as shown in Fig. 8.6(a). From
this figure we obtain

(8.2.1)

Although the derivatives of these quantities at are not required,
it is evident that they are all zero, since the circuit has reached steady
state and nothing changes.

t � 0�

iL(0�) � 0,  vR(0�) � 0,  vC 
(0�) � �20 V

t � 0�,t 6  0, 3u(t) � 0.

Figure 8.6
The circuit in Fig. 8.5 for: (a) (b) t � 0�.t � 0�,

For so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot
change abruptly,

(8.2.2)

Although the voltage across the resistor is not required, we will
use it to apply KVL and KCL; let it be called Applying KCL at
node a in Fig. 8.6(b) gives

(8.2.3)

Applying KVL to the middle mesh in Fig. 8.6(b) yields

(8.2.4)�vR(0�) � vo(0�) � vC 
(0�) � 20 � 0

3 �
vR(0�)

2
�

vo(0�)

4

vo.
4-�

iL 

(0�) � iL 

(0�) � 0,  vC 
(0�) � vC 

(0�) � �20 V

t 7 0, 3u(t) � 3,

3u(t) A

4 Ω

20 V
0.6 H

vC

+

−vR

+

−
2 Ω

+
−

iL
 F1

2

3 A

4 Ω

20 V

0.6 HvR

+

−
2 Ω

+
−

iLiC

vL

(b)

a b4 Ω

20 V

vC

+

−
vR

+

−

2 Ω
+
−

iL

(a)

vo

vC

+

−

+ −

+

−

F1
2
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Since from Eq. (8.2.2), Eq. (8.2.4) implies that

(8.2.5)

From Eqs. (8.2.3) and (8.2.5), we obtain

(8.2.6)

(b) Since ,

But applying KVL to the right mesh in Fig. 8.6(b) gives

Hence,

(8.2.7)

Similarly, since , then We apply KCL at
node b in Fig. 8.6(b) to get :

(8.2.8)

Since and Then

(8.2.9)

To get , we apply KCL to node a and obtain

Taking the derivative of each term and setting gives

(8.2.10)

We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain

Again, taking the derivative of each term and setting yields

Substituting for gives

(8.2.11)

From Eqs. (8.2.10) and (8.2.11), we get

dvR(0�)

dt
�

2

3
 V/s

dvR(0�)

dt
� 2 �

dvo(0�)

dt

dvC 
(0�)�dt � 2

� 

dvR(0�)

dt
�

dvC 
(0�)

dt
�

dvo(0�)

dt
� 0

t � 0�

�vR � vC � 20 � vo � 0

0 � 2 

dvR(0�)

dt
�

dvo(0�)

dt

t � 0�

3 �
vR

2
�

vo

4

dvR(0�)�dt

dvC 
(0�)

dt
�

iC 
(0�)

C
�

1

0.5
� 2 V/s

iL(0�) � 0, iC 
(0�) � 4�4 � 1 A.vo(0�) � 4

vo(0�)

4
� iC  

(0�) � iL(0�)

iC

dvC�dt � iC�C.C dvC�dt � iC

diL(0�)

dt
� 0

vL(0�) � vC 
(0�) � 20 � 0

diL(0�)

dt
�

vL(0�)

L

L diL�dt � vL

vR(0�) � vo(0�) � 4 V

vR(0�) � vo(0�)

vC 
(0�) � �20  V
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We can find although it is not required. Since ,

(c) As the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now
operative. By current division principle,

(8.2.12)
iL(�) �

2

2 � 4
3 A � 1 A

vR(�) �
4

2 � 4
 3 A � 2 � 4 V,  vC 

(�) � �20 V

t S �,

diR(0�)

dt
�

1

5
  
dvR(0�)

dt
�

1

5
  
2

3
�

2

15
 A/s

vR � 5iRdiR(0�)�dt
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Practice Problem 8.2For the circuit in Fig. 8.7, find: (a) 
(b) , (c) iL(�), vC 

(�), vR(�).diL(0�)�dt, dvC 
(0�)�dt, dvR(0�)�dt

iL(0�), vC 

(0�), vR(0�),

Figure 8.7
For Practice Prob. 8.2.

Answer: (a) 0, 0, (b) 0, 20 V/s, 0, (c) 20 V, 20 V.�2 A,�6 A,

The Source-Free Series RLC Circuit
An understanding of the natural response of the series RLC circuit is
a necessary background for future studies in filter design and commu-
nications networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initially stored in the capacitor and induc-
tor. The energy is represented by the initial capacitor voltage and
initial inductor current . Thus, at ,

(8.2a)

(8.2b)

Applying KVL around the loop in Fig. 8.8,

(8.3)Ri � L 

di

dt
�

1

C
 �

t

��

 i(t) dt � 0

 i(0) � I0

 v(0) �
1

C
 �

0

��

 i dt � V0

t � 0I0

V0

8.3

Figure 8.8
A source-free series RLC circuit.

4u(t) A 6 A

5 Ω

2 H

iC iL

vC

+

−

iR

vL

vR+ −

+

−
F1

5

i

R L

I0

V0 C

+

−
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To eliminate the integral, we differentiate with respect to t and
rearrange terms. We get

(8.4)

This is a second-order differential equation and is the reason for call-
ing the RLC circuits in this chapter second-order circuits. Our goal is
to solve Eq. (8.4). To solve such a second-order differential equation
requires that we have two initial conditions, such as the initial value
of i and its first derivative or initial values of some i and The ini-
tial value of i is given in Eq. (8.2b). We get the initial value of the
derivative of i from Eqs. (8.2a) and (8.3); that is,

or

(8.5)

With the two initial conditions in Eqs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

(8.6)

where A and s are constants to be determined. Substituting Eq. (8.6)
into Eq. (8.4) and carrying out the necessary differentiations, we obtain

or

(8.7)

Since is the assumed solution we are trying to find, only the
expression in parentheses can be zero:

(8.8)

This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the char-
acter of i. The two roots of Eq. (8.8) are

(8.9a)

(8.9b)

A more compact way of expressing the roots is

(8.10)s1 � �a � 2a2 � �0
2,  s2 � �a � 2a2 � �0

2

s2 � � 

R

2L
� Ba R

2L
b2

�
1

LC

s1 � � 

R

2L
� Ba R

2L
b2

�
1

LC

s2 �
R

L
 s �

1

LC
� 0

i � Aest

Aestas2 �
R

L
 s �

1

LC
b � 0

As2est �
AR

L
 sest �

A

LC
 est � 0

i � Aest

di(0)

dt
� � 

1

L
 (RI0 � V0)

Ri(0) � L 

di(0)

dt
� V0 � 0

v.

d 
2i

dt2 �
R

L
  
di

 dt
�

i

LC
� 0
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See Appendix C.1 for the formula to
find the roots of a quadratic equation.
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where

(8.11)

The roots and are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit; is known as the resonant frequency or
strictly as the undamped natural frequency, expressed in radians per
second (rad/s); and is the neper frequency or the damping factor,
expressed in nepers per second. In terms of and , Eq. (8.8) can be
written as

(8.8a)

The variables s and are important quantities we will be discussing
throughout the rest of the text.

The two values of s in Eq. (8.10) indicate that there are two pos-
sible solutions for i, each of which is of the form of the assumed solu-
tion in Eq. (8.6); that is,

(8.12)

Since Eq. (8.4) is a linear equation, any linear combination of the
two distinct solutions and is also a solution of Eq. (8.4). A com-
plete or total solution of Eq. (8.4) would therefore require a linear
combination of and . Thus, the natural response of the series RLC
circuit is

(8.13)

where the constants and are determined from the initial values
and in Eqs. (8.2b) and (8.5).
From Eq. (8.10), we can infer that there are three types of solutions:

1. If we have the overdamped case.
2. If we have the critically damped case.
3. If we have the underdamped case.

We will consider each of these cases separately.

Overdamped Case ( 0)
From Eqs. (8.9) and (8.10), implies When this
happens, both roots and are negative and real. The response is

(8.14)

which decays and approaches zero as t increases. Figure 8.9(a) illus-
trates a typical overdamped response.

Critically Damped Case ( 0)
When and

(8.15)s1 � s2 � �a � � 

R

2L

a � �0, C � 4L�R2
A � �

i(t) � A1es1t � A2es2t

s2s1

C 7 4L�R2.a 7 �0

A � �

a 6 �0,
a � �0,
a 7 �0,

di(0)�dti(0)
A2A1

i(t) � A1es1t � A2es2t

i2i1

i2i1

i1 � A1es1t,  i2 � A2es2t

�0

s2 � 2a s � �0
2 � 0

�0a

a

�0

s2s1

a �
R

2L
,  �0 �

12LC
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The neper (Np) is a dimensionless unit
named after John Napier (1550–1617),
a Scottish mathematician.

The ratio � 0 is known as the damp-
ing ratio .z

�a

The response is overdamped when
the roots of the circuit’s characteristic
equation are unequal and real, critically
damped when the roots are equal and
real, and underdamped when the
roots are complex.
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For this case, Eq. (8.13) yields

where . This cannot be the solution, because the two ini-
tial conditions cannot be satisfied with the single constant . What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to
Eq. (8.4). When , Eq. (8.4) becomes

or

(8.16)

If we let

(8.17)

then Eq. (8.16) becomes

which is a first-order differential equation with solution 
where is a constant. Equation (8.17) then becomes

or

(8.18)

This can be written as

(8.19)

Integrating both sides yields

or

(8.20)

where is another constant. Hence, the natural response of the criti-
cally damped circuit is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term, or

(8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact,
Fig. 8.9(b) is a sketch of which reaches a maximum value of

at one time constant, and then decays all the way to zero.t � 1�a,e�1�a
i(t) � te�at,

i(t) � (A2 � A1t)e�at

A2

i � (A1t � A2)e�at

eati � A1t � A2

d

dt
 (eati) � A1

eat
 

di

dt
� eatai � A1

di

dt
� ai � A1e�at

A1

f � A1e�at,

df

dt
� a f � 0

f �
di

dt
� ai

d

dt
 adi

dt
� aib � a adi

dt
� aib � 0

d 
2i

dt2
� 2a 

di

dt
� a2i � 0

a � �0 � R�2L

A3

A3 � A1 � A2 

i(t) � A1e�at � A2e�at � A3e�at
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Figure 8.9
(a) Overdamped response, (b) critically
damped response, (c) underdamped
response.

t

i(t)

0

e–t

(c)

t1
�

i(t)

0

(b)

t

i(t)

0

(a)

2�
�d
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Underdamped Case ( )
For The roots may be written as

(8.22a)

(8.22b)

where and which is called the damping
frequency. Both and are natural frequencies because they help
determine the natural response; while is often called the undamped
natural frequency, is called the damped natural frequency. The natural
response is

(8.23)

Using Euler’s identities,

(8.24)
we get

(8.25)

Replacing constants and with constants and 
we write

(8.26)

With the presence of sine and cosine functions, it is clear that the nat-
ural response for this case is exponentially damped and oscillatory in
nature. The response has a time constant of and a period of

Figure 8.9(c) depicts a typical underdamped response.
[Figure 8.9 assumes for each case that .]

Once the inductor current is found for the RLC series circuit
as shown above, other circuit quantities such as individual element
voltages can easily be found. For example, the resistor voltage is

and the inductor voltage is . The inductor cur-
rent is selected as the key variable to be determined first in order
to take advantage of Eq. (8.1b).

We conclude this section by noting the following interesting, pecu-
liar properties of an RLC network:

1. The behavior of such a network is captured by the idea of damping,
which is the gradual loss of the initial stored energy, as evidenced by
the continuous decrease in the amplitude of the response. The damp-
ing effect is due to the presence of resistance R. The damping factor

determines the rate at which the response is damped. If 
then and we have an LC circuit with as the
undamped natural frequency. Since in this case, the response
is not only undamped but also oscillatory. The circuit is said to be
loss-less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made undamped,
overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C allows the flow of

a 6 �0

1�1LCa � 0,
R � 0,a

i(t)
vL � L di�dtvR � Ri,

i(t)
i(0) � 0

T � 2p��d.
1�a

i(t) � e�a t(B1 cos �d 
t � B2 sin �d 

t)

B2,B1j(A1 � A2)(A1 � A2)

� e�a t[(A1 � A2) cos �d 
t � j(A1 � A2) sin �d 

t]

 i(t) � e�a t[A1(cos �d 
t � j sin  �d 

t) � A2(cos �d 
t � j sin �d 

t)]

e 
ju �  cos u � j sin  u,  e�ju �  cos  u � j sin  u

i(t) � A1e�(a�j�d)t � A2e�(a�j�d)t

� e�a t(A1e 
j�d t � A2e�j�d t)

�d

�0

�d�0

�d � 2�0
2 � a2,j � 2�1

 s2 � �a � 2�(�0
2 � a2) � �a � j�d

 s1 � �a � 2�(�0
2 � a2) � �a � j�d

a 6 �0, C 6 4L�R2.
A � �0
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R 0 produces a perfectly sinusoidal
response. This response cannot be
practically accomplished with L and C
because of the inherent losses in them.
See Figs 6.8 and 6.26. An electronic
device called an oscillator can pro-
duce a perfectly sinusoidal response.

�

Examples 8.5 and 8.7 demonstrate the
effect of varying R.

The response of a second-order circuit
with two storage elements of the same
type, as in Fig. 8.1(c) and (d), cannot
be oscillatory.
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energy back and forth between the two. The damped oscillation
exhibited by the underdamped response is known as ringing. It
stems from the ability of the storage elements L and C to transfer
energy back and forth between them.

3. Observe from Fig. 8.9 that the waveforms of the responses differ.
In general, it is difficult to tell from the waveforms the difference
between the overdamped and critically damped responses. The crit-
ically damped case is the borderline between the underdamped and
overdamped cases and it decays the fastest. With the same initial
conditions, the overdamped case has the longest settling time,
because it takes the longest time to dissipate the initial stored
energy. If we desire the response that approaches the final value
most rapidly without oscillation or ringing, the critically damped
circuit is the right choice.

324 Chapter 8 Second-Order Circuits

What this means in most practical cir-
cuits is  that we seek an overdamped
circuit that is as close as possible to a
critically damped circuit.

Example 8.3 In Fig. 8.8, and Calculate the charac-
teristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:
We first calculate

The roots are

or

Since we conclude that the response is overdamped. This is
also evident from the fact that the roots are real and negative.

a 7 �0,

s1 � �0.101,  s2 � �9.899

s1,2 � �a � 2a2 � �0
2 � �5 � 225 � 1

a �
R

2L
�

40

2(4)
� 5,  �0 �

12LC
�

124 � 1
4

� 1

C � 1�4 F.R � 40 �, L � 4 H,

Practice Problem 8.3 If and in Fig. 8.8, find and 
What type of natural response will the circuit have?

Answer: 1, 10, underdamped.�1 � j 9.95,

s2.a, �0, s1,C � 2 mFR � 10 �, L � 5 H,

Find in the circuit of Fig. 8.10. Assume that the circuit has reached
steady state at .

Solution:
For , the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at ,

i(0) �
10

4 � 6
� 1 A,  v(0) � 6i(0) � 6 V

t � 0

t 6 0

t � 0�
i(t)Example 8.4
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where is the initial current through the inductor and is the
initial voltage across the capacitor.

For the switch is opened and the voltage source is discon-
nected. The equivalent circuit is shown in Fig. 8.11(b), which is a source-
free series RLC circuit. Notice that the and resistors, which are
in series in Fig. 8.10 when the switch is opened, have been combined to
give in Fig. 8.11(b). The roots are calculated as follows:

or

Hence, the response is underdamped ( ); that is,

(8.4.1)

We now obtain and using the initial conditions. At 

(8.4.2)

From Eq. (8.5),

(8.4.3)

Note that is used, because the polarity of v in
Fig. 8.11(b) is opposite that in Fig. 8.8. Taking the derivative of in
Eq. (8.4.1),

Imposing the condition in Eq. (8.4.3) at gives

But from Eq. (8.4.2). Then

Substituting the values of and in Eq. (8.4.1) yields the
complete solution as

i(t) � e�9t( cos  4.359t � 0.6882  sin  4.359t) A

A2A1

�6 � �9 � 4.359A2  1  A2 � 0.6882

A1 � 1

�6 � �9(A1 � 0) � 4.359(�0 � A2)

t � 0

 � e�9t(4.359)(�A1 sin  4.359t � A2 cos  4.359t)

 
di

dt
� �9e�9t(A1  cos  4.359t � A2  sin  4.359t)

i(t)
v(0) � V0 � �6 V

di

dt
 2
t�0

� � 

1

L
 [Ri(0) � v(0)] � �2[9(1) � 6] � �6 A/s

i(0) � 1 � A1

t � 0,A2A1

i(t) � e�9t(A1 cos  4.359t � A2 sin  4.359 t)

a 6 �

s1,2 � �9 � j 4.359

s1,2 � �a � 2a2 � �0
2 � �9 � 281 � 100

a �
R

2L
�

9

2(1
2)

� 9,  �0 �
12LC

�
121

2 � 1
50

� 10

R � 9 �

6-�3-�

t 7 0,

v(0)i(0)
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0.5 H

0.02 F

9 Ω

i

(b)

10 V

4 Ω

v
+

−
6 Ω+

−

i

(a)

v
+

−

Figure 8.10
For Example 8.4. Figure 8.11

The circuit in Fig. 8.10: (a) for , (b) for .t 7 0t 6 0

t = 0

10 V

4 Ω

0.5 H

0.02 F v
+

−

3 Ω

+
−

6 Ω

i
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326 Chapter 8 Second-Order Circuits

Practice Problem 8.4 The circuit in Fig. 8.12 has reached steady state at If the make-
before-break switch moves to position b at calculate for

Answer: e�2.5t(10 cos 1.6583t � 15.076 sin 1.6583t) A.

t 7 0.
i(t)t � 0,

 t � 0�.

t = 0

a b

100 V

10 Ω

1 H

+
− 5 Ω

i(t)

F1
9

Figure 8.12
For Practice Prob. 8.4.

v

R L CI0v

+

−

v

+

−

V0

+

−

Figure 8.13
A source-free parallel RLC circuit.

The Source-Free Parallel RLC Circuit
Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume ini-
tial inductor current and initial capacitor voltage ,

(8.27a)

(8.27b)

Since the three elements are in parallel, they have the same voltage v
across them. According to passive sign convention, the current is enter-
ing each element; that is, the current through each element is leaving
the top node. Thus, applying KCL at the top node gives

(8.28)

Taking the derivative with respect to t and dividing by C results in

(8.29)

We obtain the characteristic equation by replacing the first derivative
by s and the second derivative by . By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equa-
tion is obtained as

(8.30)

The roots of the characteristic equation are

or

(8.31)

where

(8.32)a �
1

2RC
,  �0 �

12LC

s1,2 � �a � 2a2 � �0
2

s1,2 � � 

1

2RC
 � Ba 1

2RC
b2

�
1

LC

s2 �
1

RC
 s �

1

LC
� 0

s2

d 
2v

dt 
2 �

1

RC
 

dv
dt

�
1

LC
 v � 0

v
R

�
1

L
 �

t

��

 v (t)dt � C 

dv
dt

� 0

 v(0) � V0

 i(0) � I0 �
1

L
 �

0

�

 v(t) dt

V0I0

8.4
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The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three pos-
sible solutions, depending on whether or 
Let us consider these cases separately.

Overdamped Case ( )
From Eq. (8.32), when The roots of the charac-
teristic equation are real and negative. The response is

(8.33)

Critically Damped Case ( )
For The roots are real and equal so that the
response is

(8.34)

Underdamped Case ( )
When In this case the roots are complex and may
be expressed as

(8.35)

where

(8.36)

The response is

(8.37)

The constants and in each case can be determined from the
initial conditions. We need and The first term is known
from Eq. (8.27b). We find the second term by combining Eqs. (8.27)
and (8.28), as

or

(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or criti-
cally damped.

Having found the capacitor voltage for the parallel RLC cir-
cuit as shown above, we can readily obtain other circuit quantities such
as individual element currents. For example, the resistor current is

and the capacitor voltage is We have selected
the capacitor voltage as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current for the RLC series circuit, whereas we first found
the capacitor voltage for the parallel RLC circuit.v(t)

i(t)

v(t)
vC � C dv�dt.iR � v�R

v(t)

dv(0)

dt
� � 

(V0 � RI0)

RC

V0

R
� I0 � C 

dv(0)

dt
� 0

dv(0)�dt.v(0)
A2A1

v(t) � e�a t(A1 cos �dt � A2 sin �dt)

�d � 2�0
2 � a2

s1,2 � �a � j�d

a 6 �0, L 6 4R2C.
A � �0

v(t) � (A1 � A2t)e�a t

 L � 4R2C.a � �0,
A � �0

v(t) � A1es1t � A2es2t

L 7 4R2C.a 7 �0

A � �0

a 6 �0.a � �0,a 7 �0,
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328 Chapter 8 Second-Order Circuits

In the parallel circuit of Fig. 8.13, find for assuming
and Consider these cases:

and 

Solution:

■ CASE 1 If 

Since in this case, the response is overdamped. The roots of
the characteristic equation are

and the corresponding response is

(8.5.1)

We now apply the initial conditions to get and 

(8.5.2)

But differentiating Eq. (8.5.1),

At 

(8.5.3)

From Eqs. (8.5.2) and (8.5.3), we obtain and 
Substituting and in Eq. (8.5.1) yields

(8.5.4)

■ CASE 2 When 

while remains the same. Since the response is
critically damped. Hence, and

(8.5.5)

To get and we apply the initial conditions

(8.5.6)

But differentiating Eq. (8.5.5),

dv
dt

� (�10A1 � 10A2t � A2)e�10t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

5 � 10 � 10�3 � �100

v(0) � 5 � A1

A2,A1

v(t) � (A1 � A2t)e�10t

s1 � s2 � �10,
a � �0 � 10,�0 � 10

a �
1

2RC
�

1

2 � 5 � 10 � 10�3 � 10

R � 5 �,

v(t) � �0.2083e�2t � 5.208e�50t

A2A1

A2 � 5.208.A1 � �0.2083

�260 � �2A1 � 50A2

t � 0,

dv
dt

� �2A1e�2t � 50A2e�50t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

1.923 � 10 � 10�3 � �260

v(0) � 5 � A1 � A2

A2.A1

v(t) � A1e�2t � A2e�50t

s1,2 � �a � 2a2 � �0
2 � �2, �50

a 7 �0 

�0 �
12LC

�
121 � 10 � 10�3

� 10

a �
1

2RC
�

1

2 � 1.923 � 10 � 10�3 � 26

R � 1.923 �,

R � 6.25 �.R � 1.923 �, R � 5 �,
C � 10 mF.i(0) � 0, L � 1 H,v(0) � 5 V,

t 7 0,v(t)Example 8.5
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At 

(8.5.7)

From Eqs. (8.5.6) and (8.5.7), and Thus,

(8.5.8)

■ CASE 3 When 

while remains the same. As in this case, the response
is underdamped. The roots of the characteristic equation are

Hence,

(8.5.9)

We now obtain and as

(8.5.10)

But differentiating Eq. (8.5.9),

At 

(8.5.11)

From Eqs. (8.5.10) and (8.5.11), and . Thus,

(8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.

v(t) � (5 cos 6t � 6.667 sin 6t)e�8t

A2 � �6.667A1 � 5

�80 � �8A1 � 6A2

t � 0,

dv
dt

� (�8A1  cos  6t � 8A2  sin  6t � 6A1  sin  6t � 6A2  cos  6t)e�8t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

6.25 � 10 � 10�3 � �80

v(0) � 5 � A1

A2,A1

v(t) � (A1 cos 6t � A2 sin 6t)e�8t

s1,2 � �a � 2a2 � �0
2 � �8 � j6

a 6 �0�0 � 10

a �
1

2RC
�

1

2 � 6.25 � 10 � 10�3 � 8

R � 6.25 �,

v(t) � (5 � 50t)e�10t V

A2 � �50.A1 � 5

�100 � �10A1 � A2

t � 0,
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Figure 8.14
For Example 8.5: responses for three degrees of damping.

0.50 1 1.5
–1

0

1
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3
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v (t) V

Overdamped
Critically damped

Underdamped
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330 Chapter 8 Second-Order Circuits

In Fig. 8.13, let
Find for

Answer: �2te�10t u(t) V.

t 7 0.v(t)
R �2 �, L � 0.4 H, C �25 mF, v(0) �0, i(0)� 50 mA.Practice Problem 8.5

Find for in the RLC circuit of Fig. 8.15.t 7 0v(t)Example 8.6

40 V

0.4 H

50 Ω 20 �F

30 Ω

+
−

i

t = 0 v
+

−

Figure 8.15
For Example 8.6.

Solution:
When the switch is open; the inductor acts like a short circuit
while the capacitor behaves like an open circuit. The initial voltage across
the capacitor is the same as the voltage across the - resistor; that is,

(8.6.1)

The initial current through the inductor is

The direction of i is as indicated in Fig. 8.15 to conform with the
direction of in Fig. 8.13, which is in agreement with the convention
that current flows into the positive terminal of an inductor (see Fig. 6.23).
We need to express this in terms of , since we are looking for v.

(8.6.2)

When , the switch is closed. The voltage source along with the
resistor is separated from the rest of the circuit. The parallel RLC

circuit acts independently of the voltage source, as illustrated in Fig. 8.16.
Next, we determine that the roots of the characteristic equation are

or

s1 � �854,  s2 � �146

 � �500 � 2250,000 � 124,997.6 � �500 � 354

 s1,2 � �a � 2a2 � �2
0

�0 �
12LC

�
120.4 � 20 � 10�6

� 354

a �
1

2RC
�

1

2 � 50 � 20 � 10�6 � 500

30-�
t 7 0

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

25 � 50 � 0.5

50 � 20 � 10�6 � 0

dv�dt

I0

i(0) � � 

40

30 � 50
� �0.5 A

v(0) �
50

30 � 50
 (40) �

5

8
� 40 � 25 V

�50

t 6 0,
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4.5 A 4 mF20 Ω 10 H

t = 0

Figure 8.17
For Practice Prob. 8.6.

Since we have the overdamped response

(8.6.3)

At we impose the condition in Eq. (8.6.1),

(8.6.4)

Taking the derivative of in Eq. (8.6.3),

Imposing the condition in Eq. (8.6.2),

or

(8.6.5)

Solving Eqs. (8.6.4) and (8.6.5) gives

Thus, the complete solution in Eq. (8.6.3) becomes

v(t) � �5.156e�854t � 30.16e�146t V

A1 � �5.156,  A2 � 30.16

0 � 854A1 � 146A2

dv(0)

dt
� 0 � �854A1 � 146A2

dv
dt

� �854A1e�854t � 146A2e�146t

v(t)

v(0) � 25 � A1 � A2  1  A2 � 25 � A1

t � 0,

v(t) � A1e�854t � A2e�146t

a 7 �0,

8.5 Step Response of a Series RLC Circuit 331

40 V

0.4 H

50 Ω 20 �F

30 Ω

+
−

Figure 8.16
The circuit in Fig. 8.15 when . The parallel
RLC circuit on the right-hand side acts independently
of the circuit on the left-hand side of the junction.

t 7 0

Practice Problem 8.6Refer to the circuit in Fig. 8.17. Find for .

Answer: 150(e�10t � e�2.5t) V.

t 7 0v(t)

Step Response of a Series RLC Circuit
As we learned in the preceding chapter, the step response is obtained
by the sudden application of a dc source. Consider the series RLC cir-
cuit shown in Fig. 8.18. Applying KVL around the loop for ,

(8.39)

But

i � C 

dv
dt

L 

di

dt
� Ri � v � Vs

t 7 0

8.5

Vs

R L

C+
−

i
t = 0

v
+

−

Figure 8.18
Step voltage applied to a series RLC circuit.
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Substituting for i in Eq. (8.39) and rearranging terms,

(8.40)

which has the same form as Eq. (8.4). More specifically, the coeffi-
cients are the same (and that is important in determining the frequency
parameters) but the variable is different. (Likewise, see Eq. (8.47).)
Hence, the characteristic equation for the series RLC circuit is not
affected by the presence of the dc source.

The solution to Eq. (8.40) has two components: the transient
response and the steady-state response that is,

(8.41)

The transient response is the component of the total response that
dies out with time. The form of the transient response is the same as the
form of the solution obtained in Section 8.3 for the source-free circuit,
given by Eqs. (8.14), (8.21), and (8.26). Therefore, the transient response

for the overdamped, underdamped, and critically damped cases are:

(8.42a)

(8.42b)

(8.42c)

The steady-state response is the final value of . In the circuit in
Fig. 8.18, the final value of the capacitor voltage is the same as the
source voltage . Hence,

(8.43)

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

(8.44a)

(8.44b)

(8.44c)

The values of the constants and are obtained from the initial con-
ditions: and Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage is known, we can determine which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is while the inductor voltage is

Alternatively, the complete response for any variable can be
found directly, because it has the general form

(8.45)

where the is the final value and is the transient response.
The final value is found as in Section 8.2. The transient response has
the same form as in Eq. (8.42), and the associated constants are deter-
mined from Eq. (8.44) based on the values of and dx(0)�dt.x(0)

xt(t)xss � x(�)

x(t) � xss(t) � xt(t)

x(t)
vL � L di�dt.

vR � iR,

i � C dv�dt,vC � v

dv(0)�dt.v(0)
A2A1

v(t) � Vs � (A1 cos �dt � A2 sin �dt)e�at  (Underdamped)

v(t) � Vs � (A1 � A2t)e�a t  (Critically damped)

v(t) � Vs � A1es1t � A2es2t  (Overdamped)

vss(t) � v(�) � Vs

Vs

v(t)

vt 
(t) � (A1 cos �d t � A2 sin �dt)e�at  (Underdamped)

vt 
(t) � (A1 � A2t)e�at  (Critically damped)

vt 
(t) � A1es1t � A2es2t  (Overdamped)

vt 
(t)

vt 
(t)

v(t) � vt 
(t) � vss 

(t)

vss(t);vt(t)

d 
2v

dt 
2 �

R

L
 
dv
dt

�
v

LC
�

Vs

LC
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8.5 Step Response of a Series RLC Circuit 333

For the circuit in Fig. 8.19, find and for . Consider these
cases: , and .

Solution:

■ CASE 1 When For the switch is closed for a
long time. The capacitor behaves like an open circuit while the
inductor acts like a short circuit. The initial current through the
inductor is

and the initial voltage across the capacitor is the same as the voltage
across the resistor; that is,

For the switch is opened, so that we have the resistor
disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows:

Since we have the overdamped natural response. The total
response is therefore

where is the steady-state response. It is the final value of the
capacitor voltage. In Fig. 8.19, Thus,

(8.7.1)

We now need to find and using the initial conditions.

or

(8.7.2)

The current through the inductor cannot change abruptly and is the
same current through the capacitor at because the inductor and
capacitor are now in series. Hence,

Before we use this condition, we need to take the derivative of v in
Eq. (8.7.1).

(8.7.3)

At 

(8.7.4)
dv(0)

dt
� 16 � �A1 � 4A2

t � 0,

dv
dt

� �A1e�t � 4A2e�4t

i(0) � C 

dv(0)

dt
� 4  1  

dv(0)

dt
�

4

C
�

4

0.25
� 16

t � 0�

�20 � A1 � A2

v(0) � 4 � 24 � A1 � A2

A2A1

v(t) � 24 � (A1e�t � A2e�4t)

vf � 24 V.
vss

v(t) � vss � (A1e�t � A2e�4t)

a 7 �0,

s1,2 � �a � 2a2 � �0
2 � �1, �4

a �
R

2L
�

5

2 � 1
� 2.5,  �0 �

12LC
�

121 � 0.25
� 2

1-�t 7 0,

v(0) � 1i(0) � 4 V

1-�

i(0) �
24

5 � 1
� 4 A

t 6 0,R � 5 �.

R � 1 �R � 5 �, R � 4 �
t 7 0 i(t)v(t) Example 8.7

Figure 8.19
For Example 8.7.

24 V

R 1 H

+
− 0.25 F 1 Ω

i

t = 0

v
+

−
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From Eqs. (8.7.2) and (8.7.4), and Substituting
and in Eq. (8.7.1), we get

(8.7.5)

Since the inductor and capacitor are in series for the inductor
current is the same as the capacitor current. Hence,

Multiplying Eq. (8.7.3) by and substituting the values of 
and gives

(8.7.6)

Note that as expected.

■ CASE 2 When Again, the initial current through the
inductor is

and the initial capacitor voltage is

For the characteristic roots,

while remains the same. In this case, and
we have the critically damped natural response. The total response is
therefore

and, as before 

(8.7.7)

To find and we use the initial conditions. We write

(8.7.8)

Since or

From Eq. (8.7.7),

(8.7.9)

At 

(8.7.10)
dv(0)

dt
� 19.2 � �2A1 � A2

t � 0,

dv
dt

� (�2A1 � 2tA2 � A2)e�2t

dv(0)

dt
�

4.8

C
� 19.2

i(0) � C dv(0)�dt � 4.8

v(0) � 4.8 � 24 � A1  1  A1 � �19.2

A2,A1

v(t) � 24 � (A1 � A2t)e�2t

vss � 24 V,

v(t) � vss � (A1 � A2t)e�2t

s1 � s2 � �a � �2,�0 � 2

a �
R

2L
�

4

2 � 1
� 2

v(0) � 1i(0) � 4.8 V

i(0) �
24

4 � 1
� 4.8 A

R � 4 �.

i(0) � 4 A,

i(t) �
4

3
 (4e�t � e�4t) A

A2

A1C � 0.25

i(t) � C 

dv
dt

t 7 0,

v(t) � 24 �
4

3
 (�16e�t � e�4t) V

A2A1

A2 � 4�3.A1 � �64�3
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From Eqs. (8.7.8) and (8.7.10), and . Thus,
Eq. (8.7.7) becomes

(8.7.11)

The inductor current is the same as the capacitor current; that is,

Multiplying Eq. (8.7.9) by and substituting the values of 
and gives

(8.7.12)

Note that as expected.

■ CASE 3 When . The initial inductor current is

and the initial voltage across the capacitor is the same as the voltage
across the resistor,

Since , we have the underdamped response

The total response is therefore

(8.7.13)

We now determine and We write

(8.7.14)

Since 

(8.7.15)

But

(8.7.16)

At 

Substituting gives and Eq. (8.7.13) becomes

(8.7.17)

The inductor current is

i(t) � C 

dv
dt

v(t) � 24 � (21.694 sin 1.936t � 12 cos 1.936t)e�0.5t V

A2 � 21.694,A1 � �12

dv(0)

dt
� 48 � (�0 � 1.936 A2) � 0.5(A1 � 0)

t � 0,

dv
dt

� e�0.5t(�1.936A1 sin 1.936t � 1.936 A2 cos 1.936t)

� 0.5e�0.5t(A1 cos 1.936t � A2 sin 1.936t)

dv(0)

dt
�

12

C
� 48

i(0) � C dv(0)�dt � 12,

v(0) � 12 � 24 � A1  1  A1 � �12

A2.A1

v(t) � 24 � (A1 cos 1.936t � A2 sin 1.936t)e�0.5t

s1,2 � �a � 2a2 � �0
2 � �0.5 � j1.936

a � 0.5 6 �0 � 2

a �
R

2L
�

1

2 � 1
� 0.5

v(0) � 1i(0) � 12 V

1-�

i(0) �
24

1 � 1
� 12 A

R � 1 �

i(0) � 4.8 A,

i(t) � (4.8 � 9.6t)e�2t A

A2

A1C � 0.25

i(t) � C 

dv
dt

v(t) � 24 � 19.2(1 � t)e�2t V

A2 � �19.2A1 � �19.2

8.5 Step Response of a Series RLC Circuit 335
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Multiplying Eq. (8.7.16) by and substituting the values of 
and gives

(8.7.18)

Note that as expected.
Figure 8.20 plots the responses for the three cases. From this

figure, we observe that the critically damped response approaches the
step input of 24 V the fastest.

i(0) � 12 A,

i(t) � (3.1  sin  1.936t � 12  cos  1.936t)e�0.5t A

A2

A1C � 0.25

336 Chapter 8 Second-Order Circuits

Figure 8.20
For Example 8.7: response for three degrees of damping.

Having been in position a for a long time, the switch in Fig. 8.21 is
moved to position b at Find and for t 7 0.vR(t) v(t)t � 0.

Practice Problem 8.7

Figure 8.21
For Practice Prob. 8.7.

Answer:
3.464e�2t sin 3.464t V.

15 � (1.7321 sin 3.464t � 3 cos 3.464t)e�2t V,

Step Response of a Parallel RLC Circuit
Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of a dc current. Applying KCL at the top
node for 

(8.46)
v
R

� i � C 

dv
dt

� Is

t 7 0,

8.6

Figure 8.22
Parallel RLC circuit with an applied 
current.

t (s)

Underdamped

Overdamped

Critically damped

v (t) V

40

35

30

35

20

15

10

5

0
0 1 2 3 4 5 6 7 8

t = 0

a b

18 V

1 Ω

+
− 15 V +

−

10 Ω

2 Ω

2.5 H

− +vR

v
+

−
F1

40

Is CR Lt = 0

i

v
+

−
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But

Substituting for v in Eq. (8.46) and dividing by LC, we get

(8.47)

which has the same characteristic equation as Eq. (8.29).
The complete solution to Eq. (8.47) consists of the transient

response and the steady-state response that is,

(8.48)

The transient response is the same as what we had in Section 8.4. The
steady-state response is the final value of i. In the circuit in Fig. 8.22,
the final value of the current through the inductor is the same as the
source current Thus,

(8.49)

The constants and in each case can be determined from the initial
conditions for i and Again, we should keep in mind that Eq. (8.49)
only applies for finding the inductor current i. But once the inductor
current is known, we can find which is the same
voltage across inductor, capacitor, and resistor. Hence, the current
through the resistor is while the capacitor current is

Alternatively, the complete response for any variable 
may be found directly, using

(8.50)

where and are its final value and transient response, respectively.xtxss

x(t) � xss(t) � xt(t)

x(t)iC � C dv�dt.
iR � v�R,

v � L di�dt,iL � i

di�dt.
A2A1

i(t) � Is � (A1 cos �dt � A2 sin �dt)e�a t  (Underdamped)

i(t) � Is � (A1 � A2t)e�a t  (Critically damped)

i(t) � Is � A1es1t � A2es2t  (Overdamped)

Is.

i(t) � it 
(t) � iss 

(t)

iss;it(t)

d 
2i

dt 
2 �

1

RC
 
di

dt
�

i

LC
�

Is

LC

v � L 

di

dt

8.6 Step Response of a Parallel RLC Circuit 337

Example 8.8In the circuit of Fig. 8.23, find and for t 7 0.iR(t)i(t)

Figure 8.23
For Example 8.8.

Solution:
For the switch is open, and the circuit is partitioned into two inde-
pendent subcircuits. The 4-A current flows through the inductor, so that

i(0) � 4 A

t 6 0,

4 A 20 Ω20 H

iRi

+
− 30u(–t) V

t = 0

8 mF

20 Ω

v
+

−
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Since when and 0 when the voltage source
is operative for . The capacitor acts like an open circuit and the
voltage across it is the same as the voltage across the resistor
connected in parallel with it. By voltage division, the initial capacitor
voltage is

For the switch is closed, and we have a parallel RLC circuit
with a current source. The voltage source is zero which means it acts
like a short-circuit. The two resistors are now in parallel. They
are combined to give The characteristic roots are
determined as follows:

or

Since we have the overdamped case. Hence,

(8.8.1)

where is the final value of . We now use the initial conditions
to determine and At 

(8.8.2)

Taking the derivative of in Eq. (8.8.1),

so that at 

(8.8.3)

But

Substituting this into Eq. (8.8.3) and incorporating Eq. (8.8.2), we get

Thus, and Inserting and in Eq. (8.8.1)
gives the complete solution as

From we obtain and

iR(t) �
v(t)

20
�

L

20
  

di

dt
� 0.785e�11.978t � 0.0342e�0.5218t A

v(t) � L di�dti(t),

i(t) � 4 � 0.0655(e�0.5218t � e�11.978t) A

A2A1A2 � 0.0655.A1 � �0.0655

0.75 � (11.978 � 0.5218)A2  1  A2 � 0.0655

L 

di(0)

dt
� v(0) � 15  1  

di(0)

dt
�

15

L
�

15

20
� 0.75

di(0)

dt
� �11.978A1 � 0.5218A2

t � 0,

di

dt
� �11.978A1e�11.978t � 0.5218A2e�0.5218t

i(t)

i(0) � 4 � 4 � A1 � A2  1  A2 � �A1

t � 0,A2.A1

i(t)Is � 4

i(t) � Is � A1e�11.978t � A2e�0.5218t

a 7 �0,

s1 � �11.978,  s2 � �0.5218

 � �6.25 � 5.7282

 s1,2 � �a � 2a2 � �0
2 � �6.25 � 239.0625 � 6.25

�0 �
12LC

�
1220 � 8 � 10�3

� 2.5

a �
1

2RC
�

1

2 � 10 � 8 � 10�3 � 6.25

R � 20 � 20 � 10 �.
20-�

t 7 0,

v(0) �
20

20 � 20
 (30) � 15 V

20-�
t 6 0

t 7 0,t 6 030u(�t) � 30
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General Second-Order Circuits
Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit having one or
more independent sources with constant values. Although the series and
parallel RLC circuits are the second-order circuits of greatest interest,
other second-order circuits including op amps are also useful. Given a
second-order circuit, we determine its step response (which may
be voltage or current) by taking the following four steps:

1. We first determine the initial conditions and and the
final value as discussed in Section 8.2.

2. We turn off the independent sources and find the form of the tran-
sient response by applying KCL and KVL. Once a second-order
differential equation is obtained, we determine its characteristic
roots. Depending on whether the response is overdamped, critically
damped, or underdamped, we obtain with two unknown con-
stants as we did in the previous sections.

3. We obtain the steady-state response as

(8.51)

where is the final value of x, obtained in step 1.
4. The total response is now found as the sum of the transient

response and steady-state response

(8.52)

We finally determine the constants associated with the transient
response by imposing the initial conditions and 
determined in step 1.

We can apply this general procedure to find the step response of
any second-order circuit, including those with op amps. The following
examples illustrate the four steps.

dx(0)�dt,x(0)

x(t) � xt(t) � xss(t)

x(�)

xss (t) � x(�)

xt(t)

xt(t)

x(�),
dx(0)�dtx(0)

x(t)

8.7

8.7 General Second-Order Circuits 339

Find and for in the circuit of Fig. 8.24.

Answer: 10(1 � cos(0.25t)) A, 50 sin(0.25t) V.

t 7 0v(t)i(t) Practice Problem 8.8

Figure 8.24
For Practice Prob. 8.8.

A circuit may look complicated at first.
But once the sources are turned off in
an attempt to find the form of the tran-
sient response, it may be reducible to
a first-order circuit, when the storage
elements can be combined, or to a
parallel/series RLC circuit. If it is re-
ducible to a first-order circuit, the solu-
tion becomes simply what we had in
Chapter 7. If it is reducible to a parallel
or series RLC circuit, we apply the tech-
niques of previous sections in this
chapter.

Problems in this chapter can also be
solved by using Laplace transforms,
which are covered in Chapters 15
and 16.

Example 8.9Find the complete response v and then i for in the circuit of
Fig. 8.25.

Solution:
We first find the initial and final values. At the circuit is at steady
state. The switch is open; the equivalent circuit is shown in Fig. 8.26(a).
It is evident from the figure that

At the switch is closed; the equivalent circuit is in Fig. 8.26(b).
By the continuity of capacitor voltage and inductor current, we know that

(8.9.1)v(0�) � v(0�) � 12 V,  i(0�) � i(0�) � 0

t � 0�,

v(0�) � 12 V,  i(0�) � 0

t � 0�,

t 7 0

Figure 8.25
For Example 8.9.

10u(t) A  20 H

i

0.2 Fv
+

−

12 V +
−

4 Ω

2 Ω

t = 0

1 Hi

v
+

−
F1

2
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To get we use or Applying
KCL at node a in Fig. 8.26(b),

Hence,

(8.9.2)

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

(8.9.3)

Next, we obtain the form of the transient response for By
turning off the 12-V voltage source, we have the circuit in Fig. 8.27.
Applying KCL at node a in Fig. 8.27 gives

(8.9.4)

Applying KVL to the left mesh results in

(8.9.5)

Since we are interested in v for the moment, we substitute i from
Eq. (8.9.4) into Eq. (8.9.5). We obtain

or

From this, we obtain the characteristic equation as

with roots and Thus, the natural response is

(8.9.6)

where A and B are unknown constants to be determined later. The
steady-state response is

(8.9.7)

The complete response is

(8.9.8)

We now determine A and B using the initial values. From Eq. (8.9.1),
. Substituting this into Eq. (8.9.8) at gives

(8.9.9)12 � 4 � A � B  1  A � B � 8

t � 0v(0) � 12

v(t) � vt � vss � 4 � Ae�2t � Be�3t

vss (t) � v(�) � 4

vn(t) � Ae�2t � Be�3t

s � �3.s � �2

s2 � 5s � 6 � 0

d 
2v

dt 
2 � 5 

dv
dt

� 6v � 0

2v � 2 

dv
dt

�
1

2
 
dv
dt

�
1

2
 
d 

2v
dt 

2 � v � 0

4i � 1
di

dt
� v � 0

i �
v
2

�
1

2
 
dv
dt

t 7 0.

i(�) �
12

4 � 2
� 2 A,  v(�) � 2i(�) � 4 V

dv(0�)

dt
�

�6

0.5
� �12 V/s

0 � iC 
(0�) �

12

2
  1  iC 

(0�) � �6 A

i(0�) � iC 
(0�) �

v(0�)

2

 dv�dt � iC�C.C dv�dt � iCdv(0�)�dt,
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Figure 8.26
Equivalent circuit of the circuit in Fig. 8.25
for: (a) (b) t 7 0.t 6 0,

Figure 8.27
Obtaining the form of the transient
response for Example 8.9.

12 V +
−

4 Ω i

v

+

−

(a)

12 V +
−

4 Ω

2 Ω

1 H i

0.5 Fv
+

−

iC

(b)

a

4 Ω

2 Ω

1 Hi

a

v

v
+

−
F1

2
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Taking the derivative of in Eq. (8.9.8),

(8.9.10)

Substituting Eq. (8.9.2) into Eq. (8.9.10) at gives

(8.9.11)

From Eqs. (8.9.9) and (8.9.11), we obtain

so that Eq. (8.9.8) becomes

(8.9.12)

From we can obtain other quantities of interest by referring to
Fig. 8.26(b). To obtain i, for example,

(8.9.13)

Notice that in agreement with Eq. (8.9.1).i(0) � 0,

� 2 � 6e�2t � 4e�3t A,  t 7 0

 i �
v
2

�
1

2
 
dv
dt

� 2 � 6e�2t � 2e�3t � 12e�2t � 6e�3t

v,

v(t) � 4 � 12e�2t � 4e�3t V,  t 7 0

A � 12,  B � �4

�12 � �2A � 3B  1  2A � 3B � 12

t � 0

dv
dt

� �2Ae�2t � 3Be�3t

v
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Practice Problem 8.9Determine and i for in the circuit of Fig. 8.28. (See comments
about current sources in Practice Prob. 7.5.)

Answer: 3(1 � e�5t) A.12(1 � e�5t) V,

t 7 0v

Figure 8.28
For Practice Prob. 8.9.

Example 8.10Find for in the circuit of Fig. 8.29.

Solution:
This is an example of a second-order circuit with two inductors. We
first obtain the mesh currents and which happen to be the currents
through the inductors. We need to obtain the initial and final values of
these currents.

For so that For 
so that the equivalent circuit is as shown in Fig. 8.30(a). Due

to the continuity of inductor current,

(8.10.1)

(8.10.2)

Applying KVL to the left loop in Fig. 8.30(a) at 

7 � 3i1(0�) � vL1
(0�) � vo(0�)

t � 0�,

vL 2
(0�) � vo(0�) � 1[(i1(0�) � i2(0�)] � 0

i1(0�) � i1(0�) � 0,  i2(0�) � i2(0�) � 0

7u(t) � 7,
t 7 0,i1(0�) � 0 � i2(0�).7u(t) � 0,t 6 0,

i2,i1

t 7 0vo(t)

Figure 8.29
For Example 8.10.

t = 0

3 A10 Ω 4 Ω

2 H

i

v
+

−
F1

20

7u(t) V +
−

3 Ω

1 Ω vo

+

−i1

i2

H1
2

H1
5

ale80571_ch08_313-367.qxd  11/30/11  1:13 PM  Page 341



342 Chapter 8 Second-Order Circuits

Figure 8.30
Equivalent circuit of that in Fig. 8.29 for: (a) (b) t S �.t 7 0,

or

Since 

(8.10.3)

Similarly, since 

(8.10.4)

As the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From this figure,

(8.10.5)

Next, we obtain the form of the transient responses by removing
the voltage source, as shown in Fig. 8.31. Applying KVL to the two
meshes yields

(8.10.6)

and

(8.10.7)

From Eq. (8.10.6),

(8.10.8)

Substituting Eq. (8.10.8) into Eq. (8.10.7) gives

From this we obtain the characteristic equation as

which has roots and Hence, the form of the transient
response is

(8.10.9)i1n � Ae�3t � Be�10t

s � �10.s � �3

s2 � 13s � 30 � 0

 
d 

2i1
dt 

2 � 13 

di1
dt

� 30i1 � 0

 4i1 �
1

2
  

di1
dt

�
4

5
  

di1
dt

�
1

10
  

d 
2i1

dt 
2 � i1 � 0

i2 � 4i1 �
1

2
 
di1
dt

i2 �
1

5
 
di2
dt

� i1 � 0

4i1 � i2 �
1

2
 
di1
dt

� 0

i1(�) � i2(�) �
7

3
 A

t S �,

di2(0�)

dt
�

vL 2

L 2
� 0

L2 di2�dt � vL 2 
,

di1(0�)

dt
�

vL1

L1
�

7
1
2

� 14 V/s

L1 di1�dt � vL1 
,

vL1
(0�) � 7 V

Figure 8.31
Obtaining the form of the transient
response for Example 8.10.

7 V +
−

3 Ω

1 Ω vo vL2

+

−

+ −vL1i1
+

−

i2

(a)

7 V +
−

3 Ω

1 Ω

i1
i2

(b)

L1 =
1
2 H

L2 = 1
5 H

3 Ω

1 Ωi1 i2

H1
2

H1
5
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Figure 8.32
For Practice Prob. 8.10.

where A and B are constants. The steady-state response is

(8.10.10)

From Eqs. (8.10.9) and (8.10.10), we obtain the complete response as

(8.10.11)

We finally obtain A and B from the initial values. From Eqs. (8.10.1)
and (8.10.11),

(8.10.12)

Taking the derivative of Eq. (8.10.11), setting in the derivative,
and enforcing Eq. (8.10.3), we obtain

(8.10.13)

From Eqs. (8.10.12) and (8.10.13), and . Thus,

(8.10.14)

We now obtain from Applying KVL to the left loop in
Fig. 8.30(a) gives

Substituting for in Eq. (8.10.14) gives

(8.10.15)

From Fig. 8.29,

(8.10.16)

Substituting Eqs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields

(8.10.17)

Note that as expected from Eq. (8.10.2).vo(0) � 0,

vo(t) � 2(e�3t � e�10t)

vo(t) � 1[i1(t) � i2(t)]

 �
7

3
�

10

3
 e�3t � e�10t

 i2(t) � �7 �
28

3
�

16

3
 e�3t � 4e�10t � 2e�3t � 5e�10t

i1

7 � 4i1 � i2 �
1

2
  

di1
dt

  1  i2 � �7 � 4i1 �
1

2
  

di1
dt

i1.i2

i1(t) �
7

3
�

4

3
 e�3t � e�10t

B � �1A � �4�3

14 � �3A � 10B

t � 0

0 �
7

3
� A � B

i1(t) �
7

3
� Ae�3t � Be�10t

i1ss � i1(�) �
7

3
 A
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Practice Problem 8.10For obtain in the circuit of Fig. 8.32. (Hint: First find 
and )

Answer: t 7 0.8(e�t � e�6t) V,

v2.
v1vo(t)t 7 0,

20u(t) V +
−

1 Ω 1 Ω

+ −vo

v1 v2

F1
2 F1

3
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Second-Order Op Amp Circuits
An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are
bulky and heavy, they are rarely used in practical op amp circuits. For
this reason, we will only consider RC second-order op amp circuits
here. Such circuits find a wide range of applications in devices such as
filters and oscillators.

The analysis of a second-order op amp circuit follows the same
four steps given and demonstrated in the previous section.

8.8

344 Chapter 8 Second-Order Circuits

In the op amp circuit of Fig. 8.33, find for when 
Let and C2 � 100 mF.C1 � 20 mF,R1 � R2 � 10 k�,10u(t) mV.

vs �t 7 0vo(t)Example 8.11

The use of op amps in second-order
circuits avoids the use of inductors,
which are undesirable in some
applications.

Figure 8.33
For Example 8.11.

Solution:
Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it a little differently. Due
to the voltage follower configuration, the voltage across is 
Applying KCL at node 1,

(8.11.1)

At node 2, KCL gives

(8.11.2)

But

(8.11.3)

We now try to eliminate and in Eqs. (8.11.1) to (8.11.3).
Substituting Eqs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

(8.11.4)

From Eq. (8.11.2),

(8.11.5)v1 � vo � R2C1 

dvo

dt

vs � v1

R1
� C2 

dv1

dt
� C2 

dvo

dt
� C1 

dvo

dt

v2v1

v2 � v1 � vo

v1 � vo

R2
� C1

dvo

dt

vs � v1

R1
� C2 

dv2

dt
�

v1 � vo

R2

vo.C1

vs

R1 v1

+
− C1

vo

R2

–
+

C2

v2+ −

1

2

vo

+

−
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Substituting Eq. (8.11.5) into Eq. (8.11.4), we obtain

or

(8.11.6)

With the given values of and Eq. (8.11.6) becomes

(8.11.7)

To obtain the form of the transient response, set in Eq. (8.11.7),
which is the same as turning off the source. The characteristic equation is

which has complex roots Hence, the form of the
transient response is

(8.11.8)

where A and B are unknown constants to be determined.
As the circuit reaches the steady-state condition, and the

capacitors can be replaced by open circuits. Since no current flows through
and under steady-state conditions and no current can enter the input

terminals of the ideal op amp, current does not flow through and
Thus,

The steady-state response is then

(8.11.9)

The complete response is

(8.11.10)

To determine A and B, we need the initial conditions. For 
so that

For the source is operative. However, due to capacitor voltage
continuity,

(8.11.11)

From Eq. (8.11.3),

and, hence, from Eq. (8.11.2),

(8.11.12)

We now impose Eq. (8.11.11) on the complete response in Eq. (8.11.10)
at for

(8.11.13)0 � 10 � A  1  A � �10

t � 0,

dvo(0�)

dt
�

v1 � vo

R2C1
� 0

v1(0�) � v2(0�) � vo(0�) � 0

vo(0�) � v2(0�) � 0

t 7 0,

vo(0�) � v2(0�) � 0

vs � 0,t 6 0,

vo(t) � vot � voss � 10 � e�t(A cos 2t � B sin 2t) mV

voss � vo(�) � vs � 10 mV,  t 7 0

vo(�) � v1(�) � vs

R2.R1

C2C1

t S �,

vot � e�t(A  cos  2t � B  sin  2t)

s1,2 � �1 � j2.

s2 � 2s � 5 � 0

vs � 0

d2vo

dt2 � 2 

dvo

dt
� 5vo � 5vs

C2,R1, R2, C1,

d2vo

dt2 � a 1

R1C2
�

1

R2C2
b dvo

dt
�

vo

R1R2C1C2
�

vs

R1R2C1C2

vs

R1
�

vo

R1
�

R2C1

R1
  

dvo

dt
� C2 

dvo

dt
� R2C1C2 

d2vo

dt2 � C2 

dvo

dt
� C1 

dvo

dt
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Taking the derivative of Eq. (8.11.10),

Setting and incorporating Eq. (8.11.12), we obtain

(8.11.14)

From Eqs. (8.11.13) and (8.11.14), and Thus, the
step response becomes

vo(t) � 10 � e�t(10  cos  2t � 5  sin  2t) mV,  t 7 0

B � �5.A � �10

0 � �A � 2B

t � 0

dvo

dt
� e�t(�A  cos  2t � B  sin  2t � 2A  sin  2t � 2B  cos  2t)
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In the op amp circuit shown in Fig. 8.34, find for
Assume that and 

Answer: (10 � 12.5e�t � 2.5e�5t) V, t 7 0.

C2 � 100 mF.C1 � 20 mF,R1 � R2 � 10 k�,t 7 0.
vo(t)vs � 10u(t) V,Practice Problem 8.11

Figure 8.34
For Practice Prob. 8.11.

PSpice Analysis of RLC Circuits
RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

8.9

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpice to plot for 

Solution:

1. Define. As true with most textbook problems, the problem is
clearly defined.

2. Present. The input is equal to a single square wave of
amplitude 12 V with a period of 2 s. We are asked to plot the
output, using PSpice.

3. Alternative. Since we are required to use PSpice, that is the
only alternative for a solution. However, we can check it using
the technique illustrated in Section 8.5 (a step response for a
series RLC circuit).

4. Attempt. The given circuit is drawn using Schematics as in
Fig. 8.36. The pulse is specified using VPWL voltage source,
but VPULSE could be used instead. Using the piecewise linear
function, we set the attributes of VPWL as 

and so forth, as shown in Fig. 8.36.
Two voltage markers are inserted to plot the input and output
voltages. Once the circuit is drawn and the attributes are set,
we select Analysis/Setup/Transient to open up the Transient
Analysis dialog box. As a parallel RLC circuit, the roots of the
characteristic equation are and Thus, we may set Final
Time as 4 s (four times the magnitude of the lower root). When

�9.�1

V2 � 12,T2 � 0.001,
V1 � 0,T1 � 0,

0 6 t 6 4 s.v(t)
Example 8.12

Figure 8.35
For Example 8.12.

vs

R1

+
− C2 vo

+

−

R2

C1

–
+

20 t (s)

12

vs

(a)

(b)

vs

3 H60 Ω

60 Ω+
− v

+

−
F1

27
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the schematic is saved, we select Analysis/Simulate and obtain
the plots for the input and output voltages under the PSpice A/D
window as shown in Fig. 8.37.

8.9 PSpice Analysis of RLC Circuits 347

Figure 8.36
Schematic for the circuit in Fig. 8.35(b).

Figure 8.37
For Example 8.12: input and output.

Now we check using the technique from Section 8.5. We
can start by realizing the Thevenin equivalent for the resistor-
source combination is (the open circuit voltage
divides equally across both resistors) The equivalent
resistance is Thus, we can now solve for the
response using 

We first need to solve for and 

Since 5 is greater than 3, we have the overdamped case

where

which yields Substituting this into the above, we get

At 
At

Note that from which implies that
Therefore, 

At 

i(t) �
(�A3e�(t�2) � 9A4e�9(t�2))

27

A3 � A4 � 5.086.t � 2 s,
v(t) � (A3e�(t�2) � A4e�9(t�2))u(t � 2) V.v(�) � 0.

VTh � 0,2 6 t 6 4 s,

v(2) ��6.75e�2� 0� 6 � 5.086 V.t � 2 s,� 6 � �3.552 V.
�6.75e�1 � 0.75e�9 � �2.483 � 0.0001t � 1 s, v(1) �

v(t) � (�6.75e�t � 0.75e�9t � 6) u(t) V for all 0 6 t 6 2 s.

0 � 9A2 � A2 � 6, or A2 � 0.75 and A1 � �6.75.
A1 � �9A2.

 i(0) � 0 � C(�A1 � 9A2)

 v(0) � 0 � A1 � A2 � 6

 v(t) � A1e�t � A2e�9t � 6

 i(t) � C 

dv(t)

dt
,

v(�) � 6 V,  i(0) � 0
v(0) � 0, s1,2 � �5 � 252 � 9 � �1, �9,

a � R�(2L) � 30�6 � 5  and  �0 �
1B3 

1

27

� 3

�0:a

R � 30 �, L � 3 H, and C � (1�27) F.
(60 � 60).30 �

� 6 V.
VTh � 12�2

T1=0
T2=0.0001
T3=2
T4=2.0001

V1=0
V2=12
V3=12
V4=0

V1

R1

60

R2 60 C1 0.03703

3H

L1

+

−

V V

6 V

2 V

8 V

10 V

12 V

4 V

0 V
0s 1.0s 2.0s 3.0s 4.0s
V(L1:2)  V(R1:1)

Time
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and

Therefore, 

Combining the two equations, we get 
which leads to and 

At At 

5. Evaluate. A check between the values calculated above and the
plot shown in Figure 8.37 shows good agreement within the
obvious level of accuracy.

6. Satisfactory? Yes, we have agreement and the results can be
presented as a solution to the problem.

0.7897 V.
t � 4 s, v(4) �v(3) � (2.147 � 0) � 2.147 V.t � 3 s,

v(t) � (5.835e�(t�2) � 0.749e�9(t�2)) u (t � 2) V

A4 � �0.749.A3 � 5.8350.9135,
�A3 � 9(5.086 � A3) �

�A3 � 9A4 � 0.9135.

i(2) �
(6.75e�2 � 6.75e�18)

27
� 33.83 mA
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Find using PSpice for if the pulse voltage in Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: See Fig. 8.39.

0 6 t 6 4 si(t)Practice Problem 8.12

Figure 8.38
For Practice Prob. 8.12.

Figure 8.39
Plot of i(t) for Practice Prob. 8.12.

For the circuit in Fig. 8.40, use PSpice to obtain i(t) for 0 6 t 6 3 s.Example 8.13

Figure 8.40
For Example 8.13.

Solution:
When the switch is in position a, the resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current

6-�

vs

5 Ω

1 mF 2 H+
−

i

3.0 A

1.0 A

2.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 I(L1)

Time

4 A 7 H5 Ω 6 Ω

i(t)
t = 0

a

b

F1
42
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Figure 8.41
For Example 8.13: (a) for dc analysis, (b) for transient analysis.

enters pin 1, the inductor is rotated three times before it is placed in
the circuit. The same applies for the capacitor. We insert pseudo-
components VIEWPOINT and IPROBE to determine the initial capacitor
voltage and initial inductor current. We carry out a dc PSpice analysis
by selecting Analysis/Simulate. As shown in Fig. 8.41(a), we obtain
the initial capacitor voltage as 0 V and the initial inductor current 
as 4 A from the dc analysis. These initial values will be used in the
transient analysis.

When the switch is moved to position b, the circuit becomes a source-
free parallel RLC circuit with the schematic in Fig. 8.41(b). We set the
initial condition for the capacitor and for the inductor.
A current marker is inserted at pin 1 of the inductor. We select Analysis/
Setup/Transient to open up the Transient Analysis dialog box and set
Final Time to 3 s. After saving the schematic, we select Analysis/
Transient. Figure 8.42 shows the plot of . The plot agrees with

which is the solution by hand calculation.i(t) � 4.8e�t � 0.8e�6t A,
i(t)

IC � 4 AIC � 0

i(0)

i(t)

Figure 8.42
Plot of for Example 8.13.i(t)

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtain for 

Answer: See Fig. 8.43.

0 6 t 6 2.v(t)
Practice Problem 8.13

Figure 8.43
Plot of for Practice Prob. 8.13.v(t)

IDC4A R1 5 7H L1

0

23.81m C1

(a)

R2 6 7H L1

0

23.81m C1

IC=0
IC=4A

(b)

I

0.0000 4.000E+00

11 V

9 V

10 V

8 V
0 s 0.5 s 1.0 s 1.5 s 2.0 s

 V(C1:1)

Time

4.00 A

3.92 A

3.96 A

3.88 A
0 s 1.0 s 2.0 s 3.0 s

 I(L1)

Time
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Duality
The concept of duality is a time-saving, effort-effective measure of
solving circuit problems. Consider the similarity between Eq. (8.4) and
Eq. (8.29). The two equations are the same, except that we must inter-
change the following quantities: (1) voltage and current, (2) resistance
and conductance, (3) capacitance and inductance. Thus, it sometimes
occurs in circuit analysis that two different circuits have the same equa-
tions and solutions, except that the roles of certain complementary ele-
ments are interchanged. This interchangeability is known as the
principle of duality.

8.10

350 Chapter 8 Second-Order Circuits

The duality principle asserts a parallelism between pairs of characteriz-
ing equations and theorems of electric circuits.

Dual pairs are shown in Table 8.1. Note that power does not appear in
Table 8.1, because power has no dual. The reason for this is the prin-
ciple of linearity; since power is not linear, duality does not apply. Also
notice from Table 8.1 that the principle of duality extends to circuit
elements, configurations, and theorems.

Two circuits that are described by equations of the same form, but
in which the variables are interchanged, are said to be dual to each other.

Two circuits are said to be duals of one another if they are described
by the same characterizing equations with dual quantities interchanged.

The usefulness of the duality principle is self-evident. Once we
know the solution to one circuit, we automatically have the solution
for the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13
are dual. Consequently, the result in Eq. (8.32) is the dual of that in
Eq. (8.11). We must keep in mind that the method described here for
finding a dual is limited to planar circuits. Finding a dual for a non-
planar circuit is beyond the scope of this textbook because nonplanar
circuits cannot be described by a system of mesh equations.

To find the dual of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given
a planar circuit, we construct the dual circuit by taking the following
three steps:

1. Place a node at the center of each mesh of the given circuit. Place
the reference node (the ground) of the dual circuit outside the
given circuit.

2. Draw lines between the nodes such that each line crosses an ele-
ment. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of cur-
rent sources, follow this rule: A voltage source that produces a pos-
itive (clockwise) mesh current has as its dual a current source whose
reference direction is from the ground to the nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal
or mesh equations. The mesh (or nodal) equations of the original circuit
are similar to the nodal (or mesh) equations of the dual circuit. The
duality principle is illustrated with the following two examples.

TABLE 8.1

Dual pairs.

Resistance R Conductance G
Inductance L Capacitance C
Voltage Current i
Voltage source Current source 
Node Mesh
Series path Parallel path 
Open circuit Short circuit 
KVL KCL
Thevenin Norton 

v

Even when the principle of linearity
applies, a circuit element or variable
may not have a dual.  For example,
mutual inductance (to be covered in
Chapter 13) has no dual.
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Construct the dual of the circuit in Fig. 8.44.

Solution:
As shown in Fig. 8.45(a), we first locate nodes 1 and 2 in the two
meshes and also the ground node 0 for the dual circuit. We draw a line
between one node and another crossing an element. We replace the line
joining the nodes by the duals of the elements which it crosses. For
example, a line between nodes 1 and 2 crosses a 2-H inductor, and we
place a 2-F capacitor (an inductor’s dual) on the line. A line between
nodes 1 and 0 crossing the 6-V voltage source will contain a 6-A
current source. By drawing lines crossing all the elements, we construct
the dual circuit on the given circuit as in Fig. 8.45(a). The dual circuit
is redrawn in Fig. 8.45(b) for clarity.

Example 8.14

Figure 8.44
For Example 8.14.

Figure 8.45
(a) Construction of the dual circuit of Fig. 8.44, (b) dual circuit redrawn.

Draw the dual circuit of the one in Fig. 8.46.

Answer: See Fig. 8.47.

Practice Problem 8.14

Figure 8.46
For Practice Prob. 8.14.

Figure 8.47
Dual of the circuit in Fig. 8.46.

Example 8.15Obtain the dual of the circuit in Fig. 8.48.

Solution:
The dual circuit is constructed on the original circuit as in Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes
1 and 2, we cross the 2-F capacitor, which is replaced by a 2-H
inductor.

6 V

2 Ω

10 mF2 H+
−

t = 0

6 V

6 A

10 mF

10 mH

2 H

2 F

+
−

2 F

t = 0

2

0

1

1 22 Ω

0.5 Ω

t = 0

6 A 10 mH

0.5 Ω

t = 0

0

(a) (b)

50 mA 4 H

3 F

10 Ω 50 mV 4 F+
− 0.1 Ω

3 H
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Joining nodes 2 and 3, we cross the resistor, which is replaced
by a resistor. We keep doing this until all the elements are crossed.
The result is in Fig. 8.49(a). The dual circuit is redrawn in Fig. 8.49(b).

1
20-Æ

20-�

352 Chapter 8 Second-Order Circuits

Figure 8.48
For Example 8.15.

Figure 8.49
For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currents and (all in the
clockwise direction) in the original circuit in Fig. 8.48. The 10-V
voltage source produces positive mesh current so that its dual is a
10-A current source directed from 0 to 1. Also, in Fig. 8.48
has as its dual in Fig. 8.49(b).v3 � �3 V

i3 � �3 A
i1,

i3i1, i2,

For the circuit in Fig. 8.50, obtain the dual circuit.

Answer: See Fig. 8.51.

Practice Problem 8.15

Figure 8.50
For Practice Prob. 8.15.

Figure 8.51
Dual of the circuit in Fig. 8.50.

10 V +
− 20 Ω

5 H

3 Ai2 i3i1 2 F

1 2 3

0

10 A 3 V5 F

0

2 H

+
−

1 2 3

(b)(a)

10 V

10 A

+
− 20 Ω

5 H

3 A

3 V

2 F

2 H

5 F

+
−

 Ω1
20

Ω1
20

2 A 20 V3 Ω

0.2 F 4 H

+
−

5 Ω

2 V 20 A

4 F0.2 H

+
−

Ω1
3

Ω1
5
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Applications
Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of these circuits cannot
be covered until we treat ac sources. For now, we will limit ourselves
to two simple applications: automobile ignition and smoothing circuits.

8.11.1 Automobile Ignition System

In Section 7.9.4, we considered the automobile ignition system as a
charging system. That was only a part of the system. Here, we con-
sider another part—the voltage generating system. The system is mod-
eled by the circuit shown in Fig. 8.52. The 12-V source is due to the
battery and alternator. The resistor represents the resistance of the
wiring. The ignition coil is modeled by the 8-mH inductor. The 
capacitor (known as the condenser to automechanics) is in parallel with
the switch (known as the breaking points or electronic ignition). In the
following example, we determine how the RLC circuit in Fig. 8.52 is
used in generating high voltage.

1-mF
4-�

8.11

8.11 Applications 353

Figure 8.52
Automobile ignition circuit.

Example 8.16Assuming that the switch in Fig. 8.52 is closed prior to find
the inductor voltage for .

Solution:
If the switch is closed prior to and the circuit is in steady state,
then

At , the switch is opened. The continuity conditions require that

(8.16.1)

We obtain from . Applying KVL to the mesh at 
yields

�12 � 4 � 3 � vL(0�) � 0 � 0  1  vL(0�) � 0

�12 � 4i(0�) � vL(0�) � vC 
(0�) � 0

t � 0�vL(0�)di(0�)�dt

i(0�) � 3 A,  vC 
(0�) � 0

t � 0�

i(0�) �
12

4
� 3 A,  vC 

(0�) � 0

t � 0�

t 7 0vL

t � 0�,

12 V

4 Ω

8 mH

i

vL

+

−

t = 0

1 �F

vC
+ −

Ignition coil
Spark plug

ale80571_ch08_313-367.qxd  11/30/11  1:14 PM  Page 353



Hence,

(8.16.2)

As the system reaches steady state, so that the capacitor acts
like an open circuit. Then

(8.16.3)

If we apply KVL to the mesh for we obtain

Taking the derivative of each term yields

(8.16.4)

We obtain the form of the transient response by following the procedure
in Section 8.3. Substituting and we get

Since the response is underdamped. The damped natural
frequency is

The form of the transient response is

(8.16.5)

where A and B are constants. The steady-state response is

(8.16.6)

so that the complete response is

(8.16.7)

We now determine A and B.

Taking the derivative of Eq. (8.16.7),

Setting and incorporating Eq. (8.16.2),

Thus,

(8.16.8)

The voltage across the inductor is then

(8.16.9)vL(t) � L 

di

dt
� �268e�250t sin 11,180t

i(t) � e�250t(3 cos 11,180t � 0.0671 sin 11,180t)

0 � �250A � 11,180B  1  B � 0.0671

t � 0

 � e�250t(�11,180A sin 11,180t � 11,180B cos 11,180t)

 
di

dt
� �250e�250t(A cos 11,180t � B sin 11,180t)

i(0) � 3 � A � 0  1  A � 3

i(t) � it(t) � iss (t) � e�250t(A cos 11,180t � B sin 11,180t)

iss (t) � i(�) � 0

it(t) � e�a(A cos �d 
t � B sin �d 

t)

�d � 2�2
0 � a2 � �0 � 1.118 � 104

a 6 �0,

a �
R

2L
� 250,  �0 �

12LC
� 1.118 � 104

C � 1 mF,R � 4 �, L � 8 mH,

d 
2i

dt 
2 �

R

L
  

di

dt
�

i

LC
� 0

12 � Ri � L 

di

dt
�

1

C
 �

t

0

  i dt � vC 
(0)

t 7 0,

i(�) � 0

t S �,

di(0�)

dt
�

vL(0�)

L
� 0
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This has a maximum value when sine is unity, that is, at 
or At , the inductor voltage reaches its

peak, which is

(8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in a typical automobile, a device known
as a transformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.

vL(t0) � �268e�250t0 � �259 V

time � t0t0 � 140.5 ms.p�2
11,180t0 �

8.11 Applications 355

In Fig. 8.52, find the capacitor voltage for .

Answer:

8.11.2 Smoothing Circuits

In a typical digital communication system, the signal to be transmitted
is first sampled. Sampling refers to the procedure of selecting samples
of a signal for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the
signal is applied to a digital-to-analog (D/A) converter whose output is
a “staircase” function, that is, constant at each time interval. In order
to recover the transmitted analog signal, the output is smoothed by let-
ting it pass through a “smoothing” circuit, as illustrated in Fig. 8.53.
An RLC circuit may be used as the smoothing circuit.

12 � 12e�250t cos 11,180t � 267.7e�250t sin 11,180t V.

t 7 0vC Practice Problem 8.16

vs(t) Smoothing
circuit

p(t)
D/A

v0(t)

Figure 8.53
A series of pulses is applied to the digital-
to-analog (D/A) converter, whose output
is applied to the smoothing circuit.

Example 8.17The output of a D/A converter is shown in Fig. 8.54(a). If the RLC
circuit in Fig. 8.54(b) is used as the smoothing circuit, determine the
output voltage vo(t).

Figure 8.54
For Example 8.17: (a) output of a D/A converter, (b) an RLC
smoothing circuit.

Solution:
This problem is best solved using PSpice. The schematic is shown in
Fig. 8.55(a). The pulse in Fig. 8.54(a) is specified using the piecewise

vs

1 Ω 1 H

1 F+
−

1 3

0 0

2

(b)(a)

t (s)–2
0

4

10

v0

+

−

vs
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linear function. The attributes of V1 are set as 
and so on. To be able to plot both

input and output voltages, we insert two voltage markers as shown. We
select Analysis/Setup/Transient to open up the Transient Analysis dialog
box and set Final Time as 6 s. Once the schematic is saved, we select
Analysis/Simulate to run and obtain the plots shown in Fig. 8.55(b).

V3 � 4,T3 � 1,V2 � 4,T2 � 0.001,
V1 � 0,T1 � 0,

356 Chapter 8 Second-Order Circuits

Figure 8.55
For Example 8.17: (a) schematic, (b) input and output voltages.

Rework Example 8.17 if the output of the D/A converter is as shown
in Fig. 8.56.

Answer: See Fig. 8.57.

Practice Problem 8.17

Figure 8.56
For Practice Prob. 8.17.

Figure 8.57
Result of Practice Prob. 8.17.

Summary
1. The determination of the initial values and and final

value is crucial to analyzing second-order circuits.
2. The RLC circuit is second-order because it is described by a

second-order differential equation. Its characteristic equation is

x(�)
dx(0)�dtx(0)

8.12

T1=0
T2=0.001
T3=1
T4=1.001
T5=2
T6=2.001
T7=3
T8=3.001

V1=0
V2=4
V3=4
V4=10
V5=10
V6=−2
V7=−2
V8=0

V1

R1

1

1 C1

0

1H

L1

+

−

V V
10 V

0 V

5 V

−5 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)

(a) (b)

t (s)

–3
–1

0

8
7

1 2 3 4

vs 8.0 V

0 V

4.0 V

−4.0 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)
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where is the damping factor and is the
undamped natural frequency. For a series circuit, for a
parallel circuit and for both cases 

3. If there are no independent sources in the circuit after switching
(or sudden change), we regard the circuit as source-free. The com-
plete solution is the natural response.

4. The natural response of an RLC circuit is overdamped, under-
damped, or critically damped, depending on the roots of the char-
acteristic equation. The response is critically damped when the
roots are equal ( or ), overdamped when the roots
are real and unequal ( or ), or underdamped when
the roots are complex conjugate ( or ).

5. If independent sources are present in the circuit after switching,
the complete response is the sum of the transient response and the
steady-state response.

6. PSpice is used to analyze RLC circuits in the same way as for RC
or RL circuits.

7. Two circuits are dual if the mesh equations that describe one circuit
have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

8. The automobile ignition circuit and the smoothing circuit are typ-
ical applications of the material covered in this chapter.

a 6 �0s1 � s2*
a 7 �0s1 	 s2

a � �0s1 � s2

�0 � 1�01LC.a � 1�2RC,
a � R�2L,

�0as2 � 2a s � �0
2 � 0,

Review Questions 357

Review Questions

8.1 For the circuit in Fig. 8.58, the capacitor voltage at
( just before the switch is closed) is:

(a) 0 V (b) 4 V (c) 8 V (d) 12 V

t � 0�
8.4 If the roots of the characteristic equation of an RLC

circuit are and , the response is:

(a) 

(b) 

(c) 

(d) 

where A and B are constants.

8.5 In a series RLC circuit, setting will produce:

(a) an overdamped response

(b) a critically damped response

(c) an underdamped response

(d) an undamped response

(e) none of the above

8.6 A parallel RLC circuit has and
The value of R that will produce unity damping factor is:

(a) (b) (c) (d) 

8.7 Refer to the series RLC circuit in Fig. 8.59.  What
kind of response will it produce?

(a) overdamped

(b) underdamped

(c) critically damped

(d) none of the above

4 �2 �1 �0.5 �

C � 0.25 F.L � 2 H

R � 0

Ae�2t � Be�3t

Ae�2t � Bte�3t

(A � 2Bt)e�3t

(A cos 2t � B sin  2t)e�3t

�3�2

Figure 8.58
For Review Questions 8.1 and 8.2.

8.2 For the circuit in Fig. 8.58, the initial inductor
current (at ) is:

(a) 0 A (b) 2 A (c) 6 A (d) 12 A

8.3 When a step input is applied to a second-order
circuit, the final values of the circuit variables are
found by:

(a) Replacing capacitors with closed circuits and
inductors with open circuits.

(b) Replacing capacitors with open circuits and
inductors with closed circuits.

(c) Doing neither of the above.

t � 0

4 Ω

2 F1 H12 V +
−

t = 0

2 Ω
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Figure 8.59
For Review Question 8.7.

8.8 Consider the parallel RLC circuit in Fig. 8.60.  What
type of response will it produce?

(a) overdamped

(b) underdamped

(c) critically damped

(d) none of the above

Figure 8.60
For Review Question 8.8.

8.9 Match the circuits in Fig. 8.61 with the following
items:

(i) first-order circuit

(ii) second-order series circuit

(iii) second-order parallel circuit

(iv) none of the above

Figure 8.61
For Review Question 8.9.

8.10 In an electric circuit, the dual of resistance is:

(a) conductance (b) inductance

(c) capacitance (d) open circuit

(e) short circuit

Answers: 8.1a, 8.2c, 8.3b, 8.4d, 8.5d, 8.6c, 8.7b,  8.8b,
8.9 (i)-c, (ii)-b, e, (iii)-a, (iv)-d, f,  8.10a.

Problems

Section 8.2 Finding Initial and Final Values

8.1 For the circuit in Fig. 8.62, find:

(a) and 

(b) and 

(c) and v(�).i(�)

dv(0�)�dt,di(0�)�dt

v(0�),i(0�)

Figure 8.62
For Prob. 8.1.

8.2 Using Fig. 8.63, design a problem to help other
students better understand finding initial and final
values. 

Figure 8.63
For Prob. 8.2.

1 H

1 F

1 Ω

1 F1 H1 Ω

vs

R

C1

(c)

is C2

C1

L
R1

L

(d)

(e)

is

C

(f)

R1

C2

R2

vs

R L

+
−

(a)

is C

(b)

RC

+
−

vs

R1 R2

+
− L

L

C

R2

12 V

0.4 F

6 Ω

+
−

2 H

4 Ω

i

t = 0

v
+

−

v

R2

LC

R3
+
−

iLiC

R1
iR

t = 0
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8.3 Refer to the circuit shown in Fig. 8.64.  Calculate:

(a) and 

(b) and 

(c) and vR(�).iL(�), vC 
(�),

dvR(0�)�dt,diL(0�)�dt, d vC 
(0�)�dt,

vR(0�),iL(0�), vC 
(0�),

Section 8.3 Source-Free Series RLC Circuit

8.7 A series RLC circuit has 
and What type of damping is exhibited
by the circuit?

8.8 Design a problem to help other students better
understand source-free RLC circuits.

8.9 The current in an RLC circuit is described by

If and find for 

8.10 The differential equation that describes the voltage
in an RLC network is

Given that obtain 

8.11 The natural response of an RLC circuit is described
by the differential equation

for which the initial conditions are and
Solve for 

8.12 If what value of C will make
an RLC series circuit:

(a) overdamped,

(b) critically damped,

(c) underdamped?

8.13 For the circuit in Fig. 8.68, calculate the value of R
needed to have a critically damped response.

R � 50 �, L � 1.5 H,

v(t).dv(0)�dt � 0.
v(0) � 10 V

d 
2v

dt 
2 � 2

dv
dt

� v � 0

v(t).v(0) � 0, dv(0)�dt � 10 V/s,

d 
2v

dt 
2 � 5

dv
dt

� 4v � 0

t 7 0.i(t)di(0)�dt � 0,i(0) � 10 A

d 
2i

dt 
2 � 10 

di

dt
� 25i � 0

C � 5 mF.
R � 20 k�, L � 0.2 mH,

Problems 359

Figure 8.64
For Prob. 8.3.

8.4 In the circuit of Fig. 8.65, find:

(a) and 

(b) and 

(c) and i(�).v(�)

di(0�)�dt,dv(0�)�dt

i(0�),v(0�)

Figure 8.65
For Prob. 8.4.

8.5 Refer to the circuit in Fig. 8.66. Determine:

(a) and 

(b) and 

(c) and v(�).i(�)

dv(0�)�dt,di(0�)�dt

v(0�),i(0�)

Figure 8.66
For Prob. 8.5.

8.6 In the circuit of Fig. 8.67, find:

(a) and 

(b) and 

(c) and vL(�).vR(�)

dvL(0�)�dt,dvR(0�)�dt

vL(0�),vR(0�)

Figure 8.67
For Prob. 8.6.

Figure 8.68
For Prob. 8.13.

2u(t) A

40 Ω

10 V

vR

+

−
10 Ω

+
−

IL
vC

+

−
F1

4

H1
8

4u(–t) V 4u(t) A

3 Ω 0.25 H

0.1 F 5 Ω+
−

i

v
+

−

4u(t) A

1 H

4 Ω v
+

−
6 Ω

i

F1
4

Vsu(t)

Rs R

+
− LC

+ −vR +

−
vL

R 4 H0.01 F

60 Ω
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8.14 The switch in Fig. 8.69 moves from position A to
position B at (please note that the switch must
connect to point B before it breaks the connection at
A, a make-before-break switch). Let v(0) � 0, find
v(t) for t 7 0.

t � 0

8.19 Obtain for in the circuit of Fig. 8.73.t 7 0v(t)

360 Chapter 8 Second-Order Circuits

Figure 8.69
For Prob. 8.14.

8.15 The responses of a series RLC circuit are

where and are the capacitor voltage and
inductor current, respectively. Determine the values
of R, L, and C.

8.16 Find for in the circuit of Fig. 8.70.t 7 0i(t)

iLvC

 iL(t) � 40e�20t � 60e�10t mA

 vC 
(t) � 30 � 10e�20t � 30e�10t V

Figure 8.70
For Prob. 8.16.

8.17 In the circuit of Fig. 8.71, the switch instantaneously
moves from position A to B at Find for all
t 
 0.

v(t)t � 0.

Figure 8.71
For Prob. 8.17.

8.18 Find the voltage across the capacitor as a function of
time for for the circuit in Fig. 8.72. Assume
steady-state conditions exist at t � 0�.

t 7 0

Figure 8.73
For Prob. 8.19.

Figure 8.72
For Prob. 8.18.

8.20 The switch in the circuit of Fig. 8.74 has been closed
for a long time but is opened at Determine 
for t 7 0.

i(t)t � 0.

Figure 8.74
For Prob. 8.20.

*8.21 Calculate for in the circuit of Fig. 8.75.t 7 0v(t)

Figure 8.75
For Prob. 8.21.

* An asterisk indicates a challenging problem.

30 Ω

10 Ω

4 H

80 V

t = 0

0.25 F−
+ +

−

A

B

v(t)

t = 0

30 V

10 Ω

2.5 H

1 mF
40 Ω+

−

60 Ω

i(t)

4 Ω 10 Ω 0.04 F
+

–
v (t)

B

A t = 0

5 A

0.25 H

1 Ω

5 Ω

t = 0

100 V 0.25 H 1 F−
+

t = 0

120 V

10 Ω

4 H

1 Fv

+
−

+

−

2 Ω

30 V

i(t)

+ −
t = 0

H1
2

F1
4

t = 0

24 V

12 Ω

60 Ω+
−

3 H

6 Ω

15 Ω

25 Ω

v
+

−
F1

27
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Section 8.4 Source-Free Parallel RLC Circuit

8.22 Assuming design a parallel RLC circuit
that has the characteristic equation 

8.23 For the network in Fig. 8.76, what value of C is
needed to make the response underdamped with
unity damping factor ( )?a � 1

s2 � 100s � 106 � 0.

R � 2 k�,

If the initial conditions are 
find 

8.28 A series RLC circuit is described by

Find the response when 
Let 

8.29 Solve the following differential equations subject to
the specified initial conditions

(a) 

(b) 

(c) 

(d) 

8.30 The step responses of a series RLC circuit are

(a) Find C. (b) Determine what type of damping is
exhibited by the circuit.

8.31 Consider the circuit in Fig. 8.79. Find and
vC 

(0�).
vL(0�)

iL(t) � 3e�2000t � 6e�4000t mA,  t 7 0

vC � 40 � 10e�2000t � 10e�4000t V,  t 7 0

di(0)�dt � �2
d 

2i�dt 
2 � 2 di�dt � 5i � 10, i(0) � 4,

dv(0)�dt � 1
d 

2v�dt 
2 � 2 dv�dt � v � 3, v(0) � 5,

di(0)�dt � 0
d 

2i�dt 
2 � 5 di�dt � 4i � 8, i(0) � �1,

d 
2v�dt 

2 � 4v � 12, v(0) � 0, dv(0)�dt � 2

i(0) � 1, di(0)�dt � 0.and C � 0.2 F.
L � 0.5 H, R � 4 �,

L 

d 
2i

 dt 
2 � R 

 di

 dt
�

i

C
� 10

v(t).
v(0) � 0 �  dv(0)�dt,

Problems 361

Figure 8.76
For Prob. 8.23.

8.24 The switch in Fig. 8.77 moves from position A to
position B at (please note that the switch must
connect to point B before it breaks the connection at
A, a make-before-break switch). Determine i(t) for
t 7 0.

t � 0

Figure 8.77
For Prob. 8.24.

Figure 8.78
For Prob. 8.25.

8.25 Using Fig. 8.78, design a problem to help other
students better understand source-free RLC circuits. 

Section 8.5 Step Response of a Series RLC Circuit

8.26 The step response of an RLC circuit is given by

Given that and solve for 

8.27 A branch voltage in an RLC circuit is described by

d 
2v

 dt 
2 � 4 

 dv
 dt

� 8v � 24

i(t).di(0)�dt � 4,i(0) � 2

d 
2i

 dt 
2 � 2 

 di

 dt
� 5i � 10

Figure 8.79
For Prob. 8.31.

Figure 8.80
For Prob. 8.32.

8.32 For the circuit in Fig. 8.80, find for t 7 0.v(t)

20 mH 10 mFC10 Ω

10 Ω10 mF20 Ω

A

B

4 A

t  = 0

0.25 H

i(t)

t = 0
v

R1

vo(t)R2
+
−

io(t)L

+

−
C

2u(t)

40 Ω

50 V1 FvL

+

−
0.5 H +

−

10 Ω

vC

+

−

1 H

4 Ω

50u(t) V

2u(–t) A

0.04 F

+ −

2 Ω
v+ −
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8.33 Find for in the circuit of Fig. 8.81.t 7 0v(t) *8.37 For the network in Fig. 8.85, solve for for t 7 0.i(t)

362 Chapter 8 Second-Order Circuits

Figure 8.81
For Prob. 8.33.

8.34 Calculate for in the circuit of Fig. 8.82.t 7 0i(t)

Figure 8.82
For Prob. 8.34.

8.35 Using Fig. 8.83, design a problem to help other
students better understand the step response of series
RLC circuits.

Figure 8.83
For Prob. 8.35.

8.36 Obtain and for in the circuit of
Fig. 8.84.

t 7 0i(t)v(t)

Figure 8.85
For Prob. 8.37.

Figure 8.86
For Prob. 8.38.

Figure 8.87
For Prob. 8.39.

8.38 Refer to the circuit in Fig. 8.86. Calculate for
t 7 0.

i(t)

8.39 Determine for in the circuit of Fig. 8.87.t 7 0v(t)

8.40 The switch in the circuit of Fig. 8.88 is moved from
position a to b at Determine for t 7 0.i(t)t � 0.

Figure 8.88
For Prob. 8.40.

3 A

1 H

10 Ω 5 Ω4 F

t = 0

4u(t) Av
+

−

50u(−t) V

5 Ω

+
−

i

v+ −

F1
16

H1
4

t = 0

V1
+
− V2

+
−

L

R

v
+

−
C

Figure 8.84
For Prob. 8.36.

6u(t) A

5 H

0.2 F

2 Ω

1 Ω

40 V

5 Ω

+ −

i(t)

v (t)

+

−

45 V

6 Ω

+
− 15 V +

−

6 Ω

t = 0

6 Ω

i(t)

H1
2

F1
8

10 Ω

2(1 − u(t )) A

10 Ω

5 Ω

i(t)

F1
3

H3
4

60u(t) V +
− 30u(t) V+

−20 Ω

0.25 H30 Ω 0.5 F

v+ −

12 V

2 H

+
−

2 Ω

14 Ω

6 Ω

4 A

i(t)
a

b

0.02 F

t = 0
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*8.41 For the network in Fig. 8.89, find for t 7 0.i(t) 8.46 Using Fig. 8.93, design a problem to help other
students better understand the step response of a
parallel RLC circuit.

Problems 363

Figure 8.89
For Prob. 8.41.

*8.42 Given the network in Fig. 8.90, find for t 7 0.v(t)

Figure 8.90
For Prob. 8.42.

8.43 The switch in Fig. 8.91 is opened at after the
circuit has reached steady state. Choose R and C
such that and �d � 30 rad/s.a � 8 Np/s

t � 0

Figure 8.91
For Prob. 8.43.

8.44 A series RLC circuit has the following parameters:
and What type of

damping does this circuit exhibit?

Section 8.6 Step Response of a Parallel 
RLC Circuit

8.45 In the circuit of Fig. 8.92, find and for 
Assume and i(0) � 1 A.v(0) � 0 V

t 7 0.i(t)v(t)

C � 10 nF.R � 1 k�, L � 1 H,

Figure 8.92
For Prob. 8.45.

Figure 8.93
For Prob. 8.46.

8.47 Find the output voltage in the circuit of
Fig. 8.94.

vo(t)

Figure 8.94
For Prob. 8.47.

8.48 Given the circuit in Fig. 8.95, find and for
t 7 0.

v(t)i(t)

Figure 8.95
For Prob. 8.48.

8.49 Determine for in the circuit of Fig. 8.96.t 7 0i(t)

Figure 8.96
For Prob. 8.49.

5 Ω

1 H

100 V 5 Ω+
−

t = 0

20 Ω

i

F1
25

4 A 1 Ω t = 0

2 A

6 Ω

1 H

v
+

−
F1

25

10 Ω

0.5 H

t = 0

40 V
R

C

−
+

4u(t) A 0.5 F 1 H2 Ω

i

v
+

−

v +
−

L

R

i(t)

C

3 A 10 mF5 Ω 1 H

10 Ω

t = 0

vo

+

−

1 Ω

6 V +
−

2 Ω
t = 0

1 H

i(t)

v (t)

+

−
F1

4

3 A5 Ω5 H

i(t)

12 V

t = 0

4 Ω

F1
20

+
−
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8.50 For the circuit in Fig. 8.97, find for t 7 0.i(t) 8.55 For the circuit in Fig. 8.101, find for 
Assume that and i(0�) � 2 A.v(0�) � 4 V

t 7 0.v(t)

364 Chapter 8 Second-Order Circuits

Figure 8.97
For Prob. 8.50.

8.51 Find for in the circuit of Fig. 8.98.t 7 0v(t)

Figure 8.98
For Prob. 8.51.

8.52 The step response of a parallel RLC circuit is

when the inductor is 50 mH. Find R and C.

Section 8.7 General Second-Order Circuits

8.53 After being open for a day, the switch in the circuit
of Fig. 8.99 is closed at Find the differential
equation describing t 7 0.i(t),

t � 0.

v � 10 � 20e�300t(cos 400t � 2 sin 400t) V,  t 
 0

Figure 8.99
For Prob. 8.53.

8.54 Using Fig. 8.100, design a problem to help other
students better understand general second-order
circuits. 

Figure 8.100
For Prob. 8.54.

Figure 8.101
For Prob. 8.55.

8.56 In the circuit of Fig. 8.102, find for t 7 0.i(t)

Figure 8.102
For Prob. 8.56.

8.57 If the switch in Fig. 8.103 has been closed for a long
time before but is opened at determine:

(a) the characteristic equation of the circuit,

(b) and for t 7 0.vRix

t � 0,t � 0

Figure 8.103
For Prob. 8.57.

8.58 In the circuit of Fig. 8.104, the switch has been in
position 1 for a long time but moved to position 2 at

Find:

(a) 

(b) for t 
 0.v(t)

v(0�), dv(0�)�dt,

t � 0.

Figure 8.104
For Prob. 8.58.

6u(t) A 40 Ω10 mF 4 H

i(t)

30 V +
−

10 Ω

io CLR

t = 0

v
+

−

80 Ω

10 mF 0.25 H120 V +
−

t = 0

i

R2

R3

C
R1

A

B

I

t = 0

L

i

v
+

−

2 Ω

0.5 F0.1 F
i
4

v
+

−

i

20 V

6 Ω

4 Ω

t = 0

+
−

i

F1
25

H1
4

t = 0

16 V

1 H

+
−

8 Ω
12 Ω

vR

+

−

ix

F1
36

0.5 Ω

8 Ω

0.25 H
1 F 4 V

2

t = 0

1

+

–
v −

+
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8.59 The switch in Fig. 8.105 has been in position 1 for
At it is moved from position 1 to the

top of the capacitor at . Please note that the
switch is a make before break switch, it stays in
contact with position 1 until it makes contact with
the top of the capacitor and then breaks the contact at
position 1. Determine v(t).

t � 0
t � 0,t 6 0.

8.64 Using Fig. 8.109, design a problem to help other
students better understand second-order op amp
circuits. 

Problems 365

Figure 8.105
For Prob. 8.59.

8.60 Obtain and for in the circuit of Fig. 8.106.t 7 0i2i1

Figure 8.106
For Prob. 8.60.

8.61 For the circuit in Prob. 8.5, find i and for 

8.62 Find the response for in the circuit of
Fig. 8.107. Let 2 H, and C � 1�18 F.R � 3 �, L �

t 7 0vR(t)

t 7 0.v

Figure 8.107
For Prob. 8.62.

Section 8.8 Second-Order Op Amp Circuits

8.63 For the op amp circuit in Fig. 8.108, find the
differential equation for i(t).

Figure 8.108
For Prob. 8.63.

Figure 8.109
For Prob. 8.64.

Figure 8.110
For Prob. 8.65.

8.66 Obtain the differential equations for in the op
amp circuit of Fig. 8.111.

vo(t)

Figure 8.111
For Prob. 8.66.

8.65 Determine the differential equation for the op amp
circuit in Fig. 8.110. If and

find for Let 
and C � 1 mF.

R � 100 k�t 7 0.vov2(0�) � 0 V,
v1(0�) � 2 V

4 Ω

16 Ω

4 H

40 V
+

1 t = 0

–
v F1

16
−
+

4u(t) A 1 H2 Ω

i2i1

1 H

3 Ω

10u(t) V

R

+
− LC

+ −vR

C

R

+
−

L
+
−

i

vs

vs

+
−

+
− vo

−

+

C2

C1

R1 R2

R

vo

+
−

−

C

v2
+ −

C

v1
+ −

R

+
+
−

vs

+
−

+
−

vo

−

+

10 pF

20 pF

60 kΩ60 kΩ

ale80571_ch08_313-367.qxd  11/30/11  1:14 PM  Page 365



8.75 Obtain the dual of the circuit in Fig. 8.119.

8.71 Obtain for in the circuit of Fig. 8.116
using PSpice or MultiSim.

0 6 t 6 4 sv(t)

366 Chapter 8 Second-Order Circuits

Section 8.9 PSpice Analysis of RLC Circuit

8.68 For the step function use PSpice or
MultiSim to find the response for in
the circuit of Fig. 8.113.

0 6 t 6 6 sv(t)
vs � u(t),

Figure 8.113
For Prob. 8.68.

8.69 Given the source-free circuit in Fig. 8.114, use PSpice
or MultiSim to get for 
Take and i(0) � 2 A.v(0) � 30 V

0 6 t 6 20 s.i(t)

Figure 8.114
For Prob. 8.69.

8.70 For the circuit in Fig. 8.115, use PSpice or MultiSim
to obtain for Assume that the
capacitor voltage and inductor current at are
both zero.

t � 0
0 6 t 6 4 s.v(t)

Figure 8.115
For Prob. 8.70.

Figure 8.116
For Prob. 8.71.

8.72 The switch in Fig. 8.117 has been in position 1 for a
long time. At it is switched to position 2. Use
PSpice or MultiSim to find for 0 6 t 6 0.2 s.i(t)

t � 0,

Figure 8.117
For Prob. 8.72.

8.73 Design a problem, to be solved using PSpice or
MultiSim, to help other students better understand
source-free RLC circuits.

Section 8.10 Duality

8.74 Draw the dual of the circuit shown in Fig. 8.118.

Figure 8.118
For Prob. 8.74.

Figure 8.119
For Prob. 8.75.

*8.67 In the op amp circuit of Fig. 8.112, determine 
for Let 
C1 � C2 � 100 mF.

vin � u(t) V, R1 � R2 � 10 k�,t 7 0.
vo(t)

Figure 8.112
For Prob. 8.67.
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−
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+
−
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−
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−
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–
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+
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−
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1 2
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−
+
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8.77 Draw the dual of the circuit in Fig. 8.121.

Comprehensive Problems 367

Figure 8.124
For Prob. 8.83.

Figure 8.120
For Prob. 8.76.

8.76 Find the dual of the circuit in Fig. 8.120.

Figure 8.121
For Prob. 8.77.

Section 8.11 Applications

8.78 An automobile airbag igniter is modeled by the
circuit in Fig. 8.122. Determine the time it takes the
voltage across the igniter to reach its first peak after
switching from A to B. Let 
and L � 60 mH.

R � 3 �, C � 1�30 F,

Figure 8.122
For Prob. 8.78.

8.79 A load is modeled as a 250-mH inductor in parallel
with a resistor. A capacitor is needed to be
connected to the load so that the network is
critically damped at 60 Hz. Calculate the size of
the capacitor.

12-�

Comprehensive Problems

8.80 A mechanical system is modeled by a series RLC
circuit. It is desired to produce an overdamped response
with time constants 0.1 ms and 0.5 ms. If a series

resistor is used, find the values of L and C.

8.81 An oscillogram can be adequately modeled by a
second-order system in the form of a parallel RLC
circuit. It is desired to give an underdamped voltage
across a resistor. If the damping frequency is
4 kHz and the time constant of the envelope is 0.25 s,
find the necessary values of L and C.

8.82 The circuit in Fig. 8.123 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

Find for given that 
and v0 � 60u(t) V.R1 � 5 M�, R2 � 2.5 M�,5 mF,

C2 �C1 � 0.5 mF,t 7 0v(t)

 v(t) � Percentage of the drug in the blood stream

 v0 � Initial concentration of the drug dosage

such as kidney, etc.
 R2 � Resistance of the excretion mechanism,

the input to the blood stream
 R1 � Resistance in the passage of the drug from

 C2 � Volume of blood stream in a specified region

 C1 � Volume of fluid in a drug

200-�

50-k�

Figure 8.123
For Prob. 8.82.

8.83 Figure 8.124 shows a typical tunnel-diode oscillator
circuit. The diode is modeled as a nonlinear
resistor with i.e., the diode current is a
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
terms of and iD.v

iD � f(vD),

20 Ω10 Ω 30 Ω

4 H

60 V

1 F 2 A

+ −
120 V

− +

+
−

2 Ω 3 Ω

12 V

5 A

1 Ω0.25 H1 F

t = 0

A B

12 V +
− L RC

Airbag igniter

R1t = 0

C2C1vo

+

−
R2

v (t)

+

−

R L i

Cv
+

−
+
−vs

ID

vD

+

−
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