
Speech Coding and Phoneme Classification
Using MATLAB and NeuralWorks

Brett A. St. George, Ellen C. Wooten, and Louiza Sellami
Department of Electrical Engineering

U.S. Naval Academy
Annapolis, MD 21402

Abstract - Applications involving speech coding and
phonetic classification are introduced as educational tools
for reinforcing signal processing concepts learned in senior
level communication classes at the U.S. Naval Academy.
These applications utilize the software packages MATLAB*

and NeuralWorks* and are used here to explore the concepts
of impulse sampling, Fourier transforms, data windowing,
and homomorphic filtering.

Introduction

In 1963 the Naval Academy instituted the Trident Scholar
undergraduate study program to provide a select number of
exceptionally capable students the opportunity to perform
independent research during their senior year. As a Trident
Scholar, I used MATLAB and NeuralWorks software to
create a method for identifying different voice patterns
within my own speech signal. Many of the MATLAB m-
files that were written could be instituted as labs that could
teach students the properties of the Fast Fourier Transform
(FFT) while at the same time presenting different
windowing and filtering techniques. Structuring a course
around such a sequence of labs would allow students to
develop a system for performing speech coding and
phoneme classification while reinforcing many digital
signal processing concepts learned in the classroom.
Because speech coding involves a process of extracting
information from an analog, time-based signal, and
improving the efficiency of speech recognition, many of the
techniques and algorithms employed in the process
inherently involve digital filtering, data windowing, and
spectral analysis.

In this paper, several experiments with an analog
speech signal are presented that could be instituted as labs
to reinforce communication theory that students are
receiving in the classroom. Specifically, these experiments
allow students to extract the pitch frequency of their voice
as well as those frequencies that add constructively within
the oral cavity. These frequencies are known as formants
and can be used to classify voice data using a phonetic

*MATLAB is a trademark of The MathWorks, Inc.
 NeuralWorks is a trademark of The NeuralWare, Inc.

alphabet comprised of 40 distinct sounds called phonemes.
In these labs many of the important properties intrinsic to
the FFT and discrete sampling are introduced. For
example, the Hermitian symmetry of the amplitude
spectrum would become evident in experiments with
various padding lengths and data windows. Further
properties of the FFT as well as various filtering routines
could be instituted as labs to supplement digital signal
processing theory.

Speech Coding

The flow chart depicted in Fig. 1 maps the method of our
speech coding process and classification algorithm. To
understand the speech coding process, it is necessary to
begin with a description of the physical nature of speech.
Sound is produced when air is forced from the lungs and
becomes filtered by variations in the vocal tract shape to
produce a speech signal [1, p. 53]. These variations in
shape determine the characteristics of the filtering function
that shape the frequency spectrum of the final speech signal.
If this filtering function can be directly extracted from a
sampled speech signal, it can be used to identify which
phonetic character is being pronounced.

To begin the speech coding process, suppose that the
vocal tract acts as a linear time-invariant system within a

M A T L A B
(1) Access .WAV f i le
(2) Window voice data
(3) Add zero padding
(4) Normalize to unity RMS
(5) Cepstral Analysis
(6) Homomorphic Fi l ter ing
(7) Formant est imat ions

Neura lWorks
(1) Construct back-

propagat ion network
(2) Train network using

processing data for
a l l phonemes

(3) Phonetical ly classify
t ime sl ices of unknown
speech s ignal

Sample speech
signal and write

data to .WAV fi leSpeech

0 20 40 60 80 100 120
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

msec.

Fig. 1 Flowchart of speech coding and classification
algorithm

sufficiently short time slice. This is a valid assumption for
a short segment of speech where the vocal tract shape is
unchanging and remains fixed in shape. Hence, the
frequency representation of a speech segment, F(jZ), can be
represented as the product of an excitation source, E(jZ),
and a transfer function, H(jZ):

F(jZ) = E(jZ)�H(jZ) (1)

To separate these two functions, the complex logarithm of
Eq. 1 is used to create a real and imaginary part that reflect
the magnitude and phase angle respectively.

Ln(F(jZ)) = Ln|F(jZ)| + jTF(jZ) (2)

Because phase angle carries only information about the time
origin of the signal, the imaginary part of Eq. 2 can be
ignored [2, p. 376]. The real values, however, represent a
magnitude function where the excitation source and transfer
function are additive in the frequency domain [3, p. 266].

Ln|F(jZ)| = Ln|E(jZ)| + Ln|H(jZ)| (3)

Taking the Inverse Fast Fourier Transform (IFFT) of
the real portion of the complex logarithm, Eq. 3, produces a
time domain signal in which the logarithm of the excitation
source and impulse response are separable. This filtering
process is known as homomorphic deconvolution and
involves a technique referred to as "cepstral deconvolution."
To employ this technique, the combined signals need to
have their main components of energy concentrated at
different frequencies [3, p. 266]. This condition is true of
speech when only the transfer function and excitation
source are considered. The transfer function describing the
vocal tract, H(jZ), has a band-limiting characteristic that
confines the energy of the speech signal within a 5 kHz
range. Conversely, the excitation source, E(jZ), can be
modeled as a white noise source which contains an equal
distribution of energy across a frequency range far in excess
of 5 kHz. Because the primary energy components of both
functions do not overlap, cepstral analysis applies. This
technique allows students to readily understand how the
properties of logarithms can be used to remove unwanted
noise from a frequency banded signal.

These algorithmic processes are fundamental to speech
coding and are easily implemented in MATLAB as
demonstrated in the next section. The process culminates
when the formant frequencies derived from a segment of
speech are coded into a training set vector in NeuralWorks
that correlates the data to a particular phoneme. A
simulation using the phoneme "e" as in "bet" is now
introduced.

MATLAB and NeuralWorks Simulation

By analyzing the periodicity of time slices of a speech
signal, segments can be classified as voiced or unvoiced.
During voiced speech the vocal chords vibrate at a constant
frequency known as the fundamental or pitch frequency.
Alternatively, in unvoiced speech the vocal chords do not
move and air is forced past the glottis, tongue, teeth and lips
[1, pp. 36]. These characteristics become apparent when
students view their speech as a MATLAB plot.

In Fig. 2, the periodicity of the speech signal can be
observed for the voiced phoneme “e”. This signal was
sampled using a 16-bit analog-to-digital converter and was
then stored as a binary WAV file. The sampling rate (22.05
kHz) and storage of data was controlled by a soundcard
driver. The speech signal in Fig. 2 represents the sampled

points that are passed as a data vector into MATLAB.
Within MATLAB, the voice data is segmented into 30

msec time slices/records and fitted to various data windows

0 20 40 60 80 100 120
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

msec.

M
ag

.

All pts. of Voice Data (vd)

Fig. 2 Voice data for the phoneme "e" as in "bet"

0 5 10 15 20 25 30
-2000

-1000

0

1000

2000

3000

4000

msec.

M
ag

.

Hamming Window Applied to Voice Data

Fig. 3 Time slice of the phoneme "e"
 with Hamming window applied

(Fig. 3). The windowed data is then padded with zeros to a
power of 2, normalized to unity RMS, and transformed
using the radix-2 FFT (Fig. 4). This process accounts for
any variations in the intensity of the voice and adds
resolution to
the frequency domain output. These aspects provide
students an opportunity to experiment with the properties of
the FFT while observing the results created by applying
various windowing functions to the padded voice data.
Throughout this experimental process, students are forced
to consider any masking effects that these signal processing
techniques might impose on the output. To insure that
these techniques are being implemented correctly, various
checks are available. The first of these is the computation
of the pitch frequency and involves a technique called
“cepstral” analysis. In this process, a second Fourier
analysis is applied to the logarithm of the frequency
spectrum (Fig. 4). The resultant function is called the
“cepstrum” and contains a spike at each harmonic of the
pitch period [2, pp. 362]. The time domain function in Fig.

5 shows an initial spike at 8 msec. This spike corresponds

to a pitch of 125 Hz. Students can compare the periodicity
of the waveform presented in
figure 2 with the pitch period computed using cepstral
analysis as shown in figure 5 and verify the validity of this
analysis technique.

Once in the cepstral domain, a time-window applied to
the real part separates the impulse response from the
excitation source, thus revealing the formant frequencies
(Fig. 6) that cause the vocal tract to resonate. As pictured
in figure 6, these formant frequencies appear as peaks and

can be masked if the side-band leakage is too great or the
resolution is poor. From such plots students can judge
the
effectiveness of their choice of padding length and data
window. With these frequency characteristics resolved, a
neural network can be used to identify different phonetic
pronunciations [1, pp. 48].

The formant frequencies derived by this technique are
used to create a set of vectors that is used to train a back-
propagation neural network to recognize different
phonemes. Because the vocal tract is very defined for the
pronunciation of different phonemes but changes slowly
with time, the formant frequencies reveal more information
than is presented by the time domain analysis of the original
speech waveform. In NeuralWorks students are able to
observe the
global error function converging to zero. This function is
proportional to the square of the Euclidean distance between
the desired output and the actual output of the network for a
particular input pattern [4, pp. 69]. The error function is
displayed as a strip chart in Fig. 7. In addition, a graphical
matrix that quantifies the classification rate of the network
is also displayed. This rate describes the ability of the
network to correctly classify the training and test data. By
observing these parameters and their convergence, students
are able to judge the effectiveness of the data windowing
and homomorphic filtering processes.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

Hertz

M
ag

.

Ampl. Spectrum of Padded Voice Data (pvd)

Fig. 4 Amplitude spectrum for 30 msec
 time slice of phoneme "e"

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hertz
 N

or
m

al
iz

ed
 L

og
(M

ag
ni

tu
de

)

Formant Estimation(normalized to unity peak value), e

Fig. 6 Formant estimation for 30 msec
 time slice of the phoneme "e"

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

msec.

Real of the Complex Cepstrum

Fig. 5 Cepstrum for 30 msec
time slice of the phoneme "e"

Each of the routines described in the preceding
discussion is implemented as either a programming code in
MATLAB or as a design file in NeuralWorks. Through this
process, students gain better insight into signal processing
theory by applying speech coding techniques to sampled
voice data.

Conclusions

In this paper, speech coding and classification techniques
have been explored via MATLAB and NeuralWorks. These
software tools allowed us to sample an analog speech signal,
find the pitch and formant frequencies, and phonetically
classify voice data. The speech coding algorithms used here
involve digital filtering, data windowing, and spectral
analysis. This particular application provided the means
of some of the aspects of diverse signal processing theory in
a graphical and procedural manner. Each of the techniques
introduced in this paper can be implemented as a lab to
support signal processing theory learned in the classroom.
Through such a sequence of labs, students learn the
properties of the FFT while discovering the trade-offs of
various data windowing techniques and filtering routines.

References

1. Pelton, Gordon, Voice Processing, McGraw-Hill, 1993.

2. Rabiner, Lawrence and Schafer, Ronald, Digital
Processing of Speech Signals, Prentice-Hall, 1978.

3. John Proakis and Dimitris Manolakis, Digital Signal
Processing 3rd Edition, 1996.

4. NeuralWare, Inc., Neural Computing, NeuralWare,
1995.

Fig. 7 NeuralWorks display of a back-propagation neural network
trained to phonetically classify time slices of a speech signal. The

network consist of 255 inputs that represent the frequency response of
the vocal tract. The hidden layer contains 400 processing elements and
is fully connected to an output layer of 40 elements. These 40 elements

each correspond to one phoneme.

