JAVA FLUENT API DESIGN

JAVA FLUENT API

In this article we will discuss about how to design fluent APl in Java. The term Fluent interface is coined
by Martin Fowler and Eric Evans. Fluent APl means, build an APl in such way so that same meets
following criteria.

a. APl user can understand APl very easily.

b. APl can perform a series of actions in order to finish a task, in java we can do it by series of
method calls (Chaining of methods).

c. Each Methods name should be Domain specific terminology.

d. APIshould suggestive enough to guide APl Users, what to do next and What are the possible
operations users can take at a particular moment.

Suppose You want to Design an API for a Domain, say (Retail) so There should be some common
terminology exists in Retail domain and for a certain context(Task) it will take a series of actions to
finish this task. Say for an invoice generation it has to follow certain steps. Now when you design API,
you should design it such a way, when API Users call Billing Service for invoice generation, API User can
fluently perform each step in order to complete invoice generation and API will assist user to perform
those steps upon invoking Billing Service. When a APl method invokes by an user, method will perform
its task and returns a Domain Object which will assist what to do next, until all steps are executed.
Unlike Standard APl it is APl user job to call APl methods in a sequential way to successfully performs a
task. So APl Users has to know about the service steps very well.

Design A Fluent API:

APl method
name must
be Domain
specific
\, terminology, APl should

APl must be

follow chain suggestive, it

of methods 2 instructs
principal. g b user what to
! S \ do next?
NS N) {1 o -

Choose APl methods are
method retum X] v not normal setters
type very Y | getters methods
carefully in It will returmn
order to achive another Domain
fluency APl method Object or self.
can take
input or can
take filter
parameter

APl method
name must

be Domain
specific
terminolog/ APl should
APl must be
follow chain suggestive,it
of methods Y instructs
principal. _ user what to
?
APl should \ doned

design using a
context.

Choose APl methods are
method return not normal setters
type very / getters methods.
carefully in It will return
order to achive \ another Domain
fluency APl method Object or self
can take
input or can
take filter ,/
parameter

J

Example: Suppose we want to design a API for Restaurant.

As a customer of this Restaurant, one should follow below steps

stepa: User
entersina
Resturant

Steps: pay
Bill(Domain
specific
term/language)

step2:Look
Menucard for
choosing Menu

Step 3: Order
Menu(DSL)
Items

stepa: User
entersina
Resturant

Steps:pay .
/< T
specific

term/language) choosing Menu

Step 3: Order
Menu(DSL)
Items

In a Standard API design, we should do the following:

1. Create a Restaurant interface.

2. Create an Implementation class of Restaurant interface. Compose Menucard class into it.

3. Create getters and setters for restaurant properties like name, address.

4. InMenuCard class maintain a List of menu Items . Expose some methods like showmenu().
Ordermenu(); etc.

5. Each menu Items has name and cost properties and corresponding getters/setters.

6. When API User call this APl he/she will call a sequence of methods(Enter Resturent,call
showMenu() then Ordermenu() etc.) to perform above Steps shown in the picture.

So it is not fluent lot of sequential statement needs to perform to complete task and APl user has to
know the sequence.

Now | will show you How we will design a Fluent API.
Java code:
package com.example.fluentapi.contract;

public interface IResturant {

public IResturant name(String name);
public IMenu show();

package com.example.fluentapi.contract;
public interface IMenu{
public IMenu order(int index);
public IMenu eat();

public IMenu pay();
public IItem get(int index);

package com.example.fluentapi.contract;
public interface IItem {

public IItem name();
public Integer cost();

Implementation:

package com.example.fluentapi.impl;

import com.example.fluentapi.contract.IMeny;

import com.example.fluentapi.contract.|Resturant;

public class Arsalan implements IResturant{

String name;

String IMenu;

public IResturant name(String name) {
this.name=name;
System.out.printIn("Enter to hotel :: " + name);

return this;

public IMenu show() {
// TODO Auto-generated method stub
ArsalanMenuHandler handler = new ArsalanMenuHandler();
handler.showMenu();

return handler;

package com.example.fluentapi.impl;

import java.util. ArrayList;

import java.util.List;

import com.example.fluentapi.contract.lltem;

import com.example.fluentapi.contract.IMeny;

public class ArsalanMenuHandler implements IMenu{

List<lltem> menuList = new ArrayList<lltem>();

List<lltem> selectedList = new ArrayList<litem>();

public ArsalanMenuHandler()
{
[ltem biriyani = new Illtem(){
public [ltem name()
{
System.out.printIn("Mutton Biriyani");
return this;
}
public Integer cost()

{

return 180;

L
[ltem muttonChap = new lltem(){
public [ltem name()
{
System.out.printIn("Mutton Chap");
return this;
}

public Integer cost()

{

return 160;

1y
lltem firni = new llitem(){
public Iltem name()
{
System.out.printIn("Firni");
return this;
}

public Integer cost()

{

return 100;

I
menuList.add(biriyani);
menuList.add(muttonChap);

menuList.add(firni);

}

public IMenu order(int index) {
/| TODO Auto-generated method stub
[ltem item =get(index);
selectedList.add(item);
System.out.printIn("Order given ::");

item.name();

return this;

public IMenu eat() {
for(lltem item : selectedList)
{
System.out.printIn("eating ");
item.name();
}

return this;

public IMenu pay() {
int cost=0;
for(lltem item : selectedList)
{
cost = cost + item.cost();
}
System.out.printIn("Paying Ruppes" + cost);
return this;
}
@0Override
public lltem get(int index) {

/| TODO Auto-generated method stub

if(index <3)

{

return menuList.get(index);
}
return null;

public void showMenu()§
System.out.printin("MENU IN ARSALAN");
for(lltem item : menulList)

{

item.name();

Test Fluent API:
package com.example.fluentapi.impl;
public class FluentApiTest {
public static void main(String[] args) {

new Arsalan().name("ARSALAN").show().order(0).order(1).eat().pay();

}
Output:

Enter to hotel :: ARSALAN
MENU IN ARSALAN
Mutton Biriyani
Mutton Chap
Firni

Order given
Mutton Biriyani
Order given
Mutton Chap
eating

Mutton Biriyani
eating

Mutton Chap
Paying Ruppes340

Look How we perform the steps fluently by calling series of methods

new Arsalan().name("ARSALAN").show().order(0).order(1l).eat().pay();

This is a test example, to make it more polished we need to work on following things

1. Order method should take MenuItem instead of position also needs to handle
Exception scenarios. If a MenulItem not found.

Order can be cancelled.

Pay must have payment mode. (creditcard, debitcard, Cash)

May user can pay tips and it should be optional.

In course of eating, he/she can Order more items, so make an order
functionality should be available in course of eating.

6. Tax calculation should be added in pay method.

v b w N

Java 8 using Fluent API.

	java Fluent API

