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Complex representation of Fourier series  

 

 

cos sinjwte wt i wt       (1) 

 

Bertrand Russell called this equation “the most beautiful, profound and subtle expression 

in mathematics.”. Richard Feyman., the noble laureate said that it is “the most amazing 

equation in all of mathematics”. In electrical engineering, this enigmatic equation is 

equivalent in importance to F = ma.  

 

This perplexing looking equation was first developed by Euler (pronounced Oiler) in the 

early1800’s. A student of Johann Bernoulli, Euler was the foremost scientist of his day. 

Born in Switzerland, he spent his later years at the University of St. Petersburg in Russia. 

He perfected plane and solid geometry, created the first comprehensive approach to 

complex numbers and is the father of modern calculus. He was the first to introduce the 

concept of log x and e
x
 as a function and it was his efforts that made the use of e, i and  pi 

the common language of mathematics. He derived the equation e
x
 + 1 = 0 and its more 

general form given above. Among his other contributions were the consistent use of the 

sin, cos functions and the use of symbols for summation. A father of 13, he was a prolific 

man in all aspects, in languages, medicine, botany, geography and all physical sciences. 

 

The secret to this equation lies in understanding that sinusoids are a special case of a 

general polynomial function of the form 

 

 

  

 

 e
jwt 

 in Euler’s equation is a decidedly confusing concept. What exactly is the role 

of j in e
jwt

? We know that it stands for 1 but what is it doing here? Can we visualize 

this function?  
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Before we continue the discussion of Fourier Series and its complex 

representation, let’s first try to make sense of e
jwt 

as it relates to signal processing. 

 

  Take any real number, say 3, and plot it on a X-Y plot as in Fig 1a. Multiply this 

number by j, so it becomes 3j.  Where do we plot it now? Herein lies our answer to what 

multiplication with j does.  
 
 
 

 

 

 

 

Figure 1a  - Relationship of real  Figure 1b – Multiplication with j  

and imaginary numbers     represents a phase shift 

  

  

The number stays exactly the same, 3j is the same as 3, except that multiplication 

with j shifts the phase of this number by +90
o
.  So instead of an X-axis number, it 

becomes a Y-axis number. Each subsequent multiplication rotates it further by 90
o 
in the 

X-Y plane as shown in Figure 1b.  3 become 3j, then -3 and then -3j and back to 3 doing a 

complete 360 degree turn. Division by j means the opposite. It shifts the phase by -90
o
. 

(Question: What does division by -j mean?) 

 

Alternately, imagine a number that is multiplied by -1. In Cartesian sense, we say 

that the point has now rotated 180
o
 to the negative x-axis. Another multiplication by a -1 

rotates back to the positive x axis. If that is the case, then a square root of -1 can be 

conceptualized as a rotation of 90
 o

. A rotation of - 1  can be seen as a 270
o
 rotation. 

  

This is also essentially the concept of complex numbers. A compound number 

called the complex number consists of numbers in more than one dimension. The 

operator I is used to indicate this dimensional difference. Complex numbers often thought 

of as “complicated numbers” follow all of the common rules of mathematics. Whereas in 

calculus of real numbers, we deal with numbers along a line in one dimension, in 

complex math, we allow numbers to move in many dimensions and have an another 

property called phase associated with them. Perhaps a better name for complex numbers 

would have been 2D numbers.  

3

3i

Y

Phase shift due to
multiplication with j

X

 

3

3j

Y

Each time the number is
multiplied by i,
it shifts by 90

o
.

X

-3j

-3
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To further complicate matters, the axes, which were called X and Y in our 

Cartesian mathematics are now called respectively Real and Imaginary. Why so? Is the 

quantity 3j any less real than 3?  

 

This semantic confusion is the unfortunate result of the naming convention of 

complex numbers and helps to make them confusing, complicated and of course complex 
 

 

  
Figure 2 – a. Plotting complex numbers  

b. plotting a complex function 

 

Now let’s plot a complex number, 3 + j3.  In Cartesian math we would write this 

number as (3,3) indicating 3 units on the X-axis and 3 units in the Y-axis. Similarly, the 

real quantity is plotted on the X-axis (real part) and the j coefficient (imaginary part) is 

plotted on the Y-axis. These are the X-Y projections of this number. The projection 

magnitudes are real and not encumbered by the vexing j.  

 

A complex number can have for its coefficients, instead of numbers, equations 

(cos x, sin x). We plot these in exactly the same way as shown in Figure 2b except that X 

and Y projections instead of being numbers, are functions, namely sine and cosine in this 

case.  

 

Now let’s take a look at the e
jwt

 again. It is called a Cisoid {(cos x + j sin x)usoid} from 

contraction of the parts of the Euler’s equation.  

 

Now forget about the e
jwt

 part and concentrate only on the RHS containing sines 

and cosines. 
 

  

tjte jwt  sincos   

 

We plot this function by setting the X-axis = cos wt and the Y-axis = sin wt. This 

plot is shown in Figure 3. 

3

3

Y

X

3+j3

cos wt

sin wt

X

ejwt
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Figure 3 – e
jwt

 plotted in three dimensions is a helix 

 

 

In Figure 3 cos wt is plotted on the Real axis and sin wt is plotted on the 

Imaginary axis. The function looks like a helix moving forward in time to the right. The 

X-Z and the Y-Z projections, if plotted, would be the sine and cosine functions. 

 Had we plotted the function e
-jwt

, we would have seen that it moves to the left 

instead of to the right. This direction of rotation has important implications for the 

definition of frequency.  

The quantity “ee-to-the-jay-omega-tee” is a mouthful and is commonly called a 

Phasor, particularly in electrical engineering. Phasors are plotted with time dimension 

suppressed, so they look like a vector frozen in time with its plane rotating with the 

angular frequency of the cisoid.  

 

 Now let’s express sines and cosines in terms of our new quantity e
jwt

.  So we have 

 

Timecos wt

sin wt

Imaginary Axis

Real Axis  
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and         (2) 

 

wtjwte jwt sincos   

 

Manipulating these two equations, we get 

 

   

         (3) 

  

cos wt
e ejwt jwt


 

2
 

 

Now let’s just substitute Q+, for e
jwt 

and Q- for e
-jwt 

, we get 

 

 

 

         (4) 

sin wt
Q Q

j


 

2
 

 

The use of Q is just to make it easier to see what is happening. We have redefined 

sine as a difference between two phasors Q+ and Q- and cosine as the sum of the same of 

the same two phasors. The presence of j in the definition of sine means that it is -90
o
 to 

the other term and nothing more. So mentally erase the j in the denominator, if it bothers 

you. 

 

 The phasor Q+  is arbitrarily defined to rotate in the counterclockwise direction and 

the Q- phasor in the clockwise direction. The vector sum of these two phasors is changing 

with time and represents the cosine and sine functions. In Figure 4 we show two phasors 

at a particular time. They always rotate in opposite directions and meet each other at 0 

and 180 degrees. Their instantaneous vector sum equals the quantity (2 cos(wt)) and their 

vector difference equal (2 sin(wt).)  

 

j

ee
wt

jwtjwt

2
sin


  

2
cos  


QQ

wt  

e wt j wtjwt  cos sin

wtjwteQ jwt sincos 
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 Y 

X 

e j w t 

P h a s o r   Q +   r o t a t e s 
c o u n t e r c l o c k w i s e 
w i t h   t i m e 

P h a s o r   Q -   r o t a t e s 
c l o c k w i s e 
w i t h   t i m e 

e - j w t 

Q - Q + 

2 s i n w t   =   e j w t   -   e - j w t 

2 c o s w t   =   e j w t   +   e - j w t 

  
 

 

Figure 4 – e
jwt

 and e
-jwt

 phasors 

 

 

In Figure 5 we plot the progression of these two phasors to see how their sum and 

differences would equal the cosine and sine function.  Each picture depicts the phasors at 

a particular time. Time is increasing as one moves from left to right then to retrace as in 

reading a page. 

 

 
Imaginary

ejwt

e-jwt

Real

Imaginary

ejwt

e-jwt

2 coswt = 2/sqrt(2)Real

1

1

22 sinwt = 0

1

1

2 sinwt = 2/sqrt(2)

2 cos wt = 2

 
 

Figure 5a - Phasor representation of sine and cosine, 1. Wt = 0, 2. Wt = pi/4 

 

 

At t = 0, both phasors are horizontal. Their vector sum is twice the length of each. 

So cos wt = 1 and since the difference is zero, sin wt = 0 

 

At t = pi/4, the Q- phasor has rotated up to pi/4 and the Q- phasor has rotated to -

pi/4. Now their vector sums, give us cos wt = 1/sqrt 2 and their difference gives also 

1/sqrt2. 
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Imaginary

3. wt = 

ejwt

e-jwt

Real

Imaginary

At  wt = -3pi/4

ejwt

e-jwt

Real

2 cos wt = 0

2 sinwt = 2

2 coswt = -2/sqrt(2)

2 sinwt = 2/sqrt(2)

4. wt = 3

 
 

Figure 5b - Phasor representation of sine and cosine, 1. Wt = pi/2, 2. Wt = 3pi/4 

 

At t = pi/2, Q+ phasor has rotated upright and the Q- has rotated down to the 

opposite side. Now the vector sum gives us the cos wt = 0 and sin wt = 1. 

 

At t = 3pi/4, we get the same situation as at t = 0, but the cosine term is negative 

as it should be. 

 

 
Imaginary

ejwt

e-jwt
-2 cos wt = -2

Real

2 sin wt = 0

5. wt = 

 
 

Figure 5c-  Two phasors at wt = pi/2 



 

At wt = pi/2, the phasors meet again. The sine term which is the difference is once 

again zero and the cosine term is the sum of the two magnitudes and as such cos wt = 1 

and sin wt =0. 

 

By following each phasor we see that at every t, we get the conventional and 

correct values of sine and cosines.  
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Now we make the following important points that will help us in dealing with concepts of 

negative frequency and signals in quadrature. 

 

1. Cosine wave is sum of two phasors rotating in opposite directions divided by 2. 

2. Sine wave is difference of the same two phasors divided by 2. 

3. Since any real periodic signal can be represented as a sum of sines and cosines, then it 

also be represented as a sum of positive and negative phasors (also called 

exponential).  

4. Just as we could create a spectrum out of the coefficients of the sinusoids, we can do 

the same thing out of the coefficients of the phasors. 

 

If we think about sine and cosines strictly in terms of phasors and forget about the 

old trigonometric definition of sine in terms of frequency and amplitude, we can talk 

about (but using old terminology) the concept of negative frequency. 

 

 We can say that both sine and cosine waves are made up of two quantities called 

phasors, a phasor of positive frequency, e
jwt 

and a phasor of negative frequency, e
-jwt

. So 

both sine and cosine contain negative frequency content. The idea is similar to talking 

about negative colors or negative people. These are perceived as physical properties and it 

is hard for us visualize them as negative. But when seen from a mathematical perspective, 

there is such a thing as a negative color; white can bee seen as negative of black and 

according to my esteemed colleague Dr. Dave Watson, there is definitely such a thing as 

“negative person.” but of course none in Advanced Systems! 

 

This terminology is confusing because in complex domain we are not talking 

about frequency at all but the exponent of the exponential, e
jwt

. The Q+ phasor represents 

the positive frequency content and the Q- phasor the negative frequency because of the 

sign of the exponent. Each phasor then represents only the positive or the negative 

frequency. 

 

Here is a hardware oriented view of negative frequency.  A two-pole permanent 

magnet AC generator connected to same shaft with their field windings in space 

quadrature will produce a positive frequency output by driving the shaft in one direction 

of rotation. And a negative frequency output when driven in the opposite direction. So it 

is direction of the motion that determines the sign of the frequency.  

 

The difficulty is that frequency is really a two dimensional concept but is often 

seen only as one. Two dimensions are needed to describe a frequency, its cycles per 

second and its direction of rotation. Historically we have always talked of frequency as a 

physical quality of a wave. Spectrum analyzers and other electrical measuring devices are 

one dimensional as well which limits our understanding of the general concept of 

frequency. 

The general concept of frequency can be written as follows 
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f
d

dt



 

 

We can define frequency as the rate of change of phase over time. So a + 2  rotation over 

half second means the frequency is 2. And here we see that if phase rotates around 

counter-clockwise, then we have the definition of positive frequency and when it goes the 

other way then it is negative. A  - 2  rotation over half second means the frequency is -2.  

 

Velocity or speed which we also tend to think of as a scalar has a similar confusing 

aspect. We can talk about 60 miles per hour and this makes perfect sense. But what does 

–60 miles per hour mean? Mathematically it is a perfectly OK construct. It just means 

same speed but going backwards. The concept of negative frequency is just as simple as 

that. 

 

 

What use is e
jwt

? Why bother with it at all? 

 

Recall that we can use a sinusoid as a filter. When we multiply a signal by a 

sinusoid of a particular frequency, the product when integrated reveals the frequency of 

the sinusoid hidden in the signal. To compute trigonometric coefficients, this is 

essentially what we do, we multiply a random signal by sinusoids of different frequencies 

to yield all its frequency components. Multiplying by e
jwt

 does exactly same thing. Except 

that now instead of doing sines and cosines one at a time we can do them both together. 

The function allows us to deal with two dimensional signals together. 

 

We can also interpret the multiplication as a form of frequency shifting. When we 

multiply a signal by e
jw0t

, then we are essentially isolating and shifting that signal to the 

w0 frequency to the right. When we multiply it by a e
-jw0t

, then we are shifting it leftwards 

to - w0.  

 

Figure below shows the effect of this multiplication. Figure 8a shows the 

Amplitude spectrum centered about frequency = 2. Multiplying this signal by e j f t( )2  

where f = 2 causes the spectrum of the new signal to shift to 4 for a total shift of f = 2. 

When we multiply this signal by e j f t( )2  where f = -2 causes the spectrum of the new 

signal to shift to 0 for a total shift of f = -2 as in Figure 8c.  

 

This important property of Cisoid allows us to shift signals from baseband to 

carriers and vice versa. It is a fundamental equation whenever we talk about modulation. 
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1 2 3 Frequency0

 
Figure 6a - Amplitude Spectrum of an arbitrary signal f(t) 

 

 

 

1 2 3

Frequency

0 4 5

 
Figure 6b - Amplitude of signal f(t) multiplied by e j t4

 

 

 

1 2 3

Frequency

0 4 5-1

 
Figure 6c - Amplitude Spectrum of signal f(t) multiplied by e j t 4
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Back to the Fourier Series— 

 

Recall that Fourier Series is a sum of sinusoids. 

 

f t a a w t b w tn n n n

n

N

n

N

( ) sin( ) cos( )  



0

11

   (5) 

 

The coefficients a0, an and bn (which we can call the trignometric coefficients) are defined 

as  

 

a
T

f t dt

T

0

0

1
  ( )   

a
T

f t nwt dtn

T

 
2

0

( ) sin    

b
T

f t nwt dtn

T

 
2

0

( ) cos  

 

Now substitute Eq 4a and 4b as the definition of sine and cosine into Eq 5, and we get 

 

 

f t a
a

e e
b

i
e en jnwt jnwt n jnwt jnwt

n

N

( ) ( ) ( )     



0

1
2 2

  (6) 

 

Now let’s make the same substitution in the equations for the previously derived Fourier 

coefficients. 

 

 a
T

f t
i

e e dtn

T

jnwt jnwt 
2 1

2
0

( ) ( )      (7a) 

 

  b
T

f t e e dtn
jnwt jnwt

T

  


2 1

2
0

( )      (7b) 

 

Expanding and rewriting Eq 6, we get 

 

 f t a a ib e a ib en n

jnwt

n

n n

jnwt( ) ( ) ( )    



0

1

1

2

1

2
  (8) 

 

the coefficients in Eq 7 can be written as follows by just rearranging and simplifying. 
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a
T

f t e dt
T

f t e dtn
jnwt jnwt

TT

  


1 1

00

( ) ( )     (9a) 

 

ib
T

f t e dt
T

f t e dtn
jnwt jnwt

TT

  


1 1

00

( ) ( )     (9b) 

 

In exponential from, these are kind of hard to write, so let’s redefine new 

coefficients An and Bn 

 

A a jbn n n 
1

2
( )       (10a) 

B a jbn n n 
1

2
( )       (10b) 

 

Substituting these new definition into the Eq 6, we get a much simpler 

representation 

 

f t a A e B e dtn
jnwt

n
jnwt

n

( )    





0

1

    (11) 

 

A
T

f t e dt

B
T

f t e dt

n
jnwt

T

n
jnwt

T










1

1

0

0

( )

( )

      (12) 

 

It is clear from the above equation that An can be seen as the coefficients of the 

positive frequency and Bn the coefficient of the negative frequency. 

 

Do you remember that the term a0 stands for the DC term in Eq 11. We generally 

do not like DC terms so we will try to get rid of it by expanding the range of the second 

term from 1 to infinity to include 0 so it goes from 0 to infinity instead and as such 

includes the DC term.    

 

Rewrite Eq 11 as 

 

f t a A e B e dtn
jnwt

n
jnwt

n

( )    





0

1

     (13) 

 

 

f t A e B e dtn
jnwt

n

n
jnwt

n

( )  











10

     (14) 

Note that the index changed from 1 

to 0 to include the first (DC) term. 
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The above equation can be simplified still further by extending the range of the 

coefficients from -1 to -infinity. We can do this by changing the sign of the index. 

Combine the two terms of Eq 14 to write a much more compact and elegant equation for 

the Fourier Series. 

 

And here is our much shorter equation for Fourier Series. 

 

f t C en
jnwt

n

( ) 





       (15) 

 

The above is called the exponential or the complex form of the Fourier Series. It is 

rigorously related to the sinusoidal form but its coefficients Cn are generally complex.  

 

Note that our index (or the frequency) was always positive before and the 

spectrum was one sided. Now the index goes from -   to +  . We have by a 

mathematical trick taken the perfectly good one-sided spectrum computed by the 

trigonometric coefficients and now folded it over to make a two sided symmetrical 

spectrum. Its coefficients are exactly half of the one-sided coefficients.  

 

The coefficient Cn is given by 

 

C
T

f t e dtn
jnwt

T

T

 




1

2
( )  

 

Cn is related to the trigonometric coefficients by  

 

C A jBn n n   

 

The magnitude and phase of  Cn is defined by 

 

C A Bn n n 
2 2

 

 

 n
n

n

B

A












tan 1  

 

An and Bn can be seen as the coefficients on each side of the origin.  

 

 

 

Example 1 - Fourier coefficients of a cosine wave 
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f t A wt( ) cos  

  

A
Q

A
Q

2 2
  

 

We get the trigonometric coefficients from looking at the first equation. It is simply A and 

it is at f = 1. 

 

We get the complex coefficients by looking at the coefficients of the two phasors 

in the second equation. They are A/2 located at +f and -f. The two spectrums are shown 

below. 

 
v(t)

t

f

2. v(t) = A cos wt

Real

[V]A/2

A/2

Real

[V] A

Figure 7 - Single and double-sided spectrum of a sine wave  
 

 

 

 

 

 

 

 

Example 2 - Fourier coefficients of a sine wave 

 

 

f t A wt( ) sin  

  

A

j
Q

A

j
Q

2 2
  

 

We get the trigonometric coefficients from looking at the first equation. It is 

simply A and it is at f = 1 just as it was for the cosine wave above. 

 

We get the complex coefficients by looking at the coefficients of the two phasors 

in the second equation. They are A/2 and -A/2 located at +f and -f. The two spectrums are 

shown below. Note the sign change in the coefficients of the negative frequency phasor. 

Presence of j tells us that we have to plot the coefficients -90 phase shifted. Figure below 

shows this plot. 
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v(t)

t

f

2. v(t) = A sin wt

Real

[V]

A/2
A/2

Real

[V] A

Figure 8 - Single and double-sided spectrum of a sine wave  
 

 

 

 

Example 3 - Fourier coefficients of f(t) = A(cos wt + sin wt) 

 

 

f t A w wt( ) (cos sin )   

      

A
Q

A
Q

A

j
Q

A

j
Q

2 2 2 2
  

 

We get the trigonometric coefficients from looking at the first equation. It is 

simply A times the square root of 2 and it is at f = 1. 

 

We get the complex coefficients by looking at the coefficients of the two phasors 

in the second equation. Q+ phasor which has two coefficients each 90 degrees from each 

other. The same is true for Q- phasor.  

 

Note the coefficients of sine wave are 90 degrees to the cosine coefficients just as 

they were in Example 2 Figure below shows this plot. 

 

 

 
v(t)

t

f

2. v(t) = A cos wt + A sin wt

Real

[V] sqrt(2)*A

Figure 9 - Single and double-sided spectrum of f(t) = A (cos wt + sin wt)

Real

[V]

sqrt(2)*A/2

sqrt(2)*A/2

sqrt(2)*A
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Example 4 - Fourier coefficients of a complex signal f(t) = A(cos wt + jsin wt) 

 

 

f t A w j wt( ) (cos sin )   

      

A
Q

A
Q

A
Q

A
Q

2 2 2 2
  

 

We can split the first equation into sine and cosine and the trigonometric 

coefficients are as in Ex 1 and 2. We sum the two contributions to get A times the square 

root of 2 at f = 1. 

 

Now here we see something interesting. Note the coefficients of Q- by sine is 

rotated up to be coincident with the coefficient of cosine. The two subtract. On the 

positive side, once again, they are coincident but they add. The complex phasor Q- makes 

no contribution at all. It cancels out. So we see a single valued delta function at positive 

frequency only. This is a surprising and perhaps a counter-intuitive result.  

 
v(t)

t

f

2. v(t) = A cos wt + j A sin wt

Real

[V] sqrt(2)*A

Figure 10 - Single and double-sided spectrum of a complex signal f(t) = cos wt + j sin wt

Real

[V] sqrt (2)*A/2

sqrt (2)*A

 
 

 

 

Example 5 - a constant signal 
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Real

[V]

A2/2

v(t)

t

f

Figure 11 - f(t) = a constant 

 

 

 We can write the F(t) as an exponential of zero frequency. 

 

f t A w t

A
Q

A
Q

( ) cos( ) 

  

0

2 2

 

 

From the first representation, we get the trigonometric coefficient = A at w =0. 

 

From the second representation we get the two complex coefficients, A/2 and A/2 

but both are at w = 0 so their sum is A which is exactly the same as the trigonometric 

representation. 

 

 The function f(t) is a non-changing function of time and we classify it as a DC 

signal. The DC component if any always shows up at the origin for this reason. 

 

Example 6 - a real signal 

 

f t tt t t t t t( ) . cos . sin . cos . sin . cos . sin     3 2 5 2 9 4 6 4 2 6 3 6       

 
 

Figure 12 -  A periodic signal 
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By inspection alone, we can draw its one-sided amplitude spectrum. The signal 

has three harmonics, at f = 1, f = 2 and f = 3.  We can write down the trigonometric a and 

b coefficients for each harmonic just by looking at the signal f(t) equation. 

 

Harmonic 1  Harmonic 2  Harmonic 3 

a1 = .3   a2=.9   a3 = -.2 

b1 = -.5  b2 = .6   b3 = .3 

 

Creating the spectrum is a simple matter of summing (  ( ) ( )a b1
2

1
2 ) the a and 

b coefficients for each harmonic and drawing them as shown below. 

 
 

w = 1 w = 2 w = 3

.58

1.08

.36

Frequency

 

 

Figure 13 - One sided Spectrum of f(t)  

 

Now let’s draw the spectrum of the same signal using the complex form. From Eq 

16, we have the complex coefficients An and Bn. From these, we can compute Cn. 

 

A a ibn n n 
1

2
( )    A a bn n n 

1

2

2 2
 

 

B a ibn n n 
1

2
( )    B a bn n n 

1

2

2 2
 

 

C A Bn n n 
2 2

  C a bn n n 
1

2

2 2
 

 

We can see that the magnitude of the coefficient C is exactly half of the single-

sided spectrum magnitude. We compute Cn for positive n and since this is a real signal, 

Cn for negative n are equal to ones for the positive n. 

 

 

Bandwidth  
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1 2 3

.29

.54

.18

Frequency-1 -2 -3

Bandwidth
 

Figure 14 - Two-sided spectrum from complex representation of Fourier series 

 

 

Magnitude and Power spectrum of a signal derived from the Fourier coefficients 

 

The spectrum we draw from the Fourier Series coefficients is called the 

Magnitude spectrum or loosely just called the spectrum. The spectrum quantities are 

always 0 or greater than zero and never negative. So there is something that is never 

negative, and that is Power.  

 

The amplitude spectrum can be converted to the power spectrum by the Parseval’s 

relationship 

 

P
T

v t dt C C Cg n

n

T

n n

n

  








 
1 2 2

0

( )
*

 

 

The relationship says that the power in any tone is just the square of its amplitude. (for R 

= 1 ohm) The division by T gives us the average power in the period. So we take the 

amplitude spectrum, divide each term by 2 , square each term and then add them all 

together. 

 

For the above example, we would get for total power of the signal. 

 

P 








 









 









2

29

2
2

58

2
2

18

2

2 2 2
. . .

= .268  

 

The power can also be computed by multiplying the complex coefficients Cn by 

its complex conjugate Cn* and summing for all n. The Power Spectral Density (PSD) can 

then be computed by dividing each magnitude component by its frequency. 
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