MATHEMATICS PROGRESSIONS_SYNOPSIS

•	If t _n = an + b, then the series so formed is an A.P.
•	If $S_n = an^2 + bn$ then series so formed is an A.P.
•	If every term of an A.P. is increased or decreased by some quantity, the resulting terms will also be in A.P.
•	If every term of an A.P. is multiplied or divided by some non-zero quantity, the resulting terms will also be in A.P.
•	In an A.P. the sum of terms equidistant from the beginning and end is constant and equal to sum of first and last terms.
•	Sum and difference of corresponding terms of two A.P.'s will form an A.P.
•	If terms $a_1, a_2,, a_n, a_{n+1},, a_{2n+1}$ are in A.P., then sum of these terms will be equal to $(2n + 1)a_{n+1}$.
•	If terms $a_1, a_2,, a_{2n-1}, a_{2n}$ are in A.P. The sum of these terms will be equal to (2n) $\cdot \left(\frac{a_n + a_{n+1}}{2}\right)$
•	The product of the terms equidistant from the beginning and end is constant, and it is equal to the product of the first and the last term.
•	If every term of a G.P. is multiplied or divided by the some non-zero quantity, the resulting progression is a G.P.
•	If a_1 , a_2 , a_3 and b_1 , b_2 , b_3 , be two G.P.'s of common ratio r_1 and r_2
	respectively, then a_1b_1 , a_2b_2 and $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$, $\frac{a_3}{b_3}$ will also form a G.P. Common
	ratio will be $r_1 r_2$ and $\frac{r_1}{r_2}$ respectively.
•	If a ₁ , a ₂ , a ₃ , be a G.P. of positive terms, then loga ₁ , loga ₂ , loga ₃ , will be an A.P. and conversely.
•	If every term of a H.P. is multiplied or divided by some non zero fixed quantity, the resulting progression is a H.P.
•	INSERTION OF MEANS BETWEEN TWO NUMBERS
	Let a and b be two given numbers.
	(1) Arithmetic Means If three terms are in A.D. then the middle term is called the arithmetic mean
	It three terms are in A.P. then the middle term is called the arithmetic mean

 \leq

(A.M.) between the other two i.e. if a, b, c are in A.P. then $b = \frac{a+c}{2}$ is the A.M. of a and b.

If a, A_1 , A_2 , ... A_n , b are in A.P., then A_1 , A_2 , ... A_n are called n A.M.'s between a and b.

If d is the common difference, then $\mathbf{b} = \mathbf{a} + (\mathbf{n} + 2 - 1) \mathbf{d} \Rightarrow \mathbf{d} = \frac{\mathbf{b} - \mathbf{a}}{\mathbf{n} + 1}$

 $A_i = a + id = a + i \frac{b-a}{n+1} = \frac{a(n+1-i)+ib}{n+1}, i = 1, 2, 3, ..., n$

Note: The sum of n-A.s, i.e., $A_1 + A_2 + ... + A_n = \frac{n}{2}(a+b)$

(ii) Geometric means

If three terms are in G.P. then the middle term is called the geometric mean (G.M.) between the two. So if a, b, c are in G.P. then $b = \sqrt{ac}$ or $b = -\sqrt{ac}$ corresponding to a & c both are positive or negative respectively. If a, G₁, G₂ ... G_n, b are in G.P., then G₁, G₂ ... G_n are called n G.M.s between a

and b. If r is the common ratio, then $\mathbf{b} = \mathbf{a} \cdot \mathbf{r}^{\mathbf{n}+1} \Rightarrow \mathbf{r} = \left(\frac{\mathbf{b}}{\mathbf{a}}\right)^{\frac{1}{(n+1)}}$

$$\mathbf{G_i} = \mathbf{ar^i} = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}} = a^{\frac{n+1-i}{n+1}} b^{\frac{i}{n+1}}, i = 1, 2, ..., n$$

Note: The product of n-G. s i.e., $G_1 G_2 \dots G_n = (\sqrt{ab})^n$

(iii) Harmonic mean:

If a & b are two non-zero numbers, then the harmonic mean of a & b is a number H such that a, H, b are in H.P. & $\frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$ or $H = \frac{2ab}{a+b}$

If a, H_1 , H_2 ... H_n , b are in H.P., then H_1 , H_2 ... H_n are called n between a and b. If d is the common difference of the corresponding A.P., then

$$\frac{1}{b} = \frac{1}{a} + (n+2-1)d \Longrightarrow d = \frac{a-b}{ab(n+1)}$$

$$\frac{1}{H_{i}} = \frac{1}{a} + id = \frac{1}{a} + i\frac{a-b}{ab(n+1)}, \mathbf{H}_{i} = \frac{ab(n+1)}{b(n-i+1)+ia}, i = 1, 2, 3, ..., n$$

(iv) Term t_{n+1} is the arithmetic, geometric or harmonic mean of $t_1 \& t_{2n+1}$ according as the terms t_1 , t_{n+1} t_{2n+1} are in A.P., G.P. or H.P. respectively.

• **ARITHMETIC-GEOMETRIC SERIES**

A series whose each term is formed, by multiplying corresponding terms of an A.P. and a G.P., is called an Arithmetic-geometric series.

2

e.g. $1 + 2x + 3x^2 + 4x^3 + \dots$; $a + (a + d) r + (a + 2d)r^2 + \dots$

(i) Summation of n terms of an Arithmetic-Geometric Series
Let
$$S_n = a + (a + d) r + (a + 2d)r^2 + ... + [a + (n - 1)d] r^{n-1}$$
,
Multiply by 'r' and rewrite the series in the following way
 $rS_n = ar + (a + d)r^2 + (a + 2d)r^3 + ... + [a + (n - 2)d]r^{n-1} + [a + (n - 1)d]r^n$
on subtraction,
 $S_n (1 - r) = a + d(r + r^2 + ... + r^{n-1}) - [a + (n - 1)d]r^n$
or, $S_n (1 - r) = a + d(r + r^{2-1}) - [a + (n - 1)d]r^n$
or, $S_n = \frac{a}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2} - [a + (n - 1)d]r^n$
or, $S_n = \frac{a}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2} - [a + (n - 1)d]r^n$
(ii) Summation of Infinite Series
If $|r| < 1$, then $(n - 1)r^n$, $r^{n-1} \rightarrow 0$, as $n \rightarrow \infty$. Thus $S_\infty = S = \frac{a}{1 - r} + \frac{dr}{(1 - r)^2}$
• SUM OF MISCELLANEOUS SERIES
(i) Difference Method
Suppose a_1, a_2a_3, \dots, a_n is a sequence such that the sequence $a_2 - a_1, a_3 - a_2, \dots, a_n$ is either an A.P. or G.P. The nth term 'a_n' of this sequence is obtained
as follows.
 $S = a_1 + a_2 + a_3 + \dots, a_{n-1} + a_n$
 $S = a_1 + a_2 + a_3 + \dots, a_{n-2} + a_{n-1} + a_n$
 $\Rightarrow a_n = a_1 + [(a_1 - a_1) + (a_n - a_2) + (a_n - a_{n-1})]$
Since the terms within the brackets are either in an A.P. or in a G.P. we can
find the value of a_{n} the nth term. We can now find the sum of the n terms of the
sequence $as s - \sum_{k=1}^{n} a_k$
(ii) $V_n - V_{n-1}$ Method
Let T_1, T_2, T_3, \dots be the terms of a sequence. If there exists a sequence V_1, V_2, V_3
 \dots satisfying $T_k = V_k - V_{k-1}, k \ge 1$,
then $.S_n = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} (V_k - V_{k-1}) = V_n - V_0$
• INEQUALITIES
(j)
Let a_1, a_2, \dots, a_n be n positive real numbers, then we define their arithmetic
mean

(A), geometric mean (G) and harmonic mean (H) as $A = \frac{a_1 + a_2 + \dots + a_n}{n}$,

G =
$$(a_1a_2....a_n)^{1/n}$$
 and H = $\frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} +a_n\right)^{1/n}}$

It can be shown that Moreover equality holds at either place if and only if $a_1 = a_2 = \dots = a_n$

(ii) Weighted Means

Let a_1, a_2, \dots, a_n be n positive real numbers and w_1, w_2, \dots, w_n be n positive rational numbers. Then we define weighted Arithmetic mean (A*), weighted Geometric mean (G*) and weighted harmonic mean (H*) as

$$\mathbf{A^*} = \frac{a_1 w_1 + a_2 w_2 + \dots + a_n w_n}{w_1 + w_2 + \dots + w_n}, \quad \mathbf{G^*} = (a_1^{w_1} \cdot a_2^{w_2} \cdot \dots \cdot a_n^{w_n})^{\frac{1}{w_1 + w_2 + \dots + w_n}}$$

and
$$\mathbf{H^*} = \frac{w_1 + w_2 + \dots + w_n}{\frac{w_1}{a_1} + \frac{w_2}{a_2} + \dots + \frac{w_n}{a_n}} \cdot$$

A* ³ G* ³ H* More over equality holds at either place if & only if $a_1 = a_2i$ =. a_n

(iii) Cauchy's Schwartz Inequality:

If a₁, a₂,a_n and b₁, b₂,...., b_n are 2n real numbers, then

 $(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 (a_1^2 + a_2^2 + \dots + a_n^2) (b_1^2 + b_2^2 + \dots + b_n^2)$ with the equality holding if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$.

ARITHMETIC MEAN OF mth POWER

Let $a_1, a_2 \dots, a_n$ be n positive real numbers and let m be a real number, then

$$\frac{a_1^m + a_2^m + \dots + a_n^m}{n} \ge \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^m, \text{ if } m \in R - [0,1].$$

However if (0, 1), then
$$\frac{a_1^m + a_2^m + ... + a_n^m}{n} \le \left(\frac{a_1 + a_2 + ... + a_n}{n}\right)^m$$

Obviously if
$$m \in \{0,1\}$$
, then $\frac{a_1^m + a_2^m + ... + a_n^m}{n} = \left(\frac{a_1 + a_2 + ... + a_n}{n}\right)^n$

KEY POINTS

A.P.

•

•

If a = first term, d = common difference and n is the number of terms, then nth term is denoted by t_n and is given by

 $t_n = a + (n - 1) d.$ Sum of first n terms is denoted by S_n and is given by $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2}(a+l)$, where l = last term in the series i.e., $l = t_n = a + (n-1) d$. Arithmetic mean A of any two numbers a and b $A = \frac{a+b}{2}$. Sum of first n natural numbers $(\sum n)$ $\sum n = \frac{n(n+1)}{2}$, where $n \in N$. Sum of squares of first n natural numbers $(\sum n^2)$ $\sum n^2 = \frac{n(n+1)(2n+1)}{6}$ Sum of cubes of first n natural numbers (Σn^3) $\Sigma n^3 = \left[\frac{n(n+1)}{2}\right]^2$ G.P. If a = first term, r = common ratio and n is the number of terms, then n^{th} term, denoted by t_n , is given by $t_n = ar^{n-1}$ Sum of first n terms denoted by S_n is given by $S_n = \frac{a(1-r^n)}{1-r}$ or $\frac{a(r^n-1)}{r-1}$ In case r = 1, $S_n = na$. **Sum of infinite terms** (S_m) $S_{\infty} = \frac{a}{1-r} (\text{for } |r| < 1 \& r \neq 0)$ H.P. If a, b are first two terms of an H.P. then $t_n = \frac{1}{\frac{1}{n+(n-1)\left(\frac{1}{n}-\frac{1}{n}\right)}}$ There is no formula for sum of n terms of an H.P. **MEANS** If three terms are in A.P. then the middle term is called the arithmetic mean (A.M. between the other two i.e. if a, b, c are in A.P. then $b = \frac{a+c}{2}$ is the A.M. of a and b.

2 5

•

If a, A₁, A₂, ... A_n, b are in A.P., then A₁, A₂, ... A_n are called n A.M.'s between a and b.

If d is the common difference, then $\mathbf{b} = \mathbf{a} + (\mathbf{n} + 2 - 1) \mathbf{d} \Rightarrow \mathbf{d} = \frac{\mathbf{b} - \mathbf{a}}{\mathbf{n} + 1}$

$$A_i = a + id = a + i \frac{b-a}{n+1} = \frac{a(n+1-i)+ib}{n+1}, i = 1, 2, 3, ..., n$$

If three terms are in G.P. then the middle term is called the geometric mean (G.M.) between the two. So if a, b, c are in G.P. then $b = \sqrt{ac}$ or $b = -\sqrt{ac}$ corresponding to a & c both are positive or negative respectively.

If a, G₁, G₂ ... G_n, b are in G.P., then G₁, G₂ ... G_n are called n G.M.s between

a and b. If r is the common ratio, then $b = a \cdot r^{n+1} \Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{(n+1)}}$

$$\mathbf{G_i} = \mathbf{ar^i} = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}} = a^{\frac{n+1-i}{n+1}} \cdot b^{\frac{i}{n+1}}, \ \mathbf{i} = 1, 2, ..., n$$

If a & b are two non-zero numbers, then the harmonic mean of a & b is a number H such that a, H, b are in H.P. & $\frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$ or $H = \frac{2ab}{a+b}$

If a, H₁, H₂... H_n, b are in H.P., then H₁, H₂ ... H_n are called n between a and b. If d is the common difference of the corresponding A.P., then

6

 $\frac{1}{b} = \frac{1}{a} + (n+2-1)d \Longrightarrow d = \frac{a-b}{ab(n+1)}$ $\frac{1}{H_i} = \frac{1}{a} + id = \frac{1}{a} + i\frac{a-b}{ab(n+1)}; \mathbf{H_i} = \frac{ab(n+1)}{b(n-i+1)+ia}, i = 1, 2, 3, ..., n$

	PROCRESSIONS ASSIGNMENT									
1.	The third term of a G.P. is 4. The product of the first five terms is									
-	A) 4 ³	B) 4 ⁻⁵	C) 4 ⁴	D) none of these						
2.	If a, b, c, d are in H.P., then $ab + bc + cd$ is equal to A) 2 ad D roots of these									
	A) 3 ad	B) $(a + b) (c + d)$	C)e ac	D) none of these						
3.	If A and G be the A.M. and G.M. respectively between two numbers, then the numbers are									
	A) $A \pm \sqrt{G^2 - A^2}$	B) $A \pm \sqrt{A^2 - G^2}$	C) $A \pm \sqrt{A^2 + G^2}$	D) $G \pm \sqrt{A^2 - G^2}$						
4.	If S be the sum, P the product and R the sum of the reciprocals of n terms of a G.P., then									
	$\left(\frac{S}{R}\right)^n =$									
	A) P	B) P ²	C) P ³	D) √P						
5.	If x, y, z be respectively the pth, qth and rth terms of G.P., then									
	$\log x + (r-p) \log y + (p-q) \log z =$									
	A) 0	B) 1	C) –1	D) none						
6.	The sum of integers from 1 to 100 which are divisible by 2 or 5 is									
	A) 300	B) 3050	C) 3200	D) 3250						
7.	The interior angles of a polygon are in arithmetic progression. The smallest angle is 120^0 and the									
	common difference is 5. The number of sides of the polygon is									
	A) 7	B) 9	C) 11	D) 16						
8.	If $S_n = nP + \frac{1}{2}n(n-1)Q$ where S_n denotes the sum of the first n terms of an A.P., then the									
	common difference	e is								
	A) P + Q	B) 2P + 3Q	C) 2Q	D) Q						
9.	If $a_1, a_2, a_3 \dots a_r$	$\frac{1}{a_2}$ are in H.P., then $\frac{1}{a_2}$	$\frac{a_1}{a_1+a_3+a_n}$, $\frac{a_2}{a_1+a_3+a_n}$	$\frac{a_n}{a_1 + a_2 + \dots + a_{n-1}}$ are in						
	A) A.P.	B) G.P.	C) H.P.	D) none of these						

 $1 \leq$

10.	If one geometric mean G and two arithemtic means p and q be inserted between two numbers,								
	then G^2 is equal to:								
	A) $(3p - q) (3q - p)$		B) $(2p - q) (2q - p)$						
	C) $(4p - q) (4q - p)$		D) none of these						
11.	If the arthimetic me	an between a and b i	is $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$, then n =						
	A) 0	B) 1	C) –1	D) 1/2					
12.	The sum upto $(2n + 1)$ terms of the series $a^2 - (a + d)^2 + (a + 2d)^2 - (a + 3d)^2 + \dots$ is								
	A) $a^2 + 3nd^2$		B) $a^2 + 2nad + n (n-1)d^2$						
	C) $a^2 + 3nad + n$ (n	$(-1)d^2$	D) none of these						
13.	The positive integer	r n for which 2×2^2 -	$+ 3 \times 2^3 + 4 \times 2^4 + \dots + n \times 2^n = 2^{n+10}$ is						
	A) 510	B) 511	C) 512	D) 513					
14.	If $x > 0$ and $\log_2 x + 1$	$\log_2(\sqrt{x}) + \log_2(\sqrt[4]{x}) + \log_2(\sqrt[4]{x})$	$s_2\left(\sqrt[8]{x}\right) + \log_2\left(\sqrt[16]{x}\right) + \dots = 4$ then x equals						
	A) 2	B) 3	C) 4	D) 5					
15.	If a, b and c are positive real numbers then $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ is greater than or equal to								
	A) 3	B) 6	C) 27	D) none of these					
16.	In a G.P., $T_2 + T_5$	$= 216 \text{ and } T_4 : T_6 =$	1:4 and all terms are	e integers, then its first term is					
	A) 16	B) 14	C) 12	D) none					
17.	If $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3,, \mathbf{a}_n$ be an	A.P. of non-zero ter	Therefore $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \frac{1}{a_2 a_3} + \frac{1}{a_2 a_3} + \frac{1}{a_3 a_3} + $	$+\frac{1}{a_{n-1}a_n}=$					
	A) $\frac{a}{a_1 a_n}$	B) $\frac{n}{a_1 a_n}$	C) $\frac{n-1}{a_1a_n}$	D) none					

18.	If the ratio of sum of m terms and n terms of an A.P. be m^2 : n^2 , then the ratio of its m^{th} and n^{th}									
	terms will be									
	A) 2m – : 2n – 1	B) M : n	C) 2m + 1 : 2n + 1	D) none						
19.	The ratio between the sum of n terms of two A.P.'s is $3n + 8 : 7 n + 15$. Then the ratio between									
	their 12 th terms is									
	A) 5 : 7	B) 7 : 16	C) 12 : 11	D) none						
20.	If A.M. between two numbers is 5 and their G.M. is 4, then the H.M. will be:									
	A) $\frac{16}{5}$	B) $\frac{14}{5}$	C) $\frac{11}{5}$	D) none of these						
21.	The A.M. between two numbers b and c is a and the two G.M.s between them are g_1 and g_2 . If									
	$g_1^3 + g_2^3 = k$ abc, then k is equal to									
	A) 1	B) 2	C) 3	D) 4						
22.	Between 1 and 31 are inserted m arithmetic means, so that the ratio of the 7th and (m									
	-1)th means is 5 : 9. Then the value of m is									
	A) 12	B) 13	C) 14	D)15						
23.	Sum to n terms of the series $\frac{1}{(1+x)(1+2x)} + \frac{1}{(1+2x)(1+3x)} + \frac{1}{(1+3x)(1+4x)} + \dots$									
	is									
	A) $\frac{nx}{(1+x)(1+nx)}$		B) $\frac{n}{(1+x)\left[1+(n+1)x\right]}$	x]						
	C) $\frac{x}{(1+x)(1+(n-1))}$	x)	D) none of these							
24.	$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)(n+1)(n+2)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1$	+3)(n+k) is equal to	to							
	A) $\frac{1}{(k-1)\lfloor k-1}$	B) $\frac{1}{k \lfloor \underline{k}}$	C) $\frac{1}{(k-1)\lfloor \underline{k}}$	D) $\frac{1}{\lfloor \underline{k}}$						

25. Sum of the series
$$s = 1 + \frac{1}{2}(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{4}(1+2+3+4) + \dots$$
 upto 20 terms is
A) 110 B) 111 C) 115 D) 116
26. The sum of first n terms of the series $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + \dots$ is n
 $(n + 1)^2/2$ when n is even. When n is odd the sum of the series is
A) $n^2 (3n + 1)/4$ B) $n^2 \frac{(n+1)}{2}$ C) $n^3 (n - 1)/2$ D) none of these
27. Sum of the series $\sum_{r=1}^{n} \frac{r}{(n+1)!}$ is
A) $1 - \frac{1}{n!}$ B) $1 - \frac{1}{(n+1)!}$ C) $2 - \frac{1}{(n+1)!}$ D) none of these
28. If the A.M. and G.M. of two numbers are 13 and 12 respectively then the two
numbers are
A) 8, 12 B) 8, 18 C) 10, 18 D) 12, 18
29. If $2p + 3q + 4r = 15$, the maximum value of $p^3q^5 r^7$ will be
A) 2180 B) $\frac{5!3^3}{2^{15}}$ C) $\frac{5!7^7}{2^{17}9}$ D) 2285
30. If $a_1, a_2, \dots a_n$ are positive real numbers whose product is a fixed number c, then the minimum
value of $a_1 + a_2 + \dots a_{n-1} + 2a_n$ is
A) $n(2e)^{1/n}$ B) $(n + 1)e^{1/n}$ C) $2ne^{1/n}$ D) $(n + 1)(2e)^{1/n}$

KEY SHEET													
1)	В	2)	Α	3)	В	4)	В	5)	Α	6)	В	7)	В
8)	D	9)	C	10)	В	11)	Α	12)	D	13)	D	14)	C
15)	Α	16)	C	17)	C	18)	Α	19)	В	20)	Α	21)	В
22)	C	23)	В	24)	C	25)	C	26)	В	27)	В	28)	В
29)	С	30)	Α										

