MATHEMATICS

===

PROGRESSIONS_SYNOPSIS

1

 $\left\langle \right\rangle$

(A.M.) between the other two i.e. if a, b, c are in A.P. then $b = \frac{a+c}{2}$ $=\frac{a+c}{2}$ is the A.M. of **a and b.** If a, A_1 , A_2 , ... A_n , b are in A.P., then A_1 , A_2 , ... A_n are called n A.M.'s between **a and b. If d is the common difference, then** $\mathbf{b} = \mathbf{a} + (\mathbf{n} + \mathbf{2} - \mathbf{1}) \mathbf{d} \Rightarrow \mathbf{d} = \frac{\mathbf{b} - \mathbf{a}}{2}$ $n + 1$ - $^{+}$ $A_i = a + id = a + i \frac{b-a}{n+1} = \frac{a(n+1-i)+ib}{n+1},$ $n+1$ $n+1$ $\frac{-a}{4} = \frac{a(n+1-i)+i}{4}$ $+1$ $n+1$ **i = 1, 2, 3, ..., n Note:** The sum of n-A.s, i.e., $A_1 + A_2 + ... + A_n = \frac{n}{2}(a+b)$ 2 $\ddot{}$ **(ii) Geometric means If three terms are in G.P. then the middle term is called the geometric mean (G.M.) between the two. So if a, b, c are in G.P. then** $b = \sqrt{ac}$ or $b = -\sqrt{ac}$ **corresponding to a & c both are positive or negative respectively.** If $\,$ a, G_1 , G_2 ... G_n , b are in G .P., then G_1 , G_2 ... G_n are called n G .M.s between a **and b. If r is the common ratio, then** $\mathbf{b} = \mathbf{a} \cdot \mathbf{r}^{\mathbf{n}+1} \Rightarrow \mathbf{r} =$ b) $\frac{1}{(n+1)}$ $\left(\frac{b}{a}\right)^{(n+1)}$ $G_i = ar^i =$ $a\left(\frac{b}{b}\right)^{\frac{1}{n+1}} = a^{\frac{n+1-i}{n+1}}.b^{\frac{1}{n+1}},$ a $\left(\frac{b}{a}\right)^{\overline{n+1}} = a^{\frac{n+1-i}{n+1}}.b^{\frac{i}{n+1}}, i = 1, 2, ..., n$ Note: The product of n-G. s i.e., G_1 G_2 $...$ G_n = $(\sqrt{ab})^n$ **(iii) Harmonic mean: If a & b are two non-zero numbers, then the harmonic mean of a & b is a number H such that a, H, b are in H.P.** $\& \frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$ or $H = \frac{2ab}{a+b}$ $=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$ or $H = \frac{2a}{a+b}$ If a, H_{1} , H_{2} ... H_{n} , b are in H.P., then H_{1} , H_{2} ... H_{n} are called $\text{n}\,$ between a and b. **If d is the common difference of the corresponding A.P., then** $\frac{1}{1} = \frac{1}{1} + (n+2-1)d \Rightarrow d = \frac{a-b}{1}$ b a $ab(n+1)$ $=\frac{1}{2}+(n+2-1)d \Rightarrow d=\frac{a-2}{2}$ $^{+}$ i $\frac{1}{2} = \frac{1}{2} + id = \frac{1}{2} + i \frac{a-b}{2}$ H_i a ab(n+1) $=\frac{1}{2}+id=\frac{1}{2}+i\frac{a-1}{2}$ $\frac{b}{(n+1)}$, $\mathbf{H}_{\mathbf{i}} = \frac{ab(n+1)}{b(n-i+1)+ia}$, i=1, 2, 3, ..., n $b(n-i+1) + ia$ $=\frac{ab(n+1)}{b(n+1)}$, i=1 $-i+1$) + i (iv) **Term** t_{n+1} **is the arithmetic, geometric or harmonic mean of** $t_1 \& t_{2n+1}$ according as the terms t_1 , t_{n+1} t_{2n+1} are in A.P., G.P. or H.P. respectively. **ARITHMETIC-GEOMETRIC SERIES A series whose each term is formed, by multiplying corresponding terms of an A.P. and a G.P., is called an Arithmetic-geometric series. e.g.** $1 + 2x + 3x^2 + 4x^3 + \dots$; $a + (a + d) r + (a + 2d)r^2 + \dots$

(i) Summation of n terms of an Arithmetic-Geometric Series
\nLet S_n = a + (a + d) r + (a + 2d)r² + ... + [a + (n - 1)d]rⁿ⁻¹,
\nMultiply by 'r' and rewrite the series in the following way
\nrs_n = ar + (a + d)r² + (a + 2d)r³ + ... + [a + (n - 2)d]rⁿ⁻¹ + [a + (n - 1)d]rⁿ
\non subtraction,
\nS_n (1 - r) = a + d(r + r² + ... + rⁿ⁻¹) – [a + (n - 1)d]rⁿ
\nor, S_n(1 - r) = a +
$$
\frac{dr(1 - r^{n-1})}{1 - r}
$$
 – [a + (n - 1)d]rⁿ
\nor, S_n = $\frac{a}{1-r} + \frac{dr(1 - r^{n-1})}{(1-r)^2}$ – $\frac{[a + (n - 1)d]r}{1-r}$
\n(ii) Summation of Infinite Series
\nIf |r| < 1, then (n - 1)rⁿ, rⁿ⁻¹ → 0, as n → ∞ . Thus S_n = S = $\frac{a}{1-r} + \frac{dr}{(1-r)^2}$
\nSUM OF MISCELLANEOUS SERIES
\n(i) Difference Method
\nSuppose a₁, a₂, a₃, is a sequence such that the sequence a₂ - a₁, a₃ - a₂,
\n........ is either an A.P. or G.P. The nth term 'a_n' of this sequence is obtained
\nas follows.
\nS = a₁ + a₂ + a₃ + + a_{n-1} + a_n
\nS = a₁ + a₂ + a₃ + + a_{n-2} + a_{n-1} + a_n
\nSince the terms within the brackets are either in an A.P. or in a G.P. we can
\nfind the value of a_n, the nth term. We can now find the sum of the n terms of the
\nsquence as $s = \sum_{k=1}^{n} a_k$

(A), geometric mean (G) and harmonic mean (H) as $A = \frac{a_1 + a_2 + \dots + a_n}{n}$ $=\frac{a_1+a_2+\dots+a_n}{a_1},$

$$
G = (a_1 a_2 \dots a_n)^{1/n} \text{ and } H = \frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots \dots \frac{1}{a_n}\right)}
$$

It can be shown that Moreover equality holds at either place if and only if a1 = a2 = = an

(ii) Weighted Means

Let $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ be n positive real numbers and $\mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_n}$ be **n positive rational numbers. Then we define weighted Arithmetic mean (A*), weighted Geometric mean (G*) and weighted harmonic mean (H*) as**

$$
\mathbf{A}^* = \frac{a_1 w_1 + a_2 w_2 + \dots + a_n w_n}{w_1 + w_2 + \dots + w_n}, \quad \mathbf{G}^* = (a_1^{w_1} a_2^{w_2} \dots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \dots w_n}}
$$

and
$$
\mathbf{H}^* = \frac{w_1 + w_2 + \dots + w_n}{\frac{w_1}{a_1} + \frac{w_2}{a_2} + \dots + \frac{w_n}{a_n}}.
$$

 A^* ³ G^* ³ H^* More over equality holds at either place if & only if $a_1 = a_2$ i **............=.an**

(iii) Cauchy's Schwartz Inequality:

If $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ and $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}$ are 2n real numbers, then

 $(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$ $(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b^2)$ **n)** with the equality holding if and only if $\frac{u_1}{1} = \frac{u_2}{1}$ v_1 v_2 *n n* a_1 a_2 a_3 b_1 b_2 b_n $=\frac{u_2}{1}=\dots=\frac{u_n}{1}$.

ARITHMETIC MEAN OF mth POWER

Let $a_1, a_2, ..., a_n$ be n positive real numbers α and let m be a real number, then

$$
\frac{a_1^m + a_2^m + \dots + a_n^m}{n} \ge \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^m, \text{ if } m \in R - [0,1].
$$

However if (0, 1), then
$$
\frac{a_1^m + a_2^m + ... + a_n^m}{n} \leq \left(\frac{a_1 + a_2 + ... + a_n}{n}\right)^m
$$

Obviously if
$$
m \in \{0,1\}
$$
, then
$$
\frac{a_1^m + a_2^m + ... + a_n^m}{n} = \left(\frac{a_1 + a_2 + ... + a_n}{n}\right)^m
$$

KEY POINTS

A.P.

If a = first term, d = common difference and n is the number of terms, then nth term is denoted by $\mathbf{t_{n}}$ and is given by

 $t_n = a + (n-1) d$. \mathbf{Sum} of first \mathbf{n} terms is denoted by $\mathbf{S}_{\mathbf{n}}$ and is given by n $S_n = \frac{n}{2} [2a + (n-1)d]$ 2 $=\frac{1}{2}[2a+(n-1)]$ **or** $S_n = \frac{n}{2}(a+l)$, $n - 2$ $S_n = \frac{n}{2}(a+l)$, where *l* = last term in the series i.e., *l* = t_n = a + (n – 1) d. **Arithmetic mean A of any two numbers a and b** $A = \frac{a+b}{2}$ 2 $=\frac{a+b}{2}$. **Sum of first n natural numbers (** $\sum n$ **)** $n = \frac{n(n+1)}{2}$ 2 $\sum n = \frac{n(n+1)}{2}$, where $n \in \mathbb{N}$. **Sum of squares of first n natural numbers** $(\sum n^2)$ $2\binom{n(n+1)(2n+1)}{2}$ 6 $\sum n^2 = \frac{n(n+1)(2n+1)}{6}$ **Sum of cubes of first n natural numbers** (Σn^3) $n^3 = \left[\frac{n(n+1)}{2}\right]^2$ 2 $\Sigma n^3 = \left[\frac{n(n+1)}{2}\right]^2$ **G.P.** If a = first term, r = common ratio and n is the number of terms, then \mathbf{h}^{th} term, denoted by \mathbf{t}_{n} , is given by $\mathbf{t}_{\text{n}} = \mathbf{a}\mathbf{r}^{\text{n}-1}$ \mathbf{Sum} of first \mathbf{n} terms denoted by $\mathbf{S}_{\mathbf{n}}$ is given by n $S_n = \frac{a(1 - r^n)}{1 - r}$ $1-r$ $=\frac{a(1-$ **or** $a(r^n-1)$ $r-1$ --In case $r = 1$, $S_n = na$. \bullet Sum of infinite terms (S_{∞}) $S_{\infty} = \frac{a}{1-r}$ (for $|r| < 1 \& r \neq 0$) **H.P. If a, b are first two terms of an H.P. then** n $t_n = \frac{1}{1}$ $\frac{1}{1}$ + (n -1) $\left(\frac{1}{1}$ - $\frac{1}{1}$ $a \rightarrow b a$ $=$ $+(n-1)\left(\frac{1}{b}-\frac{1}{a}\right)$ **There is no formula for sum of n terms of an H.P. MEANS If three terms are in A.P. then the middle term is called the arithmetic mean (A.M.** between the other two i.e. if a, b, c are in A.P. then $b = \frac{a+c}{2}$ $=\frac{a+c}{2}$ is the A.M. of a and b.

If a, A_1 , A_2 , ... A_n , b are in A.P., then A_1 , A_2 , ... A_n are called n A.M.'s between **a and b.**

If d is the common difference, then $\mathbf{b} = \mathbf{a} + (\mathbf{n} + \mathbf{2} - \mathbf{1}) \mathbf{d} \Rightarrow \mathbf{d} = \frac{\mathbf{b} - \mathbf{a}}{4}$ $n + 1$ - $+$

$$
A_i = a + id = a + i \frac{b-a}{n+1} = \frac{a(n+1-i)+ib}{n+1}, i = 1, 2, 3, ..., n
$$

If three terms are in G.P. then the middle term is called the geometric mean (G.M.) between the two. So if a, b, c are in G.P. then $b = \sqrt{ac}$ or $b = -\sqrt{ac}$ corresponding to **a & c both are positive or negative respectively.**

If $\,$ a, G_1 , G_2 ... G_n , b are in G .P., then G_1 , G_2 ... G_n are called n G .M.s between

a and **b.** If **r** is the common ratio, then **b** = $a.r^{n+1} \Rightarrow r =$ b) $\frac{1}{(n+1)}$ $\left(\frac{b}{a}\right)^{(n+1)}$

$$
G_{\mathbf{i}} = ar^{\mathbf{i}} = a \left(\frac{b}{a}\right)^{\frac{i}{n+1}} = a^{\frac{n+1-i}{n+1}}.b^{\frac{i}{n+1}}, \ \mathbf{i} = 1, 2, ..., n
$$

If a & b are two non-zero numbers, then the harmonic mean of a & b is a number H such that **a**, **H**, **b** are in **H.P.** & $\frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$ or $H = \frac{2ab}{a+b}$ $=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$ or $H=\frac{2a}{a+b}$

If a, H_1 , H_2 ... H_n , b are in H.P., then H_1 , H_2 ... H_n are called n between a and b. **If d is the common difference of the corresponding A.P., then**

 $\frac{1}{1} = \frac{1}{1} + (n+2-1)d \Rightarrow d = \frac{a-b}{1}$ b a $ab(n+1)$ $=\frac{1}{2}+(n+2-1)d \Rightarrow d=\frac{a-2}{2}$ $^{+}$ i $\frac{1}{1} = \frac{1}{1} + id = \frac{1}{1} + i \frac{a-b}{1}$ H_i a ab(n+1) $=\frac{1}{2}+id=\frac{1}{2}+i\frac{a-1}{2}$ $\frac{b}{(n+1)}$; $H_{i} = \frac{ab(n+1)}{b(n-i+1)+ia}$, i=1, 2, 3, ..., n $b(n-i+1) + ia$ $=\frac{ab(n+1)}{b(n+1)}$, i=1 $-i+1$) + i

 $\frac{1}{7}$

 \geq

ך \leq

25. Sum of the series
$$
s = 1 + \frac{1}{2}(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{4}(1+2+3+4) + \dots
$$
 upto 20 terms is
\nA) 110
\nB) 111
\nC) 115
\nD) 116
\n26. The sum of first n terms of the series $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + \dots$ is n
\n $(n + 1)^2/2$ when n is even. When n is odd the sum of the series is
\nA) $n^2 (3n + 1)/4$
\nB) $n^5 \frac{(n + 1)}{2}$
\nC) $n^3 (n - 1)/2$
\nD) none of these
\n27. Sum of the series $\frac{1}{6^n} \frac{1}{(n+1)!}$ is
\nA) $1 - \frac{1}{n!}$
\nB) $1 - \frac{1}{(n+1)!}$
\nC) $2 - \frac{1}{(n+1)!}$
\nD) none of these
\n28. If the A.M. and G.M. of two numbers are 13 and 12 respectively then the two
\nnumbers are
\nA) 8, 12
\nB) 8, 18
\nC) 10, 18
\nD) 12, 18
\n29. If $2p + 3q + 4r = 15$, the maximum value of $p^3q^5r^7$ will be
\nA) 2180
\nB) $\frac{5^4.3^8}{2^{15}}$
\nC) $\frac{5^7.7^7}{2^7.9}$
\nD) 2285
\n30. If a_1 , a_2 , ... a_n are positive real numbers whose product is a fixed number c, then the minimum
\nvalue of $a_1 + a_2 + ... a_{n-1} + 2a_n$ is
\nA) $n(2c)^{1/n}$
\nB) $(n + 1)c^{1/n}$
\nC) $2nc^{1/n}$
\nD) $(n + 1) (2c)^{1/n}$

 $\frac{1}{10}$

 \leq

KEY SHEET

