
BINOMIAL THEOREM  

BINOMIAL EXPRESSION  

 Any algebraic expression consisting of only two terms is known as a binomial expression.  
 
BINOMIAL THEOREM 

 Such formula by which any power of a binomial expression can be expanded in the form of a series is 
known as binomial theorem. For a positive integer n the expansion is given by  
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GENERAL TERM IN THE EXPANSION  

 The general term in the expansion of (a + x)
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 Note:  
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 (ii) The binomial coefficients in the expansion of (a + x)
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GREATEST BINOMIAL COEFFICIENT  

 The greatest binomial coefficient is the binomial coefficient of middle term. 

 Greatest binomial coefficient in (1 + x)
n
  



Binomial Theorem 2 
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GREATEST TERM 

 To determine the numerically greatest term (absolute term) in the expansion of (a + x)
n
, where n is a 

positive integer. 
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Example 3 :  Find the greatest term in the expansion of (2 + 3x)
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PROPERTIES OF BINOMIAL COEFFICIENT  

 For sake of convenience the coefficients 
n
C0, 

n
C1,  , 

n
Cn are usually denoted by C0, C1,  , Cn 

respectively. 
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3 Binomial Theorem 

Notes: 

 (i) Differentiation: When the terms in an identity are the product of a numerical (natural number) 
and a binomial coefficient, then differentiation is used. 

 (ii) Integration: When the numerical (natural number) occurs as the denominator of the binomial 
coefficient, integration is used. 

 (iii) Multiplication of binomial expansion: When each term is summation contains the product of 
two binomial coefficients or square of binomial coefficient, multiplication of binomial coefficient is 
used. 
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