MATHEMATICS

QUADRATIC EQUATIONS_SYNOPSIS

	I
٠	If α , β are the roots of $ax^2 + bx + a = 0$, then the roots are reciprocals to each other
	Nature of roots of $ax^2 + bx + c = 0$
•	<u>Case - I</u> a,b,c are rational
	i) $\Delta > 0$ and is a perfect square \Leftrightarrow Rational and unequal
	ii) $\Delta > 0$ and not a perfect square \Leftrightarrow Irrational and unequal
	iii) $\Delta = 0 \Leftrightarrow$ Rational and equal
	iv) $\Delta < 0 \Leftrightarrow$ Imaginary
•	<u>Case – II</u> a,b,c are real
	i) $\Delta > 0 \Leftrightarrow$ Real and unequal
	ii) $\Delta = 0 \iff$ Real and equal
	iii) $\Delta < 0 \Leftrightarrow$ Imaginary
•	If $f(x) = 0$ is a quadratic equation, then the equation whose roots are
	i) The reciprocals of the roots of $f(x) = 0$ is $f\left(\frac{1}{x}\right) = 0$
	ii) Increased by K than that of $f(x)=0$ is $f(x-k)=0$
	ii) Decreased by K than that of $f(x)=0$ is $f(x+k)=0$
	iii) Negative of the roots of $f(x)=0$ is $f(-x)=0$
	iv) K times the roots of $f(x) = 0$ is $f\left(\frac{x}{k}\right) = 0$
	v) Square of the roots of $f(x) = 0$ is $f(\sqrt{x}) = 0$ and (eliminate square root)
	vi) Cubes of the roots of $f(x) = 0$ is $f(\sqrt[3]{x}) = 0$ and (eliminate cube root)
•	If α, β are the roots of the quadratic equation $f(x) = 0$, then the equation whose
	roots are $a\alpha + b, a\beta + b$ is $f\left(\frac{x-b}{a}\right) = 0$
•	Condition for the roots of $ax^2 + bc + c = 0$ to be in the ratio $m:n$ is $(m+n)^2 ac = mnb^2$
•	Conditions for one root of $ax^2 + bc + c = 0$ may be the square of the other is

	$b^3 + a^2c + ac^2 = 3abc$					
٠	If one root of the quadratic equation $ax^2 + bc + c = 0$ is equal to the n th power of the					
	other, then $(ac^n)^{\frac{1}{n+1}} + (a^nc)^{\frac{1}{n+1}} + b = 0$					
•	If the difference of the roots of $ax^2 + bx + c = 0$ is same as the difference of the roots of					
	$px^2 + qx + r = 0$ then $\frac{\Delta_1}{\Delta_2} = \frac{a^2}{p^2}$ (where Δ_1, Δ_2 are the discriminants)					
•	In a Q.E with rational coefficients, irrational roots occur as conjugate pairs					
	In a Q.E with real coefficients, imaginary roots occur as conjugate pairs					
	a) The equations $a_1x^2 + b_1x + c_1 = 0$, $a_2x^2 + b_2x + c_2 = 0$ where $a_1b_2 - a_2b_1 \neq 0$ have a					
	common root if $(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1)$ and the common root is					
	$\frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} \text{ or } \frac{b_1 c_2 - b_2 c_1}{c_1 a_2 - c_2 a_1}$					
	b) If a Quadratic equation $ax^2 + bx + c = 0$ in x has more than two roots then it is an					
	identity in x					
	i.e. $a = b = c = 0$					
•	If $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have the same roots then					
	$a_1: a_2 = b_1: b_2 = c_1: c_2$					
•	If the equation $ax^2 + bx + c = 0$ has complex roots, then $\forall x \in R, ax^2 + bx + c$ and <i>a</i> will					
	have the same sign					
•	If the equation $ax^2 + bx + c = 0$ has equal roots, then $\forall x \in R - \left\{\frac{-b}{2a}\right\}, ax^2 + bx + c$ and a					
	will have the same sign					
•	a) If the equation $ax^2 + bx + c = 0$ has real roots α and $\beta(\alpha > \beta)$ then					
	i) $\beta < x < \alpha \Rightarrow ax^2 + bx + c$ and a will have opposite signs.					
	ii) $x > \alpha$ or $x < \beta \Rightarrow ax^2 + bx + c$ and a will have the same sign					
•	b) The expression $y = ax^2 + bx + c$ always represents a parabola whose vertex is at					

 $\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$. It is also called the turning point of the graph. Length of the latusrectum of the parabola is $\frac{1}{|a|}$ a) If a > 0, then the minimum value of $ax^2 + bx + c$ occurs at $x = \frac{-b}{2a}$ and it is • $\frac{4ac-b^2}{4a}, \forall x \in \mathbb{R}$ b) If a < 0, then the maximum value of $ax^2 + bx + c$ occurs at $x = \frac{-b}{2a}$ and it is $\frac{4ac-b^2}{4a}, \forall x \in R$ • a) If $f(x) = \frac{ax^2 + bx + c}{ax^2 - bx + c}$ or $\frac{ax^2 - bx + c}{ax^2 + bx + c}$, $(b^2 - 4ac < 0)$, then the minimum and maximum values of f(x) are given by $f\left(\pm \sqrt{\frac{c}{a}}\right)$ b) The minimum and maximum values of $f(x) = \frac{(x+a)(x+b)}{(x+c)}$ are respectively • $\left(\sqrt{a-c}+\sqrt{b-c}\right)^2$ and $\left(\sqrt{a-c}-\sqrt{b-c}\right)^2$ and they are obtained at $x = -c \pm \sqrt{(a-c)(b-c)} (a < c, b < c)$ The necessary and sufficient condition for the second degree expression • $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c$ to be expressed as a product of two linear factors is $abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$ or $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0, h^{2} \ge ab, g^{2} \ge ac, f^{2} \ge bc$.

QUADRATIC EQUATIONS_ASSIGNMENT

If α, β are the roots of $ax^2 + bx + c = 0$ then $(a\alpha + b)^{-2} + (a\beta + b)^{-2} =$ 1. 1) $\frac{b^2 - 2ac}{a^4}$ 4) $\frac{b^2 - 2ac}{c^4}$ 2) $\frac{b^2 - 2ac}{a^3 c}$ 3) $\frac{b^2 - 2ac}{a^2 c^2}$ If α, β are the roots of $x^2 - p(x+1) - c = 0$ then $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + c} =$ 2. 1) 3 2) 2 3)14) 0If the roots of the quadratic equation $x^2 + px + q = 0$ are $tan 30^0$ and $tan 15^0$, respectively then the 3. value of 2+q-p is 2) 1 1) 0 3)24)3If α, β are the roots $ax^2 + 2bx + c = 0$ and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + 2Bx + C = 0$ then 4. $\frac{b^2 - ac}{B^2 - AC} =$ 3) $(a/A)^2$ 4) $(A/a)^{2}$ 1) a / A 2) A/a If the ratio of the roots of $x^2 + bx + c = 0$ and $x^2 + qx + r = 0$ are the same, then 5. 1) $r^2 c = q b^2$ 2) $r^2b = qc^2$ 3) $rb^2 = ca^2$ 4) $rc^2 = ba^2$ In a triangle PQR, $\angle R = \pi/2$. If $tan\left(\frac{P}{2}\right)$ and $tan\left(\frac{Q}{2}\right)$ are the roots of the equation 6. $ax^{2} + bx + c = 0 (a \neq 0)$, then 2) b + c = 03) a + c = b1) a + b = c4) b = cAll the values of m for which both roots of he equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 7. but less than 4, lie in the interval 1) -1 < m < 32) 1 < m < 43) -2 < m < 04) m > 3If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in 8. the interval 1) (5,6] 3) $(-\infty, 4)$ 2) $(6,\infty)$ 4) [4,5] If roots of the equation $x^2 - bx + c = 0$ be two consecutive integers, then $b^2 - 4c$ equals 9. 2) 3 3) 2 1) -2 (4)1

10.	If $p(q-r)x^2 + q(r-p)x + r(p-q) = 0$ has equal roots then $\frac{2}{r} = \frac{1}{r}$							
	1) $\frac{1}{p} + \frac{1}{r}$	2) $\frac{1}{p} - \frac{1}{r}$	q 3) p+r	4) pr				
11.	If $x^{2} - cx + d = 0$, x 2(b+d)=	$a^2 - ax + b = 0$ have one co	ommon root and second	has equal roots then				
12.	1) 0 For the equation $ x^2 $	2) ac $+ \mathbf{x} -6=0$, the root are	3) a + c	4) a – c				
	1) One and only one	e real number	2) real with sum one					
	3) real with sum zero	0	4) real with product zero					
13.	If $20^{3-2x^2} = (40\sqrt{5})^{3x^2}$	$^{-2}$, then x =	, I					
	1) $\pm \sqrt{\frac{13}{12}}$	2) $\pm \sqrt{\frac{12}{13}}$	3) $\pm \sqrt{\frac{4}{5}}$	4) $\pm \sqrt{\frac{5}{4}}$				
14.	The number of real s	solutions of $e^{\sin x} - e^{-\sin x} = 4$	is					
	1) 0	2) 1	3) 4	4) ∞				
15.	The expression $2x^2$ -	The expression $2x^2 + 4x + 7$ has minimum value m at $x = \alpha$. The order pair (α, m) is						
	1) (1,5)	2) (1,-5)	3) (-1,-5)	4) (-1,5)				
16.	If α , β are the roots of	of $ax^2 + bx + c = 0$ then $\left(\frac{a}{a}\right)$	$\frac{\alpha}{\beta+b}\bigg)^3 - \bigg(\frac{\beta}{a\alpha+b}\bigg)^3 =$					
	1) 0	2)1	3) $(a+b)^2$	4) $(a-b)^2$				
17.	If α, β are the re $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)$	oots of $x^2 + px - q = 0$ a $)(\beta - \delta) =$	nd γ, δ are the roots	of $x^2 + px + r = 0$ then				
	1) $2q^2$	2) $2p^2$	3) $(q+r)^2$	4) $(q-r)^2$				
18.	x_1 and x_3 are the n	roots of the equation Ax	$x^{2} - 4x + 1 = 0$ and x_{2} and x_{3}	x_4 are the roots of the				
	equation $Bx^2 - 6x + 1 = 0$. If x_1, x_2, x_3, x_4 form a HP, then $(A, B) =$							
	1) (3,3)	2) (8,8)	3) (3,8)	4) (8,3)				
19.	If $a = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$	$\beta^{2}, \alpha = a + a^{2} + a^{4} \text{ and } \beta = a^{3} - a^{3} + a^{4} + a^$	$+a^5 + a^6$ then α, β are roots	s of the equation				
	1) $x^2 + x + 1 = 0$	2) $x^2 + x + 2 = 0$	3) $x^2 + 2x + 2 = 0$	4) $x^2 + 2x + 3 = 0$				
20.	If $p,q \in \{1,2,3,4\}$, the number of equation of the form $px^2 + qx + 1 = 0$ having real roots is							
	1) 15	2) 9	3) 7	4) 8				
21.	The quadratic equation whose roots are the x and y intercept of the line passing through (1.1)							
	and making a triangle of area A with the axes may be							
	1) $x^2 + Ax + 2A = 0$	2) $x^2 - 2Ax + 2A = 0$	3) $x^2 - Ax + 2A = 0$	4) $x^2 - 2Ax^2 - 2A = 0$				

If a,b,c are positive real numbers, then the number of real roots of the equation $ax^2 + b|x| + c = 0$ 22. is 2) 4 1) 2 3) 0 4) - 1If x is real, then the greatest and least values of the expression $\frac{x^2 - 2x + 2}{x^2 + 3x + 9}$ 23. 1) $2 \text{ and } -\frac{2}{27}$ 2) $2 \text{ and } \frac{2}{27}$ 3) 2 and $\frac{1}{27}$ 4) 2 or 3 If the equation $(\lambda^2 - 5\lambda + 6)x^2 + (\lambda^2 - 3\lambda + 2)x + (\lambda^2 - 4) = 0$ is satisfied by more than two values 24. of x then $\lambda =$ 2) - 21) 1 3) 3 (4) 2If $\sin \theta$, $\sin k\theta$ are the roots of $4x^2 + 2x - 1 = 0$ then $\theta =$ 25. 1) -18° 2) 18° 3) 36° $(4) - 36^{\circ}$ The equation $(\cos p - 1)x^2 + (\cos p)x + (\sin p) = 0$, in the variable x has real roots. Then p can take 26. any value in the interval 3) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 2) $(-\pi, 0)$ 1) $(0,2\pi)$ 4) $(0,\pi)$ Let $f(x) = (1+b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As b varies, the 27. range of m(b) is. 3) $\left|\frac{1}{2},1\right|$ 2) $0,\frac{1}{2}$ 1) [0,1]**4**) (0,1] If $x^2 + x + 1 = 0$. Then the value of $\left(x + \frac{1}{x}\right) + \left(x^2 + \frac{1}{x^2}\right) + \dots + \left(x^{52} + \frac{1}{x^{52}}\right)$ equals 28. 3) - 14) -52 1) 1 2)0Given that, for all real x, the expression $\frac{x^2-2x+4}{x^2+2x+4}$ lies between $\frac{1}{3}$ and 3. The values between 29. which the expression $\frac{9 \cdot 3^{2x} + 6 \cdot 3^x + 4}{9 \cdot 3^{2x} - 6 \cdot 3^x + 4}$ lies are 1) $\frac{1}{3}$ and 3 2) -2 and 0 3) -1 and 1 4) 0 and 2 If a+b+c=0 then the equation $3ax^2+2bx+c=0$ has at least one root in 30. 1) (1,2)(0,1)(-1,1)4) (1,3)

31.	Let a	α and β l	be the root	s of he equ	uation $ax^2 +$	bx + c = 0). Observ	ve the lis	ts given	below	
	List -	– I	Li	st – II							
	i) α =	= β	A	$(ac^2)^{1/3} +$	$\left(a^2c\right)^{1/3} + b =$	0					
	ii) d	$\alpha = 2\beta$	B)	$2b^2 = 9ac$							
	iii) a	$\alpha = 3\beta$	c)	$b^2 = 6ac$							
	iv) a	$\alpha = \beta^2$	D	$3b^2 = 16a$	С						
			E)	$b^2 = 4ac$							
			F)	$(ac^2)^{1/3} + ($	$\left(a^2c\right)^{1/3} = b$						
	The	correct ma	atch of Lis	t - I from 2	List – II is						
		i ii	iii	iv		i	ii i	ii iv			
	1) 2)		B D	F		2) E	B	A D			
32	3) Obse	rve the fo	D B llowing lis	$\frac{\Gamma}{ts(\mathbf{x} \in \mathbb{R})}$		4) L	D	DA			
54.	List	$-\mathbf{I}$ (Inequ	nowing its 19tion)			List _	II (Solu	tion set)		
	A: x^2	-4x+3>	0			1. (3,4	4)		,		
	B : x^2	$-5x+6 \le$	0			2. $(1,1)U(2,4)$ 3. $(-\infty,1)U(3,\infty)$ 4. $[3,4]$					
	$C: x^2$	+6x - 27	$> 0 x^2 + 3$	3x + 4 > 0							
	$D \cdot \mathbf{x}^2$	$-3\mathbf{v} - 4\mathbf{z}$	$0 x^2 - 3x +$	2 > 0							
	D: $x - 3x - 4 < 0, x - 3x + 2 > 0$					T. [3, T] 5 [2, 3]					
	Matel	ning List	I from I	ist II		5. [2,.	·]				
	Water	A I	-1, 10111 L	D			A B	С	D		
	1)	1 2	2 3	4		2)	3 5	1	2		
	3)	1 3	3 5	4		4)	3 2	4	1		
]	KEY SI	IDD					
	1.3	2.3	3.4	4.3	5.3	6.1	7.1	8.3	9.4	10.1	
	11.2	12.3	13.2	14.1	15.4	16.1	17.3	18.3	19.2	20.3	
	21.2	22.3	23.2	24.4	25.2	26.4	27.4	28.3	29.1	30.2	
	31.4	32.2									