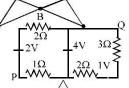
## Lorik educational academy-vidyanagar

## 9849180367

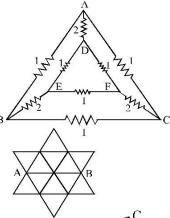
Costion, Conior TODIC, CURRENT ELECTRICITY

Section: Senior TOPIC: CURRENT ELECTRICITY

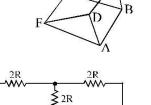
\_\_\_\_\_


## SINGLE ANSWER TYPE

- Q.1 The resistance of all the wires between any two adjacent dots is R. Then equivalent resistance between A and B as shown in figure is:
  - (A) 7/3 R


(B) 7/6 R

(C) 14/8 R

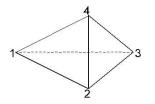

- (D) None of these
- Q.2 In the circuit shown, what is the potential difference  $V_{PQ}$ ?
  - -2V (D) none



- Q.3 In the diagram resistance between any two junctions is R. Equivalent resistance across terminals A and B is
  - $(A) \frac{11R}{7}$
- 18R (B) 11
- 7R (C) 11
- 11R (D) 18
- Q.4. A network of nine conductors connects six points A, B, C, D, E and F as shown in figure. The figure denotes resistances in ohms. Find the equivalent resistance between A and D.



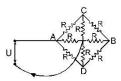
- Q.5 Find the equivalent resistance of the circuit between points A and B shown in figure is: (each branch is of resistance = 1)
- Q.6 In the circuit shown in figure, all wires have equal resistance r. Find the equivalent resistance between A and B.



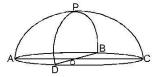

- Q.7 The effective resistance between the points P and Q of the electrical circuit shown in the figure is
  - (A) 2 Rr / (R + r)

(B) 8R(R + r)/(3R + r)

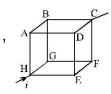
(C) 2r + 4R


- (D) 5 R/2 + 2r
- Q.8 As shown in the figure a wire is in the form of a tetrahedron. The resistance of each edge is r. Calculate the resistance of the frame between the corners;



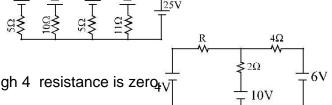

(i) 1 - 2

(ii) 1 - 3

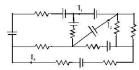

Q.9 The resistance of each resistor in the circuit diagram shown in figure is the same and equal to R. The voltage across the terminals is U. Determine the current I in the leads if their resistance can be neglected.



Q.10 A hemispherical network of radius a is made by using a conducting wire of resistance per unit length 'r'. Find the equivalent resistance across OP.



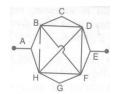

2i Q.11 In the box shown current *i* enters at H and leaves at C. If  $i_{AB} = \overline{6}$ ,  $i_{DC} = \overline{3}$ 



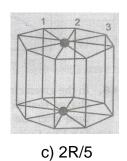

HA  $\frac{1}{2}$ ,  $i_{GF} = \frac{1}{6}$ ,  $i_{HE} = \frac{1}{6}$ , choose the branch in which current is zero


Q.12 Find the current through 25V cell & power supplied by 20V cell in the figure shown.




- Q.13 For what value of R in circuit, current through 4 resistance is zero,
- Q.14 Find the currents  $_1$ ,  $_2$  and  $_3$  in the following circuit. All resistors are of 2 and all batteries are ideal with EMF 2V.




- Q.15 A square pyramid is formed by joining 8 equal resistance R across the edges. The square base of the pyramid has the corners at A, B, C, D. The vertex is at M. Calculate the:
  - Current in the edge MC if an ideal cell of emf E is connected across the adjacent corners A and B. (a)
  - Current in the edge MA if an ideal cell of emf E is connected across the opposite corners A and C. (b)
- Q.16 Determine the resistance R<sub>AB</sub> between points A and B of the frame formed by nine identical wires of resistance R each.



Q.17 Fourteen identical resistors, each of resistance r are connected as shown in Fig. 2E.100(a). Calculate equivalent resistance between A and E.

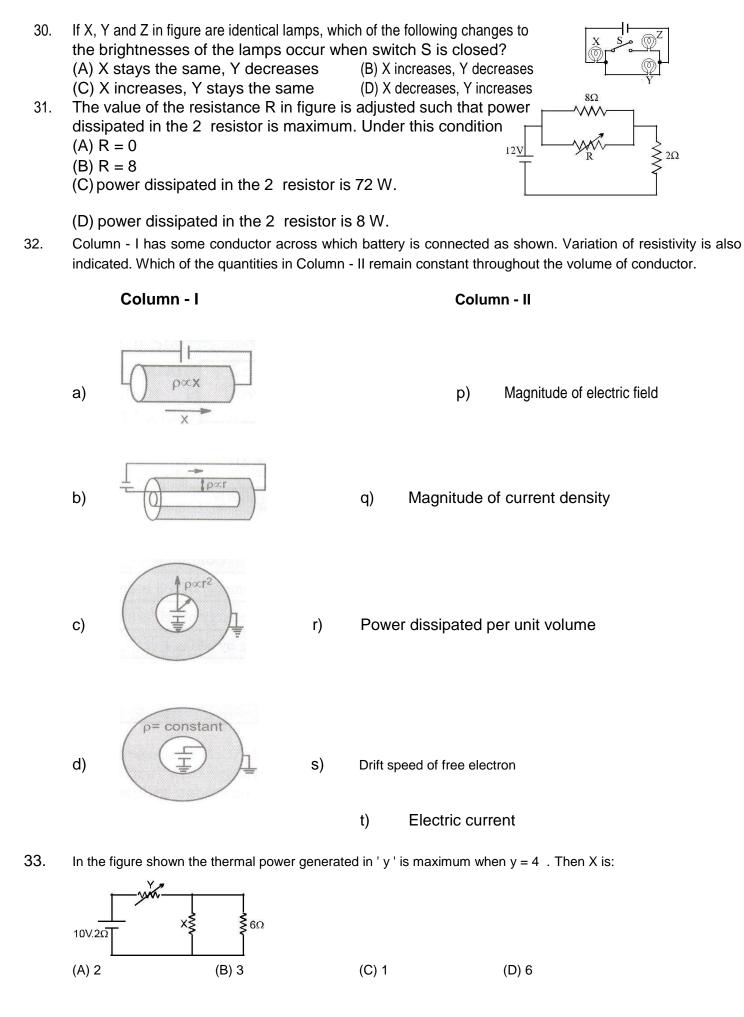


Q.18 In the diagram shown, all the wires have resistance R. The equivalent resistance between the upper and lower dots shown in the diagram is:



When electric bulbs of same power, but different marked voltage are connected in series across the power line,

d) 3R/8


a) R/8

their brightness will be:

19.

b) R

|     |                                                                                                                                                                                                              | al to their marked voltage (B) inversely proportional to their marked voltage all to the square of their marked voltage |                   |                   |                                        |                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------------------------------|------------------------------|
|     | (D) inversely proportional to the square of their marked voltage (E) the same for all of them                                                                                                                |                                                                                                                         |                   |                   |                                        |                              |
| 20. | Two bulbs rated (25 W - 220V) and (100W - 220V) are connected in series to a 440 V line.                                                                                                                     |                                                                                                                         |                   |                   |                                        |                              |
|     | Which one is likely                                                                                                                                                                                          | to fuse?                                                                                                                |                   |                   |                                        |                              |
|     | (A) 25 W bulb                                                                                                                                                                                                | (B) 100 W bulb                                                                                                          | (C) both bu       | lbs (D)           | none                                   |                              |
| 21. | Rate of dissipation of                                                                                                                                                                                       | of Joule's heat in res                                                                                                  | sistance per un   | it volume is (    | symbols have us                        | sual meaning)                |
|     | (A) E                                                                                                                                                                                                        | (B) J                                                                                                                   | (C) J E           | (D) None          |                                        |                              |
| 22. | If the length of the filament of a heater is reduced by 10%, the power of the heater will                                                                                                                    |                                                                                                                         |                   |                   |                                        |                              |
|     | (A) increase by abo                                                                                                                                                                                          | out 9%                                                                                                                  | (B) increase b    | y about 11%       |                                        |                              |
|     | (C) increase by abo                                                                                                                                                                                          |                                                                                                                         | ` '               | by about 10%      |                                        |                              |
| 23. | A heater A gives out 30                                                                                                                                                                                      | 00 W of heat when con                                                                                                   | nected to a 200 \ | √ d.c. supply. A  | second heater B o                      | gives out 600 W              |
|     | when connected to a 200 v d.c. supply. If a series combination of the two heaters is connected                                                                                                               |                                                                                                                         |                   |                   |                                        |                              |
|     | to a 200 V d.c. supp                                                                                                                                                                                         | •                                                                                                                       |                   |                   |                                        |                              |
|     | (A) 100 W                                                                                                                                                                                                    | (B) 450 W                                                                                                               | (C) 300 W         |                   | 200 W                                  |                              |
| 24. | Three 60 W light bulbs a                                                                                                                                                                                     |                                                                                                                         |                   |                   |                                        |                              |
|     | are rated for single conn                                                                                                                                                                                    |                                                                                                                         |                   |                   |                                        | Dulb is:                     |
|     | (A) 6.7 W                                                                                                                                                                                                    | (B) 13.3 W                                                                                                              |                   | (D)               | 40 W                                   |                              |
| 25. | The current I through a rod of a certain metallic oxide is given by $I = 0.2 \text{ V}^{5/2}$ , where V is the                                                                                               |                                                                                                                         |                   |                   |                                        |                              |
|     | potential difference across it. The rod is connected in series with a resistance to a 6V battery                                                                                                             |                                                                                                                         |                   |                   |                                        |                              |
| (i) | of negligible internal resistance. What value should the series resistance have so that: the current in the circuit is 0.44 (ii) the power dissipated in the rod is twice that dissipated in the resistance. |                                                                                                                         |                   |                   |                                        |                              |
| 26. | In the figure shown the                                                                                                                                                                                      | nower generated in                                                                                                      | v is maximum w    | henv=5 Th         | en R is                                | J                            |
| 20. | (A) 2                                                                                                                                                                                                        | power generated in                                                                                                      | (B) 6             | 11011 y = 0 . 111 | *                                      | R ≹                          |
|     | ` ,                                                                                                                                                                                                          |                                                                                                                         | ` '               |                   | 2Ω                                     |                              |
|     | (C) 5                                                                                                                                                                                                        |                                                                                                                         | (D) 3             |                   | 50 Ω                                   |                              |
| 27. | In the circuit shown, the                                                                                                                                                                                    | ne resistances are giv                                                                                                  | ven in ohms and   | I the battery is  | - <del></del>                          | \$60 Ω R <sub>4</sub> \$30 Ω |
|     | assumed ideal with                                                                                                                                                                                           | emf equal to 3.0 v                                                                                                      | olts. The resis   |                   | _                                      | \$60 Ω R <sub>4</sub> \$30 Ω |
|     | that dissipates the i                                                                                                                                                                                        | most power is                                                                                                           |                   | 3V                | $\mathbb{R}_2 \lessapprox_{50 \Omega}$ |                              |
|     | (A) R <sub>1</sub>                                                                                                                                                                                           | (B) R <sub>2</sub>                                                                                                      |                   |                   |                                        |                              |
|     | (C) R <sub>3</sub>                                                                                                                                                                                           | (D) R <sub>4</sub>                                                                                                      |                   |                   |                                        |                              |
| 28. | What amount of heat will be generated in a coil of resistance R due to a charge q passing                                                                                                                    |                                                                                                                         |                   |                   |                                        |                              |
|     | through it if the current in the coil decreases to zero uniformly during a time interval t                                                                                                                   |                                                                                                                         |                   |                   |                                        |                              |
|     | 4 q <sup>2</sup> R                                                                                                                                                                                           | q <sup>2</sup> R                                                                                                        | 2q <sup>2</sup> R |                   | 2 t                                    |                              |
|     | (A) $\frac{1}{3}$ $\frac{1}{t}$                                                                                                                                                                              | (B) In 2 t                                                                                                              | (C) 3 t           | (D)               | $ln q^2 R_{V}^{\uparrow}$              |                              |
| 29. | The variation of current (I) and voltage (V) is as shown in figure A. The variation                                                                                                                          |                                                                                                                         |                   |                   |                                        |                              |
|     | of power P with current / is best shown by which of the following graph                                                                                                                                      |                                                                                                                         |                   |                   |                                        |                              |
|     | ₽∱                                                                                                                                                                                                           | Р∱ .                                                                                                                    | P↑ /              | <u> </u>          | PÎ Fig. A                              | Γ                            |
|     | (A)                                                                                                                                                                                                          | (B) /                                                                                                                   | (C)               | (D)               |                                        |                              |
|     | ` / /                                                                                                                                                                                                        |                                                                                                                         | (-/               | (-)               | / \                                    |                              |



1) B 2) B 3) D 4) 1 5)  $\frac{22}{35}$  6)  $\frac{3r}{5}$  7) A

8) (i) r/2 (ii) r/2 9) = 7 R 10)  $\frac{(2 )ar}{8}$  11) B 12) 12A, -20W E E E

**13)** 1 **14)**  $_1 = -1A$ ;  $_2 = 1A$ ;  $_3 = 0A$  **15)** (a)  $\overline{8R}$  (b)  $\overline{2R}$  **16)**  $R_{AB} = \overline{11} R$ 

17) 1.2 r 18) D 19. C 20. A 21. C 22. B 23. D

**24.** A **25.** (i) 10.52 (ii) 0.3125 **26.** D **27.** A

28. A 29. B 30. B 31. A,C 32. A-Q,S,T; B-Q,S,T; C-P,T; D-T

33. B