

NCERT CLASS XII MATHEMATICS

FORMULAS & CONCEPTS

Chapter 1: Relations and Functions

Relation:	<i>subset of $A \times B$</i>
Domain, Codomain, Range	
Types of relations:	<ul style="list-style-type: none"> • Reflexive, Symmetric, Transitive • Equivalence relation
Types of functions:	<input type="checkbox"/> One-one (injective) <input type="checkbox"/> Onto (surjective) <input type="checkbox"/> Bijective
Important Results	
• Composite function:	$(f \circ g)(x) = f(g(x))$
• Invertible function: <i>Exists if the function is bijective</i>	$f^{-1}(f(x)) = x$
Binary Operation Properties	<input type="checkbox"/> Closure <input type="checkbox"/> Associativity <input type="checkbox"/> Identity <input type="checkbox"/> Inverse <input type="checkbox"/> Commutativity

Chapter 2: Inverse Trigonometric Functions

Principal Value Ranges

Function	Range
$\sin^{-1} x$	$[-\pi/2, \pi/2]$
$\cos^{-1} x$	$[0, \pi]$
$\tan^{-1} x$	$(-\pi/2, \pi/2)$
$\cot^{-1} x$	$(0, \pi)$
$\sec^{-1} x$	$[0, \pi] \setminus \{\pi/2\}$
$\csc^{-1} x$	$[-\pi/2, \pi/2] \setminus \{0\}$

Standard Identities

$$\begin{aligned}\sin^{-1} x + \cos^{-1} x &= \frac{\pi}{2} \\ \tan^{-1} x + \cot^{-1} x &= \frac{\pi}{2}\end{aligned}$$

Difficult-Problem Identities

$$\begin{aligned}\tan^{-1} x + \tan^{-1} y &= \begin{cases} \tan^{-1} \left(\frac{x+y}{1-xy} \right), & xy < 1 \\ \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), & xy > 1 \end{cases} \\ \tan^{-1} x - \tan^{-1} y &= \tan^{-1} \left(\frac{x-y}{1+xy} \right)\end{aligned}$$

Chapter 3: Matrices

Types of Matrices	<ul style="list-style-type: none">• Row, Column• Square• Diagonal• Scalar• Identity• Symmetric: $A^T = A$• Skew-symmetric: $A^T = -A$
Matrix Operations	$(A + B)_{ij} = A_{ij} + B_{ij}$ $(AB)_{ij} = \sum_k A_{ik}B_{kj}$
Transpose Properties	$(A^T)^T = A$ $(AB)^T = B^T A^T$
Inverse of Matrix	$A^{-1} = \frac{1}{ A } \text{adj}(A)$ (Exists iff $ A \neq 0$)

Chapter 4: Determinants

Determinant of 2×2	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
Determinant of 3×3	$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$
Properties	<ul style="list-style-type: none"> • Interchange two rows → determinant changes sign • Two identical rows → determinant = 0 • Factor common term from row/column • $A = A^T$
Area of Triangle	$\text{Area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
Adjoint	$A \cdot \text{adj}(A) = A I$

Chapter 5: Continuity and Differentiability

Limits	$\lim_{x \rightarrow a} f(x)$
Continuity at x=a	$\lim_{x \rightarrow a^-} f(x) = \lim_{x \rightarrow a^+} f(x) = f(a)$
Differentiability	Differentiable \Rightarrow Continuous (not vice versa)
Standard Derivatives	$\frac{d}{dx}(x^n) = nx^{n-1}$ $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(e^x) = e^x$ $\frac{d}{dx}(\ln x) = \frac{1}{x}$
Chain Rule	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
Product Rule	$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$
Quotient Rule	$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Chapter 6: Applications of Derivatives

Key Concepts

- Rate of change
- Increasing / decreasing functions
- Local maxima and minima
- Optimization problems

Increasing / Decreasing Functions	$f'(x) > 0 \Rightarrow f(x)$ is increasing $f'(x) < 0 \Rightarrow f(x)$ is decreasing
Critical Points	$f'(x) = 0$ or undefined
Second Derivative Test	<ul style="list-style-type: none">• $f''(x) < 0 \Rightarrow$ Local maximum• $f''(x) > 0 \Rightarrow$ Local minimum
Points of Inflection	$f''(x) = 0$ and changes sign

Chapter 7: Integrals

Indefinite Integrals	$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$ $\int e^x dx = e^x + C$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$
Standard Trigonometric Integrals	$\int \sec^2 x dx = \tan x + C$ $\int \csc^2 x dx = -\cot x + C$
Integration by Substitution	$\int f(g(x))g'(x)dx = \int f(u)du$
Integration by Parts	$\int u dv = uv - \int v du$
Definite Integrals	$\int_a^b f(x)dx = F(b) - F(a)$
Properties of Definite Integrals	$\int_0^a f(x)dx = \int_0^a f(a-x)dx$ $\int_{-a}^a f(x)dx = \begin{cases} 0, & f(x) \text{ odd} \\ 2 \int_0^a f(x)dx, & f(x) \text{ even} \end{cases}$

Chapter 8: Applications of Integrals

Area Under Curve	$\text{Area} = \int_a^b f(x)dx$
Area Between Two Curves	$\text{Area} = \int_a^b [f(x) - g(x)]dx$
Area w.r.t y-axis	$\text{Area} = \int_c^d [x_2(y) - x_1(y)]dy$

Chapter 9: Differential Equations

Order and Degree

- Order: highest derivative
- Degree: power of highest derivative

General Differential Equation	$\frac{dy}{dx} = f(x)$
Solution by Variable Separation	$\frac{dy}{dx} = g(x)h(y) \Rightarrow \int \frac{1}{h(y)} dy = \int g(x) dx$
Linear Differential Equation	$\frac{dy}{dx} + Py = Q$
Integrating Factor (IF)	$IF = e^{\int P dx}$
Solution	$y(IF) = \int Q(IF) dx + C$

Chapter 10: Vector Algebra

Vector Basics	$ \vec{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$
Unit Vector	$\hat{a} = \frac{\vec{a}}{ \vec{a} }$
Dot Product	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \theta$ Perpendicular vectors \rightarrow dot product = 0
Cross Product	$\vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta \hat{n}$ Parallel vectors \rightarrow cross product = 0
Properties	$\vec{a} \cdot (\vec{b} \times \vec{c}) = \text{scalar triple product}$ $ \vec{a} \times \vec{b} = \text{Area of parallelogram}$
Properties	$\vec{r} = \vec{a} + \lambda \vec{b}$
Angle Between Vectors	$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }$

Chapter 11: Three-Dimensional Geometry

Key Concepts

- Coordinates in 3D: (x, y, z)
- Distance, direction ratios, direction cosines
- Equation of line
- Equation of plane
- Angle between lines/planes
- Shortest distance

Distance Between Two Points	$\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Direction Ratios (DRs)	$\text{DRs} = (a, b, c)$
Direction Cosines (DCs)	$l = \cos \alpha, m = \cos \beta, n = \cos \gamma$ $l^2 + m^2 + n^2 = 1$
<i>Equation of Line Vector Form</i>	$\vec{r} = \vec{a} + \lambda \vec{b}$
<i>Equation of Line Cartesian Form</i>	$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$
Angle Between Two Lines	$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$
Shortest Distance Between Two Skew Lines	$\text{S.D.} = \frac{ (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) }{ \vec{b}_1 \times \vec{b}_2 }$
<i>Equation of Plane Vector Form</i>	$(\vec{r} - \vec{a}) \cdot \vec{n} = 0$
<i>Equation of Plane Cartesian Form</i>	$ax + by + cz + d = 0$
Distance of a Point from a Plane	$D = \frac{ ax_1 + by_1 + cz_1 + d }{\sqrt{a^2 + b^2 + c^2}}$
Angle Between Line and Plane	$\sin \theta = \frac{ al + bm + cn }{\sqrt{a^2 + b^2 + c^2}}$
Angle Between Two Planes	$\cos \theta = \frac{ a_1 a_2 + b_1 b_2 + c_1 c_2 }{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$

Chapter 12: Linear Programming

Key Concepts

- Linear inequalities
- Feasible region
- Objective function
- Constraints
- Optimal solution

Linear Inequality	$ax + by \leq c, \quad ax + by \geq c$
Objective Function	$Z = ax + by$

Chapter 13: Probability

Key Concepts

- Conditional probability
- Independent events
- Bayes' theorem
- Total probability theorem

Conditional Probability	$P(A B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) \neq 0$
Multiplication Theorem	$P(A \cap B) = P(A)P(B A)$
Independent Events	$P(A \cap B) = P(A)P(B)$
Total Probability Theorem If A_1, A_2, \dots, A_n form a partition:	$P(B) = \sum_{i=1}^n P(A_i)P(B A_i)$
Bayes' Theorem	$P(A_i B) = \frac{P(A_i)P(B A_i)}{\sum P(A_j)P(B A_j)}$

Important Exam Results

- $P(A) + P(\bar{A}) = 1$
- If events independent \rightarrow conditional probability equals original probability
- Always define events clearly before applying Bayes