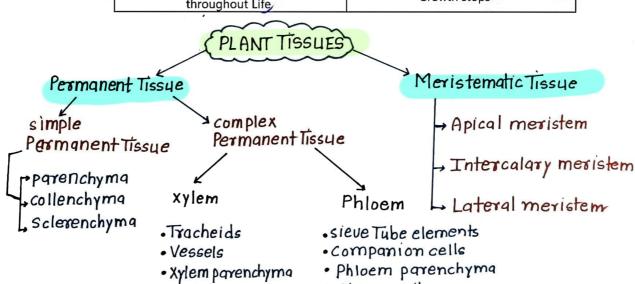
ISSUES

A group of cells that are similar in structure and work together Tissues: to perform a particular function.

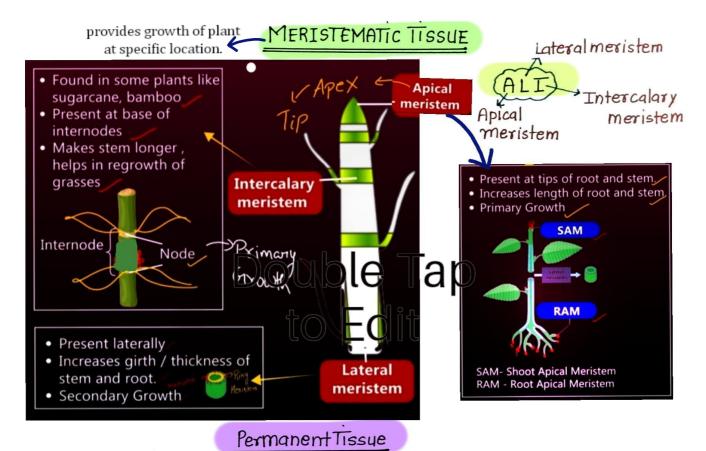
Examples of tissue are Muscle, Nerves, Blood, Xylem, phloem, etc

Division of work


Muscular Tissues help in movement

Nervous Tissues carry messages.
Blood Tissues carry oxygen, food, waste, etc

· Xylem fibres


→ Division of Laboux

Plants 🌋	Animals 🧸
they don't move form place to another .as plant could show movement	Animals move for food , shelter etc so they require more energy.
Need to stay upright → have more supportive tissues.	Supportive tissues are less because they can move.
Supportive tissues mostly have dead cells.	Most tissues have living cells.
Growth happens only in specific regions (root & shoot tips).	Growth is uniform all over the body.
Some tissues (meristematic) divide throughout life , Growth happens throughout Life,	After reaching a maturity stage, Growth stops

· Phloem fibres

Meristematic Tissue	Permanent Tissue
Cells continously divide.≥newcells	Cells do not divide.
Cells are small in size and isodiametric in shape.	Cells are variable in shape and size
Vacuoles are usually absent	Large Vacuoles are present in living cells
Intercellular spaces are generally absent.	Visible intercellular spaces are present.
Cell walls are thin.	Cell walls can be thin or thick.

1. The permanent tissues are made of cells which have lost their capability

2. The Division and Differentiation of the cells of meristematic tissues give rise to permanent tissues.

Division - The single cell first divides many times to form a large number of cells

Differentiation - Now these cells take up a permanent shape, size and a function. This process of taking up a permanent shape, size and a function is called differentiation.

simple Permanent Tissues

· Made up of only one type of cells

Parenchyma

Primary _ structure Collenchyma of Plant

Sclerenchyma

Complex Permanent Tissues

· made up of more than one type of cells

Xylem

Phloem

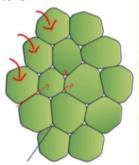
Transport System of Plant

Parenchyma: storage of food (living)

1. These tissues are most aboundant (present in almost all parts of plants).

2. Present in stem, leaves, roots, fruits and flowers.

3. Main Function - storage of food, also helps in photosynthesis.


4. They have thin cell walls - made of chemical - cellulose

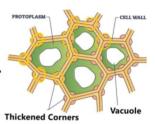
5. Living cells with large intercellular space.

Chlorenchyma: - parenchyma that contains chlorophyll and performs photosynthesis. Found in

AID Agenchyma:

parenchyma with large air cavities that help aquatic plants to float (eq - lotus)

Intercellular space


Collenchyma: - flexibility with support

1. collenchyma Tissues are present in leafstem (leaf stalk).

2. Main Function provides flexibility to various parts of a plantlike bending of tendrils and stems of climbers without breaking. provides mechanical support.

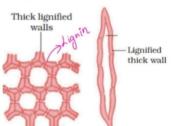
z. Cells are living and Unevenly at the corners, due to presence of chemidals - pecting hemicellulose

4. There is very little intercellular space.

Sclevenchyma: - Hardness and stiffness

1. Present in Husk of Coconut, Hard covering of nuts, stems of plant and in the veins of leaves.

2. Main Functions:


· provides , Hardness and stiffness to plants .

. provides strength to the plants parts.

3. Cells have very thick cell walls due to presence of chemical - lignin.

4. Dead Cells with No intercellular Space (negligible)

simple fermanent Tissue

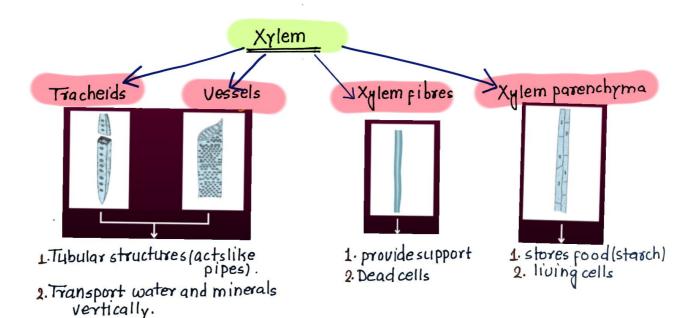
Features	Parenchyma	Collenchyma	Sclerenchyma
Location	Stem, Leaves ,roots, fruits and Flowers	Leaf Stalk (Leaf Stem)	Husk of coconut , hard covering of Nuts and Seeds, Veins of Leaves
Main function	Storage of food, helps in photosynthesis	Provides Flexibility with mechanical support	Provides hardness and stiffness
Nature of cells	Living	Living	Dead
Cell wall	Thin, made of cellulose	Unevenly thickened at corners , made of Pectin & hemicellulose	Thick , made of lignin
Intercellular spaces	Large	Very little	Absent

Complex Permanent Tissue - Transport system

made up of more than one type of cells

Xylem•

Xytem


water and minerals
transport roots to
stems and leaves
XYLEM TUBES

3. Made of Dead cells.

Phloem

Food Transport - leaves to all other parts of plant Traslocation PHLOEM TUBES

Phloem

Phloem

1. Sieve tubes - · Tube like conducting structures, transports food.

Angiosperms
(flowering Plants)

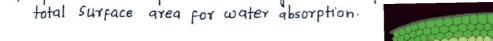
walls of sieve tube cells perforted by numerous pores, they are called sieve plates - help in transport of food.

- 2. Companion cells found next to sieve tube elements. have nucleus.
- 3. Phloem parenchyma stores food(starch).
- 4. Phloem fibres give mechanical support to sieve tubes.

5. Sieue cells - Sieve cells are single, elongated phloem cells found in Gymnosperms (Non flowering plants), lacking sieve plates and companion cells.

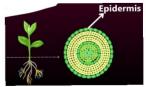
Except phloem fibres, other phloem cells are livingcells.

Xylem	Phloem
It transports water and minerals from roots to stem and leaves	It transports food material from the leaves to all other parts of the plant.
2. Xylem consists of tracheids, vessels, xylem fibres and xylem parenchyma.	Phloem consists of sieve tubes, sieve cells, companion cells, phloem fibres and phloem parenchyma.
3. Only xylem parenchyma is living.	Sieve tubes, sieve cells, companion cells and phloem parenchyma are living.
4.Tracheids, vessels, xylem fibres are dead tissues.	4. Phloem fibres are dead tissues.
5. Conduction of water by xylem is unidirectional (upward from root)	Food material conduction is bidirectional (upward and downward from leaves)


Epidermis: - outermost thin layer of cells.
Entire Plant surface is covered with Epidermis.

1. Continuous layer without intercellular spaces.

2. provide protection to plants - from injury. Against parasitic attack and Against water loss.

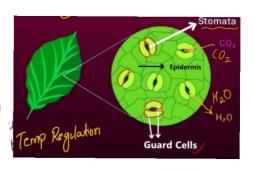

3. In desert plants -> Epidermis has thick waxy covering of cutin to reduce water loss by transpiration (cutin is a chemical substance with water proof quality)

4. Epidermal Cells of roots have long hair - like parts to increase

stomata: - small pores in the Epidermis

- 1. stomata are enclosed by two kidneyshaped Cells called Guard cells.
- 2. Each stomate helps in exchange of gases with atmosphere.
- 3. Transpiration (loss of water as water vapour) takes place through stomata.

Sieve pore


Sieve plates

cell

Companion

Phloem parenchyma

Sieve tube element

Cork: The outer protective tissue of Bark of tree is called cork.

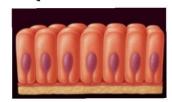
1. cork is produced from secondary meristem / lateral meristem. (increase in thickness or girth) in later stage of plant's life.

2. Cells of cork are dead and Intercellular spaces are absent.

3. Cell walls are very thick, due to presence of a chemical - suberin.

4. No movement of water or even gas can occur through cork due to presence of suberin.

5. Functions: protects from injury and water loss



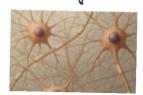
ANIMALTISSUES

(Epithelial Tissue)

outer Covering of body and lining of Organs

Connective Tissue

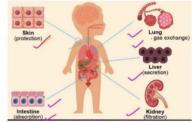
Blood, Bones, tendons, cartilage, ligaments


Muscular (Tiss 48)

Help in movement of body

Nervous Tissue

Transmission
of messages
between brain
spinal cord &
body.



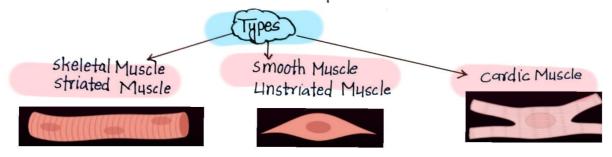
Epithelial Tissue: - protective Covering tissue in animals.

1. Epithelial covers most Organs.

2.location: skin, lining of the mouth, lining of bloodvessels, lung alveoli and kidne y tubules.

3. The cells of epithelial tissue are tightly packed, with almost No intercellular space forming a continuous sheet-

- 4. Function: Protection, Absorption, Exchange of gases, secretion, Filteration
- 5. Epithelium Tissue is separated from the tissue below by a noncellular membrane Basement membrane.



Tissue	Appearance	Shape	Location	Function
Simple Squamous Epithelium	0000	Single layer flat thin cells	Blood vessels, lung alveoli	Transportation of substances
Stratified Squamous Epithelium		Multi layer flat thin cells	Skin, lining of mouth	Protection
C <u>uboid</u> al E <u>pitheliu</u> m	0000	Cube shaped cells	Lining of kidney tubules, aucts of salivary glands	Secretion flitration,Mechanical support
Columnar Epithelium	adabbaa	Tall pillar-like cells	Inner lining of intestine	Absorption & secretion
Ciliated Columnar Epithelium	5 01.7.	Columnar cells with Cilia (hair-like structures)	Respiratory system	Cilia move and push the mucus forward to clear it
Glandular / Epithelium	J	Portion of epithelium that folds inward	Glands of body (sweat gland, salivary gland etc)	Secretion of substances

MUSCULAR TISSUE

1. Tissue made of elongated Cells.
2. Help in movements in our body.

3. Movement is due to contraction and Relaxation of special protein present in muscles - Contractile proteins.

Tissue	Skeletal / Striated Muscle	Smooth / UnStraited Muscle	Cardiac Muscle
Location	Attached to bones	blood vessels, iris in eyes, Walls of alimentary canal,bronchi in lungs , ureters	Heart
Control	Voluntary (under our will)	Involuntary (not under our will)	Involuntary (not under our will)
Appearance (Microscope)	Striated (shows light & dark bands)	Unstriated (no bands)	Light Striated (faint bands)
Cell Shape	Long, cylindrical, unbranched	Spindle-shaped (long with pointed ends)	Cylindrical, branched
Nuclei per Cell	Multinucleate (many nuclei)	Uninucleate (one nucleus)	Uninucleate (one nucleus)
Function	Helps in body movement, locomotion	Helps in involuntary movements (food movement, blood flow, etc.)	Pumps blood by rhythmic contraction & relaxation
Tiredness	Get tired easily/	Do Not Get Tired	Do Not Get Tired

CONNECTIVE TISSUE

CAT LAB2

Blood

Bone

Tendons

Ligaments

Cartilage

Adipose

Areolar

1. Connective Tissue protects, supports, Transport substances, store fat, fill spaces, connect two tissues, give flexibilty, etc.

2. Cells of connective Tissues are loosely packed.

3. Space between cells filled with matrix.

4. matrix may be Jelly-like, fluid or rigid.

BLOOD :-

1. Blood is a fluid connective tissue.

2. Function: Transportation of gases, digested food, hormones and waste materials to different parts of the body; provides protection.

	Platlets Red Blood
s	Cells
7	White Blood Plasma
	Cells Fluid Matrix

РΙ	a	S	m	18

Fluid Matrix of Blood 90 % water , 7% Protien

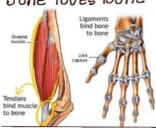
Transport of digested food, CO₂, waste

Red Blood Corpuscles (RBCs)

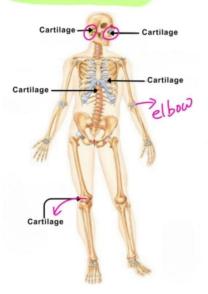
Red Pigment Hemoglobin is present

Hemoglobin in RBC helps transport oxygen to different parts of body

White Blood Corpuscles (WBCs)


- 1. Fight infections
- 2. Types:
 Neutrophils
 Eosinophils
 - Basophils
- LymphocytesMonocytes

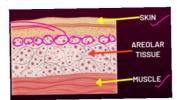
Platelets


Blood clotting

Tendons	Ligaments •
1. Connective tissue that attaches muscles to bone.	1. Connective tissue that attaches bone to bone.
2. Help in the movement of bones	2. Help in holding of bones together (support to joints)
3. Strong and Non-elastic	3. Strong and elastic

Bone loves Bone

CARTILAGIE :-

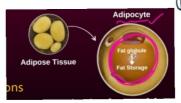


- 1. Cartilage is found in Joints (such as the knees and elbows), the ears and nose, and various location.
- 2. it's a flexiable connective tissue. cells are widely spaced.
- 3. it provides cushioning reduces friction, offers support.

BONE	CARTILAGE
1. Hard and non-flexible	1. Flexible not very hard
2. We cannot bend the bones in our arms	2. We can fold the cartilage of the ears,
3.Matrix made up of Calcium & ,Phosphorus (Hard)	3. Matrix made up of proteins & Sugars (Not that Hard)
It provides shape to the body Protects vital body organs such as brain, Lungs ,etc.,	It provides cushioning, reduces friction, offers support. Smoothens bone surfaces at joints

AreolarTissue

- 1. Mostaboundant tissue in animal.
- 2. fills spaces filling Tissues
- 3. found between skin and muscles, ground blood vessels and nerves and in the bone marrow.

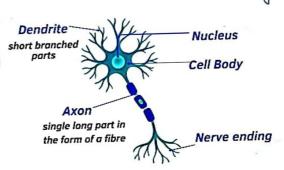


functions:

- · Helps intissue repair after Injury.
- · Fills the space

Adipose Tissue

- 1. store fat.
- 2. Made of fat cells (Adipocytes) filled with large fat globules. s. found below the skin and
- between internal Organs.


Functions:

- · stores energy in the form of fat.
- · Provides insulation (Temperature regulation) eg- polar Beer

NERVOUS TISSUE

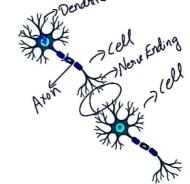
- 1. Brain, spinal Cord and nerves are composed of the nervous tissue.
- 2. Cells of Nervous tissue is called Nerve cells or Neurons.
- 3. Neurons are the longest cells in the body can be up to a metre

Nervous tissue receive stimuli (any change in sum nding) and transmit it rapidly from one part of body to another

Neuron Or Nerve Cell

Transmission of an Impulse

signal message.


Nerve impulse (signal)

Reaches dendrites

Move along the axon

Reach the nerve ending

Impulse is passed to dendrites of next neuron

- 1 Nerve impulses help us to move our muscles.
- 2. Enable animals to move rapidly in response to stimuli.

Questions & Answer

Q) What is the utility of tissues in multi-cellular organisms? NCERT

- Division of Labour
 Different tissues perform different functions (e.g., muscle tissue helps in movement,
- nervous tissue carry messages, Blood tissue carry oxygen, food , waste etc)
 This division of work makes the organism more efficient.

• Some tissues like Bone in Animals & Simple Tissues in Plants provide strength , giving the body shape and support.

3. Efficient Functioning

• Since tissues are organised groups of similar cells, they work faster and more efficiently compared to single cells doing all tasks. (Power of Unity)

Q) How are simple tissues different from complex tissues NCERT

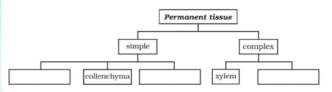
Anc	

Simple Tissues	Complex Tissues
A simple tissue is formed of only one type of cells.	A complex tissue is made of more than one type of cells.
2. They form primary structure of the plant.	2. They form transport system of the plant.
There are three types of simple plant tissues – parenchyma, collenchyma and sclerenchyma.	3. There are two types of complex plant tissues – xylem and phloem.

Q) Differentiate between parenchyma, collenchyma and NCERT sclerenchyma on the basis of their cell wall.?

Ans -	PARENCHYMA	COLLENCHYMA	SCLERENCHYMA
	Cell wall is thin It is made up of cellulose	1.Cell wall is unevenly thickened at corners 2.It is made up of pectin and hemicellulose	1.Cell wall is thick . 2.It is made up of lignin

Q) Name the regions in which parenchyma tissue is present. ? **NCERT**

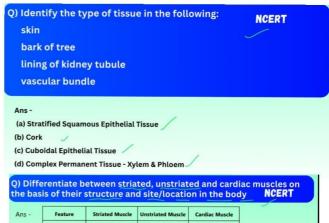

- These tissues are most abundant (present in almost all parts of Plants)
- Present in Stem, Leaves, roots, Fruits & Flowers

Q)How many types of elements together make up the xylem NCERT tissue? Name them .?

Xylem tissue is composed of four main types of elements: Tracheids, Vessels, Xylem Parenchyma, and Xylem Fibers

Q) Complete the following chart:

NCERT


Q) What are the functions of the stomata? NCERT

- 1) Exhange Of Gases
- 2) Transpiration Loss of water as water vapour

Q) How does the cork act as a protective tissue?

NCERT Cork cells are compactly arranged due to absence of intercellular space. Cell Walls are Very

thick, due to prsence of a chemical - Suberin. No movement of water or even gas can occur through Cork due to presence of Suberin. Cork protects plant from injury and water loss

O) What is the specific function of the cardiac muscle?

Ans - The specific function of cardiac muscle is to pump blood throughout the body by contracting and relaxing rhythmically . They do this continuously without getting tired.