1.RELATIONS AND FUNCTIONS

1. If $f: R \to R$ defined by , $f(x) = x^2 + 2$ then the pre-images of 27 are

 $\sqrt{1}$) 5, -5 (2) $\sqrt{5}$, $-\sqrt{5}$ (3) 5,0 (4) 0,5

2. If $f($	$\left(x - \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$	then f(x) =	·			
	$\sqrt{1}$) $x^2 + 2$	(2) $x^2 - 2$	(3) $x^2 + \frac{1}{x^2}$	(4) $x^2 - \frac{1}{x^2}$		
3. If A= { a			d} then n[(A∩C)x			
	(1) 4	(2) 8	(3) 6	(4) 12		
4. If the ordered pairs $(a, -1)$ and $(5, b)$ belong to $\{(x, y)/y = 2x + 3\}$ then the values of a and b are $(1) -13,2$ $(2) 2,13$ $(3) 2, -13$ $(4) -2,13$						
410 4	(1) —13,2	(2) 2,13	(3) 2, —13	(4) -2,13		
5. The	5. The function $f: N \to N$ is defined by $f(x) = 2x$. Then the function f is					
	(1) Not one-one (3) One-one and		(2) one-one but not onto(4) not one-one and not onto			
6. If f(x	x = x + 1, then $f($	f(f(y+2)) is	(3) y + 7			
	(1) y + 3	$\int 2 y + 5$	(3) y + 7	(4) y + 9		
	x)= mx + n , where en m and n are eq		egers, $f(-2) = 7$	and $f(3) = 2$,		
	// () —1,5	(2) —1, —5	(3) 1,—9	(4) 1,9		
8. The function t which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. The Fahrenheit degree is 95 then the value of C will be						
	(1) 37	(2) 36	(3) 35	(4) 29		
9. If <i>f</i>	(x) = ax - 2, $g(x)(1) -3$	$(2x - 1) = 2x - 1$ and f°	$g = g \circ f$ then the (3) $\frac{1}{3}$	value of <i>a</i> is (4) 13		

(1) na (2) (2n-1)a (3) n^2a (4) n^2a^2

3.ALGEBRA

1. Which	of the following an (i) $2x = z$ (iii) $x + 2y^2 + z$	re linear equation (ii) $z = 3$ (iv)	on in three v 2sin (x)+ yo x – y – z =7	variables os(y) +ztan z=2	
(1)	(i) and (iii) only	(2) (i) and	(iv) only	(3) (iv) only	(4) A II
	. ,	es with no point es intersecting a	in common at a single p	oint	ne another
3. Which	(ii) LCM of two (iii) HCF of 2 p	omial has finite polynomials of olynomials may	degree 2 n be a const	nay be a constar ant	nt n degree of LCM.
(1)	(i) and (ii)	(2) (iii) and	(iv)	(3) (iii) only	(4) (iv) only
	HCF of two polynois $(x + 2)^2(x - 2)$.				
	$(1)4x^3 - 16x$	$(2)6x^3 - 3$	24 <i>x</i> (3)	$12x^3 + 24x$	$(4)12x^3 - 24x$
5. Con	sider the following	statements:			
Wh	(i) The HCF of (ii) The HCF o (iii) The HCF o (iv) The HCF o iich of the stateme	(x + y) and (f (x + y) and (a of (x - y) and (a of (x - y) and (ents given above	$(x^{8} + y^{8})$ i $(x^{8} + y^{8})$ i $(x^{8} - y^{8})$ i	s (x+y) s (x-y) s (x-y)	
	(1) (i) and (ii)	(2) (ii) and (iii)	(3) (i) and (iv	(4) (ii) and (iv)
6. For wh	nat set of values is	$8\frac{x^2+5x+6}{x^2+8x+15}$ is un	defined	: (4) 2 :	9
	$\frac{7x+12}{9x+15} \times \frac{x^2+5x}{x^2+6x+8} =$		(3)-2,-3,-0	(4) -2,-	3
	(1) x + 2	$(2)\frac{x}{x+2}$	(3) $\frac{35}{48}$	$6x^2 + 60x$ $8x^2 + 120$	$(4) \ \frac{1}{x+2}$

8. If
$$\frac{p}{q} = a$$
 then $\frac{p^2 + q^2}{p^2 - q^2}$ is

(1)
$$\frac{a^2+1}{a^2-1}$$

$$(2)\frac{1+a^2}{1-a^2}$$

(1)
$$\frac{a^2+1}{a^2-1}$$
 (2) $\frac{1+a^2}{1-a^2}$ (3) $\frac{1-a^2}{1+a^2}$

(4)
$$\frac{a^2-1}{a^2+1}$$

The square root of $4m^2 - 24m + 36 = 0$ is 9.

$$(1) 4(m-3)$$

$$(2) 2(m-3)$$

(1)
$$4(m-3)$$
 (2) $2(m-3)$ (3) $(2m-3)^2$

$$(4) (m-3)$$

The square root of the quadratic equation $x^2 - x - 1 = 0$ are 10.

$$(2) - 1, 1$$

(2)
$$-1,1$$
 (3) $\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$ (4) No real roots

11. The product of the sum and product of roots of equation

$$(a^2 - b^2)x^2 - (a + b)^2x + (a^3 - b^3) = 0$$
 is

(1)
$$\frac{a^2 + ab + b^2}{a - b}$$
 (2) $\frac{a + b}{a - b}$ (3) $\frac{a - b}{a + b}$ (4) $\frac{a - b}{a^2 + ab + b^2}$

$$(2)\frac{a+b}{a-b}$$

(3)
$$\frac{a-b}{a+b}$$

(4)
$$\frac{a-b}{a^2 + ab + b^2}$$

is given by	omiai whose on	e zero is 5 and sun	i of the zeroes is o
	$(2) x^2 - 5$	$(3) x^2 - 5x$	$(4) x^2 - 5x + 5$
* ************************************	ves	ertical line separate (2) 5 equal halves (4) 4 equal halves	es parabola into
14. The parabola is g (1) Open upw (3) Open righ	ard -	Open downward Open leftward	ļ
$(3)(x-a)^2$	$(x+a)$ (x^2+ax+a^2)	$(2) (x^3 - a^3)(x -$	$ax + a^2$
16. The excluded (1) 8	value of the ro (2) 2	ational expression (8) 4	on $\frac{x^3+8}{x^2-2x-8}$ (4) 1
17. LCM of $6x^2y$, 9: (1)36x y^2z^2	$(2) 36x^2y^2$	is $z = (3) 36x^2y^2z^2$	2 (4) $3x^{2}y$

18.	If a and b are p then HCF of a		where a>0 and b is a	a factor of a,
	(1)b	(2)a	(3)3ab	$(4) \frac{a}{b}$
19.	If the polynomia number of time		are then its factors	will be repeated
	(1) odd	(2) zero	(a) even	(4) none of the abov
20.	The solution of (1) no real (3) real and		(2) real and e (4) imaginary	•
21.	On dividing $\frac{x^2}{x}$ (1)(x-5)(x-3)	$\frac{-25}{+3}$ by $\frac{x+5}{x^2-9}$ (2) (x-5)(x+1)	is equal to +3) (3) (x+5)(x-3) (4) (x+5)(x+3)
22.	(ii) Every ide (iii) Every di (iv) Every nu	alar matrix is an id entity matrix is a s agonal matrix is a ull matrix is a sca	scalar matrix an identity matrix	(🐴) (ii) and (iv) only
23.	$2A + 3B = \binom{2}{3}$	$\begin{pmatrix} -1 & 4 \\ 2 & 5 \end{pmatrix}$ and A +	$2B = \begin{pmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{pmatrix} \text{ th}$	nen B =
	$(1)\begin{pmatrix} 8 & -1 \\ -1 & 10 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$ (2) $\begin{pmatrix} 8 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 \\ 10 & -1 \end{pmatrix}$ (3) $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 10 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 & 10 \end{pmatrix}$
24.	If (4 3 2)	$\begin{pmatrix} 1 \\ -2 \\ x \end{pmatrix} = (6) the$	en x is	
	(1) 4	2) 3 (3) 2	(4) 1	
25.	$ If A = \begin{pmatrix} y & 0 \\ 3 & 4 \end{pmatrix} \\ (1) 4 \qquad (4) $	and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (2) 5	then $A^2 = 16I$ Fig. (4) 16	nd y is
26.	If P and Q are n	natrices, then wh	ich of the following	is true?
	(1) PQ ≠ QP (1	$(P^T)^T \neq P ($	$3) P + Q \neq Q + P$	(4) All are true

27. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}_{3X2}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2X3}$

then which of the following products can be made from these matrices

- (i) A^2
- (ii) B^2
- (iii) AB

(iv) BA

- (1) (i) only (2) (ii) and (iii) only (3) (iii) and (iv) only (4) All the above

28. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ the order of matrix $(A^T)^T$ is

(1) 2x3 (2) 3x2 (3) 3x4 (4) 4x3

29. The non-diagonal elements in any unit matrix are ------

- (1) 0
- (2) 1

- (3) m

30. A is of order mxn and B is of order pxq addition of A and B is possible only if (4) m=p, n=q (10 m=p) (2) n=q(3)n=p

4.GEOMETRY

- 1. If triangle PQR is similar to triangle LMN such that 4PQ = LM and QR = 6cm then MN is equal to
- (1) 12 cm (2) 24 cm (3) 10 cm (4) 36 cm
 - 2. In the given figure $DE \parallel AC$ which of the following is true.

- 3. S and T are points on sides PQ and PR respectively of $\triangle PQR$. If PS = 3cm, SQ = 6cm, PT = 5cm and TR = 10cm then QR
- (1) 4ST (2) 5ST (2) 3ST (4) 3QR
 - 4. In figure $DE \parallel BC$, if BD = x 3, BA = 2x, CE = x - 2 and AC = 2x + 3. Find the value of x.
- (1) 3 (2) 6 (3/9 (4) 12

- 5. The ratio of the areas of two similar triangles is equal B
- (1) The ratio of their corresponding sides
- (2) The cube of the ratio of their corresponding sides
- (3) The ratio of their corresponding altitudes
- The square of the ratio of their corresponding sides

- 6. If ABC is a triangle and AD bisects $\angle A$, AB = 4cm, BD = 6cm, DC = 8cm then the value of AC is
- (1) $\frac{16}{3}$ cm (2) $\frac{32}{3}$ cm (3) $\frac{3}{16}$ cm (4) $\frac{1}{2}$ cm
 - 7. In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.
 - (1) right angle

(2) equilateral

(3) scalene

- (4) isosceles
- 8. The height of an equilateral tria $\frac{\sqrt{3}}{4}a$ ngle of side a is
- (1) $\frac{a}{2}$ (2) $\sqrt{3}a$ (2) $\frac{\sqrt{3}}{2}a$ (4)
 - 9. The perimeter of a right triangle is 40 cm. Its hypotenuse is 15cm, then the area of the triangle is
- 100cm² (2) 200cm² (3) 160cm² (4) 225cm²
- 10. A line which intersects a circle at two distinct points is called
 (1) Point of contact (2) secant (3) diameter (4) tangent
- 11. If the angle between two radii of a circle is 30°, the angle between the tangents at the end of the radii is
- (4) 70° (2) 90° (3) 40° (4) 70°
 - 12. In figure $\angle OAB = 60^{\circ}$ and OA = 6 cm then radius of the circle is

- 13. In the given figure if OC = 9cm and OB = 15cm then OB + BD is equal to
- (1) 23cm (2) 24cm/(3) 27cm (4) 30cm

14. Two concentric circles of radiia and b where a > b are given. The length of the chord of the larger circle which touches the smaller circle is

(1)
$$\sqrt{a^2-b^2}$$
 (2) $2\sqrt{a^2-b^2}$ (3) $\sqrt{a^2+b^2}$ (4) $2\sqrt{a^2+b^2}$

- 15. Three circles are drawn with the vertices of a triangle as centres such that each circle touches the other two if the sides of the triangle are \(\partial n \),
 3cm and 4cm. find the diameter of the smallest circle.
- (1) 1cm (2) 3cm (3) 5cm (4) 4cm

(2) 8

(3) 4 (4) 12

17. If in triangles ABC EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when

$$(1)\angle B = \angle E$$
 $(2)\angle A = \angle D$

$$(3)$$
 $\angle B = \angle D$ (4) $\angle A = \angle F$

$$(4) \angle A = \angle F$$

18. A tangent is perpendicular to the radius at the

(1) centre

(2) point of contact

(3) infinity

(4) chord

19. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be

(1) 12 cm

(2) 10 cm

(3) 13 cm

(4) 5 cm

20. In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle at R. If CP=11 cm and BC =7 cm, then the length of BR is

(2) 5 cm (3) 8 cm

5. COORDINATE GEOMETRY

1. Find the ratio in which the line segment joining the points (-3,10) and (6,-8) is internally

aivided b	y (1) 7:2	(2) 3:4	(3) 2:7	(4) 5:3
2. If the poir	nts (0,0) , (a ,0) and (1) a = b	l (0,b) are collinear (2) a + b = 0	then (3) ab = 0	(4)a ≠ b
then find	l-point of the line sed the values of x , y	,	$\left(\frac{Y+1}{2}\right)$ and B(x +1, y	y-3), is C (5 , -2)
	(1) (6, -1)		(3) (-2, 1)	(4)(3, 5)
4. The area	of triangle formed to (1) a +b +c	by the points (a , b- (2) <i>abc</i>	+c) , (b, c+a) and ((3) (a + b + c)²	c, a+b) is

5. The four vertices of a quadrilateral are (1,2), (-5,6), (7,-4) and (k, -2) taken in order.

(3)6

If the area of quadrilateral is zero then find the value of k.

(2) - 2

(1) -4

6. Find the equation	of the line passing	through the point	(5,3) which is	parallel to the
y axis is $(1) y = 5$	(2) $y = 3$	(3) x = 5	(4) x = 3	

7. Find the slope of the line
$$2y = x + 8$$

$$(1)^{\frac{1}{2}}$$

8. Find the value of
$$p$$
, given that the line $\frac{y}{2} = x - p$ passes through the point is

$$(1) -4$$

$$(2) - 6$$

9. Find the slope and the y-intercept of the line $3y - \sqrt{3}x + 1 = 0$ is

10. Find the value of a' if the lines 7y = ax + 4 and 2y = 3 - x are parallel.

(1)
$$a = \frac{7}{2}$$
 (2) $a = -\frac{2}{7}$ (3) $a = \frac{2}{7}$ (4) $a = -\frac{7}{2}$

11. A line passing through the point (2.2) and the axes enclose an area α . The intercepts on the axes made by the line are given by the roots of

(1)
$$x^2 - 2\alpha x + \alpha = 0$$
 (2) $x^2 + 2\alpha x + 2\alpha = 0$

(3)
$$x^2 - \alpha x + 2\alpha = 0$$
 (4) none of these

12. Find the equation of the line passing through the point (0,4) and is parallel to the line 3x+5y+15=0 is

(1)
$$3x + 5y + 15 = 0$$
 (2) $3x + 5y - 20 = 0$

(3)
$$2x+7y-20=0$$
 (4) $4x+3y-15=0$

13. In a right angled triangle ABC, right angled at B, if the side BC is parallel to x axis, then the slope of AB is

(1)
$$\sqrt{3}$$
 (2) $\sqrt{3}$ (3) 1 (4) not defined

14. The y-intercept of the line 3x - 4y + 8 = 0 is

$$\frac{-8}{3}$$
 $\frac{3}{(2)}$ $\frac{3}{8}$ $\frac{1}{(2)}$ $\frac{1}{2}$

15. The lines y = 5x - 3, y = 2x + 9 intersect at A. The coordinates of A are

6.TRIGONOMETRY

1. From the figure, the value of $cosec\theta + cot\theta$ is

$$(1) \frac{a+b}{c}$$

(2)
$$\frac{c}{a+b}$$

(1)
$$\frac{a+b}{c}$$
 (2) $\frac{c}{a+b}$ (3) $\frac{b}{a}$ (4) $\frac{b}{a+c}$

(4)
$$\frac{b}{a+c}$$

- $(\sec A + \tan A) (1 \sin A)$ is equal to 2.
- (1) $\sec A$ (2) $\sin A$ (3) $\csc A$ (4) $\cos A$
- 3. If $x = r \sin\theta \cos\varphi$, $y = r \sin\theta \sin\varphi$ and $z = r \cos\theta$ Then, $x^2 + y^2 + z^2$ is equal to

(3)
$$\frac{r^2}{2}$$

(4)
$$2r^2$$

- 4. If $\cos\theta + \cos^2\theta = 1$ then $\sin^2\theta + \sin^4\theta$ is equal to
- 1 (2) 0 (3) -1
- (4) none of these
- 5. If $\tan \theta + \cot \theta = 3$ then $\tan^2 \theta + \cot^2 \theta$ is equal to
 - (1) 4

(3)6

- (4)9
- 6. If $m\cos\theta + n\sin\theta = a$ and $m\sin\theta n\cos\theta = b$ then $a^2 + b^2$ is equal to(L)
- (1) $m^2 n^2$ (2) $m^2 + n^2$
- (3) m^2n^2 (4) n^2-m^2

$$20.\sin(90^{\circ} - \theta)\cos\theta + \cos(90^{\circ} - \theta)\sin\theta =$$
(1) 1 (2) 0 (3) 2 (4) -1

21. If
$$x = asec\theta$$
, $y = btan\theta$, then the value of $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$
(1) 1
2) -1
(3) $tan^2\theta$
(4) $cosec^2\theta$

$$22.\frac{\sec\theta}{\cot\theta + \tan\theta} =$$
(1) Cot θ (2) tan θ (3) sin θ (4) -cot θ

23.
$$tan\theta cosec^2\theta - tan\theta$$
 is equal to
$$(1)sec\theta \qquad (2) cot^2\theta \quad (3)sin\theta \qquad (4) cot\theta$$

$$24. (\cos^2\theta - 1)(\cot^2\theta + 1) + 1 =$$
(1)1 (2) -1 (3) 2 (4) 0

$$25.9tan^{2}\theta - 9sec^{2}\theta =$$
(1)1 (2) 0 (3) 9 (4) -9

7. MENSURATION

1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is

(1)
$$60\pi \text{ cm}^2$$
 (2) $66\pi \text{ cm}^2$ (3) $120\pi \text{ cm}^2$ (3) $136\pi \text{ cm}^2$

2. If S_1 denotes the total surface area of a sphere of radius r and S_2 denotes the total surface area of a cylinder of base radius r and height 2r,

(1)
$$S_1 = S_2$$
 (2) $S_1 > S_2$ (3) $S_1 < S_2$ (4) $S_1 = 2S_2$

3. The ratio of the volumes of two spheres is 8:27. If r and R are the radii of spheres respectively, then (R-r):r is

	remains the same	vire is decreased t e, then the length (2) 6 times	will be increase	the original. If volume ed of the original. (4) 27 times
. ,				cut off at the top by a
э				
	plane parallel to	the base and its height of the sma	s volume is ($\left(\frac{1}{64}\right)^{th}$ the volume the
(1) 4	5 cm	(2) 30 cm	13) 15 cm	(4) 20 cm
	. A solid frustum is are 3 cm and 9 cm	s of height 8 <i>cm.</i> If n respectively, then (2) 12 <i>cm</i>	f the radii of its n its slant heig	lower and upper ends
(1) 1	5 <i>cm</i>	(2) 12 cm	(3) 10 cm	(4) 17 cm
7	surface areas of t the height of its c	he two parts are e onical part is	equal, then the	al above. If the curved ratio of its radius and
(1) 1	:3	(2) 1:√3	(3) 1:1	(4) $\sqrt{3}:1$
(1) 1	radius. If the hei 0 <i>cm</i>	ght of the cylinder (2) 15 cm	is 5cm, then h (3) 18 cm	e of a cylinder of equal eight of the cone is (4) 24 <i>cm</i>
9.	The curved surface	ce area of a cylin	ider is 264 m ²	and its volume is
1) 3:		of diameter to its (2) 7:3 (height is 3) 6:7	(4) 7:6
10). When Karuna div	rided surface area	of a sphere by	the sphere's volume,
1) 24		r as $\frac{1}{3}$. What is the (2) 6 cm (e radius of the 3) 54 cm	sphere 2 (1) 4.5 cm
11		ew ball is how mu	uch times the r	dentical balls. Then adius of the original
	(1) 1/3	(2) 1/4	$(3) \frac{1}{2}$	(4) $\frac{1}{8}$
	pen conical cup is	s made. What is		ter 28 <i>cm</i> is bent and an of the cup?
($\binom{1000}{3} \sqrt{3} \ cm^{3} \\ \binom{700}{3} \sqrt{3} \ cm^{3}$		(2) 30	00√3 cm³
($(3) \left(\frac{700}{3}\right) \sqrt{3} \ cm^3$		44 (1	$\frac{078}{3}$ $\sqrt{3}$ cm ³

13. A cone of height 9 solid sphere of radio (1) 45%			arved out from a wooden ed is (4) 75%	
14. A cylinder having ra many conical flasks (1) 50			illed with milk. In how and height is 50 cm each? (4) 160	
15.A floating boat having a 1 cm. when a man g (1) 50 kg		of the man is (densit	a lake. The boat sinks by y of water is 1000 kg/m ³) (4) 80 kg	
16.The height of a right of (1) 12cm	circular cone whose (2) 4cm	radius is 3 cm and s (3) 13cm	slant height is 5cmwill be (4) 5cm	
17. If the volume of sphe	re is $36 \prod cm^3$, then in (2) 2cm	its radius is equal to (3) 5cm	(4) 10cm	
18. C.S.A of solid sphere (1) T.S.A of solid s (3) C.S.A. of hemis	phere	(2) T.S.A. of hem (4) none of these	•	
19. If the total surface an		ılar cylinder is 200∏	$ cm^2 $ and its radius is 5cm,	
(1)20 m	(2) 25 cm	(3) 30 cm	(4) 15 cm	
20. The ratios of the respective heights and the respective radii of two cylinders are 1:2 and 2:1 respectively. Then their respective volumes are in the ratio (1) 4: 1 (2) 1: 4 (3) 2: 1 (4) 1: 2				

8.STATISTICS AND PROBABILITY

1. The range of first 10 prime numbers is

(1)2

(1) 9	(2) 20	(3) 27	(4) 5	
2. If the smallest v	alue and co-efficient o	of range of a data	are 25 and 0.5 res	pectively
(1) 25		(3) 100	(4) 12.5	
	ons 1, 2, 3, 50 have 100 have the variance		and the observation	ons

(3) $\frac{1}{2}$

(4) 0

4.	If the standard standard deviat	I deviation of y is	of a variabl	e x is 4 a	and if y=	$\frac{3x+5}{4}$, then	the
	(1) 4	(2) 3.5		(3) 3	(4) 2.5	
5.	If the data is multiplied by	multiplied	by 4, ther	the cor	respondin	g variance is	get
	(1) 4	(2) 1	6	(3) 2		(4) None	
6.	If the co-efficient 7.7 respectively to (1) 20				a data are (4) 22	35% and	
7.	The batsman A is	more consiste	ent than bats	manB if			
	(1) C.V of A > C.V	of B	(2) C	.V of A < C.	V of B		
	(3) C.V of $A = C.V$	of B	(4) C	.V of <i>A</i> ≥ C.	V of B		
8.	The range of (1) 9	first 10 prim (2) 20		s is (3) 27		(4) 5	
9.	The average of $(1)^{\frac{n(n+1)}{2}}$	first ' n ' nat	ural numbei (2)	(3)	n+1 2	(4) n	
10.	The standard de	viation of a	lata is 5. If e	each value	is multipli	ed by 2,	
	then the new (1) 3		(3) 1	0	(4) 225		
11.	The variance (1)10	TO 0.00	0, 10, 10 i		(4) 0		
12	. Mean and sta	andard devi	21	data are	48 and 1	2 respective	ly.
	The coefficien (1) 42		on is (3) 2	28	(4) 48	}	
13	. If an event occi	urs surely, th (2) 0	en its proba $(3) \frac{1}{2}$	bility is	$(4)\frac{3}{4}$		

$$(1)\frac{4}{11}$$

$$(2)\frac{7}{11}$$

$$(3)\frac{3}{11}$$

$$(4)\frac{6}{11}$$

15. In a competition containing two events A and B, the probability of winning the events A and B are $\frac{1}{3}$ and $\frac{1}{4}$ respectively and the probability of winning both the events is $\frac{1}{12}$. The probability of winning only one event is $(1)\frac{1}{12}$ $(2)\frac{5}{12}$ $(3)\frac{6}{12}$

$$(1)\frac{1}{12}$$

$$(2)\frac{5}{12}$$

$$(3)\frac{6}{12}$$

$$(4)\frac{7}{12}$$

16. A number x is chosen at random from − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4. The probability that $/x/ \le 3$ is

$$(1)\frac{3}{9}$$

$$(2)\frac{4}{9}$$

$$(3)\frac{2}{9}$$

$$(4)\frac{7}{9}$$

		-	
	ning a prize who boug		e given. The probability $\sqrt{4} \frac{1}{20}$
	ins are tossed, the pr	obability of getting	the same face on all
the three coins	is		_
$(1)^{\frac{1}{n}}$	$(z)\frac{1}{4}$	$(3)\frac{3}{9}$	$(4)\frac{1}{3}$
$(1)\frac{8}{8}$	$\frac{1}{4}$	$(3)\frac{8}{8}$	$(4)\frac{1}{3}$
20. A box contains	some milk chocolate	es and some coco -	chocolates and there
are 60 chocola	tes in the box. If the	probability of taking	a milk chocolate is $\frac{2}{3}$
	er of coco chocolate		3
20.2	(2)50	(3)20	(4)30

P(A) = 0.25, P(B) = 0.05 and P(A + B) = 0.14, then P(A, B) =

17. If the probability of non-happening of an event is q, then the probability of

(2)q

If A and B are two events such that

(2) 0.16

(1) 0.61

 $(3)^{\frac{q}{2}}$

(3) 0.14

(4) 2q

(4) 0.6

happening of the event is

(1) 1-q

22.	Probability of	getting 3 heads	or 3 tails in toss	ing a coin 3 times is
	$(1)\frac{1}{8}$	(2) 1	$(3)\frac{3}{8}$	$(4)\frac{1}{2}$

23. A fair die is thrown once. The probability of getting a prime (or) composite number is

(1)1

(2)0

 $(4)\frac{1}{6}$

24. A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is Selected at random, the probability that it is not red is

 $(1)\frac{5}{10}$

 $(2)\frac{4}{12}$

 $(3)\frac{3}{12}$

25. If p is the probability of an event A, then p satisfies

(1) $0 (2) <math>0 \le p \le 1$ (3) $0 \le p < 1$

(4) 0