Derivatives - Part 1

Revision Sheet for Limits: Practice for Derivatives

Q1. Find the limits of the expressions below (review the last class recording)

a.
$$\lim_{x \to 3} (3 + |x - 3|)$$

d.
$$\lim_{x \to 0} \left(\frac{1 - \cos(x)}{2x^2} \right)$$

d.
$$\lim_{x \to 0} \left(\frac{1 - \cos(x)}{2 x^2} \right)$$
 f. $\lim_{x \to \infty} \left(\frac{3x^2 + 3x + 2}{5x^2 - x - 2} \right)$ e. $\lim_{x \to -1} \left(\frac{x^2 + 3x + 2}{x^2 - x - 2} \right)$ g. $\lim_{x \to \infty} (x \sin(1/x))$

b.
$$\lim_{x \to 0} \left(\frac{\sqrt{x^2 + 64} - 8}{x^2} \right)$$

e.
$$\lim_{x \to -1} \left(\frac{x^2 + 3x + 2}{x^2 - x - 2} \right)$$

g.
$$\lim_{x \to \infty} (x \sin(1/x))$$

C.
$$\lim_{x \to 8} \left(\frac{x-8}{\sqrt{x+1} - 3} \right)$$

Q2. Find the first-derivative of each the following expressions, with respect to x:

a.
$$f(x) = \cos(x^2) + \sin(\sqrt{x})$$

[Hint: revise all the rules of the derivatives, including the chain rule]

b.
$$f(x) = \sin(x - \sin(x^2))$$

c.
$$f(x) = \sqrt{x^2 + 9}$$

d.
$$f(x) = \frac{x}{1+x}$$

e.
$$f(x) = \sin^{-1}(x)$$
 [Hint: Let $y = f(x)$; thus $\sin(y) = x$; Now differentiate both sides w.r.t. X]

Q3. Find the first-derivative of each the following expressions, with respect to x²:

A.
$$f(x) = \cos(x^2)$$

B.
$$f(x) = \sqrt{x^2 + 9}$$

C.
$$f(x) = \frac{x}{1+x}$$

D.
$$f(x) = \sin(x)$$
 [Hint: Let $x^2 = u$; Use chain rule to express $\frac{d f(x)}{du}$ as $\frac{d f(x)}{dx}$ $x \frac{dx}{du}$]

Q4. Find the first and second derivatives, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for each, based on the constraints given:

a.
$$x^2 + y^2 = 16$$

b.
$$x^2 - y^2 = 20$$

c.
$$x^2 + y^2 + 2xy + 8x + 6y = 0$$

d.
$$\frac{16}{x^2} + \frac{16}{y^2} - \frac{1}{xy} = 0$$