4" Edition

ASHAVANT KANETKAR aa

S

| ADITYA KANETK/R
Python Is Future, Embrace [t Fast

Learn Python Quickly
A Programmer-Friendly Guide

O 00 N o0 n A W N -

NN N RN N NN RBR B R B |2 |2 |9 & -
mmhwnpommummhwmps

Brief Contents

Introduction to Python

Getting Started

Python Basics

Strings and Regular Expressions

Decision Control Instruction

Repetition Control Instruction

Console Input/Output
Lists

Tuples

Sets

Dictionaries

Comprehensions

Functions

Recursion

Functional Programming

Modules and Packages

Namespaces

Classes and Objects

Intricacies of Classes and Objects

Containership and Inheritance

Iterators and Generators

Exception Handling

File Input/Output

Miscellany

Concurrency and Parallelism

Synchronization

vii.

19

41

63

77

89

99

117
129
139
153
165
183
199
213
225
235
253
267
285
307
325
341
363
381

27 Numpy Library

Appendix A - Precedence Table

Appendix B - Debugging in Python_

Appendix C - Chasing the Bugs

Periodic Tests

Index

viii

403
41y
42]
42)
433
447

Contents

Introduction to Python

What is Python?

Reasons for Popularity

What sets Python apart?

Where is Python used?

Who uses Python today?
Programming Paradigms

Functional Programming Model
Procedural Programming Model
Object-oriented Programming Model
Event-driven Programming Model
Exercises
Getting Started

Python Specification

Python Installation under Windows
Python Installation under Linux
Python Resources

Third-party Packages

More Sophisticated Tools
Compilation Approach in C, C++
Compilation Approach in Python

Pros and Cons of Traditional Approach

Pros and Cons of Modern Approach
Working with Python

Python Programming Modes
Determining Python Version
Exercises
Python Basics

Identifiers and Keywords
Python Types

Basic Types

Integer and Float Ranges
Variable Type and Assignment
Arithmetic Operators
Operation Nuances
Precedence and Associativity
Conversions

Built-in Functions

O NOO O U N A B WWNN M

NN NN NRNNNRNRN SRS B2 2B 2 2 2 2 2 2 2 |2 |2 2
VWU BWNNRPRPOODOVUONOODODUVUEWWNNEREOO

Built-in Modules

Container Types

Python Type Jargon
Comments and Indentation
Multi-lining

Classes and Objects
Multiple Objects

Programs

Exercises

Strings and Regular Expressions
What are Strings?

Accessing String Elements
String Properties

Built-in Functions

String Methods

String Conversions

String Comparisons "

Byte Sequences

Regular Expressions

Regex Functionality

Regex Metacharacters
Regex Repetition Qualifiers
Regex Anchors

Regex Grouping

Programs

Exercises

Decision Control Instruction

Decision Control Instruction
Nuances of Conditions

Logical Operators

Conditional Expressions

all() and any()

Receiving Input

pass Statement

Programs

Exercises

Repetition Control Instruction

Repetition Control Instruction
Usage of while Loop

Usage of for Loop

break and continue

26
28
28
29
29
30
31
32
39
a1
42
42
43
44
44
45
46
46
47
48
48
50
51
51
51
59
63
64
65
65
66
67
67
68
68
73
77
78
78
79
81

Else Block of a Loop 81

Programs 82
Exercises 85
7 Console Input/Output 89
Console Input 90
Console Output 91
Formatted Printing 91
Programs 93
Exercises 96
8 Lists 99
What are Lists? 100
Accessing List Elements 100
Looping in Lists 101
Basic List Operations 101
Using Built-in Functions on Lists - 104
List Methods 105
Sorting and Reversing - 105
List Varieties 106
Stack Data Structure 107
Queue Data Structure 107
Programs 107
Exercises 113
9 Tuples 117
What are Tuples? 118
Accessing Tuple Elements 118
Looping in Tuples 119
Basic Tuple Operations 119
Using Built-in Functions on Tuples 120
Tuple Methods 121
Tuple Varieties 121
Programs 122
Exercises _ 127
10 Sets 129
What are Sets? 130
Accessing Set Elements 131
Looping in Sets 131
Basic Set Operations 131
- Using Built-in Functions on Sets 132
Set Methods 132
Mathematical Set Operations 133

Updating Set Operations 134

Set Varieties 134

Programs 134
Exercises 137
11 Dictionaries 139
What are Dictionaries? 141,
Accessing Dictionary Elements lag
Looping in Dictionaries 14]
Basic Dictionary Operations 14]
Using Built-in Functions on Dictionaries 142
Dictionary Methods 143
Dictionary Varieties 143
Programs 144
Exercises 149
12 Comprehensions 153
What are Comprehensions? 154
List Comprehension 154
Set Comprehension 155
Dictionary Comprehension 156
Programs 156
Exercises 162
13 Functions 165
What are Functions? 166
Communication with Functions 167
Types of Arguments 168
Unpacking Arguments 171
Programs 172
Exercises 181
14 Recursion 183
Repetitions 184
Recursive Function 184
When to use Recursion 185
Problem as Similar Sub-problems 185
Recursive Factorial Function 186
Problem with Unknown Loops 187
Types of Recursion ‘ 189
Recursion Limit 190
Iteration to Recursion 190
Programs 190
Exercises 196
15 Functional Programming 199

Functional Programming 200

Xii

Functions as First-class Values 200)

Lambda Functions 201
Higher Order Functions 202
Map, Filter, Reduce 203
map() Function 203
filter() Function 204
reduce() Function 204
Using Lambda with map(), filter(), reduce() 205
Where are they Useful? 206
Programs 207
Exercises 211
16 Modules and Packages 213
The Main Module 214
Multiple Modules 214
Importing a Module 215
Variations of import 216
Search Sequence | 216
Same Code, Different Interpretation 217
Packages 217
Third-party Packages 218
Programs 219
Exercises 223
17 Namespaces 225
Symbol Table 226
Namespace 226
globals() and locals() 227
Where to use them? 228
Inner Functions 229
Scope and LEGB Rule 230
Programs 231
Exercises 233
18 Classes and Objects 235
Programming Paradigms 236
What are Classes and Objects? 236
Classes and Objects in Programming 237
User-defined Classes 237
Access Convention 239
Object Initialization 240
Class Variables and Methods 242
vars() and dir() Functions 242

More vars() and dir() 247

Xiii

Programs 24y

Exercises 24y

19 Intricacies of Classes and Objects __ 25,
Identifier Naming Convention 254
Calling Functions and Methods 25¢
Operator Overloading 25¢,

Which Operators to Overload 25
Everything is an Object 283
Imitating a Structure 260

Type Conversion 260
Programs 261
Exercises ‘ 264

20 Containership and Inheritance ' 267
Reuse Mechanisms 268

Which to use When? 268
Containership 268
Inheritance 269

What is Accessible where? 271
isinstance() and issubclass())

The object Class * 273
Features of Inheritance 273

Types of Inheritance 273
'Diamond Problem 275
Abstract Classes 276
Runtime Polymorphism 277
Programs 277

_ Exercises 282
21 Iterators and Generators 285
Iterables and Iterators 286

Zip() Function 286
Iterators - 287
User-defined Iterators 289
Generators 290
Which to use When? 291
Generator Expressions 291
Programs 292
Exercises 305

22 Exception Handling 307
What may go Wrong? 308
Syntax Errors 308
Exceptions 309

Xiv

How to deal with Exceptions? 310

How to use try - except? 31
Nuances of try and except 312
User-defined Exceptions 313
else Block 316
finally Block 317
Exception Handling Tips 317
Programs 317
Exercises 322
23 File Input/Output 325
I/O System , 326
File 1/0 326
Read / Write Operations o 327
File Opening Modes 328
with Keyword 329
Moving within a File - 329
Serialization and Deserialization 330
Serialization of User-defined Types 333
File and Directory Operations 334
Programs ' 335
Exercises 338
24 Miscellany _ : 341
Documentation Strings 342
Command-line Arguments : 343
Parsing of Command-line 344
Bitwise Operators ' 346
Assertion 347
Decorators 348
Decorating Functions with Arguments 350
Unicode | 353
“bytes Datatype 353
Create Executable File 355
Programs 356
Exercises 361
25 Concurrency and Parallelism 363
Concurrency and Parallelism \ 364
What are Threads? 364
Concurrency and Parallelism in Programming 365
CPU-bound and 1/0-bound Programs ‘ 366
Which to use When? 366

Concurrency for Improving Performance 362

XV

Types of Concurrencies I

Thread Properties I6p
Launching Threads 364
Passing Parameters to a Thread 370
Programs 370
Exercises 378
26 Synchronization I8
Synchronization 38)
Examples of Sharing Resources 38)
Example of Communication between Threads 383
Mechanisms for Sharing Resources 383
Lock 383
RLock | 384
Semaphore 388
Mechanisms for Inter-thread Communication 388
Event : 386
Condition \ 386
Programs - : 387
Exercises 401
27 Numpy Library 403
Creation of Array 404
Creation of Filler Arrays : 405
Array Attributes 406
Array Operations . 407
Arithmetic Operations 407
Statistical Operations 408
Linear Algebra Operations 408
Bitwise Operations 409
Copying and Sorting 409
Comparison 410
Indexing and Slicing 411
Array Manipulation 412
Programs 413
Exercises 417
Appendix A - Precedence Table 419
Appendix B - Debugging in Python 421
Appendix C - Chasing the Bugs 427
Appendix D - Periodic Tests 433
Index 447

xvi

Introduction to

“Wet your feet...”

C 5 e

Functional Programming Model

e Whatis Python?
e Reasons for Popularity e Procedural Programming Model

e What sets Python apart? e Object-oriented Programming Model
e Where is Python Used? e Event-driven Programming Model

e Who uses Python today? e Exercises

® Programming Paradigms

2 Let Us P)([hnn

What is Python?

e Python is a high-level programming language created by Guido Van
Rossum - fondly known as Benevolent Dictator For Life,

-

e Python was first released in 1991. Today Python interpreters are
available for many Operating Systems including Windows and Linux.

e Python programmers are often called Pythonists or Pythonistas.

Reasons for Popularity

e There are severa' reasons for Python’s popularity. These include:

(a) Free:

- Python is free to use and distribute and is supported by
community. :
- Python interpreter is available for every major platform.

(b) Software quality:

- Better than traditional and scripting languages.
- Readable code, hence reusable and maintainable.
- Support for advance reuse mechanisms.

(c) Developer productivity:

- Much better than statically typed languages.
- Much smaller code.

- Less to type, debug and maintain.

- No lengthy compile and link steps.

(d) Program portability:

- Python programs run unchanged on most platforms.

- Python runs on every major platform currently in use.

- Porting program to a new platform usually need only cut and
paste. This is true even for GUI, DB access, Web programming,
OS interfacing, Directory access, etc.

(e) Support libraries:

- Strong library support from Text pattern matching to
networking.

- Vast collection of third-party libraries.

- Libraries for Web site construction, Numeric programming,
Game development, Machine Learning etc.

Chapter 1: Introduction to Python 3

(f) Component integration:

Can invoke C, C++ libraries and Java components.

Can communicate with frameworks such as COM, .NET.

Can interact over networks with interfaces like SOAP, XML-RPC,
CORBA.

With appropriate glue code, Python can subclass C++, Java, CH.
classes, thereby extending the reach of the program.

Popularly used for product customization and extension.

(g) Enjoyment:

Ease of use.
Built-in toolset.
Programming becomes pleasure than work.

What sets Python apart?
(a) Powerful: :

Dynamic typing.

No variable declaration.

Automatic allocation and Garbage Collection.
Supports classes, modules and exceptions.

Permits componentization and reuse.

Powerful containers - Lists, Dictionaries, Tuples, etc.

(b) Ready-made stuff:

Support for operations like joining, slicing, sorting, mapping, etc.
Powerful library.
Large collection of third-party utilities.

(c) Ease of use:

Type and run.

No compile and link steps.

Interactive programming experience.

Rapid turnaround.

Programs are simpler, smaller and more flexible.

Where is Python used?

e Python is used for multiple purposes. These include:

(a) System programming

(b) Building GUI applications

(c) Internet scripting

4 Let Us Python

(d) Component integration

(e) Database programming

(f) Rapid prototyping

(g) Numeric and Scientific programming

(h) Game pro'gramming

(i) Robotics programming

Who uses Python today?

e Many organizations use Python for varied purposes. These include:
(a) Google - In web search system |
(b) YouTube - Video Sharing service

(c) Bit-torrent - Peer to Peer file sharing system

(d) Intel, HP, Seagate, IBM, Qualcomm - Hardware testing

(e) Pixar, Industrial Light and Magic - Movie animation |

(f) JP Morgan, Chase, UBS - Financial market forecasting

(g) NASA, Fermilab - Scientific programming

(h) iRobot - Commercial robot vacuum cleaners

(i) NSA - Cryptographic and Intelligence analysis

(j) IronPort - Email Servers

Programming Paradigms

e Paradigm means organization principle. It is also known as model.

e Programming paradigm/model is a style of building the structure
and elements of computer programs.

e There exist many programming models like Functional, Procedural,
Object-oriented, Event-driven, etc.

e Many languages facilitate programming in one or more paradigms.
For example, Python supports Functional, Procedural, Object-
oriented and Event-driven programming models.

B

Chapter 1: Introduction to Python 5

e There are situations when Functional programming is the obvious
choice, and other situations where Procedural programming is the
better choice.

e Paradigms are not meant to be mutually exclusive. A single program

may use multiple paradigms.
Example.

Functional Programming Model

»-

® Functional programming decomposes a problem into a set of
functions. These functions provide the main source of logic in the
program.

e Functions take input parameters and produce outputs. Python
provides functional programming techniques like lambda, map,

reduce and filter. These are discussed in Chapter 15.
T e

e In this model computation is treated as evaluation of mathematical
functions. For example, to get factorial value of a number, or nt
Fibonacci number we can use the following functions:

factorialln) =1 =~ = ifn==
=n * factorial(n-1) ifn>0

fibo(n) =0 ifn=0
=1 | ifn=1
=fibo(n - 2) + fibo(n-1) ifn>1

e The output value of a function depends only on its arguments, so
calling a function with the same value for an argument always
produces the same result. As a result, it is a good fit for parallel
execution.

e No function can have side effects on other variables (state remains
unaltered).

e Functional programming model is often called a'Declarative'

programming paradigm as programming is done with expressions or
declarations instead of statements.

Procedural Programming Model

e Procedural programming solves the problem by implementing one
statement (a_procedure)-at-a-time. Thus, it contains explicit steps
that are executed in a specific order.

Let Us Python

It also uses functions, but these are not mathematical functions like
the ones used in functional programming. Functional programming
focuses on expressions, whereas Procedural programming focuses

'6n statements. o

The statements don't have values and instead modify the state of
some conceptual machine.

Same language expression can result in different values at different
times depending on the global state of the executing program Also,

the functions may change a program's state.
y ge a prog Necessmj

Procedural programming model is often called 'Imperatlve

programming as it changes state with an explicit sequence of
statements.

Object-oriented Programming Model

This model mimics the real world by creating inside the computer a
mini-world of objects.

In a University system objects can be VC, Professbrs, Non-teaching
staff, students, courses, semesters, examinations, etc.

Each object has a state (values) and behavior (interface/methods).
Objects get state and behavior based on the class from which it
created.

Objects interact with one another by sending messages to each
other, i.e., by calling each other’s interface methods.

E\;rent-driven Programming Model

This model is popularly used for programming GUI applications
containing elements like windows, check boxes, buttons, combo-
boxes, scroll bars, menus, etc.

When we interact with these elements (like clicking a button, or
moving the scrollbar or selecting a menu item) events occur and
these elements emit messages. There are listener methods which
are registered with these GUI elements which react to these events.

Since there is no guaranteed sequence in which events may occur
(based on how we interact with GUI elements), the listeners should
be able to handle them in asynchronous manner.

Chapter 1: Introduction to Python y .

E% Exercises

[A] Answer the following:

(a) Mention 5 fields in which Python is popularly used.
(b) Where is event-driven programming popularly used?
(c) Why Python is called portable language?

(d) What is the single most important féature of different programming
models discussed in this chapter?

(e) Which of the following is not a feature of Python?

Static typing

Dynamic typing

Run-time error handling through error numbers

Library support for containers like Lists, Dictionaries, Tuples

(f) Give an example application of each of the following programming
models:

- Functional model

- Procedural model

- Object-oriented model
- Event-driven model

[B] State whether the following statements are True or False:

(a) Python is free to use and distribute.

(b) Same Python program can work on different OS - microprocessor
combinations.

(c) Itis possible to use C++ or Java libraries in a Python program.
(d) In Python type of the variable is decided based on its usage.
(e) Python cannot be used for building GUI applications.

(f) Python supports functional, procedural, object-oriented and event-
driven programming models.

(g) GUI applications are based on event-driven programming model.

S Let Us Pyth()n

(h) Functional programming model consists of interaction of multiple
objects.

[C] Match the following pairs:

a. Functional programming 1. GUI element based interaction
b. Event-driven programming 2. Interaction of objects

c. Procedural programming 3. Statements

d. O0OP 4. Maths-like functions

[D] Fillin the blanks:

(a) Functional programming paradigm is also known as
programming model.

(b) Procedural programming paradigm is also known as
programming model.

(c) Python was created by |

(d) Python programmers are often called

.
—————————

