
Java Variables:-
✓ Variables are used to store the constant values by using these values we are achieving project

requirements.
✓ Variables are also known as fields of a class or properties of a class.

✓ All variables must have a type. You can use primitive types such as int, float, boolean,
etc. Or you can use reference types, such as strings, arrays, or objects.

✓ Variable declaration is composed of three components in order,

o Zero or more modifiers.

o The variable type.
o The variable name.

Example : public final int x=100;

public int a=10;

public ----> modifier (specify permission)
int ----> data type (represent type of the variable)
a ----> variable name
10 ----> constant value or literal;
; ----> statement terminator

There are three types of variables in java

1. Local variables.
2. Instance variables.
3. Static variables.

Local variables:-
❖ The variables which are declare inside a method or constructor or blocks those variables are

called local variables.
class Test
{ public static void main(String[] args) //execution starts from main method

{ int a=10; //local variables
int b=20;
System.out.println(a);
System.out.println(b);

}
}

❖ It is possible to access local variables only inside the method or constructor or blocks only, it is
not possible to access outside of method or constructor or blocks.

void add()
{ int a=10; //local variable

System.out.println(a); //possible
}
void mul()

{ System.out.println(a); //not-possible
}

❖ For the local variables memory allocated when method starts and memory released when
method completed.

Instance variables (non-static variables):-
✓ The variables which are declare inside a class but outside of methods those variables are called

instance variables.
✓ The scope (permission) of instance variable is inside the class having global visibility.
✓ For the instance variables memory allocated during object creation & memory released when object

is destroyed.
✓ Instance variables are stored in heap memory.

Areas of java language:-
There are two types areas in java.

1) Instance Area.
2) Static Area.

Instance Area:-
void m1() //instance method
{ Logics here //instance area
}

Instance variable accessing:-
(Instance variables & methods)

Directly can access (Access by using
Object)

Instance Area Static Area
Example:-
class Test
{ //instance variables

int a=10;
int b=20;
//static method
public static void main(String[] args)
{ //Static Area

Test t=new Test();
System.out.println(t.a);
System.out.println(t.b);
t.m1(); //instance method calling

Static Area:-
Static void m1() //static method
{ Logics here //static area
}

}
// instance method
void m1() //user defined method must called by user inside main method
{ //instance area

System.out.println(a);
System.out.println(b);

}//main ends
};//class ends

Static variables (class variables):-
❖ The variables which are declared inside the class but outside of the methods with static modifier

those variables are called static variables.
❖ Scope of the static variables with in the class global visibility.
❖ Static variables memory allocated during .class file loading and memory released at .class file

unloading time.
❖ Static variables are stored in non-heap memory.

Static variables & methods accessing:-
(Static variables& static methods)

Access by using class name

Static area instance area
class Test
{ //static variables

static int a=1000;
static int b=2000;
public static void main(String[] args) //static method
{ System.out.println(Test.a);

System.out.println(Test.b);
Test t = new Test();
t.m1(); //instance method calling

}
//instance method
void m1() //user defined method called by user inside main method
{ System.out.println(Test.a);

System.out.println(Test.b);
}

};
Static variables calling: - We are able to access the static members inside the static area in three ways.

✓ Direct accessing.
✓ By using class name.
✓ By using reference variable.

In above three approaches second approach is best approach .
class Test
{ static int x=100; //static variable

public static void main(String[] args)
{ System.out.println(a); //1-way(directly possible)

System.out.println(Test.a); //2-way(By using class name)
Test t=new Test();
System.out.println(t.a); //3-way(By using reference variable)

}
};

Example: - When we create object inside method that object is destroyed when method completed, if
any other method required object then create the object inside that method.
class Test
{ //instance variable

int a=10;
int b=20;
static void m1()
{ Test t = new Test();

System.out.println(t.a);
System.out.println(t.b);

}
static void m2()
{ Test t = new Test();

System.out.println(t.a);
System.out.println(t.b);

}
public static void main(String[] args)

{ Test.m1(); //static method calling
 Test.m2(); //static method calling
}

};
Example:-
class Test
{ int a=10; int b=20; // instance variables

static int c=30; static int d=40; //static variables
void m1() //instance method

{ System.out.println(a);
System.out.println(b);
System.out.println(Test.c);
System.out.println(Test.d);

}
static void m2() //static method
{ Test t = new Test();

System.out.println(t.a);
System.out.println(t.b);
System.out.println(Test.c);
System.out.println(Test.d);

}
public static void main(String[] args)
{ Test t = new Test();

t.m1(); //instance method calling
Test.m2(); //static method calling

}
};

Variables VS default values:-
Case 1:- for the instance variables JVM will assign default values.
class Test
{ int a;

boolean b;
public static void main(String[] args)
{ //access the instance variables by using object

Test t=new Test();
System.out.println(t.a);
System.out.println(t.b);

}
};

Case 2:- for the static variables JVM will assign default values.
class Test
{ static int a;

static float b;
public static void main(String[] args)
{ //access the static variable by using class Names

System.out.println(Test.a);
System.out.println(Test.b);

}
};

Case 3:-
➢ For the instance and static variables JVM will assign default values but for the local variables the

JVM won’t provide default values.
➢ In java before using local variables must initialize some values to the variables otherwise

compiler will raise compilation error “variable a might not have been initialized”.

class Test
{ public static void main(String[] args)

{ //local variables (access directly)
int a;
int b;
System.out.println(a);
System.out.println(b);

}
};
D:\>javac Test.java
Test.java:6: variable a might not have been initialized

System.out.println(a);

Class Vs Object:-
➢ Class is a logical entity it contains logics where as object is physical entity it is representing

memory.
➢ Class is blue print it decides object creation without class we are unable to create object.
➢ Based on single class (blue print) it is possible to create multiple objects but every object

occupies memory.
➢ Civil engineer based on blue print of house it is possible to create multiple houses in different

places but every house required some area.
➢ We are declaring the class by using class keyword but we are creating object by using new

keyword.
➢ We are able to create object in different ways like

o By using new operator
o By using clone() method
o By using new Instance()
o By using factory method.
o By using deserialization….etc

But we are able to declare the class by using class keyword.
➢ We will discuss object creation in detailed in constructor concept.

Instance vs. Static variables:-
❖ For the instance variables the JVM will create separate memory for each and every object it

means separate instance variable value for each and every object.
❖ For the static variables irrespective of object creation per class single memory is allocated, here

all objects of that class using single copy.

 Example :-
class Test
{ int a=10; //instance variable

static int b=20; //static variable
public static void main(String[] args)
{ Test t = new Test();

System.out.println(t.a); //10
System.out.println(t.b); //20
t.a=111; t.b=222;
System.out.println(t.a); //111
System.out.println(t.b); //222
Test t1 = new Test(); //10 222
System.out.println(t1.a); //10
System.out.println(t1.b); //222
t1.b=444;
Test t2 = new Test(); //10 444
System.out.println(t2.b); //444

}
}

Instance variable vs static variable :-

Different ways to initialize the variables :-

Summary of variables:-
Characteristic Local variable instance variable static
variables where declared inside method or inside the class outside inside
the class outside

Constructor or block. Of methods of methods .

Usage within the method inside the class. inside the class
all

When memory allocated when method starts when object created when .class file loading
When memory destroyed when method ends. When object destroyed when .class unloading.

Initial values none, must initialize the value default values are default values are
before first use. Assigned by JVM. Assigned by JVM.

Relation with Object no way related to object. for every object one copy for all objects one

Of instance variable
created copy is created. It
means memory. Single memory.

Accessing directly possible. By using object name. by using class name.
Test t = new Test();
 System.o
ut.println(Test.a); System.out.println(t.a);

Memory stored in stack memory. Stored in heap memory non-heap
memory.

	Example : public final int x=100;
	Areas of java language:-
	Instance variable accessing:-
	Static variables (class variables):-
	Static variables & methods accessing:-

	Access by using class name
	Variables VS default values:-

