Binomial Theorem

24th September 2024

Algebraic Expressions – Revisited (1/3)

Algebraic Expressions – Revisited (2/3)

Algebraic Expressions – Revisited (3/3) Monomial \rightarrow has single term (form of p) Eq: 3, $n^{3/2}$, nyBinomial \rightarrow has two terms (form $p \pm q$) $\underbrace{Eq:}(a+b)(1+o.),(a/3+3/n),(a^3-3ny)$ Trinomial \rightarrow has three terms (form: $p \pm q \pm n$) $\underbrace{\xi_q}: (\chi_1^2 + \chi_2^2 + \chi_3^2), (\alpha \chi^2 + b \chi + c), (\alpha \chi + b \chi + c), (\alpha + b + c), (\alpha + c), (\alpha + b + c), (\alpha + c$

But, the word polynomial is more manced. It is not any
algebraic eqn. of any number of terms. A polynomial
of nth order and one variable newst be of the form
$$a_0 n' + a_1 n'' + a_0 n'^2 + \dots + a_n n'$$
 where $a_0 \neq 0$.
and n is a natural number.
If $a_0 \neq 0$, it is not of the n-th order,
and if $n \notin \mathbb{N}$, it is not a polynomial at all!

Binomials

Any algebraic expression of the form
$$(p \pm q)$$

and having two terms.
 $\mathcal{E}_q: (\sqrt{x} + y), (\frac{a^2}{3x^2} + \frac{\sqrt{a}}{3y})$

Rules for monomial exponentiation:

Binomial exponentiation

$$(p+q)^{0} = 1 \quad \text{if } p+q \neq 0.$$

$$(p+q)^{1} = p+q.$$

$$(p+q)^{2} = p^{2} + 2pq + q^{2}.$$

$$(p+q)^{n} \longrightarrow \text{This is what this chapter}$$

$$really deals with !$$

How do we evaluate the expansion of a binomial
How do you evaluate/expand something like

$$(n + y)^{100}$$
?
As it even possible?
What is the 54th term in the expansion?
In this chapter we go looking for
some patterns that help us
answering these questions.

Basic Observations

$$(a+b)^{\circ} = 1$$
 one term when $n=0$
 $(a+b)^{\circ} = a+b$ two terms when $n=1$.
 $(a+b)^{2} = a^{2}+2ab+b^{2}$
three terms when $n=2$.
 $(a+b)^{3} = a^{3}+3a^{2}b+3ab^{2}+b^{3}$
four terms when $n=3$.
OBS-1: Thus, $(n+1)$ terms in the expansion of $(a+b)^{n}$.

$$(a+b)^{\circ} = 1.$$

$$(a+b)^{\circ} = 1.$$

$$(a+b)^{\circ} = a+b$$

$$(a+b)^{2} = a^{2}+2ab + b^{2} \implies highest power = 1.$$

$$(a+b)^{2} = a^{2}+2ab + b^{2} \implies highest power = 2.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{3} = a^{3}+3a^{2}b + 3ab^{2}+b^{3} \implies highest power = 3.$$

$$(a+b)^{\circ} = 1.$$
power of a + power of b in each term = 0
$$(a+b)^{\prime} = a+b$$

$$\stackrel{1+0 \quad 0+1}{= 1 \quad = 1}$$

$$(a+b)^{2} = a^{2}+2ab + b^{2}$$

$$\stackrel{2+0 \quad 1+1 \quad 0+2}{= 2} \quad = 2$$

$$(a+b)^{3} = a^{3}+3ab + 3ab + b^{3}$$

$$\stackrel{3+b}{= 3} \quad = 3 \quad = 3$$

$$(a+b)^{2} = a^{3}+3ab + 3ab + b^{3}$$

$$\stackrel{3+b}{= 3} \quad = 3 \quad = 3$$

OBS-1: There are
$$(n+1)$$
 terms in the expansion
OBS-2: The highest power of eilther a or b
in any term is (n) .
OBS-3: The order of every term in the
expansion is (n) .

The general form of the expansion of (a+b)^n

$$\left[\begin{array}{c} \left(a+b\right)^{n} = k \left(a\right)^{n} \left(b\right)^{0} + k \left(a\right)^{n-1} \left(b\right)^{2} + k \left(a\right)^{n-2} \left(b\right)^{2} \\ + \dots + + \\ + k \left(a\right)^{2} \left(b\right)^{n-2} + K \left(a\right)^{n-1} \left(b\right)^{n-1} + K \left(a\right)^{n} \left(b\right)^{n-1} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-1} + K_{n-1} \left(a\right)^{n-1} \left(b\right)^{n-1} + K_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-1} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-1} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} + K_{n-1} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \left(b\right)^{n-2} \\ + k_{n-2} \left(a\right)^{n-2} \\ + k$$

0

N=0; 1 1,1 N=1; 1,2,1. n=2; 1, 3, 3, 1. n=3; 1,4,6,4,1. N=4;1, 5, 10, 10, 5, 1. n=5; 1,6,15,20,15,6,1 n = 6;

It turns out that the co-efficients for a binomial expansion are all elements of the PASCAL'S Dle. Pascal obtained this PASCAL'S TRIANGLE 11211 triangle by adding The two elements right 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1

 1
 8
 28
 56
 70
 56
 28
 8
 1

 1
 9
 36
 84
 126
 126
 84
 36
 9
 1

 1
 10
 45
 120
 210
 252
 210
 120
 45
 10
 1

 above the element we want to find. Has remarkable propertie 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16

PASCAL'S \Rightarrow row -1 TRIANGLE. → 910W-2. D 9000 -3. All end and beginnin elements of each now =1

Theorem 6
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

Thus fourth now elements are.

$$\frac{1}{2} \frac{c_{0} + c_{1}}{c_{0} + c_{1}} \frac{{}^{2}C_{1} + c_{2}}{c_{2}} \frac{1}{2}$$
But from the theolem above, if $n=2, n=1$:

$$\frac{1}{2} \frac{{}^{3}C_{1}}{c_{1}} \frac{{}^{2}C_{1} + {}^{2}C_{2}}{2} \frac{1}{2}$$
Again from the theolem above, if $n=2, n=2$;

$$\frac{1}{2} \frac{{}^{3}C_{1}}{c_{1}} \frac{{}^{3}C_{2}}{c_{2}} \frac{1}{2}$$

 $\frac{1}{2} \frac{{}^{3}C_{1}}{C_{2}} \frac{{}^{3}C_{2}}{2} \frac{1}{2}$ But 1 can be written as ${}^{3}C_{0}$ or ${}^{3}C_{s}$. Thus, the fourth now elements are ${}^{3}C_{0}$, ${}^{3}C_{1}$, ${}^{3}C_{2}$, ${}^{3}C_{3}$. Similarly, the fifth now elements are: $4C_0, 4C_1, 4C_2, 4C_3, C_4$. Thus, the entire pascal's sle can be re-written in an alternate form (next slide).

 $1 = {}^{\circ}C_{6}$ $1 = \frac{1}{c_0}$ $1 = \frac{1}{c_0}$ $1=2_{0}$ $2=2_{1}$ $1=2_{2}$ $1=c_0$ $3=c_1$ $3=c_2$ $1=c_3$ $2 = \frac{1}{c_0} + \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_2} + \frac{1}{c_3} + \frac{1}{c_4} + \frac{1}{c_6} +$ $5 = 5c_1 = 10 = 5c_2 = 10 = 5c_3 = 5 = 5c_4 = 2 = 5c_5$ 1=50 $1=\epsilon_{0}$ $6=\epsilon_{1}$ $15=\epsilon_{2}$ $20=\epsilon_{3}$ $11=\epsilon_{4}$ $6=\epsilon_{5}$ $1=\epsilon_{6}$

Binomial Theorem

$$(a+b)^{n} = {}^{n}C_{0}(a)^{n}(b)^{0} + {}^{n}C_{1}(a)^{n-1}(b) + {}^{n}C_{2}(a)^{n-2}b^{2}$$

$$+\cdots + {}^{n}C_{n}(a)^{n-n}(b)^{n}$$

$$(a+b)^{n} = \sum_{\substack{n \\ A=D}}^{n} {}^{n}C_{a} \cdot a^{n-n} \cdot b^{n} \int_{a}^{b} \frac{8vahat}{\sqrt{a}hat}$$

$$(a+b)^{n} = \sum_{\substack{n \\ A=D}}^{n} {}^{n}C_{a} \cdot a^{n-n} \cdot b^{n} \int_{a}^{b} \frac{8vahat}{\sqrt{a}hat}$$

values of n n/ PASCAL'S De.

1) Find
$$(x - y)^{6}$$
 through the binomial thm,
Solution:
Consider $(x+b)^{n} = c_{0}a^{n}b^{0} + c_{1}a^{n-1}b^{1} + \dots + c_{n}a^{n-n}b^{n}$.
If $a = x, b = -y, n = 6$:
 $(x - y)^{6} = c_{0}(x)(-y)^{6} + c_{1}(x)(-y)^{1} + c_{2}(x)(-y)^{4} + c_{3}(x)(-y)^{3} + c_{4}(x)(-y)^{4} + c_{5}(x)(-y)^{6} + c_{5}(x)(-y)^{$