Binomial Theorem

24th September 2024

Algebraic Expressions – Revisited $(1/3)$

variable constants operator
\n*n, y, z* (2+3i),
$$
\sqrt{2}
$$
, 0.3 , α +, -, \times , \div
\n
\n
\n
\n
\n*n, y, z* (2+3i), $\sqrt{2}$, 0.3 , α +, -, \times , \div
\n
\n
\n
\n
\n
\n*n qu ab z*
\n
\n
\n
\n
\n
\n*n qu ab z*
\n
\n
\n*n qu ab z*
\n
\n
\n
\n*n qu ab z*
\n
\n
\n*n qu ab ab*

8

Algebraic Expressions – Revisited (2/3)
Terms: Separated by addition/subtraction
Operators.

Algebraic Expressions – Revisited (3/3)
Monvenial — has single term (form of P)
 $\frac{\varepsilon_{q}}{4}$ 3, $x^{3/2}$, my Binomial \rightarrow has two terms (folm p ± 9)
Eg: (a+b), (1 + o.), (u/3 + 3/y), (u³-3xy) Trinomial — Dhas ttre terms (form: p ± q ± n)
Eg: (x + x 2 + x 3), (ax 2 b x + c), (ax + by + c),
(a + b + g), (d 5 x + 32 x y 2 + 2).

But, the world polynomial is more manced. It is not any algebraic egn of any number of terms. A polynomial of nth order and one variable must be of the folm $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_nx^{6}$ where $a_0 \neq 0$. and n is a natural number. If $a_0\neq 0$, it is not of the n-th order, and if $n\notin\mathbb{N}$, it is not a polynomial at all!

Binomials

Any algorithmic expression of the form
$$
(p\pm q)
$$

and having two terms.
 $\xi q:(\sqrt{x}+y),(\frac{a^2}{3x^2}+\frac{\sqrt{a}}{3y})$

Rules for monomial exponentiation:

Binomial exponentiation

$$
(p+q)^{0} = 1 if p+q \neq 0
$$

\n
$$
(p+q)^{1} = p+q
$$

\n
$$
(p+q)^{2} = p^{2} + 2pq + q^{2}
$$

\n
$$
\vdots
$$

\n
$$
(p+q)^{n} \longrightarrow
$$
 This is what this chapter
\n
$$
\\ A \in ally \text{ deals with } j
$$

Basic Observations

$$
(a+b)^{0}=1
$$
 one term when $n=0$
\n $(a+b)^{1}=a+b$ two terms is
\n $(a+b)^{2}=a^{2}+2ab+b^{2}$
\n $(a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}$
\n $685-1$: Thus, $(n+1)$ terms in the expansion of $(a+b)^{n}$.

$$
(a+b)^{0}
$$
 = 1.
\n $(a+b)^{0}$ = 1.
\n $(a+b)^{1}$ = a+b
\n $(a+b)^{2}$ = a+b
\n $(a+b)^{2}$ = a²+2ab+b² → highest power = 1.
\n $(a+b)^{3}$ = a³+3a²b+3a²b³ → highest power = 2
\n $a+b)^{3}$ = a³+3a²b+3a²b³ → highest power = 3
\n $a=3$
\n $0BS=2$; Thus, highest power of either terms of the
\nbinomial is n for (a+b)ⁿ.

$$
(a+b)^{0}=1
$$

\npower of a + power of b in each term = 0
\n $(a+b)^{0}=a+b$
\n $1+0$ 0+1
\n $=1+1$
\n $(a+b)^{2}=a^{0}+2a^{0}+1$
\n $a+b^{2}=a^{0}+2a^{0}+1$
\n $a+b^{2}=a^{0}+2a^{0}+1$
\n $a+b^{2}=a^{0}+3a^{0}+3a^{1}+1$
\n $a+b^{3}=a^{0}+3a^{1}+3a^{1}+1$
\n $a+b^{3}=a^{0}+3a^{0}+3a^{1}+1$
\n $a^{2}+1$ 0+3
\n $a^{2}+1$ 0+2
\n $a^{2}+1$ 0+

The general form of the expansion of $(a+b)^n$

$$
\frac{\sqrt{(a+b)}^{n} = k_{0}(a)^{n}(b)^{0} + k_{1}(a)^{n-1}(b)^{1} + k_{2}(a)^{n-2}(b)^{2}}{1 + \cdots + \frac{k_{n-2}(a)(b) + k_{n-1}(a)(b)^{n-1} + k_{n}(a)^{0}(b)^{n}}{1 + k_{n-2}(a)(b) + k_{n-1}(a)(b)^{n-1} + k_{n}(a)^{0}(b)^{n}}
$$
\nwhere $k_{0}, k_{1}, ..., k_{n}$ are some constant
\n c_{0} -efficients that we will now find.

 \sim

Let us write down the coefficients for
$$
n=1,2,3,4,5,6
$$

 $M = 0$ 1 $1, 1$ $n = 1$ $1, 2, 1.$ $n = 2$; $1, 3, 3, 1.$ $n = 3$: $1, 4, 6, 4, 1$ $n = 4$; $1, 5, 10, 10, 5, 1.$ $n = 5$: $1, 6, 15, 20, 15, 6, 1$ $n = 6$

It turns out that the co-efficients for a binomial expansion are all elements of the PASCAL'S $\triangle^{\&}$ Pascal obtained this PASCAL'S An TRIANGLE (121) triangle by adding the two elements right $(1)5110110511$ 1 0 10 5 1 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 1 1 1 55 165 330 462 462 330 165 55 11 1

1 11 55 165 330 462 462 330 165 55 11 1

1 11 56 220 495 792 924 792 495 above the element we want to find. Has remarkable propertie 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16

 $PASCAL's$ \rightarrow row-1 TRIANGLE. \Rightarrow row-2. \rightarrow rion -3. Soll end and beginning

Value of the pos of step - 6 = 1
\n
$$
\begin{array}{|c|c|c|c|c|c|c|}\n\hline\n&0 & \text{pos} & \text{step - 6} & = 1 \\
\hline\n&1 & \text{pos} & \text{step - 1} & = 1 \\
\hline\n&0 & \text{pos} & \text{step - 1} & = 1 \\
\hline\n&0 & \text{pos} & \text{step - 2} & = 1 \\
\hline\n&1 & \text{pos} & \text{step - 2} & = 2 \\
\hline\n&2 & \text{pos} & \text{step - 2} & = 1 \\
\hline\n&2 & \text{pos} & \text{step - 2} & = 1 \\
\hline\n&2 & \text{pos} & \text{step - 2} & = 1 \\
\hline\n&2 & \text{pos} & \text{step - 2} & = 1\n\end{array}
$$

Theorem 6
$$
{}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}
$$
\nThus, f(x) show elements are:\n
$$
\frac{1}{\sqrt{6}} \int_{0}^{2} \frac{C_{0} + {}^{n}C_{1}}{C_{1} + C_{2}} \cdot \frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{6
$$

 $1 3c_1 3c_2 1$ But 1 can be written as 3C_0 or 3C_8 .
Thus, the fourth now elements are ${}^3C_0, {}^3C_1, {}^3C_2, {}^3C_3$. Similarly, the fifth now elements are:
4co, 4c, , 4cg, 4cg, 4cg, Thus, the entire pascal's Ale can be re-written

 $1 = {}^{0}C_{6}$ $1 = {}^k\!c_0$ $1 = {}^k\!c_0$ $1-z^2C_0$ $2-z^2C_1$ $1-z^2C_2$ $1=\frac{3}{2}c_0$ $3=\frac{3}{2}c_1$ $3=\frac{3}{2}c_2$ $1=\frac{3}{2}c_3$ $1=f_{C_{0}}$ $4=f_{C_{1}}$ $6=f_{C_{2}}$ $4=f_{C_{3}}$ $1=f_{C_{4}}$ $5.5c$, $10.5c$, $10.5c$, $5.5c$, $10.5c$ $1-\frac{5}{6}$ $1-\frac{2}{9}$ $6-\frac{2}{9}$ $15-\frac{2}{3}$ $20-\frac{2}{3}$ $11-\frac{2}{9}$ $6-\frac{2}{9}$ $1-\frac{2}{9}$

Remember when we said all coefficients of
the binomial expansion are identical to the
plocal's
$$
\Delta^{[e]}
$$

That means, all the co-efficients of the
binomial expansion can be expressed in
^mC₂ notation.

Binomial Theorem

$$
(a+b)^{n} = {^{n}C}_{0}(a)^{n}(b)^{0} + {^{n}C}_{1}(a)^{n-1}(b) + {^{n}C}_{2}(a)^{n-2}b^{2}
$$

+...+ {^{n}C}_{n}(a)^{n-n}(b)^{n}

$$
(a+b)^{n} = \sum_{\lambda=0}^{n} {^{n}C}_{\lambda} \cdot a^{n-1}b^{n}
$$
 Subl

11 values of n n/
PASCAL's D¹e.

1) Find
$$
(x - y)^{6}
$$
 through the binomial $\frac{f_n}{f_n}$
\nSolution:
\n
$$
\frac{\int_0^x f_n(1-\gamma)^{6-1} f_n(1-\gamma)^{6-1} f_n(1-\gamma)^{6-1} f_n(1-\gamma)^{6-1}}{2f_1(1-\gamma)^{6-1}f_1(1-\gamma)^{6-1}f_1(1-\gamma)^{6-1}} = \frac{1}{2}x^6 - 2x^6 - 2x^6
$$