
As Per CBSE
Syllabus
2024-25

Computer Science

Types of Errors:

Types of errors :

(i) Compile-timeerrors.Thesearetheerrors
resulting out of violation of programming
language’s grammar rules. All syntax errors
are reported during compilation.

(ii) Run-time errors. The errors that occur during
runtime because of unexpected situations. Such
errors are handled through exception handling
routines of Python.

Syntax Error Examples:

These are the errors resulting out of
violation of programming
language’s grammar rules.

Note: All syntax errors are reported
during compilation.

What is an Exception :

Some common examples of Exceptions are :

•

•

•

•

•

Dividebyzeroerrors

Accessingtheelementsofanarraybeyonditsrange

InvalidinputmHarddiskcrash

Openinganon-existentfile

Heapmemoryexhausted

Exceptions are unexpected events or errors that occur during the execution of a program, such as a division
by zero or accessing an invalid memory location. These events can lead to program termination or
incorrect results.

“It is an exceptional event that occurs during runtime and causes normal program flow to be disrupted.”

Exception (Examples):

Note: Observe that there is nothing
wrong with the program syntax, it is
only when we try to divide an integer
with zero , an exception is generated.

Exception (Examples):

Note: Only When we are trying to access
a list element with an non
existing
generated.

index an exception is

Exception (Examples):

Note: Only When we are trying to
convert a string to integer the
Exception generated.

What is Exception Handling?

Exception handling allows a program to gracefully handle such exceptions and recover
from errors by taking corrective actions instead of terminating abruptly. In Python,

exception handling is implemented using a try-except block

Exception handling in Python is a mechanism used to handle runtime errors that occur
during the execution of a Python program

Exception Handling using. try andexcept Block:

In a try block, you write the code that might raise an exception. If an exception occurs, the code execution
jumps to the corresponding except block, where you can handle the error or take alternative actions.

The try and except block in Python is a way to handle exceptions or errors that may occur during code
execution. This mechanism prevents the program from crashing by allowing it to continue running even if an
error is encountered.

Exception (Examples):

Example:

Write a program to ensure that an integer is entered as input and in case any other value is entered, it displays a
message –‘Not a valid integer’

General Built-in Python Exceptions:

Exception Name Description

EOFError

IO Error
NameError

IndexError

ImportError

TypeError

ValueError

ZeroDivisionError
OverflowError
KeyError
ImportError
KeyboardInterrupt

Raised when one of the built-in functions (input()) hits an end-of-file condition (EOF) without reading any data. (NOTE. the file.read() and
file.readline() methods return an empty string when they hit EOF.)

Raised when an I/O operation (such as a print statement, the built-in open() function or a method of a file object) fails for an I/O-related reason, e.g.,
“file not found” or “disk full”.
Raised when a local or global name is not found. This applies only to unqualified names. The associated value is an error message that includes the
name that could not be found.
Raised when a sequence subscript is out of range, e.g., from a list of length 4 if you try to read a value of index like 8 or E8 etc. (Slice indices are silently
truncated to fall in the allowed range ; if an index is not a plain integer, TypeError is raised.)
Raised when an import statement fails to find the module definition or when a from ... import fails to find a name that is tobeimported.

Raised when an operation or function is applied to an object of inappropriate type, e.g., if you try to compute a square-root of a string value. The
associated value is a string giving details about the type mismatch.
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate value, and the situation is not described
by a more precise exception such as IndexError.
Raised when the second argument of a division or modulo operation is zero.

Raised when the result of an arithmetic operation is too large to be represented.

Raised when a mapping (dictionary) key is not found in the set of existing keys

Raised when the module given with import statement is not found.

Raised when keys Esc, Del or Ctrl+Cis pressed during program execution and normal program flow gets disturbed.

Second Argument of the Exception Block:

#code

#code for error handling here

We can also provide a second argument (optional) for the except block, which gives a reference to the
exception object.

try:

Except <Exception Name> as <Argument>:

Handling Multiple Errors

Syntax:

In a try-except block, each except block is associated with a specific exception type, and the block containing the code to
handle that exception is executed if the corresponding exception occurs in the try block. By handling multiple exceptions,
programmers can write more robust and less error-prone code.

Handling multiple exceptions in Python allows a single try-except block to handle different types of exceptions using
multiple except blocks. This allows a program to handle various types of errors that may occur during runtime and take
corrective measures accordingly.

Example:

Program to handle multiple exceptions:

Note (Execution Order):
The <try suite> is executed first ; if, during the
course of executing the

that
<try suite>, an

handled
otherwise, and the <except suite> is executed,
with <name> bound to the exception, if found ;

if no matching except suite is found then
unnamed except suite is executed.

exception is raised is not

finally Block :

The finally block is a part of the try-except block in Python that contains the code that is executed
regardless of whether an exception is raised or not. The syntax of the try-except-finally block is as follows:

the try block contains the code that may raise an exception. If an exception occurs, the control is transferred
to the corresponding except block, which contains the code to handle the exception. The finally block
contains the code that is executed after the try-except blocks, regardless of whether an exception occurred
or not.

Example :

Program using finally block

Example :

What is the order of execution?

In this example, if the user enters an invalid
input
corresponding

or attempts to divide
block

by zero, the
the

exception and prints an error message to the
user. If no exception occurs, the else block is

executed and prints the result. Finally, the finally
block is executed and prints a message to

except handles

indicate
execution

the completion of the program

Practice Programs Example:

1. Write a Python program that takes two numbers as input from the user and calculates the quotient of the two
numbers. Handle the exceptions that may occur during the program execution, such as invalid input or division by
zero.

2. Write a Python program that reads a file and displays its contents on the screen. Handle the exceptions that
may occur during the program execution, such as the file not found error or file reading error.
3. Write a Python program that takes a list of integers as input from the user and calculates the average of the
numbers. Handle the exceptions that may occur during the program execution, such as invalid input or division
by zero.

4. Write a Python program that reads a CSV file and displays its contents on the screen. Handle the exceptions
that may occur during the program execution, such as the file not found error or file reading error.

5. Write a Python program that takes a string as input from the user and converts it to an integer. Handle the
exceptions that may occur during the program execution, such as invalid input or string conversion error.

Practice Programs Example:

6. Write a Python program that takes a list of numbers as input from the user and finds the maximum and
minimum numbers in the list. Handle the exceptions that may occur during the program execution, such as invalid
input or empty list error.

7. Write a Python program that reads a file and writes its contents to another file. Handle the exceptions that
may occur during the program execution, such as the file not found error or file reading/writing error.
8. Write a Python program that takes two strings as input from the user and concatenates them. Handle the
exceptions that may occur during the program execution, such as invalid input or string concatenation error.

9. Write a Python program that reads a text file and counts the number of words in it. Handle the exceptions that
may occur during the program execution, such as the file not found error or file reading error.
10. Write a Python program that takes a string as input from the user and reverses it. Handle the exceptions that
may occur during the program execution, such as invalid input or string reversal error.

