CBSE Test Paper 03

CH-05 Complex & Quadratic

- 1. If $x=\omega^2-\omega-3, \omega$ being a non real cube root of unity , then the value of $x^4+6x^3+10x^2-12x-19$ is
 - a. 5
 - b. none of these
 - c. 19
 - d. 12
- 2. Find the Amplitude of -i
 - a. $-\frac{\pi}{2}$
 - b. $\frac{\pi}{2}$
 - c. π
 - d. none of these
- 3. The number of solutions of the equation $Im\left(z^{2}
 ight)=0, |z|=2$ is
 - a. 1
 - b. 4
 - c. 2
 - d. 3
- 4. Square roots of i are

a.
$$\pm \frac{1}{\sqrt{2}} (1+i)$$

b. none of these

c.
$$\pm 1$$

d.
$$\pm \frac{1}{\sqrt{2}}(1-i)$$

- 5. Find the Amplitude of -1-i
 - a. -3 $\pi/4$
 - b. $3 \pi / 4$
 - c. $\pi/4$
 - d. none of these
- 6. Fill in the blanks:

The complex number (sin135° - i sin135°) is written in polar form as _____.

7. Fill in the blanks:

The conjugate of complex number 3 + i is _____.

- 8. Express $\left(\frac{1}{2}+\frac{5}{2}i\right)-\frac{3}{2}i+\left(\frac{-5}{2}-i\right)$ in the form of a + ib.
- 9. Express the complex number $\sin 50^{\circ} + i \cos 50^{\circ}$ in the polar form.
- 10. Find the product of complex number (-5 + 7i), (-13 3i).
- 11. If z_1 = 3 + 2i and z_2 = 2 i, then verify that $\overline{z_1z_2}=\overline{z_1}$ $\overline{z_2}$
- 12. Simplify the following complex number $\overline{9-i}+\overline{6+i^3}-\overline{9+i^2}$
- 13. Find the value of $(4 + 3\sqrt{-20})^{1/2} + (4 3\sqrt{-20})^{1/2}$.
- 14. If $x+iy=rac{(a+i)^2}{2a-i}$, show that $x^2+y^2=rac{(a^2+1)^2}{4a^2+1}$.
- 15. Write the complex number $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ in the polar form.