

INTRODUCTION

to
JAVA

 x

for first year
Computer Science

Jane Meyerowitz
July 2002

Updated by D Moodley
July 2004

References

In compiling these lecture notes, much use was made of

Java Gently (2nd edition) by Judy Bishop.
Addison-Wesley 1998

Developing Java Software by Russel Winder and Graham Roberts.
John Wiley & Sons 1998

Java: how to program by Deitel & Deitel.
Prentice Hall 1997

Other books consulted were

Java, an object first approach by Fintan Culwin.
Prentice Hall 1998

Java: First Contact by Roger Garside and John Mariani
Course Technology 1998

programming.Java by Rick Decker and Stuart Hirshfield
PWS Publishing Company 1999

Java: A framework for programming and problem solving
by Kenneth Lambert and Martin Osborne
PWS Publishing Company 1999

Java: how to program by Deitel & Deitel
Prentice Hall 1997

These lecture notes are designed for use in the first year Computer Science modules
at the University of KwaZulu-Natal. They provide an introduction to problem solving,
programming, and the Java language. They are not intended to be complete in
themselves but serve as a complement to the formal lectures, and students are urged
to make use of the books referenced in addition to these notes.

Contents

1. Introduction

1.1 Algorithms, machines and programs
1.2 Programming Languages
1.3 The compilation process
1.4 Errors

2. Problem Solving

2.1 Algorithms
2.2 Mathematical Algorithms

3. Simple Programs

3.1 A first program
3.2 Running a Java application program
3.3 A second example program
3.4 A final example

4. Using data - types and items

4.1 Simple Data Types
4.2 Variables
4.3 Constants
4.4 Assignment
4.5 Arithmetic expressions
4.6 Complete examples

5. Output and Input

5.1 Output
5.2 Input

6. Structure and Methods

6.1 Properties of a good program
6.2 Methods
6.3 Scope of variables

7. Repetition

7.1 Simple for loops
7.2 Nested loops
7.3 Loops using other datatypes

8. Selection

8.1 Boolean expressions
8.2 if-else Statements
8.3 switch Statements

9. Conditional Loops

9.1 while Loops
9.2 do-while Loops

10. Classes and Objects

10.1 An introduction to classes, objects, members and constructors
10.2 Java packages, classes and objects
10.3 Designing classes
10.4 Examples

11. Streams, Files and Exceptions

11.1 Input and Output streams
11.2 File input and output
11.3 Exceptions

12. Arrays

12.1 Simple arrays
12.2 Sorting
12.3 Tables
12.4 Searching

13. Strings

13.1 Strings
13.2 String Buffers
13.3 Tokenizers
13.4 class Keyboard and GenIO
13.5 toString methods

14. Recursion

14.1 Recursion

15. Useful Data Structures

15.1 Inner classes
15.2 Arrays of independent objects
15.3 Sorting arrays of objects
15.4 Merging data sets

16. Simple Graphics

16.1 Introduction to AWT and Swing
16.2 Event-driven programming
16.3 Components, containers and layout managers
16.4 Buttons
16.5 Panels
16.6 Text Areas, Text Fields and Labels

Appendix A – Errors and testing

A1 Coding for testing
A2 Debugging
A3 Testing

1. Introduction

1.1 Algorithms, machines and programs
A common misconception is that the hardest part of programming is writing the program
language instructions that tell the computer what to do. This is in fact not the case - the most
difficult part of solving a program on a computer is coming up with the method of solution. After
you have developed a method of a solution, it is routine to translate your method into the
required language. When solving a problem with a computer it is a good idea to first formulate
the broad steps of the solution diagrammatically or in English or some form of pseudo-code,
and then once all aspects have been considered, to translate your algorithm into the
programming language.

A set of instructions that leads to a solution is called an algorithm. The term comes from the
name of the ninth-century Arabian mathematician, Mohammed Al-Khwarizmi, who wrote an
important book on the manipulation of numbers and equations, and described some routine
processes for arithmetic and for solving equations. Hence the term algorithm came to mean a
routine process for computation. Today, algorithm is taken to mean a finite ordered sequence
of precise, step-by-step instructions for performing some task, usually a computation.

The idea of an algorithm is to describe a process so precisely and unambiguously that it
becomes mechanical in the sense that it doesn't require much intelligence and can be
performed by rote or by a machine. An algorithm has at least 3 necessary qualities:

• It must accomplish the task.
• It must be clear and unambiguous.
• It must define the sequence of steps needed for accomplishing the task - ie. define the

steps in order.

In the early 1800's mathematicians began to dream of machines that could carry out boring
mechanical computations. In addition, there was a need to improve the reliability of number-
crunching and to find a way to automate the process in order to reduce errors. In 1840, a
mathematician named Charles Babbage planned a steam-powered, gear-driven calculating
machine to automate the calculation and printing of navigational tables. This "Analytical
Engine" was to be controlled by three sets of punched cards: one for the data, one for the
instructions for manipulating the data, and the third for controlling storage of intermediate
results. The machine was never built because its gearwork construction lay beyond the
capabilities of Victorian engineering.

But Babbage and his collaborator, Augusta Ada, Countess Lovelace, were responsible for one
of the most important ideas of the Information Age - that of the Stored Program. A computing
machine processes data in the form of symbols. In doing this, it is controlled by instructions that
make up its algorithm. These instructions must also be provided to the machine as sequences
of symbols. All that was needed was a language for symbolising the instructions and the
computing machine could be provided with a program for its activities.

page 1.2 Intro Java

Today we distinguish between an algorithm and a program. A program is an expression of an
algorithm in a precise language that can be made understandable to a computer. The language
itself is called a programming language.

1.2 Programming Languages
A program is an algorithm written in a form that is understandable to a computer system. Each
CPU is designed to execute a very simple collection of instructions called its machine
language. Before the 1950s, there were no high-level programming languages. Programmers
were forced to program in machine language (i.e. the language understood by the machine).
Machine code is simply a sequence of bit patterns (1's and 0's) which are interpreted by the
machine as commands and data.

In the early 1950's, a low-level language was developed called assembly language. This
language is really machine code disguised in slightly more friendly clothing, where each
machine-language instruction is symbolised by an abbreviation (eg. ADD,LD,STO). An
assembly-language program would first be translated by another program called an assembler
into machine code which could then be executed.

By the mid-1950's programmers were asking for high-level programming languages which
would allow algorithms to be described more nearly as humans think about them. FORTRAN
(FORmula TRANslation) was invented for scientific programming and COBOL (COmmon
Business Oriented Language) was invented for business applications. Programs called
compilers are used to translate programs written in these languages into machine-level code. It
was found that high-level code in FORTRAN or COBOL could be written more quickly than
machine-level or assembly code, and with fewer errors.

As it became easier to write large, complex programs, new problems were encountered. A
large, complex program was hard to understand and therefore hard to write correctly. By the
1960's, program correctness was an issue of great concern and computer scientists sought
new programming language features that would aid correct programming.

The Pascal language was designed about 1970 by Niklaus Wirth, a Swiss computer scientist. It
was named after the French mathematician, Blaise Pascal, who designed a mechanical
calculator about 1644. It was designed as a teaching language, a small, easily learned
language, with features for data organisation and algorithmic design that would encourage
clear, correct programming. Its features were constrained by Wirth's demands that the
language should be simple and easily compiled, that the compiler should clearly indicate
grammatical errors in the program it is translating, and that the compiled programs should run
efficiently.

The language C was invented by Dennis Ritchie at Bell Labs in 1972. Its unromantic name
evolved from earlier versions called A and B. C produces code that approaches assembly
language in efficiency while still offering high-level language features such as structured
programming. C compilers are simple and compact. Although C is simple and elegant, it is not
simple to learn - the learning curve is very steep.

Introduction page 1.3

One of the major differences between C and Pascal is that of the language philosophy and is
also the reason why Pascal rather than C is still favoured as a teaching language, in spite of
C's growing popularity in the business environment. This philosophy is that Pascal assumes the
user is a novice and traps any instructions that have unusual and presumably unintended side-
effects, whereas C assumes that a user knows what he's doing, error messages are often brief
and ambiguous, and strange side-effects are accepted and are in fact one of the features of the
language.

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell Labs.
C++ provides a number of features that "spruce up" the C language, but more importantly, it
provides capabilities for object-oriented programming. Building software quickly, correctly,
and economically remained an elusive goal. Objects are an attempt to help solve this problem.
Objects are essentially reusable software components that model items in the real world.
Software developers discovered that using a modular, object-oriented design and
implementation approach can make software development groups much more productive than
was possible with previously popular programming techniques such as structured
programming. Object-oriented programs are easier to understand, correct and modify. As a
teaching language, however, C++ retains the disadvantages of C.

The last few years have seen a phenomenal rise in interest in the Internet and the World Wide
Web (WWW). Tens of millions of users regularly access this network to carry out operations
such a browsing through electronic newspapers, downloading bibliographies, participating in
news groups and e-mailing friends and colleagues. The number of applications that are hosted
within the Internet has also grown - however, there are major problems in developing such
applications such a security, lack of specific programming languages, lack of interaction and
non-portability.

• The security issue involves ensuring that unauthorised access is prevented. This is a

major problems and one of the reasons why commercial applications, particularly those
involving the direct transfer of funds across communication lines, were slower in
developing as compared with academic applications.

• Until the development of Java, there was no specific Internet programming language for

WWW applications. Applications were written in a wide variety of languages which
frequently involved dealing with low level facilities such as protocol handlers.

• It was difficult to build interaction into a WWW application. Most of the applications that

had been developed tend to give the impression of being interactive but they often just
involve the user in following links and moving through a series of text and visual images.
In many cases, the only interactivity was asking for a user name and password and
checking these against some stored data.

• Many applications were non-portable; they tend to be anchored firmly within one

computer architecture and operating system because they use run-time facilities provided
by one specific operating system.

page 1.4 Intro Java

The Java programming language originated at Sun Microsystems in 1991 as part of a research
project to develop software for consumer electronic devices - television sets, VCRs, cellphones,
etc. At that stage it was called Oak (after a tree the leader of the development team, James
Gosling, could see from his window). However, while it was being developed the Internet and
the WWW exploded into widespread use. A decision was made to adapt the language to the
needs of the Internet and provide an Internet programming language for WWW-based
applications. This decision was made because Oak included many features that were relevant
for the Internet environment, including the idea of being architecturally neutral, which means
the same program can run on a wide variety of machines.

In January 1995 Oak was renamed Java (because the name Oak was already in use) and was
developed into a robust programming language for building WWW-based applications. It has
since developed into a full-scale development system, quite capable of developing large scale
applications that exist outside of the WWW environment, including those that make extensive
use of networking to allow a language to communicate. Why the name Java? Popular legend
has it that it is named for a coffee, copious quantities of which are supposedly required for
programmers to be able to function. Others allege that it is an acronym for Just Another Virtual
Architecture. Whatever the origin of the name, the coffee-cup logo is now an integral part of the
Java culture.

The designers of the language had a number of goals:

• The language should be familiar, it should have no strange syntax and, as much as

possible, it should look like an existing language but problems associated with other
languages should not be carried through to Java. The developers decided to make it
resemble the C and C++ family of programming languages, and its similarity to these
languages means that a wide variety of users are able to program in it.

• The language should be object-oriented. A programming language is object-oriented if it

offers facilities to define and manipulate objects. Objects are self-contained entities which
have a state and to which messages can be sent.

 An object-oriented programming language has two major advantages, First, by adhering

to a small set of programming principles it is possible to write systems which are relatively
easy to modify. This is important since all the surveys that have been carried out on the
amount of resources expended on software development have come up with figures
which suggest that companies who have a significant software development capability
spend between 60% and 80% of their development in changing existing software.

 The other feature of an object-oriented programming language is that it allows a high

degree of reuse. One of the features of the Java system is a large library containing
many useful objects that can be used when required.

• The language should be robust. One of the problems with some of the more popular

programming languages is the fact that it is quite easy to produce applications which
collapse. Sometimes this collapse can manifest itself immediately; however it can also
occur outside the application because, for example, the application has corrupted some

Introduction page 1.5

memory which is not used immediately. One of the design aims of the developers of Java
was to eliminate such features, for example, there is no concept of a pointer in Java.

• The language should be portable, and a program developed in Java for eg, a Sun

workstation running the Solaris operating system, should be capable of being executed
directly on any other operating System, eg Windows NT or Windows 98.

• The language should be as simple as possible. Many languages have been

overburdened with features. This has a number of effects: first, such programs are often
expensive to compile and require a large amount of memory to run; second, the learning
curve for such languages is long and hard; and third, compiling programs in such
languages can take quite a long time. The designers of Java have tried to keep the base
facilities of the language to a minimum and have provided the extra features within a
number of libraries that may be included if the program requires them.

1.3 The compilation process
A program consists of text created by means of a simple text-processing program called an
editor. The editor allows text to be entered into main memory from the keyboard or from a disk
file, and then allows deletions, insertions and changes to be made. This text can be saved to a
disk file - a Java file usually has the extension .java. These high-level program language
instructions are known as the source code. A program in source code cannot be executed
directly because a computer cannot execute high-level language instructions, only machine
code. The program must first be translated by the compiler into machine code, known as the
object code. The compiler reads the source code, checks it for errors, and if error free
generates the object code. This is held in memory and can then be executed, or the object
code itself can be saved to disk and then executed directly without having to be recompiled.

This description applies to most programming languages such as C and Pascal. The object
code which the compiler produces is, of course, specific to the actual system on which the
compilation takes place - ie. your object code will only execute on the system it was compiled
on since the machine code is only recognisable by that system. If you want to use the same
program on another system you have to recompile your original source code using a compiler
for that system. The process is:

When you write source code in Java, the process is different. The Java development
environment has 2 parts: a Java compiler and a Java interpreter. The Java compiler takes your
Java source program and instead of generating machine code for a particular machine and

page 1.6 Intro Java

operating system it instead generates machine code for a hypothetical machine called the Java
Virtual Machine (JVM). Java calls this machine code bytecodes. The bytecodes are not the
native machine code of the computer, so they are executed by a bytecode interpreter running
on your machine, which is a much simpler program than a compiler. A bytecode interpreter is
supplied with the Java language, and there is also an automatic bytecode interpreter built into
most Internet browsers such as Netscape and Internet Explorer.

Java programs come in two forms, applications and applets. Java applications are just like
any ordinary program, while applets are mini-applications that are embedded in WWW pages.
When a page containing an applet is displayed, the applet (in bytecodes) is downloaded to the
users computer and executed locally. This is only possible because Java is architecturally
neutral and the bytecode programs can run on any machine with an interpreter. Because
applets are downloaded from a remote site to run on a local computer they are subject to a
number of security restrictions, for example, they cannot access local files or print. Applications,
on the other hand, are not restricted in what they can do, and any kind of program can be
written.

1.4 Errors
 There are three areas where errors can occur:
• Compiler errors - during compilation of your program.
• Runtime errors - while your program is running.
• Logical Errors - during the development and implementation of your program as a result

of an error in your solution to the programming problem.

Compiler Errors:
Compiler errors, or syntax errors, occur when your code violates a rule of the language syntax.
Syntax errors involve invalid word order, missing punctuation (punctuation delimiters are often
obligatory in programming languages), spelling mistakes and undeclared variables. Usually,
when a compiler comes to a statement it can't understand it stops compiling and displays the
offending statements with an error message.

Runtime Errors:
Runtime errors, or semantic errors, occur while executing your program. The program contains
legal program language statements (or syntax errors would have been reported) but does

Introduction page 1.7

something illegal when you execute it. Some common examples are: divide by zero, reading in
the wrong type of value, integer too large, trying to open a file that doesn't exist.

Logical Errors:
These errors will never be directly reported to the programmer and may therefore be the most
difficult to detect of all error types. They are errors in design and implementation and occur
when the programmer has written syntactically and semantically correct code which does not
achieve the desired result. ie. the programmer's logic is incorrect. To find and solve these types
of errors:
• Test your program extensively by predicting the results for various inputs of the program

before you run it (called dry running).
• Once the program is running, compare your predicted results with the results given by the

program.
• If the two sets of results do not match then you probably have made a logical error.

Solving Errors
Remember that your program always has a potential error. You should (must!!!) spend time
testing your program to see that it is free of errors. Good error testing will improve your
programming and the final product of your program. Never say that you have written a perfect
program. Even the greatest programmers admit that their programs are prone to errors (bugs).

Some general procedures for testing programs are:
• Always test the boundary conditions eg. If your program finds all the squares of integers

between -10 and 10 (inclusive), then check the program works for -10 and 10.
• Always (if applicable) check for the case where a variable is zero. This test often turns up

potential division by zero among other interesting errors.
• If possible, "watch" the execution of your program using a Debug facility. This will usually

show you how the values of variables change and show up possible errors.
• Predict (manually work out) the solution to your program before running it. But do not to

force your program to produce those results. Understand the discrepancies between the
predicted and determined results.

2. Problem Solving

In this course you are going to learn how to program. By “program” what is meant is:

1. Problem Solve

• analyse a problem
• decide what steps need to be taken to solve it
• take into consideration any special circumstances
• plan a sequence of actions that must take place in a specified order
• check your plan

2. Code

• translate the plan into a programming language
• enter it to the computer

3. Test and Debug

• compile the program and correct any syntax errors
• execute the program with the relevant data
• check the results and if not as expected correct any logic errors

4. Documentation

• write a report describing your program

Many people think of programming as merely step 2 but this is in fact just coding - writing the
program in a form which can be understood by a computer. The crux to programming is
problem solving because if the problem has been incorrectly or incompletely solved, no
amount of coding will generate a correct solution. Inventing algorithms is the central task of
computer science. The goal is to take a problem, decompose it into simpler parts, and then
to imagine a sequence of steps by means of which a machine can generate a solution.

2.1 Algorithms
In order to solve a problem an algorithm or list of steps must be devised to describe a
possible solution. There isn't necessarily just one correct algorithm or way of doing things,
there may be alternative approaches that achieve the same end result in different ways.
However if there is more than one way of doing things then some consideration should be
given to whether one method is better than another (faster, more efficient, clearer etc).

Consider the problem of a mother planning her afternoon. There are two possible
approaches:

• Drop Anne at ballet at 2.00
• Drop Steve at swimming at 2.30
• Fetch Anne from ballet at 3.00
• Fetch Steve from swimming at 3.30
• Take them both to do the shopping with her
• Go home and prepare dinner

or
• Drop Anne at ballet at 2.00

page 2.2 Intro Java

• Drop Steve at swimming to wait for his 2.30 lesson
• Do the shopping
• Fetch Anne from ballet a bit late
• Fetch Steve from swimming
• Go home and prepare dinner

You should ask yourselves the following questions:

• Which plan is to be preferred ?
• Is there perhaps another plan which is better ?

There is not necessarily one correct algorithm. All possible alternates should be
considered and a choice made.

Consider another type of algorithm: a recipe. This very often has the form

1. Preheat the oven to 180C
2. Grease two cake tins
3. Cream the butter and sugar
4. Sift the dry ingredients
5. Add the eggs to the creamed mixture and beat well
6. Fold in the dry ingredients
7. Pour into cake tins and bake

Now ask yourselves:

• Are there alternate algorithms ?
• How important is the order ?

In many algorithms the order in which the events are done is crucial, in others some events
can be resequenced without any effect.

By now you should have realised that the key structure in composing an algorithm is
sequence. Actions follow one after the other:
 do this and then do that and then do the next etc.

Even if the order of certain actions is immaterial, we must choose a particular sequence of
actions and specify it in our algorithm.

Algorithms define a sequence of events which must take place one after the other.

One of the fundamental methods of problem solving is to break a large problem into several
smaller subproblems. In this way we can solve a large problem one step at a time, rather
than attempt to provide the entire solution at once. This technique is often referred to as
stepwise refinement or divide and conquer.

Problem Solving page 2.3

For example, let us look forward to the year 2000. Our household robot, Robbie, helps us
with some simple chores. Each morning we would like Robbie to serve us breakfast.
Unfortunately Robbie is an early production model and to get him to perform even the
simplest task we must provide him with a detailed list of instructions. In this case, the
problem to be solved is getting Robbie to serve breakfast.

In the diagram Robbie is at point R (for Robbie).
We want Robbie to fetch our favourite box of
cereal (at point C) from the kitchen and bring
it to the table (at point T) in the dining room.

As a design overview, we can accomplish this goal by instructing Robbie to perform the
following steps:

1. Move from point R to point C.
2. Pick up the cereal box at point C.
3. Move from point C to point T.
4. Place the cereal box on the table at position T.

or in JSP notation (Jackson Structured Programming):

move from
R to C

pick up
cereal at C

move from
C to T

put cereal
on table

Serve cereal

Solving these 4 subproblems will give us the solution to the original problem.

Assume that the basic operations Robbie can perform are

• rotate or turn to face any direction
• move straight ahead
• grasp and release specified objects

Returning to the design overview we see that steps 2 and 4 are basic operations provided
Robbie is in the correct position.

In solving step 1 we must allow for the fact that Robbie can only move 1 direction at a time,
and that direction is straight ahead. Consequently the steps required are:

1.1 Turn to face point C.
1.2 Go from point R to point C.

page 2.4 Intro Java

turn to face C go from R to C

move from
R to C

Step 3 can be solved in a similar way. However, since Robbie cannot walk through walls the
steps required are:

3.1 Turn to face the doorway (point D).
3.2 Go from point C to point D.
3.3 Turn to face point T.
3.4 Go from point D to point T.

turn to face D go from C to D turn to face T go from D to T

move from
C to T

What we have done is to divide the original problem into 4 subproblems, all of which can be
solved independently; then we broke up two of these subproblems into even smaller
subproblems. So the complete algorithm is:

1. Move from point R to point C.
 1.1 Turn to face point C.
 1.2 Go from point R to point C.
2. Pick up the cereal box at point C.
3. Move from point C to point T.
 3.1 Turn to face the doorway (point D).
 3.2 Go from point C to point D.
 3.3 Turn to face point T.
 3.4 Go from point D to point T.
4. Place the cereal box on the table at position T.

Consider another example, that of making a cup of coffee.

1. Boil the kettle.
2. Put a spoon of coffee in the cup.
3. Fill the cup with boiling water.
4. Add milk and sugar.

boil
kettle

put coffee
in cup

fill cup
with water

add milk
and sugar

make coffee

Problem Solving page 2.5

These are relatively independent tasks and can be broken down into smaller subtasks.

First consider step 1. Let's assume we are boiling the water in an electric kettle. Our
refinement could look something like

1.1 Switch the kettle on.
1.2 When the water is boiling switch the kettle off.

But wait - surely we should check first to see if there is enough water in the kettle!

1.1 Fill the kettle with water.
1.2 Switch the kettle on.
1.3 When the water is boiling switch the kettle off.

fill kettle
with water

switch
kettle on

switch off
when boiling

boil kettle

Steps 1.2 and 1.3 are OK, but we probably need to expand step 1.1 a little.

1.1.1 Take the lid off the kettle.
1.1.2 If the kettle is full do nothing otherwise repeatedly add water until it is full.
1.1.3 Replace the lid.

c1: if kettle is full

c2: until kettle is full

c1

c2

else

take lid
off kettle

 do nothing i

 add water *

 put in water i

check
water level

replace
lid

fill kettle

Step 2 could stand as it is, although we could consider opening and closing the coffee tin.

Step 3 ("fill the cup with boiling water") needs expanding.

c3: until cup is full

c3

 pour water from *
kettle into cup

fill cup
with water

page 2.6 Intro Java

And step 4 ("add milk and sugar") needs expanding.

c5: if you drink coffee unsweetened

c6: until sweet enough

c5

c6

elsec4 else

c4: if you drink coffee black

 do nothing i pour in milk i

add milk

 do nothing i

 add spoon *
of sugar

 sweeten i

add sugar

add milk
and sugar

The algorithm for making coffee has three categories of action: sequential execution,
conditional execution, and repetition. These three categories of action occur in computer
programs as well.

2.2 Mathematical Algorithms
When we attempt to solve problems that are presented either verbally or in writing, one of the
biggest problems is that we do not pay close enough attention to the problem statement to
determine what is being asked. As a result the solution is often incorrect because it solves
the wrong problem. To successfully solve a problem you must analyse the problem
statement carefully before you try to solve it. You may need to read each problem statement
two or three times. The first time, get a general idea of what is being asked. The second
time, try and answer the questions

• What information should the solution provide?
• What data do I have to work with?

The answer to the first question will tell you the answers required, or the problem outputs.
The answer to the second question will tell you the data provided, or the problem inputs.
Then the problem resolves to one of how to get the desired results from the given input.

Consider now a more mathematical problem - that of finding the average of a list of numbers.

Problem: Given the numbers 21, 13, 20, calculate their average.

• What information should the solution provide?
• What data do I have to work with?

Obviously we need to calculate the total of the three numbers, and then divide the total by 3
to get the average. Using a computer we could allocate 3 memory cells to hold the three
numbers, say

• get 21, store in no1
• get 13, store in no2
• get 20, store in no3

Now 2 more cells are needed to hold the total and the average:

Problem Solving page 2.7

• total is set to no1 + no2 + no3
• average is set to total / 3

If however the problem involves averaging 4 values a different program must be created with
an extra memory cell to hold the fourth value. And what if we have to average one thousand
values - will we then require 1000 memory cells?

There is a way we can write a general algorithm to cater for any number of numbers. It uses
only 4 memory cells, the control structure repetition, and is a general averaging algorithm
that can be used with any number of values.

The 4 memory calls needed are

• n to store the number of values to be averaged,
• value to store each of the n values in turn,
• total and average

c1: until n numbers read

c1

get number of
values n

get next
value

add value
to total

process *
n numbers

average is
total / n

Average n numbers

Will this algorithm give the correct answer?

Remember that you are working with memory cells and there is no guarantee that any
particular memory cell is set to zero initially. Sometimes this is so, but often a memory cell
may be holding left-over data from earlier use. If the memory cell total happens to be
holding 0 the algorithm will work correctly because 0+x=x, but if total is holding some
other value the result of total+x is not equal to x. To ensure we always get the right
answer irrespective of whether or not anything was stored in the memory cell beforehand, a
memory cell that is going to be used in a calculation should always be initialised.

The correct algorithm would therefore be:

c1: until n numbers read

c1

get number of
values n

set total
to 0

get next
value

add value
to total

process *
n numbers

average is
total / n

Average n numbers

Problem: Which is the largest of the numbers 10, 15, 3, 2, 14, 18, 27, 19, 7, 23 ?

page 2.8 Intro Java

• What information should the solution provide?
• What data do I have to work with?

The solution is to scan the list of numbers and compare each number to the "largest so far"
until all the numbers have been considered at which stage the "largest so far" is the largest in
the list. The algorithm includes the control structure comparison and conditional execution,
and can once again be generalised to deal with any number of values along the lines of the
averaging algorithm. Then we need 3 memory cells only, n, value and max.

c1: until n numbers read

c1

c2

c2: if value > max

get number of
values n

get
value

set max
to value

 process first
 number

get next
value

 set max i
to value

 process rest *
 of numbers

Find max value

Exercises

2.1 Write a algorithm that describes how to get on a bus and sit down. (Remember to

check that there are empty seats).

2.2 Write an algorithm that describes how to get from your bedroom to the bathroom.

2.3 Write an algorithm that explains how to cross the road at a pedestrian crossing with a

traffic light.

2.4 Design an algorithm to successively subtract all the numbers in a list from 1000 and

display the result.

2.5 Design an algorithm to find the smallest value in a list of numbers.

2.6 Design an algorithm to find the largest and smallest value in a list of numbers.

2.7 Design an algorithm to compare the average of a list of numbers with its range

mid-point. The range midpoint is calculated by determining the largest and smallest
number in the list and averaging them. Both the average and the range mid-point must
be displayed, together with a message saying which is larger.

2.8 Design an algorithm to convert a Fahrenheit temperature to Celsius. Display an error

message if the Fahrenheit temperature is below absolute zero (-459.7°F).

2.9 Design an algorithm to arrange any 3 given numbers n1, n2, and n3, so that n1 ≤ n2 ≤ n3

3. Simple Programs

When learning a programming language, the easiest approach is to look at some examples
of simple programs. They serve to introduce the general structure of a program, and can be
used to explain how to enter, compile and execute (run) programs.

3.1 A first program
This is an example of a simple Java application program. When it is run, it displays

* *
* Hello World! *
* *

in the output window on your screen.

/**
* My first program
* written by Jane Meyerowitz 23/07/98
* ------------------------------------
*/

public class Hello
{
 public static void main(String[] args)
 {
 System.out.println("****************");
 System.out.println("* *");
 System.out.println("* Hello World! *");
 System.out.println("* *");
 System.out.println("****************");
 } // end of method main

} // end of class Hello

Hello.java

The first thing to be aware of is that Java is case-sensitive. This means that the use of
upper-case (capital) and lower-case letters is significant. For example, PUBLIC, public
and Public are not the same, and the use of the incorrect case will cause errors.

The first 5 lines are a comment - arbitrary text between the characters /* and */.
Everything between these two character pairs is ignored by the Java system, and is used by
the programmer to add commentary to programs to help the human reader understand the
structure and purpose of the program. As a general rule, you should always include a header
comment such as this at the beginning of your programs, giving your name and a brief
statement of the function of the program.

page 3.2 Intro Java

There is another form of comment permitted in Java :
// end of method main

These comments begin with the double slash // and extend to the end of the current line.
They are useful for adding in-line commentary within the body of a program.

Everything in a Java program must be part of a class, and the statement

public class Hello
defines a class called Hello. The entire class itself is contained between the curly brackets
{ and }. The comment after the closing curly bracket is useful in matching up the curly
brackets.

In addition, in order to try and make it easier to match up pairs of brackets it is usual to line
up the matching pairs with each other, and to indent the program after an opening curly
bracket, as shown in the program. These layout conventions are used purely to help the
human reader - Java itself ignores all indentation, spaces between words, and blank lines.
However careful program layout can help clarify the structure of a program to the human
reader, particularly a large, complex one.

The word public is an access modifier - it specifies the circumstances under which the
class can be accessed - and this class can be publicly accessed. Initially, all the programs
you write will be public.

In Java, it is a rule that the name of the file in which the program is saved must be the same
as the public class name - hence this class (program) is saved in a file called Hello.java.
(There may only ever be one public class in a file.)

The class Hello contains only one thing - a piece of code called a method that carries out a
task. Each Java application program needs a main method which is always the first method
executed when a Java application is run. The header that defines the main method is
 public static void main(String[] args)
Later we’ll consider the different components of this header - for now just accept that this is
the way to define the main method and copy this statement when required.

Once again, the curly brackets { and } are used to define the beginning and end of the
main method, whose contents are indented inside the braces, with a comment after the
closing brace to make things quite clear.

The body of a method consists of one or more statements, each of which is terminated by a
semi-colon (;). In this example, the body of the main method consists of 5 statements, each
of which function to output a line of text.

The statement used to output data to the user’s output window is
 System.out.println(…);
where the … denotes whatever is to be output. When this statement is executed the values
specified in the round brackets (parentheses) are displayed and the cursor is moved to the
next line, so that any further output does not appear on the same line.

Simple Programs page 3.3

In this example there are 5 println statements, so the output will appear on 5 lines. In
each case the value to be output is some text enclosed in double quotes ("). This denotes a
character string, which is then displayed in the output window. Other types of values can also
appear in the parentheses, as we shall see later.

To leave a blank line, don't put any values in the parentheses
 System.out.println();

3.2 Running a Java application program
We are using the Kawa IDE (Integrated Development Environment) to enter, edit, compile
and run the Java programs.

Your Java program should be entered into an edit window. As you type, you'll notice that
different components of the program appear in different colours - comments in green, strings
in red, other statements in black etc. This is merely an aid to the human user and helps
differentiate between the different types of words and statements in the program.

The program should then be saved to a file with the same name as the public class name -
Eg, our example above is saved in a file called Hello.java. I use folders (directories) to
contain groups of program files - for example all the programs in this chapter are saved in a
folder called 3SimpleProgs. With more complex programs containing many classes there
may be a number of files and I would save each program in its own folder. The folders can
have any name - I like to choose one that is descriptive of the programs functionality.

Once the program has been entered it needs to be compiled. This is the process of
checking the program for compilation or syntax errors. These are errors such as spelling
mistakes, incorrect case, missing semi-colons, unmatched brackets etc etc. If the Java
compiler (javac) finds any errors it will report them in the Build page of the Output windows.

For example, writing public with an initial capital P causes the following error:

C:\Java 1.2\bin\javac.exe Hello.java
File Compiled...

--------------------------- Javac Output -------------------------
Hello.java:7: Class or interface declaration expected.
Public class Hello
^
1 error

--

In this case the error is in line 7 of Hello.java as indicated.

Sometimes a single mistake can cause a number of errors. For example, leaving out the
semicolon at the end of the first println statement results in 2 errors, one in the
statement with the missing punctuation and one in the next.

C:\Java 1.2\bin\javac.exe Hello.java

page 3.4 Intro Java

File Compiled...

--------------------------- Javac Output -------------------------
Hello.java:11: Invalid type expression.
 System.out.println("****************")
 ^
Hello.java:12: Invalid declaration.
 System.out.println("* *");
 ^
2 errors
--

If there are errors in your program they must be corrected, and the program recompiled until
it is error free.

At this stage the javac compiler has created a new file in the same folder as Hello.java
called Hello.class. This consists of Java bytecodes which can then interpreted when the
program is executed. When the Hello.java file is in the current edit window and Run is
selected, the Java bytecode interpreter java looks for a file called Hello.class. If it
finds the file it looks for the method called main and executes it. The first statement is
executed, then the second, and so on. When the last statement in main has been executed
the program terminates. The output window will display the result of the program execution:

C:\Java 1.2\bin\java.exe Hello
Working Directory - C:\javaprogs\3SimpleProgs\

* *
* Hello World! *
* *

Process Exit...

Even if your program compiles correctly it is possible it may not execute because of run-time
errors - errors that are only detected when the Java interpreter attempts to execute the
statements.
For example, if the word static is omitted from the header for method main,
 public void main(String[] args)
Hello.java will not give any syntax errors, but when an attempt is made to run it, it does
not execute:

C:\Java 1.2\bin\java.exe Hello
Working Directory - C:\javaprogs\3SimpleProgs\
In class Hello: main must be public and static

Process Exit...

Simple Programs page 3.5

3.3 A second example program
For a second example, consider a slightly more complex program that reads in 3 numbers
from the keyboard, adds them, and displays a total.

Display a heading Input 3 values Add them and store
result in answer

Display answer

Add 3 numbers

/**
* Reading 3 numbers and adding them
* written by Jane Meyerowitz 23/07/98
* ------------------------------------
*/
import Utilities.Keyboard;

public class ReadSumNos
{
 public static void main(String[] args)
 {
 double num1,num2,num3; // the 3 numbers to be input
 double answer; // the sum of the 3 numbers

// display a heading
 System.out.println();
 System.out.println("This program reads in 3 numbers"
 + " and adds them");
 System.out.println("-------------------------------"
 + " -------------");
 System.out.println();

// input 3 values
 System.out.print(" Enter the first number > ");
 num1 = Keyboard.getDouble();
 System.out.print(" Enter the second number > ");
 num2 = Keyboard.getDouble();
 System.out.print(" Enter the third number > ");
 num3 = Keyboard.getDouble();
 System.out.println();

// add them and store the result in answer
 answer = num1+num2+num3;

// display answer
 System.out.println("The sum of the three numbers is "
 + answer);
 System.out.println();
 }
}

ReadSumNos.java

page 3.6 Intro Java

This program requires 3 variables to store the values that are read in, and another variable to
store the result. A variable is the name given to a memory location that has a name
(identifier) associated with it and can store a value. The variable name is used to refer to the
value currently stored at that memory location. The variables in this program are declared at
the start of the main method.

double num1,num2,num3; // the 3 numbers to be input
double answer; // the sum of the 3 numbers

The first declaration defines num1, num2 and num3 to be the names associated with 3
memory locations that can store values of datatype double (ie. a floating point value of
about 15 significant digits) (More about variables and data types later). The second
declaration defines another double variable with the name answer. The comments explain
what these variable represent.

The program statements to input the numbers consist of pairs of statement such as

System.out.print(" Enter the first number > ");
num1 = Keyboard.getDouble();

The first of these is merely an output statement displaying a message in the output window
telling the user what to enter. It is called a prompt. The second statement is a call to a class
Keyboard which contains a number of methods to read in different types of values from the
keyboard. The input facilities provided by Java are complicated and tedious to use, so these
methods have been written for you. The call to Keyboard.getDouble() (note
capitalisation) will wait for the user to enter a double value and then store it in the variable
specified - in this case num1.

When the program is run, it will execute the statements up to the first input statement and
then pause for the user to enter some input:

C:\Java 1.2\bin\java.exe ReadSumNos
Working Directory - C:\javaprogs\3SimpleProgs\

This program reads in 3 numbers and adds them

 Enter the first number >

The user should type in the value required, and press the ENTER key:

C:\Java 1.2\bin\java.exe ReadSumNos
Working Directory - C:\javaprogs\3SimpleProgs\

This program reads in 3 numbers and adds them

 Enter the first number > 25
 Enter the second number >

Simple Programs page 3.7

The next pair of statements have now been executed,
System.out.print(" Enter the second number > ");
num2 = Keyboard.getDouble();

and the program halts for the second number to be entered, and then displays the prompt for
the third number and halts for it to be entered.

C:\Java 1.2\bin\java.exe ReadSumNos
Working Directory - C:\javaprogs\3SimpleProgs\

This program reads in 3 numbers and adds them

 Enter the first number > 25
 Enter the second number > 10.2
 Enter the third number >

When all three values have been entered, a simple arithmetic statement is used to add the
three numbers and store the result in the variable named answer.

answer = num1+num2+num3;
Notice that using the variable name (eg. num1) denotes "the value currently stored in the
memory location referenced by the name num1".

Finally a println statement displays a message and the value of answer ("the value
currently stored in the memory location referenced by answer").

The overall effect of running this program and entering the values 25, 10.2 and -1 when
requested is: (user input in bold)

C:\Java 1.2\bin\java.exe ReadSumNos
Working Directory - C:\javaprogs\3SimpleProgs\

This program reads in 3 numbers and adds them

 Enter the first number > 25
 Enter the second number > 10.2
 Enter the third number > -1

The sum of the three numbers is 34.2

Process Exit...

page 3.8 Intro Java

3.4 A final example
The last example has the same function - reading in and adding 3 numbers, but uses a
modular style in order to achieve this, where modules (called procedures or methods) are
used to perform different sub-goals. The main method serves as a top-level controller and
calls the other methods that perform the actual work. This modular style of programming has
a number of advantages, chief among them the structuring of complex problems and
breaking them down into manageable components.

Display a heading Input 3 values
and add them

Display the result

Add 3 numbers

/**
* Using methods to read 3 numbers and add them
* written by Jane Meyerowitz 27/07/98
* ------------------------------------
*/
import Utilities.Keyboard;

public class ReadSumNos2
{
 public static void main(String[] args)
 /**-----------------------------------
 * the main method calls other methods to do the work
 */
 {
 double total; // the sum calculated

 DisplayHeading();
 total = SumNos();
 DisplayAnswer(total);
 }

 static void DisplayHeading()
 /**-------------------------
 * Displays information about what this program does
 */
 {
 System.out.println();
 System.out.println("This program reads in 3 numbers"
 + " and sums them");
 System.out.println("-------------------------------"
 + " -------------");
 System.out.println();
 }

ReadSumNos2.java part1

Simple Programs page 3.9

 static double SumNos()
 /**-------------------
 * this method inputs the 3 numbers, adds them,
 * and returns the answer
 */
 {
 double num1,num2,num3; // the 3 numbers to be input
 double answer; // the sum of the 3 numbers

 System.out.print(" Enter the first number > ");
 num1 = Keyboard.getDouble();
 System.out.print(" Enter the second number > ");
 num2 = Keyboard.getDouble();
 System.out.print(" Enter the third number > ");
 num3 = Keyboard.getDouble();
 answer = num1+num2+num3;
 return answer;
 }

 static void DisplayAnswer(double answer)
 /**-------------------------------------
 * this method is passed the answer which it displays
 */
 {
 System.out.println();
 System.out.println("The sum of the three numbers is "
 + answer);
 System.out.println();
 }
}

ReadSumNos2.java part2

This program defines a total of 4 methods - the main method and three other. The main
method calls or invokes each of the other methods in turn (this does not necessarily have to
be the case - sub-methods can themselves invoke other methods - more later). A method is
called in one of two ways - by merely stating its name as in

DisplayHeading();
DisplayAnswer(total);

or by assigning the value it returns to a suitable variable
total = SumNos();

Methods are defined with a method header statement, eg.

static void DisplayHeading()

This defines that the method is static (at this stage all methods you use should be static),
that it does not return a value but is called merely for its effect (void), the name of the
method (DisplayHeading) and, in brackets, any values it will use during its execution -
none in this case hence the empty brackets.

page 3.10 Intro Java

The next method header returns a value to the calling method - it functions to compute some
value which it passes back to the place it was called.

static double SumNos()

The word double in the definition indicates that this method returns a value whose data type
is double. This method is called by assigning it to a double variable (total).

The last method header does not return a value, but uses a value in order to perform its task.
The value it needs to be passed is specified in the header together with the datatype:

static void DisplayAnswer(double answer)

In this case the method will use and refer to a double variable answer for which a value is
supplied when the method is called. The call to this procedure is

DisplayAnswer(total);
so the value of total is supplied to DisplayAnswer.

Each of the sub-methods functions as a self-contained module and performs its own task,
with the main method serving as controller. Execution of a program starts with the first
statement of the main method which is the call to method DisplayHeading. Control is thus
transferred to the first statement of DisplayHeading which is executed, and proceeds
through each of the statements of DisplayHeading in turn. When the last statement has
been executed control is transferred back to the main method and the next statement of
main is executed.

This is the call to SumNos, so control is transferred to the first statement of SumNos, and
each of its statements are executed. The last statement of SumNos is

return answer
which specifies the value to be returned by SumNos, and which is then stored in the variable
total in the main method.

Lastly the third statement of the main method is executed and control is transferred to
DisplayAnswer with the value of total being passed to DisplayAnswer's parameter,
answer. The statements of DisplayAnswer are executed, the println statement outputs
a message and the value of answer, then control is transferred back to the main method.
There are no more statements in the main method so execution of the program ends.

The effect of executing this program is exactly the same as the second example - in this case
different values have been entered:

C:\Java 1.2\bin\java.exe ReadSumNos2
Working Directory - C:\javaprogs\3SimpleProgs\

This program reads in 3 numbers and sums them

 Enter the first number > 7.3
 Enter the second number > 19
 Enter the third number > 105

The sum of the three numbers is 131.3

Simple Programs page 3.11

Exercises

3.1 Compile and run the three programs.
 Experiment with them - try causing errors (delete a semicolon, misspell a word etc) and

see the errors that result.

In the following exercises you are asked to modify existing programs. In order to keep both
the original and the new version, it is easiest to make a copy of the original with a new
filename (remember to change the name of the main method too!), and then make the
modifications to this copy.

3.2 Modify Hello.java so that it displays the following message.

 * I love *
 * COMPUTER *
 * SCIENCE. *

3.3 Modify ReadSumNos so that it inputs and adds 4 numbers.

3.4 Modify ReadSumNos so that it inputs, calculates and displays the average of the 3

numbers. (num1+num2+num3)/3

3.5 Modify ReadSumNos2 so that it uses methods to input 2 numbers and display their

difference.

4. Using data - types and items

All programs manipulate data - often they read in some values, perform some calculations,
output the results. This data may be of different types - for example, numeric or textual - and
in order to be able to use these values they must be stored (usually) as variables in the
computer’s memory.

4.1 Simple Data Types
Java provides a number of simple data types - integer, floating point, character and boolean.

Integer data types are used to store whole-number (integer) quantities

Eg. 23 -7 0 999 +999
They are often used to count objects (eg. The number of students in a class, the number of
lines of data etc). They consist of an optional sign followed by a number, with no decimal
point.

There are in fact 4 integer data types, each of which use different amounts of memory to
represent the integer value and store different ranges of numbers:

TYPE STORAGE MAX VALUE
byte 8 bits 255
short 16 bits 32767
int 32 bits 2147483647
long 64 bits over 1018

int is the type usually used for declaring integers.

Integer data is stored directly as a binary string in the specified number of bits using two’s
complement representation. Because there are a fixed number of bits available each type
has a set range of values that can be stored - for int, the range of values is -2147483648
to +2147483647. If you try to use a value outside this range you may get an error, or worst of
all, the number may “wrap round” and leave you with the wrong value without any indication
that this has happened.

Floating point data types are used to represent real numbers (in the mathematical sense).
Numbers are stored with a decimal point (not comma!) and a fractional part which may be
zero. There must be a digit on either side of the decimal point, and a optional sign may be
specified.
 Eg. 1.25 -0.001 0.0 999.9 +66.6667

There are 2 floating point data types in Java which use different amounts of memory and
hence are accurate to different numbers of decimal places:

TYPE STORAGE MAX VALUE PRECISION
float 32 over 1038 7 decimal digits
double 64 over 10308 15 decimal digits

double is the type usually used for declaring floating point numbers.

page 4.2 Intro Java

Floating point numbers are stored with both a mantissa and an exponent. The mantissa is a
binary fraction between 0.5 and 1.0; the exponent is a power of 2. The mantissa and
exponent are chosen so that
 number = mantissa × 2exponent

Because of the finite size of a memory cell not all fractions can be represented precisely.
Thus the decimal fraction 0.1 might actually be represented within the computer’s memory as
0.9999999… even though it may appear as 0.1 when displayed. For this reason it is not
advisable to use floating point numbers for purposes such as counting or indexing where
exact values are required.

The character data type is used to store a single character. This char type includes all the
letters, digits and symbols that are available on a keyboard. Characters in Java are enclosed
in a single quote
 Eg. 'A' 'a' '+' '3' ' '

The character type char uses 16 bits to represent the character with a binary numeric
code. Each of the codes is associated with a particular character according to the UNICODE
coding system. When the computer recognises that it is dealing with character data, it merely
interprets the binary number as a character code from this set instead of the numeric value.
The UNICODE values from 0 to 255 are identical to the ASCII codes - further characters are
used for additional symbols and letters in Greek, Cyrillic, Hebrew … etc alphabets.

When dealing with character data types the actual code value is not of importance - what is
significant is that the upper- and lower-case alphabetic letters and the digit characters are in
continuous sequences - ie. a set of sequential codes is used for the letters ‘A’ … ‘Z’; another
set of sequential codes is used for the letters ‘a’ … ‘z’; and another set for the digits ‘0’ … ‘9’.

The Boolean data type has only two possible values - false or true. These are Java
keywords and are used to reflect the result of a Boolean operation such as num1<0. Boolean
expressions such as this govern the decisions made in programs as to which of alternative
paths to follow, and the results of these Boolean expressions are of data type boolean.

4.2 Variables
When data items are used in a program, they are (usually) stored in variables. Variables are
areas of memory that have a name or identifier associated with them, and can store values.
The amount of memory allocated for a particular variable depends on the type of data that it
will store. A variable to store a value of type int will be allocated 4 bytes, a variable to store
a value of type double will be allocated 8 bytes.

For example, the following program inputs a distance in yards, feet and inches and outputs
the corresponding distance in metres. Variables are used in this program to store the values
for yards, feet and inches as they are input, to store the intermediate results of the total
number of inches and the conversion to centimetres, and the final result in metres which is
then displayed. All the variables are in bold in the text.

Using data - types and items page 4.3

Display heading Input yards,feet
and inches

Do conversion and
store in metres

Display metres

Convert yards,feet,inches to metres

/*
* Reads a distance in yard, feet, inches and
* converts to metres
* --
*/
import Utilities.Keyboard;

public class ConvertToMetres
{
 public static void main(String[] args)
 {
 int yard,feet,inches; // the 3 distance values
 int totInch; // the total number of inches
 double totCm; // the distance in centimetres
 double metres; // the final result in metres

// display a heading
 System.out.println();
 System.out.println("This program converts yards,feet,"
 + "inches to metres");
 System.out.println("---------------------------------"
 + "----------------");
 System.out.println();

// input distance in yards, feet and inches
 System.out.print(" Enter yards > ");
 yard = Keyboard.getInt();
 System.out.print(" Enter feet > ");
 feet = Keyboard.getInt();
 .out.print(" Enter inches > "); System
 inches = Keyboard.getInt();
 System.out.println();

// do the conversion
 totInch = ((yard*3)+ feet)*12+inches;
 // 1 yard = 3 feet, 1 foot = 12 inches
 totCm = totInch*2.54; // 1 inch = 2.54 cm
 metres = totCm/100;

// display the results
 System.out.println("The distance in metres is " + metres);
 System.out.println();
 }
}

ConvertToMetres.java

page 4.4 Intro Java

In order to declare a variable both its name and data type must be defined. Examples of
variable declarations (with explanatory comment) are

int yard,feet,inches; // the 3 distance values
int totInch; // the total number of inches
double totCm; // the distance in centimetres
double metres; // the final result in metres

Variables must be declared before they can be used, and they are usually declared together
at the beginning of the method or block in which they are to be used. They should be
declared in the method where they are needed - if a certain variable is needed in a method it
should be declared in that method and not just at the beginning of the class that contains the
method.

In computer languages, the names you choose for variables, classes, methods etc are called
identifiers. An identifier in Java
• may consist of any combination of letters, digits, and the underscore character (_)
total, X, n, no1, numStudents, num_students are all valid identifiers
• must start with a letter;
A23 is valid, 23A is not.
• spaces are not allowed;
my_name is valid, my name is not
• upper- and lower-case letters are different;

TotalAmount, totalamount and totalAmount are all distinct identifiers.

It is important that the identifier chosen for a variable is meaningful and conveys a sense of
what the variable represents. This makes programs easier to read and understand, and
assists in debugging and maintenance of programs. Generally, lowercase is used for variable
names, with names that consist of more than one word having capitals for the inner words to
make it easier to read, for example numOfValues. Identifiers used as class names and
method names generally have initial capitals, for example MyFirstProgram or
DisplayResults.

To summarise - the form of a variable declaration is one of

VARIABLE DECLARATION
type name;
type name1,name2,name3;
type name = value;

The declaration introduces one (first form) or more (second form) variables of the given type.
The last form can be used to initialise a variable at the same time as it is declared.

Using data - types and items page 4.5

More examples of variable declarations are
double weight; // in kilograms
int age; // in whole years
int day,month,year; // date of birth
double vat = 14.0; // % VAT
double price, // in Rand
 cost; // total amount paid

It is a good idea to keep declarations neat and tidy, with identifiers and types lined up. It is
also a useful habit to indicate what the variables are to be used for if this is not immediately
obvious from their names, as well as to give some supporting information (such as units) if
appropriate.

4.3 Constants
Some values used in a program are fixed and can be written as literal (or constant) numeric
values in the program - eg. the conversion factor for inches to cm (2.54) in the previous
example program.

totCm = totInch*2.54;

It is often better to give names to these fixed values as it makes them easier to remember
and use, particularly if they appear more than once in a program. In Java, named data items
whose values are not going to change (in the program) are known as constants, and are
declared as

static final double inToCm = 2.54;
static final double vatRate = 14.0;
static final int numStudents = 120;

CONSTANT DECLARATION

static final type name = value;

The modifier static means that it applies to the entire class, and final indicates that its
values cannot be changed during the program - it is constant. Because it is a class field, a
constant declaration must appear at class level and may not be inside any method, even
main.

The advantage in using constants is twofold: firstly statements that use constants are
generally easier to understand because descriptive names are used rather than numbers
which have no intrinsic meaning (numStudents is more meaningful than 120 which might
refer to anything, even the speed limit), and secondly if the value the constant represents
does change (for example VAT increases to 16%), it is easier to merely change the value of
the constant than finding every time 14.0 appears in the program representing VAT and
changing it to 16.0.

page 4.6 Intro Java

Display a heading Input initial amount Calc VAT, include
in finalCost

Display finalCost

Calculate VAT payable

/*
* Reads an amount and determines how much VAT must be added
* ---
*/
import Utilities.Keyboard;

public class CalcVAT
{
 static final double vatRate = 14.0;

 public static void main(String[] args)
 {
 double basicCost, // the initial amount
 VAT, // the VAT on this amount
 finalCost; // the final cost with VAT

// display a heading
 System.out.println();
 System.out.println("This program calculates the VAT"
 + " payable");
 System.out.println("-------------------------------"
 + "--------");
 System.out.println();

// input the initial amount
 System.out.print(" Enter initial amount > R ");
 basicCost = Keyboard.getDouble();
 System.out.println();

// calculate the VAT and the final amount
 VAT = basicCost * vatRate/100.0;
 finalCost = basicCost + VAT;

// display the results
 System.out.println(" VAT rate is " + vatRate + "%");
 System.out.println(" The final amount inclusive of "
 + "VAT is R" + finalCost);
 System.out.println();
 }
}

CalcVAT.java

In this example, vatRate is declared as a constant and assigned the value 14.0 just inside
the class CalcVAT, and it is then used twice in the program - to calculate the VAT payable
and when displaying the VAT rate used.

Using data - types and items page 4.7

4.4 Assignment
Once a variable has been declared, it can be given a value in an assignment statement, eg.

totCm = totInch*2.54;

The form of the assignment statement is

ASSIGNMENT STATEMENT
variable = expression;

where an expression can be a literal value

 myAge = 21;

or the value of another variable of the same type
 hisSalary = herSalary;

or the result of an arithmetic calculation
 average = (num1+num2+num3)/3;

or the result of a call to an input method
 basicCost = Keyboard.getDouble();

or the result of a call to any appropriate method
 total = SumNos();

An assignment statement is used to store a value in the memory location referenced by the
variable name. It replaces any value the variable might previously have had. The assignment
statement is read as "myAge is assigned the value 21" or "myAge becomes 21".

The data types of the variable and the value assigned to it must be compatible. We must
assign int to int, double to double, and we cannot assign double to int. However,
the one exception is that we can assign int to double, because real numbers include the
integers. So an assignment statement of the form

 numStudents = 105;

is perfectly acceptable, as is
 int randValue;
 double cost;
 randValue = 13;
 cost = randvalue;

in fact, assignments across the numeric types in order of size are valid:
 byte → short → int → long → float → double
so you can assign byte to int or long to float etc.

If you need to assign a longer data type to a shorter one you must use type casting, and
explicitly specify that you are converting to the new type by putting the required type in
brackets .

TYPE CAST
(type) expression;

Eg. int randValue;

page 4.8 Intro Java

double cost;
 cost = Keyboard.getDouble();
 randValue = (int) cost;

This will truncate the floating point value, cost, to an integer by truncation - ie. the decimal
fraction will be dropped and the integer portion will be stored in randValue.
 if cost is 16.99, randValue will be assigned the integer 16.
 If cost is 16.35, randValue will be assigned 16.

If you wish to round a floating point number to the nearest integer, then the method
Math.round is provided by Java for this purpose:

 randValue = Math.round(cost);

In this case, if cost is 16.99, randValue will be assigned 17,
 if cost is 16.35, randValue will be assigned 16.

Math.round will round a double to a long, or a float to an int (same sized data types).
To round a double to an int you need to use type casting

 randValue = (int)Math.round(cost);

If you are using type casting to convert, for example, int to byte, you must make sure that
the value stored in the int is not too large to fit into the byte.

Eg. int bigClass = 500;

 byte numStudents;
 numStudents = (byte) bigClass;

will return a syntax error because the largest value that can be stored in a variable of type
byte is 255.

4.5 Arithmetic expressions
The arithmetic operators that are used in Java expressions are
 + addition sum = num1 + num2;
 - subtraction diff = num1 - num2;
 * multiplication product = num1 * num2;
 / division quotient = num1 / num2;

If all the operands are integer types, the result will be type int; if some of the operands are
floating point types the result will be type double. (Which is why the usual data types used
are int and double - to avoid having to do numerous type casts).

The division operator / behaves differently depending on whether the operands are integer
or floating point. For floating point operands, / performs real division but for integer
operands, / performs integer division, even if the variable in which the result is to be stored
is floating point.

Using data - types and items page 4.9

 double realAnswer;
 int intAnswer;
 realAnswer = 7.5 / 2.5; // will store 3.0
 intAnswer = 5 / 2; // will store 2
 realAnswer = 5 / 2; // will store 2.0 (integer division)
 realAnswer = 5.0 / 2; // will store 2.5
 intAnswer = 7.5 / 2.5; // will give a syntax error
 intAnswer = (int) 7.5 / 2.5 // will store 3

There is an additional operator in Java (as in many other programming languages), and that
is the modulus operator, %, which returns the remainder after integer division.

 int intAnswer, remainder;
 intAnswer = 7 / 3; // will store 2
 remainder = 7 % 3; // will store 1

Brackets may be used in arithmetic expressions, and expressions in brackets are evaluated
first. The order of evaluation is the familiar
 brackets first; then * / %; finally + -
Within precedence levels, evaluation takes place from left to right, and operators act only on
values immediately adjacent to them. Thus a/b*c would be evaluated as (a/b)*c, and if
a
bc

 is intended, it should be written as a/(b*c).

Multiplication is written explicitly, and the multiplication operator * must be used. Implicit
multiplication of the form 2a or 5(x+y) is wrong and should be written as 2*a or
5*(x+y).

For example:
 (a+b)(a-b) (a+b)*(a-b)

5x 3y

xy
+

 (5*x+3*y)/(x*y)

to calculate the gradient of the line between 2 points (x1,y1) and (x2,y2):

 y2 y1
x2 x1

−

−
 gradient = (y2-y1)/(x2-x1)

to convert degrees Celsius to Fahrenheit:

degC
9
5

32× + degF = degC*5/9 + 32;

to convert degrees Fahrenheit to Celsius:

 5
9

(degF - 32) degC = (degF-32)*5/9;

Other useful functions are provided by Java in the Math class
 x2 Math.pow(x,2) will raise the first argument to any power
 x Math.sqrt(x) will calculate the square root of the argument
 sin x Math.sin(x)
 abs(x) Math.abs(x) will return the positive value of the argument
In addition, the Math class provides a useful double constant

page 4.10 Intro Java

 π Math.PI the closest double to pi

To calculate the area of a circle of radius r:
 πr2 area = Math.PI*r*r

or area = Math.Pi*Math.pow(r,2)

To calculate the distance between two points (x1,y1) and (x2,y2):

 (x2 x1) + (y2 - y1)2− 2

dist = Math.sqrt(Math.pow(x2-x1,2)+Math.pow(y2-y1,2))
or dist = Math.sqrt((x2-x1)*x2-x1)+(y2-y1)*(y2-y1))

4.6 Complete examples
Write a program to determine how many days, hours and minutes there are in a given
number of minutes.

Display heading Input minutes Split into days,
hours, minutes

Display result

Convert minutes to
days, hours, minutes

The interesting part is how to divide the minutes into days, hours and minutes. We know
there are 60 minutes in an hour, so if we divide the total minutes by 60 we should get the
number of hours, and the remainder will give us the number of minutes left. Then we can
divide the hours by 24 to get the number of days, and the reminder gives the number of
hours left.

/*
* Reads a time in minutes and splits it into days, hours
* and minutes
* --
*/
import Utilities.Keyboard;

public class SplitMinutes
{
 static final int hoursInDay = 24; // constants
 static final int minsInHour = 60;

 public static void main(String[] args)
 {
 int totMins; // the total minutes as input
 int totHrs; // total hours - used to convert
 int days,hours,mins; // the 3 variables for the
 // split up time
// display a heading
 ... < code omitted >

Using data - types and items page 4.11

// input total minutes
 t.print("Enter total minutes > "); System.ou
 totMins = Keyboard.getInt();

// do the conversion
 totHrs = totMins / minsInHour;
 mins = totMins % minsInHour;
 days = totHrs / hoursInDay;
 hours = totHrs % hoursInDay;

// display the result
 System.out.println(totMins + " minutes is " + days
 + " days, " + hours + " hours and " + mins
 + " minutes");
 System.out.println();
 }
}

SplitMinutes.java

Consider the values of the variables during execution of this program:

 totMins totHrs days hours mins

initially

0 0 0 0 0

totMins =
 Keyboard.getInt();

2000 0 0 0 0

totHrs = totMins /
 minsInHour;

2000 33 0 0 0

mins = totMins %
 minsInHour;

2000 33 0 0 20

days = totHrs /
 hoursInDay;

2000 33 1 0 20

hours = totHrs %
 hoursInDay;

2000 33 1 9 20

As expected, the result of executing the program with the input value 2000 is

C:\Java 1.2\bin\java.exe SplitMinutes
Working Directory - C:\javaprogs\4DataTypes\

This program splits a time in minutes into days, hours and
minutes

Enter total minutes > 2000
2000 minutes is 1 days, 9 hours and 20 minutes

page 4.12 Intro Java

Write a program to calculate the result of investing a sum of money (Amt) at a given interest
rate (r%) for a number of years (P) - for example, R1000 for 10 years at 15% interest pa.

The compound interest formula is Amt
100 + r

100

P

×
⎛
⎝⎜

⎞
⎠⎟

Display heading Input amount,
time and rate

Use formula to
calc final amount

Display result

Calculate compound interest

/*
* Calculates compound interest - determines final amount
* after investing an amount for a number years at R%
* --
*/
import Utilities.Keyboard;

public class CompInterest
{
 public static void main(String[] args)
 {
 double amount, // the initial amount invested
 years, // the number of years invested
 rate, // the annual interest rate %
 finalAmt; // the final amount

// display a heading
 System.out.println("Compound interest calculation");
 System.out.println("-----------------------------");
 System.out.println();

// input amount, years and interest rate
 System.out.print(" Enter initial amount > R");
 amount = Keyboard.getDouble();
 System.out.print(" Enter years invested > ");
 years = Keyboard.getDouble();
 System.out.print(" Enter interest rate (%) > ");
 rate = Keyboard.getDouble();
 System.out.println();

// calculate the final amount
 finalAmt = amount * Math.pow((100+rate)/100,years);

// display the result
 System.out.println("R" + amount + " invested for "
 + years + " years at " + rate + "% interest");
 System.out.println("yields R" + finalAmt);
 System.out.println();
 }
}

CompInterest.java
When this program is run with the values R1000, 10 years and 15% interest, the output is
somewhat surprising:

Using data - types and items page 4.13

C:\Java 1.2\bin\java.exe CompInterest
Working Directory - C:\javaprogs\4DataTypes\

Compound interest calculation

 Enter initial amount > R1000
 Enter years invested > 10
 Enter interest rate (%) > 15

R1000.0 invested for 10.0 years at 15.0% interest
yields R4045.557735707907

It would be nice if we could control the number of decimal places that are displayed so that
the normal Rand and cents are shown. This will be discussed in the next chapter.

Exercises

4.1 Modify the SplitMinutes program to convert a number of seconds to weeks, days,

hours, minutes and seconds. Test your program with 1000000 seconds.

4.2 Modify the CompInterest program to compound the interest monthly instead of

annually. (Multiply the years by 12 to get months; divide the interest rate by 12 to get a
monthly rate.)

4.3 Write a program that will calculate and display how many times a human heart will beat

in a given lifetime if it beats once a second. (Assume 365.25 days a year). Input the
number of years in a lifetime.

4.4 Write a program to read in a radius r and to calculate and display the

area of the circle πr2

circumference of the circle 2πr

volume of the sphere 4

3
πr2

surface area of the sphere 4πr2

4.5 Write a program to calculate the distance between 2 points (x1,y1) and (x2,y2)

distance = (x2 x1) + (y2 - y1)2 2−

4.6 Write a program which, given 2 points (x1,y1) and (x2,y2), displays the equation of the

line y = mx + c passing though the 2 points, where

the gradient m = y2 y1
x2 x1

−

−
 and the constant c = y1 - m × x1

5. Output and Input

In the programs written so far, we’ve used output and input statements without really
understanding what they actually do. This chapter considers them in more detail.

5.1 Output
All output (or display or printing - the terms are often used interchangeably) is handled by
methods supplied as part of the Java language. The two methods used are

System.out.print and System.out.println

In both cases, System refers to the universally available class System, which contains an
object called out that is automatically connected by Java to the screen of your computer. A
call to the methods print or println (which we’ll informally refer to as output statements)
will display the specified data items on the screen of your computer.

OUTPUT STATEMENTS
System.out.println(items);
System.out.println();
System.out.print(items);

The difference between print and println is that println always ends the line so that
the next output will appear on a new line, whereas print does not end the line so the next
output will continue on the same line.

Consider the following program:

/*
* Output demonstration
* --------------------
*/

public class OutputDemo1
{
 public static void main(String[] args)
 {
 System.out.println("This message appears on one line.");
 System.out.println("This one appears on the next line.");
 System.out.println();
 System.out.print("A blank line is left before this ");
 System.out.print("message displayed on one line.");
 System.out.println();
 System.out.println("--- End of output example ---");
 }
}

OutputDemo1.java

page 5.2 Intro Java

The output produced when it is run is

C:\Java 1.2\bin\java.exe OutputDemo1
Working Directory - C:\javaprogs\5OutputInput\
This message appears on one line.
This one appears on the next line.

A blank line is left before this message displayed on one line.
--- End of output example ---
Process Exit...

The first output statement

System.out.println("This message appears on one line.");
displays the first line and ends that output line, so the second output statement

System.out.println("This one appears on the next line.");
is displayed on the second line. This output line is also ended, so the next statement

System.out.println();
displays on a new line, but because no data items are specified in the brackets, nothing is
displayed and the effect is to leave a blank line. (The empty brackets are required.)

The 4th output statement

System.out.print("A blank line is left before this ");
calls the other method, print, which does not end the line output so the contents of the 5th
statement continue on the same output line. Note the space at the end of the 4th statement.
If it was missing,

System.out.print("A blank line is left before this");
System.out.print("message displayed on one line.")

the output would appear as
A blank line is left before thismessage displayed on one line.

The 6th output statement

System.out.println();
displays nothing and ends the line. However, because it is preceded by a call to print it
does not have the effect of leaving a blank line but instead merely ends the current line.

Because the output produced by the program is squashed up between Java’s messages, I
prefer to leave a blank line at the beginning and end of a program, or to demarcate the
output in other ways such as shown in the next example.

The data items in these output statements are all string literals, which is any sequence of
characters enclosed in quotes, such as
 "Hello"
 "75.3%"
 "A.N. Other"
To display a quote itself it must be preceded by a backslash \ which is an escape character
- it does not form part of the string but enables the next character to do so.
For example,
 System.out.println("My name is \"Jane\".");
would display
 My name is "Jane".
Another useful escape character is \n which represents newline and can be used to end a
line or go to a new line in the middle of a string. For example,

Output and Input page 5.3

 System.out.print("Hello\nthere\neveryone");
would display

 Hello
 there
 everyone

and
System.out.print("\n\n\n");

would leave 3 blank lines.

A string must all be on one line, so if it is too long to fit on a single line it must be split into 2
strings which are then joined with a plus + (known as concatenation). For example,

 System.out.println("This program was written by "
 + "Jane Meyerowitz.");

would display
 This program was written by Jane Meyerowitz.

Again, note the space at the end of the string (.. by ") so that the final spacing is correct.

Numeric values are also output using the print and println methods. For example
 System.out.println(2*3+10);
would display
 16

To combine strings and numeric values as output, concatenation (+) is used.
 System.out.println("The answer is " + (2*3+10));
will output
 The answer is 16

Similarly, numeric variables can be output. The program fragment

 int num1 = 23;
 int num2 = 14;
 int answer = num1+num2;
 System.out.println("The sum of " + num1 + " and " + num2
 + " is " + answer);

will display
The sum of 23 and 14 is 37

Again, note the use of spaces at the ends of the strings. If they are omitted

 System.out.println("The sum of" + num1 + "and" + num2
 + "is" + answer);

the output is
 The sum of23and14is37

Recall the program CompInterest.java at the end of the last chapter which calculated
compound interest. The output statements

 System.out.println("R" + amount + " invested for "
 + years + " years at " + rate + "% interest");

 System.out.println("yields R" + finalAmt);
display

 R1000.0 invested for 10.0 years at 15.0% interest
yields R4045.557735707907

The print and println methods expect the data items in the parentheses to be strings. If
a numeric value is included Java automatically calls its toString method to convert the
numeric value to a string which is displayed by the print method. In the case of floating

page 5.4 Intro Java

point numbers toString has no information on how many decimal places are to be
displayed, so it displays them all.

The manner in which you define the formatting of output in Java is complex, so a package
and methods have been provided for you to use which simplifies the formatting and layout of
numeric values. The package Utilities provides a class Formatter which has a
method format that will output numeric values in a specified number of positions, and with
a specified number of decimal places for floating point numbers.

FORMATTING
Formatter.format(fpvalue,width,decimals);
Formatter.format(intvalue,width);

where fpvalue is a float or double value (variable, constant or expression)
 intvalue is an int or long value (variable, constant or expression)
 width is the total number of positions the value must be displayed in
 decimals is the number of decimal places to be displayed

Consider the following demonstration program:

/*
* Formatter demonstration
* -----------------------
*/
import Utilities.Formatter;

public class OutputDemo2
{
 public static void main(String[] args)
 {
 double num1 = 1234.5678;
 int num2 = 12345;

 System.out.println("\n----------------------------------");
 System.out.println("Double formatting");
 System.out.println(" num1 = "+Formatter.format(num1,9,4));
 System.out.println(" num1 = "+Formatter.format(num1,7,2));
 System.out.println(" num1 = "+Formatter.format(num1,7,1));
 System.out.println();
 System.out.println("Integer formatting");
 System.out.println(" num2 = "+Formatter.format(num2,5));
 System.out.println(" num2 = "+Formatter.format(num2,6));
 System.out.println(" num2 = "+Formatter.format(num2,3));
 System.out.println();
 System.out.println("----------------------------------");
 }
}

OutputDemo2.java
Most importantly, in order to use this class it needs to be imported as it is not automatically
imported by Java. This is done right at the beginning of the program, after the initial
comments but before the class definition:
 import Utilities.Formatter;

Output and Input page 5.5

This instructs Java to permit the use of any methods in the Formatter class of the
Utilities package. Should you forget to include this import statement Java does not
recognise the reference to the class and you will get an error message for each time it is
used in the program. Compiling this program without the import statement resulted in 6 error
messages of the type
 OutputDemo2.java:17: Undefined variable or class name: Formatter
 System.out.println(" num1 = " + Formatter.format(num1,9,4));
 ^
After correction, the output displayed by this program is

C:\Java 1.2\bin\java.exe OutputDemo2
Working Directory - C:\javaprogs\5OutputInput\

Double formatting
 num1 = 1234.5678
 num1 = 1234.57
 num1 = 1234.6

Integer formatting
 num2 = 12345
 num2 = 12345
 num2 = 12345

Process Exit...

Comparing the output produced with the formatting used:

Formatter.format(num1,9,4) displays 1234.5678
 a total of 9 positions with 4 decimals
 Formatter.format(num1,7,2) displays 1234.57
 a total of 7 positions with the decimal rounded to 2 places
 Formatter.format(num1,7,1) displays 1234.6
 a total of 7 positions with the decimal rounded to 1 place, and because

only 6 positions are needed there is a space before the number.

 Formatter.format(num2,5) displays 12345 using 5 positions
 Formatter.format(num2,6) displays 12345 using 6 positions
 with a space before the number because only 5 positions are needed
 Formatter.format(num2,3) displays 12345 using 5 positions
 because the width specified (3) is too small to display the number

it is disregarded and the number is displayed with all its digits

page 5.6 Intro Java

To summarise, if the width specified is larger than needed, the number it is right justified in
the field with spaces before it. If the width specified is smaller than is needed it is
disregarded and the number is displayed in the number of digits required. The decimals are
always displayed using the number of positions given, rounded if necessary.

Generally, the width specifier is used to tabulate or line up columns of data, and
Formatter is not usually used for integer data unless this tabulation is required. With
floating point values however, we often want to specify the number of decimal places but
don't know the total field size required, and to define too large a width "just in case" means
there are blank spaces in the output. In this case it is convenient to specify a width of 1 and
the required number of decimals, which means the value will be displayed in the exact
number of digits needed and the correct number of decimal places.

The output statements from the compound interest program (CompInt2.java) should be
formatted as

 System.out.println("R"+Formatter.format(amount,1,2)+
 " invested for "+years+" years at "+rate+"% interest");

 System.out.println("yields R"+Formatter.format(finalAmt,1,2));

and will then display the rand values correctly

 R1000.00 invested for 10.0 years at 15.0% interest
yields R4045.56

As an example of tabulation, the program OutputDemo3.java calculates and displays the
square root and the cube root of some integers. The results are output twice, first with the
integer value (num1) unformatted

System.out.println(num1+ Formatter.format(Math.sqrt(num1),10,3)
 + Formatter.format(Math.pow(num1,cube),12,5));

and secondly with the integer value (num1) formatted.

System.out.println(Formatter.format(num1,3)
 + Formatter.format(Math.sqrt(num1),10,3)
 + Formatter.format(Math.pow(num1,cube),12,5));

The effect of formatting to tabulate data is clearly seen in the output

Tabulating columns of data

 Integer not formatted
num sq.root cube root
--- ------- ---------
1 1.000 1.00000
10 3.162 2.15443
100 10.000 4.64159

 Integer formatted
num sq.root cube root
--- ------- ---------
 1 1.000 1.00000
 10 3.162 2.15443
100 10.000 4.64159

Output and Input page 5.7

5.2 Input
As has already been mentioned, reading data in from the keyboard to use in a program is
very cumbersome in Java. In order to simplify matters, a package and methods have been
provided for you to use (as with formatting) to allow for the input of numeric values. The
package Utilities provides another class Keyboard which has different methods for
inputting different types of data.

KEYBOARD INPUT
intVar = Keyboard.getInt();
longVar = Keyboard.getLong();
floatVar = Keyboard.getFloat();
doubleVar = Keyboard.getDouble();
charVar = Keyboard.getChar();

The method getInt will accept an int value and assign it to the int variable specified;
similarly for the methods getLong (long values), getFloat (float values) and
getDouble (double values). The method getChar accepts a single character from the
keyboard and assigns it to the char variable specified.

The ENTER key must be pressed after the value has been typed to send it to the program.
Until this has happened the value typed can be changed - characters can be deleted and
modified - and then ENTER is pressed to send the value for processing.

In order to use these methods, the Keyboard class must be imported
 import Utilities.Keyboard;

If you're also using Formatter to format your output, you import them both with 2 statements
 import Utilities.Keyboard;
 import Utilities.Formatter;
or alternatively you can use an asterisk (*) as a "wild card" to import all classes in the
Utilities package which will import both Keyboard and Formatter.
 import Utilities.*;

When one of the Keyboard methods is called the program pauses and waits for the user to
enter some data and press the ENTER key. The data is then input, and if there is no error
the value is assigned to the specified variable. For numeric input, runtime errors occur
• if a floating point value is entered when calling getInt or getLong (however integer

values may be entered for getFloat and getDouble)
• if a value that is too large for the data type is entered
• if an alphabetic or special character is entered
• if more than one value is entered on a line

Any single character is accepted for getChar, and its UNICODE character code is stored in
the char variable specified. Note that only a single character can be entered and the ENTER
key must be pressed after that character is entered. (To input a word strings must be used -
more complex so discussed much later)

page 5.8 Intro Java

As an example of character input, consider a program that inputs a character and then
displays a heart made up of that character:

/*
* Character input demonstration
* -----------------------------
*/
import Utilities.Keyboard;

public class CharInputDemo
{
 public static void main(String[] args)
 {
 char c; // the character to be used in drawing a heart

 // Input the character to use
 System.out.println();
 System.out.print("Enter the character to be used to "
 + "draw a heart > ");
 c = Keyboard.getChar();
 System.out.println();

 // Draw the heart
 System.out.println(" " +c+c+ " " +c+c);
 System.out.println(" "+c+c+c+c+" "+c+c+c+c);
 System.out.println(" " +c+c+c+c+c+c+c+c+c);
 System.out.println(" " +c+c+c+c+c+c+c);
 System.out.println(" " +c+c+c+c+c);
 System.out.println(" " +c+c+c);
 System.out.println(" " +c);

 System.out.println();
 }
}

CharInputDemo.java

When this program is run, it pauses at the Keyboard.getChar statement and waits for the
user to enter a character. The user types the character (say O) and the program completes
its execution:

Enter the character to be used to draw a heart > O

 OO OO
 OOOO OOOO
 OOOOOOOOO
 OOOOOOO
 OOOOO
 OOO
 O

If a different character is entered, a different heart is drawn:

Output and Input page 5.9

Enter the character to be used to draw a heart > #

 ## ##
 #### ####
 #########
 #######
 #####
 ###
 #

One comment about this program - spaces have been left at the beginning of each line so
that the heart appears slightly indented and not at the extreme left hand edge of the window.
Also, the layout of the data items in the brackets of the println statements was purely to
make them look better for the human reader of the program and have nothing to do with the
layout of the output produced. The statements below would display the identical output.

// Draw the heart
 System.out.println(" "+c+c+" "+c+c);
 System.out.println(" "+c+c+c+c+" "+c+c+c+c);
 System.out.println(" "+c+c+c+c+c+c+c+c+c);
 System.out.println(" "+c+c+c+c+c+c+c);
 System.out.println(" "+c+c+c+c+c);
 System.out.println(" "+c+c+c);
 System.out.println(" "+c);

Exercises

For these exercises write clear, well commented programs that read in the required data with
suitable prompts, perform the calculations and display the results. Ensure your output looks
good. In all cases test the programs thoroughly by running them with different sets of data for
which you have calculated the answers so that you can check whether they work correctly.

5.1 In Computer Science, your final mark is calculated from your assignment marks, your

test marks and the exam mark in the ratio: assignments 10%, tests 15%, exam 75%.
Write a program that reads in the total percentages for assignments, tests and the
exam and calculates the final percentage mark obtained.

5.2 At the beginning of a journey the reading on a car's odometer is S kilometers and the

fuel tank is full. After the journey the reading is F kilometers and it takes L litres to fill
the tank. Write a program that reads in S, F and L and outputs the fuel consumption in
km per litre and in litres per 100km correct to 4 decimal places.

page 5.10 Intro Java

5.3 Write a program to draw a snowflake. Input the character to use to form the snowflake.
 *

 * * *
 * * *

 * * * * * * *
 * * *

 * * *
 *

5.4 Write a program to draw a house. Input the characters to use to draw the roof and the

walls.
 +++++

 ++++++++
 +++++++++++

 OOOOOOOOO
 OOOOOOOOO
 OOOOOOOOO

5.5 A farmer has a rectangular field that is L metres long and W metres wide. He grows

maize in this field, and his costs (seed, fertilizer, labour) are Rand C per square metre.
He gets a yield of Y kg of maize per square metre. If maize is currently selling for Rand
M per tonne (1000 kg), what profit does he get from this field?
 Write a program that reads in values for L, W, Y, C and M and determines his

profit.

5.6 The well known formula to calculate the roots of the quadratic equation

 ax2 + bx + c = 0
 is

 − ± −b b 4ac
2a

2

 Write a program which reads in values for the coefficients a, b and c and calculates the
two roots. Test your program by calculating the roots of
 x2 - 5x + 6 = 0 (2 and 3)
 2x2 - 3x - 5 = 0 (2.5 and -1)
 x2 - 10x + 25 = 0 (5 and 5)

5.7 In order to pay off a mortgage of $P in N years on which interest is charged and

computed annually at R% pa, $A must be repaid every year, where

 A = Pr(1+r)
(1+r) -1

N

N and r =
R

100

 Write a program that reads in values for the amount borrowed P, the years N and the
interest rate R and calculates the annual repayments A

5.8 Sue has bought a new car that can go 10% faster than her old one. Previously, on a

trip to her parents home in Pofadder she would leave home at some time (eg 06.00)
and arrive at her parents house some hours later (eg 15.35). If she leaves home at the
same time driving her new car, what time will she now arrive at her parents home?
Your program must read in the departure and arrival times using the 24hour clock
(0600 and 1535).

6. Structure and Methods

There is more to programming than just writing code that achieves a particular purpose. It is
also important that the program itself is "good". The structure of a program defines how the
different parts of a program interact, and it is important that in addition to a program doing
what it is intended to do, it is well structured. The program should be correct, readable,
reusable and efficient.

6.1 Properties of a good program
Correctness
It seems a case of stating the obvious to say that a program must be correct, but in fact this
is one of the most difficult tasks - to ensure that a program does exactly what is intended,
and that it is bug free. The major portion of software costs are people costs - the salaries of
programmers hired to write programs and debug, maintain or modify them. If by good
programming practice the programmer's task can be made easier the benefits are significant.

There are three steps in ensuring correct programs

• understand the problem to ensure that you design a program that solves the problem

and does what it is supposed to do, not what you would like it to do or is easier to do.

• follow good programming practice while writing a program - planning, structure, clarity,

readability. It makes a program easier to understand, debug and modify.

• test the program thoroughly once it is working. Some simple guidelines - run the

program with cases for which you know the outcome so that you can check the result is
correct. Don't just choose the obvious cases - try input from a range of possible values
(zero, positive and negative, large and small, integer and real, as appropriate)

Readability
A program has often to be understood by many people, not just the developer, and in order
to be able to understand and reason about a program we must be able to read it. Factors to
consider are

• use of comments to explain the meaning of the different parts and their interrelationship

• good, consistent layout, with careful use of indenting and blank lines

• meaningful identifiers - numStudents, examMark instead of S and em or worse still

Spot and Tinker (your dogs names!)

It is also helpful to develop a style convention - be consistent in your use of capitalisation,
always declare your variables at the beginning of the program, group declarations together,
have opening and closing scope brackets in consistent places (after a statement, at the
beginning of the next line) etc. Companies may have their own style, layout and
documentation conventions and you will be expected to follow them.

page 6.2 Intro Java

Reusability
As mentioned earlier, a large amount of time and money is spent on developing software, so
its a good idea where possible to reuse software that has already been written and tested by
someone else. Java's packages are designed for just that - instead of each programmer
writing a class to deal with (eg.) times and dates, one is provided. There are two aspects to
reusability

• using or adapting existing classes in a program;

• writing our own classes so they are as general as possible without compromising

readability or efficiency.

Efficiency
Programs should be written thriftily, to achieve their task simply and directly and be as clear
and concise as possible. Unnecessary complications should be avoided, as should "clever
tricks" that may implement an algorithm slightly more efficiently but are obscure, difficult to
understand and nearly impossible to debug. Some suggestions are

• declare variables in the methods where they are needed, don't declare a whole lot up

front in the main method "just in case".

• use methods to carry out common or similar tasks to avoid unnecessary duplicate

statements

• if a calculation or portion of a calculation is to be used more than once, don't recalculate

each time - do the calculation once and store the result.

6.2 Methods
In one of our early examples in chapter 3 - Simple Programs, methods were used to
structure a program by writing it using a number of subprograms or modules which each
achieved a particular sub-goal of the overall program. These modules or methods were
controlled by the main method which called the modules in the correct order and controlled
the flow of data between them, so that the overall goal was achieved.

You've also used methods supplied by the Java language (eg. println) and from packages
(eg. getInt, format).

A method is a group of declarations and statements that is given a name and may be called
upon by this name to perform its intended action. For example, in the early example
 static double SumNos()
is called by

total = SumNos();
and

static void DisplayAnswer(double answer)
is called by

DisplayAnswer(total);

Structure and Methods page 6.3
__

The first (SumNos) is an example of a typed method that returns a value - in this case
double. When it is called the statements of the method are executed and the value
calculated is returned to the statement that called the method and "used" - here it is assigned
to a variable total.

The second (DisplayAnswer) is called for its effect. It is declared as void - it does not
return a value - but it receives some data (a double variable which it will refer to as answer)
to use in its execution.

As another example of using methods to structure a program, consider a program to display
a Mother's Day message on the screen, such as

 *
 *
 *
 *

* *
* *
* *

* *
** **
* * *
* *
* *

* *
* *
* *

* *
** **
* * *
* *
* *

We can plan a program to do this using a style of programming known as top-down design
where we start at the top and consider what needs to be done to achieve the goal, and break
the overall goal into sub-goals each of which can be solved independently. In this case in
order to achieve the goal of displaying the message we need first to display the word "TO",
then after a few blank lines the word "MOM". Each of these are sub-goals, so we can
consider them independently

- what do we need to do to display "TO"?

display the block letter "T", then the block letter "O"

- what do we need to do to display "MOM"?
 display the block letter "M", then "O", then "M" again.

page 6.4 Intro Java

display
"T"

display
"O"

Display "TO" leave some
lines

display
"M"

display
"O"

display
"M"

Display "MOM"

Display
"TO MOM"

This provides the structure for our program, and we start at the top and write our main
method as if the other methods existed:

public static void main(String[] args)
/*------------------------------------
* the main method calls other methods to display
* the words TO and MOM with blank lines in between
*/
{
 DisplayTO();
 System.out.println();
 System.out.println();
 DisplayMOM();
}

ToMom.java (a)

Now we write the methods DisplayTO and DisplayMOM:

static void DisplayTO()
//---------------------
// This method calls other methods to display T and O
{
 DisplayT();
 DisplayO();
}

static void DisplayMOM()
//---------------------
// This method calls other methods to display M, O and M
{
 DisplayM();
 DisplayO();
 DisplayM();
}

ToMom.java (b)

And now we can write the methods to actually execute the output statements. Note that
although 5 letters are displayed we only need to write 3 methods as the methods DisplayO
and DisplayM are each called twice.

static void DisplayT()

Structure and Methods page 6.5
__

//---------------------
// This method displays *'s making up the letter T
{
 System.out.println("*****");
 System.out.println(" * ");
 System.out.println(" * ");
 System.out.println(" * ");
 System.out.println(" * ");
 System.out.println(); // leave a blank line
}

static void DisplayO()
//---------------------
// This method displays *'s making up the letter O
{
 System.out.println(" *** ");
 System.out.println("* *");
 System.out.println("* *");
 System.out.println("* *");
 System.out.println(" *** ");
 System.out.println(); // leave a blank line
}

static void DisplayM()
//---------------------
// This method displays *'s making up the letter M
{
 System.out.println("* *");
 System.out.println("** **");
 System.out.println("* * *");
 System.out.println("* *");
 System.out.println("* *");
 System.out.println(); // leave a blank line
}

ToMom.java (c)

hen a program is executed control is passed to the main method. Th e
all to DisplayTo, so control is transferred to the first statement of DisplayTo which is a

d is passed the character to use in forming the letter - this is done by

static void DisplayT(char c)

W e first statement is th
c
call to DisplayT, so control is transferred there, and the sequence of println statements
are executed. When the end of DisplayT is reached, control is transferred back to
DisplayTo and the next statement is the call to DisplayO, so control is transferred there,
and its println statements are executed. Then control is transferred back to DisplayTo,
but the end has now been reached so control is transferred back to the main method and its
next statement is executed. Execution continues in this manner until the end of the entire
program is reached.

This program will always display the message made up of asterisks. It is possible to change
 so that each methoit

modifying the methods so that they can receive a parameter and use it, and specifying a
value for the parameter inside the brackets when the method is called.

For example,

page 6.6 Intro Java

//--------------------------
// This method displays the letter T made of the
// char passed in as parameter c
{
 System.out.println(" "+c+c+c+c+c);
 System.out.println(" " +c);
 System.out.println(" " +c);
 System.out.println(" " +c);
 System.out.println(" " +c);
 System.out.println(); // leave a blank line
}

ToMom2.java (a)

If DisplayO DisplayTO

 is also changed to accept a parameter, becomes

static void DisplayTO()
//---------------------
// This method calls other methods to display the
// letters T and O, and passes to them as a parameter
// the char to use
{
 DisplayT('+');
 DisplayO('@');
}

ToMom2.java (b)

As ther variation, we could input the character to be used to draw the letters, and pass it
on to DisplayTO and DisplayMOM which will pass it on to the methods they call. In this

xample, a method is used to ask for and read in the character an n

 ano

e d this character is the
returned to the main method and passed on to the other methods.

public static void main(String[] args)
//------------------------------------
// the main method calls other methods to display
// the words TO and MOM with blank lines in between

{
 char ch; // character to be used

 ch = InputCharacter(); // get the character from
 // the input method
 DisplayTO(ch); // pass ch on to DisplayTO
 System.out.println();
 System.out.println();
 DisplayMOM(ch); // pass ch on to DisplayMOM
}

ToMom3.java (a)
Di splayT and
DisplayO:

splayTO receives the character parameter, and passes it on to Di

static void DisplayTO(char ch)
//----------------------------

Structure and Methods page 6.7
__

// This method calls other methods to display the letters
// T and O, and passes to them the char to use
{
 DisplayT(ch);
 DisplayO(ch);
}

ToMom3.java (b)

Th illustrate the different forms of methods declaration and the
corresponding ways of calling a method (with or without parameters, returning a value or
not).

ese ToMom examples

METHOD DECLARATION

modifiers type methodName (parameters)
{ variable declaration;
 statements;
 return e ethod only xpression; //typed m
}

The modifiers yo ic, static final. At this early stage all your
methods will be s

pe is the data type of the value that the method will return, or void if the method is called

static char InputCharacter() from

 a m lue be g method must be
speci , a variable, or an

np Ch ac a variable
charToUse) is returned to the main method.

u can use are publ and
tatic, and the main method must be public as well.

ty
merely for its effect and does not return a value. For example,
 static void DisplayMOM() from ToMom.java

 ToMom3.java
 static double SumNos() from ReadSumNos2.java

If ethod is typed (not void) then the va to sent back to the callin

fied in the return statement. The value returned may be a constant
expression. For example, in method I ut ar ter, the character is read into

nd the value of this variable (a

static char InputCharacter()
// This method asks the user to enter the character to use,
// and then returns it to the main method
{
 char charToUse;

 System.out.print("Type the character to use > ");
 charToUse = Keyboard.getChar();
 System.out.println();
 return charToUse;
}

The brackets after the method name are compul
the ed as data_type parameter_name pairs, with
commas separating them if more than one pair. For example

 static int AddNums(int num1, int num2)

sory, even if there are no parameters. If
re are listare parameters, they

static void DisplayTO(char ch)

page 6.8 Intro Java

Methods are called by their name. If the method is void, then the method name (with any
associated parameters) forms a statement by itself.
 DisplayTO('#');

If the method is typed, then the item of interest is the valu

rs in an assignment statement or an output statement or anywhere else it would be
e it returns and the method name

ppea

r n("The answer is " + AddNums(17.3,25.4));

ential that there are the same number
ters, and that they are in the correct order. Formal

actual
arameter is associated with the identifier and used in the method in place of the identifier.

 XYZ('*',5);
int XYZ(double val)
do /XYZ(4,5);

So

nts

ent type
,2);

XYZ(23);
riable

ng

a
appropriate to use the value that the method returns.
 ch = InputCharacter();
o System.out.printl

When using parameters, the parameters defined in the method declaration are known as
formal parameters, while the parameters that are passed to the method when it is called are
known as actual parameters or arguments. It is ess
and type of actual as formal parame
parameters are always identifiers - when the method is called the value of the
p
Actual parameters may be variables, constants or expressions that supply a value of the
required type. Some valid examples are:

 Method declaration Method call

void XYZ() XYZ();
void XYZ(int num1) XYZ(13);
void XYZ(int num1, double num2) XYZ(1,1.5);
void XYZ(char ch, int val)

 ans = XYZ(17.5);
uble XYZ(int num1, int num2) inverse = 1

me invalid examples are
void XYZ(int num1) XYZ();
 incorrect number of argume
void XYZ(int num1) XYZ(1,2,3);

incorrect number of arguments
void XYZ(int num1) XYZ(1.5);

incorrect argum
void XYZ(int num1, double num2) XYZ(1.5

incorrect argument order
void XYZ(int num1) ans = XYZ(23);

incorrect method call - XYZ is void
double XYZ(int num1) int ans =

method returns double, cannot assign to int va
int XYZ(double val) XYZ(5.3);

value returned is not used -
does not give a compilation error but poor programmi

Structure and Methods page 6.9
__

There are a number of advantages to using methods:

• Giving a task a name makes it easier to refer to. Naming reduces the need for

comments as it makes the code more self-documenting.

• Code that calls clearly named methods is easier to understand than code in which all

the actions take place in the main method. Programs which use methods are easier to
understand because of the way they break the program up into manageable sections. If
all the code were in the main method we would be confronted with the full complexity of
the program.

• If a method is used to perform a task it can be used many times in the same program

by merely invoking the method repeatedly. The code for the task need not be
reproduced each time it is needed (eg. DisplayO and DisplayT).

• A method can be saved in a package of useful methods and imported by any program

that needs it. Thus a method can be reusable in many programs. (eg.
Keyboard.getInt())

• Once a method is written and properly tested it can be used without any further

concern for its inner workings - we can focus on what it does and not how it does it.

• Large, complicated systems are written by teams of programmers. By structuring the

system in a modular fashion it can be divided into modules small enough to be worked
on by one team. Each of these modules can in turn be broken down into submodules
small enough to be designed by an individual programmer.

As an example of using methods to structure a program, consider a variation on Exercise
5.8:

Sue has bought a new car that can go 10% faster than her old one. Previously, on a trip
to her parents home in Pofadder she would leave home at a certain time and arrive at her
parents house some hours later. Driving her new car, and given a new departure time,
what time will she now arrive at her parents home? Your program must read in the
original departure and arrival times and the new departure time using the 24hour clock.

In order to solve this problem we must

• read in the departure and arrival times
• use the original times to calculate the time the journey took
• reduce this time by 10% because the new car goes faster than the old one
• calculate the arrival time by adding the new journey time to the new departure time and

expressing as a time of day.

Input depart,
arrival times

Calc journey
duration

Calc new
duration

Calc new
arrival time

Display
results

Calculate arrival
time in new car

page 6.10 Intro Java

With this structure in mind we can write the main method:

public static void main(String[] args)
//------------------------------------
// the main method reads the departure and arrival times
// and calls other methods to do the calculations and
// display the results.
{
 int departOld, // departure time (24hr clock)
 arriveOld, // arrival time in old car
 departNew, // new departure time
 arriveNew; // arrival time in new car
 int oldJourney, // time journey took in old car (mins)
 newJourney; // time journey took in new car (mins)

 DisplayHeading();

// Input departure and arrival times
 System.out.print(" Enter original departure time > ");
 departOld = Keyboard.getInt();
 System.out.print(" Enter arrival time - old car > ");
 arriveOld = Keyboard.getInt();
 System.out.print(" Enter departure time - new car > ");
 departNew = Keyboard.getInt();

 oldJourney = CalcOldJourneyTime(departOld,arriveOld);
 newJourney = (int)(0.9 * oldJourney);

 arriveNew = CalcNewArrivalTime(departNew,newJourney);
 DisplayResults(departOld,arriveOld,departNew,arriveNew);
}

NewCar.java (a)

The main method inputs the old departure and arrival times, and the new departure time.
Then a method is called to calculate the duration of the original journey. This method is typed
and returns an int value - the duration - and is passed 2 parameters to use in its
calculations - the departure and arrival times. At this stage we are not concerned with how it
will do this - we merely assume that we have a method that will accepts the 2 values and
calculate the required result.

The next task is the calculation of the journey duration in the new car. This could be written
as a separate method but since it is a simple calculation and is only used once in the
program, it is done in the main method. Then another method is called to calculate the new
arrival time. It is passed 2 parameters - the departure time in the new car and the journey
duration, and returns a value - the new arrival time. Finally an untyped method is called to
display the results and is passed in the values to be displayed.

Now that the structure is in place we can plan the missing methods:

in: dep. time
 duration

out: arr. time

convert new
dep. time
to minutes

arr. time =
dep. time +

duration

convert new
arr. time to
24hr clock

Calculate new
arrival time

in: dep. time
 arr. time

out: duration

convert dep. time
to minutes

convert arr. time
to minutes

duration =
arr - dep times

Calculate journey
duration

Structure and Methods page 6.11
__

There are 3 occasions when we need to convert a 24hr time to minutes. It seems to make
sense to write a single method to achieve this and use it the 3 times, each time passing it the
appropriate 24hr value. So we write the methods as if this method exists:

static int CalcOldJourneyTime(int depart, int arrive)
//---------------------------
// this method converts both times to minutes and subtracts
// them to get the original duration of the journey
{
 int departMins, // the departure and
 arriveMins; // arrival times in mins after midnight
 int time; // the journey time in minutes

 departMins = CalcMins(depart);
 arriveMins = CalcMins(arrive);
 time = arriveMins - departMins;
 return time;
}

 NewCar.java (b)

Notice that CalcMins is called twice here, that different values are supplied as the argument
(actual parameter) and that the value returned is assigned to a different variable each time.
The return statement specifies that the variable time (which represents the journey
duration) is the value that must be returned.

 static int CalcNewArrivalTime(int depart, int journey)
//---------------------------
// this method determines the new arrival time in minutes after
// midnight, then expresses it in the 24 hour clock.
{
 int departMins, // the new departure and
 arriveMins; // arrival times in mins after midnight
 int hr, // the arrival hour
 min, // the arrival minute
 time24; // the arrival time using 24hr clock

 departMins = CalcMins(depart);
 arriveMins = departMins + journey;
 hr = arriveMins / 60;
 min = arriveMins % 60;
 time24 = hr*100 + min;
 return time24;
}

NewCar.java (c)
CalcMins is called again in this method - to convert the new departure time to minutes after
midnight - and then the journey duration is added to get the new arrival time which is then
converted back to the 24 hour clock.

Finally the method to convert from 24 hour clock to minutes after midnight is written. Notice
that the formal parameter, time24, receives the value of a different argument each time it is
called, does the calculation with this value and returns the value of its variable timeMins.

page 6.12 Intro Java

static int CalcMins(int time24)
//-----------------
// Converts a time in 24hr clock to minutes after midnight
{
 int hr, // the hour portion of the 24 hour time
 min, // the min portion of the 24 hour time
 timeMins; // the time converted to minutes

 hr = time24 / 100; // integer division
 min = time24 % 100; // remainder after integer division
 timeMins = hr*60 + min;
 return timeMins;
}

NewCar.java (d)

When this program is run the effect is

Program to calculate arrival time in a new car
--

 Enter original departure time (24hr clock) > 0600
 Enter arrival time when using old car > 1530
 Enter departure time when using new car > 0700

In the old car
 the departure time was 600
 the arrival time was 1530
In the new car
 the departure time is 700
 the arrival time is 1533

You should always test your programs thoroughly. Are you sure that this answer is correct?

The first time I ran this program I used simple values (see next page), and because the
depart time was zero (midnight) I could calculate the minutes involved easily (600) and 90%
of this is 540 which is 9 hours so as a first attempt it seemed OK.

Structure and Methods page 6.13
__

Program to calculate arrival time in a new car
--

 Enter original departure time (24hr clock) > 0000
 Enter arrival time when using old car > 1000
 Enter departure time when using new car > 0000

In the old car
 the departure time was 0
 the arrival time was 1000
In the new car
 the departure time is 0
 the arrival time is 900

Then I checked using a time with non-zero departure time so I could see the total minutes
calculation was still OK, then different old and new depart times. If possible, just change 1
value at a time so that if you detect an error it is easier to isolate what caused it. Use simple
values to start with, but once you are satisfied that it seems to be working, use more complex
values and check using a selection of inputs with different characteristics.

6.3 Scope of variables
At this stage, and with this exercise as an example, lets consider the block structure of
Java programs and the scope of the variables.

A Java program consists of a number of blocks which are demarcated by the open and
close curly brackets { }. Everything inside a block is considered a unit and exists more or
less independently of other blocks. In particular, each method is a block. Blocks group
related statements together, and define where one section of code ends and another begins.
Blocks may themselves contain sub-blocks - for example, each class is a block and contains
a number of methods each of which are blocks.

Each variable declared in your program has a particular area or scope in which it is valid and
can be used. The scope of a variable is the block in which that variable is defined. At this
stage, we'll consider a block as a method, although in the next section you'll see that
methods themselves often contain a number of blocks. So if a variable is declared in the
main method, it can only be used in the main method. If you want to use its value in another
method you must explicitly pass it to that method as an argument, and the other method
must have formal parameters to receive it.

For example, if we didn't pass arguments to the method CalcOldJourneyTime

oldJourney = CalcOldJourneyTime();

and wrote CalcOldJourneyTime to use departOld and ArriveOld from the main
method

departMins = CalcMins(departOld);
arriveMins = CalcMins(arriveOld);
time = arriveMins - departMins;

page 6.14 Intro Java

we would get the following compilation errors

NewCar.java:62: Undefined variable: departOld
 departMins = CalcMins(departOld);
 ^
NewCar.java:63: Undefined variable: arriveOld
 arriveMins = CalcMins(arriveOld);
 ^

Because departOld and arriveOld are not declared within the block of
CalcOldJourneyTime they are not known in that method.
Another consequence of this independence of variables within blocks is that the same
identifier (variable names) can be used in different blocks, or different names can be used to
refer to the same value in different blocks. This sounds confusing, and can be if the
programmer uses identifiers indiscriminately without consideration of what the variable is
representing. At times however, it is useful and indeed necessary.

For example, the duration of the original journey is called oldJourney in the main method
and time in CalcOldJourneyTime, while the identifiers departMins and arriveMins
are used in both CalcOldJourneyTime (to refer to the original departure and arrival times
expressed as minutes after midnight) and in CalcNewArrivalTime (to refer to the new
departure and arrival times expressed as minutes after midnight). The identifiers hr and min
are used in a number of places to refer to hours and minutes in whatever context applies in
the method (block) in which they are used.

The blocks and the scope of variables in the NewCar program are:

class NewCar

main

 departOld arriveOld departNew arriveNew

 oldJourney newJourney

DisplayHeading

DisplayResults
 departOld arriveOld
 departNew arriveNew

CalcOldJourTime

 depart arrive

 departMins
 arriveMins
 time

CalcNewArrTime

 depart journey

 departMins
 arriveMins
 hr
 min
 time24

CalcMins
time24

 hr
 min
 timeMins

Structure and Methods page 6.15

Any variables declared in the class block (ie. before the main method) are available to the
entire class. However, with the exception of constants that should be declared here, it is not
good programming practice (at this stage).

Exercises

6.1 Modify the ToMom program so that 2 characters are input and are used to draw

alternate letters. Then modify the ToMom program so that 2 characters are input and
are used to draw alternate lines of each letter.

6.2 Write a program to display the following shapes (one below the other) each using

different characters which you have input. Structure your program to use methods to
draw the common portions of each shape (circle, triangle, rectangle,
arrowhead).

 * * * * *
 * * * * ***

 * * *****
 * *** ***

 *** *** ***
 ***** *** ***
 * * *

 * * * * * *
 * * * * * *

6.3 Write a program that will read in two distances expressed as yards, feet and inches,

convert them to metres and add them (result in metres). (1 yard=3 feet, 1 foot=12 inches,
1 inch=2,54 cm)

6.4 A worker in a factory must punch a time card whenever he enters or leaves the

premises. On a particular day he arrives in the morning, leaves at lunchtime, returns
after lunch and leaves again at the end of the day. Write a program that inputs the 4
times (24hour clock) and his hourly rate of pay, and calculates how much he earns that
day.

6.5 Restructure your programs from Chapter 5 to use methods where appropriate. For

most of them you will need to input the data in the main method, and then pass these
values to a calculation method which calculates and returns the result, and the input
values and result are then passed to a display method which displays the result
attractively.

7. Selection

Programs that use methods and repetition as their structuring mechanisms can be very
complicated but they are entirely predictable. Interesting programs are those which can
choose between different courses of action and respond flexibly to different circumstances.

7.1 Boolean expressions
When evaluating different circumstances in a program you need to be able to determine
whether 2 values are equal or unequal or what their relative ranking is. Just as arithmetic
formulas evaluate numeric expressions to obtain a numeric value, so too do condition
formulas evaluate boolean expressions to obtain one of the two boolean values: true or
false.

The simple boolean operators used in Java to compare numeric values are
 == equal to != not equal to
 > greater than >= greater than or equal to
 < less than <= less than or equal to

The results of such an expression can then be stored in a boolean variable, for example

 boolean hasDP;
 double clMark;

 hasDp = clMark>=50;

Boolean variables can be displayed using the print statements, for example
 System.out.println("Classmark is "+clMark+" hence DP="+hasDP);

which will output
 Classmark is 65 hence DP=true
or
 Classmark is 35 hence DP=false

Boolean variables can be combined using the operators
 && and ! not
 || or ^ xor

The results of these operations are

and && false true not !
false false false false true
true false true true false

or || false true xor ^ false true
false false true false false true
true true true true true false

page 7.2 Intro Java

So, extending the previous example, we can write
 boolean hasDP; isaPass;
 double classMark; examMark

 hasDp = classMark>=50;
 isaPass = hasDP && examMark>=50

or with other criteria
 isaPass = examMark>=50 || (hasDp && examMark>=40)

There is precedence between the operators and ! has the highest precedence and will be
evaluated first, followed by && which will always be evaluated before || so we could have
written this last statement as
 isaPass = examMark>=50 || hasDp && examMark>=40

Also, as shown, the arithmetic operators take precedence over the boolean operators so
brackets are not needed and the comparisons will always be executed first before the
boolean results are combined using the boolean operators.
Eg. the bracket in this statement are not required (unlike many other languages)

isaPass = (examMark>=50) || hasDp && (examMark>=40)

Note that the form of and && and or || shown here are the "short-circuit" operators, which
means that the first operand is evaluated, and depending on the result, the second operand
may not be evaluated at all, because
• for a && b, if a is false, it means that the result will always be false so there is no need to

evaluate b.
• for a||b, if a is true, it means that the result will always be true so there is no need to

evaluate b.

This means it is quite valid to write an expression such as
 b!=0 && a/b>1;
because if b is zero the division will not be attempted since b!=0 will return false.

7.2 if-else Statements
The if-else statement is used to choose one of two alternative actions based on the result of
a boolean value.

c1

c1 : if num1>num2

else

output i
num1 is bigger

output i
num1 is smaller

If the boolean expression (num1>num2) evaluates to true then "num1 is bigger" is output,
otherwise "num1 is smaller" is output.

Selection page 7.3

Consider the following program

/*
* Illustrates a simple if-else statement
* --------------------------------------
*/
import Utilities.Keyboard;

public class SimpleIf
{
 public static void main(String[] args)
 {
 int num1,num2;

 System.out.print("Enter a number > ");
 num1 = Keyboard.getInt();
 System.out.print("Enter another number > ");
 num2 = Keyboard.getInt();

 // the selection
 if (num1>num2)
 System.out.println(num1+" is bigger than "+num2);
 else
 System.out.println(num1+" is smaller than "+num2);

 System.out.println();
 }
}

SimpleIf.java

The output from this program if 3 and 5 are entered is

Enter a number > 3
Enter another number > 5

3 is smaller than 5

and if 21 and 15 are entered the output is

Enter a number > 21
Enter another number > 15

21 is bigger than 15

If the condition tested is true, the statement(s) immediately following the condition are
executed (the then-part), if false the statements following the else are executed (the else-
part).

page 7.4 Intro Java

The form of the if-else statement is

IF STATEMENT
if (boolean expression)
 statement;
else
 statement;

As is usual, statement can either be a single statement in which case brackets are not
required, but if more than one statement needs to be executed for the then-part or else-part
they must be bracketed with { } to form a block.

The boolean expression may consist of any expression that returns a boolean value

• a simple expression of the type

 if (a%2==0)
 System.out.println(a+" is even");
 else
 System.out.println(a+" is odd");

• a more complex expression such as
 if ((let>='a' && let<='z') || (let>='A' && let<='Z'))
 System.out.println(let+" is a letter of the alphabet");
 else
 System.out.println(let+" is not a letter of the alphabet");

• a boolean variable which has had the result of a boolean operation stored in it such as

 boolean isaPass;
 isaPass = examMark>=50 || (hasDp && examMark>=40);
 if (isaPass)
 {
 System.out.println("Congratulations");
 numPass++;
 }
 else
 {
 System.out.println("Bad luck - try harder");
 numFail++;
 }

• the result of calling a method that returns a boolean value
 if (hasPassed(classMark,examMark))
 numPass++;
 else
 numFail++;

 static boolean hasPassed(double class; double exam)
 {
 boolean pass;
 :
 statements to assign true or false to pass
 :
 return pass;
 }

The else-part is optional - often we wish to do something if a condition is true but there is no
action required if it is false.

Selection page 7.5

For example, assume we are inputting 2 values and need make sure the larger value is in
the variable called big, and the smaller value is in the variable called small. So we input
the first value into big and the second into small, and if they are the wrong way round we
swap them, if not then nothing needs to be done:

c1

c1 : if big<small

input
big and small

swap i
big and small

.....
whatever

store 2 values

In Java:

 if (big<small)
 { // exchange the values
 int temp = big;
 big = small;
 small = temp;
 }
 … etc

IfnoElse.java

When using if statements it is important to consider whether all possible cases have been
catered for. For example, in out first example (SimpleIf.java), we determined which of 2
values input is larger. But what if they were the same - what would have happened then?

 if (num1>num2)
 System.out.println(num1+" is bigger than "+num2);
 else
 System.out.println(num1+" is smaller than "+num2);

The boolean expression (num1>num2) would return false so the else-part will be executed
and the output obtained would be (eg.)

9 is smaller than 9

This is clearly not what is wanted. The problem is that we were assuming that only 2 possible
cases existed - a number is either bigger or smaller that another - whereas there are in fact 3
cases - bigger, smaller or equal.

c1

c1 : if num1>num2

elsec2else

c2 : if num1<num2

output i
num1 is bigger

output i
num1 is smaller

output i
num1 is equal

In order to make decisions that involve more than 2 possibilities we use cascading ifs:

page 7.6 Intro Java

 if (num1>num2)
 System.out.println(num1+" is bigger than "+num2);
 else if (num1<num2)
 System.out.println(num1+" is smaller than "+num2);
 else // num1=num2
 System.out.println(num1+" is equal to "+num2);

The first if checks for the one possibility and if true the then-part is executed. If false one
possibility has been eliminated and the next if is contained in the else-part and checks a
second possibility, and so on. The last condition is the default because if a number is not
smaller or larger than another then it must be equal, so the last condition does not need a
test although the comment clarifies what state exists at this point and is helpful for the human
reader. Layout is important here, and helps the user to understand that a series of
successive, related conditions are being tested.

Another example that illustrates this clearly is classifying marks:

c1

c1 : if mark>=75

else

c2 : if mark>=60
c3 : if mark>=50
c4 : if mark>=40

c2

else c2

c4c3else elseelse

 output i
"first"

 output i
"second"

 output i
"third"

 output i
"supp"

 output i
"fail"

 if (mark>=75)
 System.out.println(mark+" is a first");
 else if (mark>=60)
 System.out.println(mark+" is a second");
 else if (mark>=50)
 System.out.println(mark+" is a third");
 else if (mark>=40)
 System.out.println(mark+" is a supp");
 else //mark<40
 System.out.println(mark+" is a fail");

part of ClassifyMark1.java

Note that the conditions are carefully ordered so that each eliminates a certain range of
values, and the statement that checks whether mark is over 50 can only be reached if it is
less than 60, thus establishing the range.
The following examples appear at first glance to be similar, but are incorrect:

 if (mark>=75)
 System.out.println(mark+" is a first");
 if (mark>=60)
 System.out.println(mark+" is a second");
 if (mark>=50)
 System.out.println(mark+" is a third");
 if (mark>=40)
 System.out.println(mark+" is a supp");

Selection page 7.7

 else //mark<40
 System.out.println(mark+" is a fail");

part of ClassifyMark1x.java

In this example the ifs are not contained within the else-part of the previous if so in fact are
completely independent tests. Eg, a mark of 80 would result in the following output

 80 is a first
 80 is a second
 80 is a third
 80 is a supp

because the all the if statements are executed and all the tests are true for a mark of 80.

This next example will not give an incorrect answer, but is clumsy and less efficient because
of the repeated testing involved.

 if (mark>=75)
 System.out.println(mark+" is a first");
 if (mark<75 && mark>=60)
 System.out.println(mark+" is a second");
 if (mark<60 && mark>=50)
 System.out.println(mark+" is a third");
 if (mark<50 && mark>=40)
 System.out.println(mark+" is a fail/supp");
 if (mark<40)
 System.out.println(mark+" is a fail");

Sometimes conditions contain sub-conditions, in which case a more "classic" type of nested
if can be used. For example, we want to count the number of passes and fails, and within
each category to classify them further:

c1

c1 : if mark>=50

c2

c2 : if mark>=75

else

c3else else

c3 : if mark>=40

input mark

increment
numPass

 output i
"excellent"

 output i
"good"

 process i
pass

increment
numFail

 output i
"try harder"

 output i
"deregister"

 process i
fail

classify marks

 // classify using nested ifs
 if (mark>=50) // a pass
 {
 numPass++;
 if (mark>=75)
 System.out.println(" Excellent!");
 else
 System.out.println(" Good");

page 7.8 Intro Java

 }
 else // a fail
 {
 mFail++; nu
 if (mark>=40)
 stem.out.println(" Try harder"); Sy
 else
 System.out.println(" Deregister");
 }

part of ClassifyMark2.java

1. Consider a program to output 3 numbers (say a,b,c) in ascending order.

The difficulty here is to keep track of where one is in the process of determining which
is smallest, next smallest, … etc. There are in fact 6 possible orderings:
 a b c a c b b a c b c a c a b c b a

The simplest approach is to determine which of 3 categories the values fall into (a
smallest, b smallest or c smallest) and then check further within each category.

c1

c1 : if a<=b and a<=c

c4

c2 : if b<=a and b<=c

else

c3 else

c3 : if b<=c

c2

elseelse c5

c5 : if a<=b
c4 : if a<=c

else

 output i
a b c

 output i
a c b

 a smallest i
check b,c

 output i
b a c

 output i
b c a

 b smallest i
check a,c

 output i
c a b

 output i
c b a

 c smallest i
check a,b

display
in order

2. Consider a program to draw either a square, a triangle or a pyramid out of stars. The

user must input which shape is wanted and also the size, which must be between 3
and 20.

 There are a number of approaches, all of which are valid

• enter the shape, if it is valid then enter the size, if that is valid then use successive
ifs to choose which shape to draw. (DrawShape1.java)

Selection page 7.9

c1

c3 : if shape = square

c2

c2 : if size>=3 and <=20

c3 c4

else

else

else

else

c4 : if shape = triangle
c5 : if shape = pyramid

c1 : if shape = square or pyramid or triangle

c5

input shape

draw square i draw triangle i draw pyramid i

select shape i output size
error message

input size i output shape
error message

display shape

page 7.10 Intro Java

• enter the shape and size, check both are valid, then use successive ifs to choose
which shape to draw. Here separate methods that return boolean values can be
used to do the actual validation, and make the main method much clearer and
simpler. (DrawShape2.java)

c1

c2 : if shape = square

c2

c1 : if shapeOK and sizeOK

c3

else

elseelse

c3 : if shape = triangle

input shape
and size

draw square i draw triangle i draw pyramid i

select shape i output general
error message

display shape

• enter the shape and size, if the size is valid then use successive ifs to select the

shape to draw, and if no match for a shape is found, then shape is not valid.
(DrawShape3.java)

c1

c2 : if shape = square

c2

c1 : if size>=3 and <=20

c3 c4

else

elseelseelse

c3 : if shape = triangle
c4 : if shape = pyramid

input shape
and size

draw square i draw triangle i draw pyramid i output shape
error message

select shape i output size
error message

display shape

Selection page 7.11

7.3 switch Statements
The if statement is a binary choice statement - it lets you choose between two possible
courses of action. Sometimes you want to choose between a number of possible values of a
variable, and successive if statements can become cumbersome and tedious - for example,
if we wanted to choose between displaying a square, circle, triangle, pyramid or rectangle we
would require a statement such as

 if (shape=='S' || shape=='s')
 DrawSquare(size);
 else if (shape=='T' || shape=='t')
 DrawTriangle(size);
 else if (shape=='C' || shape=='c')
 DrawCircle(size);
 else if (shape=='R' || shape=='r')
 DrawRectangle(size);
 else if (shape=='P' || shape=='p')
 DrawPyramid(size);
 else
 System.out.println("Error - invalid shape character");

In this case, where a choice is being made between specific values of a single variable an
alternate form of choice statement can be used - the switch statement.

 switch (shape)
 {
 case 'S':
 case 's': DrawSquare(size);
 break;
 case 'T':
 case 't': DrawTriangle(size);
 break;
 case 'C':
 case 'c': DrawCircle(size);
 break;
 case 'R':
 case 'r': DrawRectangle(size);
 break;
 case 'P':
 case 'p': DrawPyramid(size);
 break;
 default:
 System.out.println("Error - invalid shape character");
 }

The format of the switch statement is

SWITCH STATEMENT
switch (switch expression)
{ case value : statement; break;
 case value : statement; break;
 :
 default : statement;
}

page 7.12 Intro Java

The switch considers the value of the switch expression and tries to find a match among the
case values. If a match is found, then the corresponding statements are executed and the
break transfers control out of the switch. If no match is found, the statements following the
default keyword are executed.
Some points to note:

• the switch expression must be integer or character, no reals are allowed;

• the case values must be the same type as the switch expression;

• the case values may appear in any order, but may only appear once;

• each statement may have one or more case values which are specified each with the

word case and separated from the next case by a colon :
eg.

switch (digit)
 {
 case –1:
 case -3:
 case –5:
 case –7:
 case -9:
 System.out.println("Negative odd"); break;
 case 0:
 System.out.println("Zero"); break;
 case 1:
 case 3:
 case 5:
 case 7:
 case 9:
 System.out.println("Positive odd"); break;
 default:
 System.out.println("Even, or more than 1 digit");
 }

• the case values must be actual constant values - they may not be variables or ranges
eg.

case <0 : statement; break;
is not allowed, and nor is

 int ans;
 :
 case ans : statement; break;

because ans is a variable and only constant case values may be used

• the default statement is optional - if all the options have been dealt with in the case

values it can be omitted.

• statements may be compound and bracketed with { }
eg.

switch (month)
 { case 4: case6: case 9: case 11: // Apr,June,Sept,Nov
 numDays = 30; break;
 case 2: // Feb - check leap year
 { check = year%4;
 if (check=0)
 numDays = 29;

Selection page 7.13

 else
 numdays = 28;
 } break;
 default: numDays = 31; // all 31 day months
 }

page 7.14 Intro Java

• if the break is omitted, the program will "drop through" and execute the statements for
the next case as well

eg.
switch (letter)

 { case 'A': case 'E': case 'I': case 'O': case 'U':
 System.out.println("is an upper-case vowel");
 case 'a': case 'e': case 'I': case 'o': case 'u':
 System.out.println("is a lower-case vowel");
 default:
 System.out.println("is a consonant");
 }

if letter is 'E', the output from this switch will be
 is an upper-case vowel
 is a lower-case vowel
 is a consonant

As a simple example, consider a program that inputs a date of birth as three integers
representing day, month and year, and outputs it in full:

// output date in full
 System.out.print("The date is " + day + " ");
 switch (month)
 { case 1 : System.out.print("January"); break;
 case 2 : System.out.print("February"); break;
 case 3 : System.out.print("March"); break;
 case 4 : System.out.print("April"); break;
 case 5 : System.out.print("May"); break;
 case 6 : System.out.print("June"); break;
 case 7 : System.out.print("July"); break;
 case 8 : System.out.print("August"); break;
 case 9 : System.out.print("September"); break;
 case 10 : System.out.print("October"); break;
 case 11 : System.out.print("November"); break;
 case 12 : System.out.print("December"); break;
 default : System.out.print("*error*");
 }
 System.out.println(" " + year);

part of OutputDate.java

The output from this program is

Input a date as 3 integers:
 day (1-31) > 15
 month (1-12) > 9
 year (eg 1999) > 1999

The date is 15 September 1999

Using a switch rather than a succession of ifs improves a program by making it clearer and
easier to read; it emphasises that the choice depends on different values of the same
variable; and it shortens it by taking out repeated instances of the variable being tested. If the

Selection page 7.15

conditions are right - integer or character variable being tested which can take on a number
of different fixed values - then a switch statement should be used instead of successive ifs.

Exercises

7.1 Write a program that inputs the class mark and exam mark for a student and

determines whether or not he has passed the course. The requirement is that a student
must get at least 50% for the class mark and at least 40% for the exam mark, that the
class mark counts one third and the exam mark two thirds of the final mark, and the
final mark must be at least 50% for a pass.

7.2 Write a program that allows the user to enter a temperature and whether it is in

degrees Fahrenheit (F) or degrees Centigrade (C), and then converts it to the other
and displays the result with a suitable message.

° ° × ° ° ×F = C + 32 C = (F - 32) 5
9

9
5

7.3 Write a program that inputs four numbers in any order and displays them in ascending

order.

7.4 Write a program that inputs a circle (the co-ordinates of the centre and the radius) and

a point (its co-ordinates), and determines if the point lies inside the circle, on its
circumference, or outside the circle. Run your program using the circle centred at (2,3)
with radius 5, and check the points (6,6); (1,-3) and (0,0).
(Hint: compare the distance from the point to the centre of the circle, with the radius)

7.5 Write a program that will input the co-ordinates of three points and determine whether

or not they lie on a straight line. Run your program with the sets of points
(1,1); (4,8.5); (-3,-9.5); and (1,4); (4,1) and (-3.5,8.5)

(Hint: the lines between any two pairs of points must have equal gradients)

7.6 Write a program that reads in a date as three integer values representing day, month

and year (4digits eg 1999), and checks whether it is a valid date.
Note: Jan, March, May, July, Aug, Oct, Dec have 31 days;

April, June, Sept and Nov have 30 days;
Feb has 28 days, except for a leap year (year is divisible by 4) which has 29 days.

7.7 There is a method in the Math package called random() that will return a (double)

random number between 0.0 and 1.0. To use it to generate a number between 0 and
100 you could use a statement such as

randomNo = 100*Math.random();
or for an integer,

randomInt = (int)Math.round(100*Math.random());

Write a program that you could use to test a child's arithmetic, by generating a sum
involving integers between 0 and 10, display it and ask the user to input the answer,
then check whether the answer is correct.

page 7.16 Intro Java

7.8 Modify the program you wrote for question 5.6 to find the roots of a quadratic equation,
by determining before calculating the roots whether the equation has
• no real roots (b2-4ac is negative)
• one real root (b2-4ac is zero)
• two real roots (b2-4ac is positive)
Appropriate messages should be output in each case.

Test your program with the following equations:

4x2 - 28x + 49 = 0
3x2 + x + 1 = 0
-x2 + 3.5x - 17 = 0
-x2 + 4.8x -3.45 = 0

7.9 Write a program which reads in the lengths of three lines and determines:

• whether or not they can form a triangle (the length of the longest side (x) must be
less than the sum of the lengths of the two shorter sides (y and z)).

• if the sides can form a triangle, what sort of triangle (may fit into more than one
category)
• right angled (use Pythagorus: x2 = y2 + z2)
• acute angled (x2 < y2 + z2)
• obtuse angled (x2 > y2 + z2)
• equilateral (all 3 sides equal length)
• isosceles (2 sides equal length)
• scalene (no two sides the same length)

Use boolean variables and methods where necessary.

8. Repetition

In many instances you need to repeat a sequence of instructions a number of times, for
example, read in marks for 20 students, or display the square roots of all numbers between 1
and 100. Another type of loop is where you want to repeat some actions but don't know
exactly how many times, for example, input marks and stop when a negative mark is
entered, or while the user enters the wrong answer output an error message and ask them to
try again. The first type is called fixed or counting repetition because you know in advance
how many times to iterate; the second type is conditional repetition because the loop is
repeated while set of circumstances exists. We will consider counting repetition using for
loops here; conditional repetition will be covered in chapter 9.

8.1 Simple for loops
Consider the following simple program which lists the numbers between 1 and 10:

/*
* Displays a range of numbers
* ---------------------------
*/
public class NumberLoop
{
 public static void main(String[] args)
 {
 System.out.println();

 // the loop
 for (int num=1;num<=10;num++)
 {
 System.out.println(num);
 } // end of loop

 System.out.println();
 }
}

 NumberLoop.java

The output generated by this program is

1
2
3
4
5
6
7
8
9
10

page 8.2 Intro Java

The statement that controls the looping is the for statement
for (int num=1;num<=10;num++)
{ … }

The way this loop is interpreted is
• the loop control variable (num) is initialised to 1
• as long as num is less than or equal to 10 the statements in the curly brackets are

executed (the println statement outputs num)
• after each execution of these statements, num is incremented by 1
• the last 2 steps are repeated until num exceeds 10, and then execution continues to the

statement following the loop.

If the for statement is changed to

for (int num=5;num<=12;num++)
{
 System.out.println(num);
}

then the numbers 5, 6, 7, … 11, 12 will be output.

And if the for statement is changed to

for (int num=-3;num<=3;num++)
{
 System.out.println(num);
}

then the numbers -3, -2, -1, 0, 1, 2, 3 will be output.

More formally, a for loop consists of 4 parts:

FOR LOOP
for (initialise; check; update)
{ body
}

The initialise part introduces a loop variable which "controls" the number of repetitions of the
loop. It often has the form
 int identifier = initial value
although other types of loops are also possible.
Eg. int num=1; defines the loop variable num and assigns it the initial value of 1

The check part provides for the termination of the loop. It compare the loop control variable
to some final limiting value and repeats the loop until it reaches that value.
Eg. num<=10; allows the loop to continue until num is over 10

The update part specifies the value by which the loop control variable is to be updated each
iteration. In the example here we use a form of assignment we haven't encountered so far,
but which is an extremely convenient shorthand notation:
 num++ is equivalent to num = num+1
Technically, any statement that changes the value of num can be used here but assignments
of this nature are most often used.

Repetition page 8.3

Other shorthand forms of the assignment statement are

INCREMENT AND DECREMENT ASSIGNMENTS
variable ++ add one to variable
variable –- subtract 1 from variable
variable += expression add value of expr to variable
variable -= expression subtract value of expr from variable

For example,
 count ++ is equivalent to count = count-1
 down -- is equivalent to down = down-1
 inTwos += 2 is equivalent to inTwos = inTwos+2
 less -= 5 is equivalent to less = less-5

The loop body is contained within curly brackets and consists of all the statements that are to
be repeated. Each statement within the loop body is executed first with the initial value of the
loop variable, then they are all re-executed with the next value, then with the next, … and so
on until the final terminating value is reached. The one exception to this is if the terminating
condition is false initially, when the loop body will not be executed at all.

In this loop:
 for (index=10; index<=1; index--)
index is initialised to 10, the terminating condition is checked and found to be false so the
loop body is not executed at all and execution continues at the next statement after the loop
body.

 Always remember that the sequence of events in the execution of a for loop is

• initialise
• check
• execute body } if condition
• update } holds true
• check
• execute body } if condition
• update } is still true
• check
 …… etc until the check fails

If the loop body consists of only a single statement then the curly brackets are not required -
for example

 for (int num=1;num<=10;num++)
 System.out.println(num);

In the example above, the loop variable was "used" in the statements of the loop body - it
was displayed. This is not a requirement - the loop variable merely counts through the
iterations. For example, consider this loop which outputs "Hello" a number of times:

for (int count=0;count<3;count++)
 System.out.println("Hello");

The output produced is
 Hello

Hello
 Hello

page 8.4 Intro Java

In this example count is initialised to zero and the loop repeats while count is less than 3 -
in other words a total of 3 times (0,1,2). This form is often used (initialising to 0 and looping
while less than the number of iterations required) when the value of the loop variable is not of
significance and we are merely repeating some statements "n times". When we work with
arrays (later) an array holding 10 elements is indexed 0 to 9 so this range of loop variable
values is particularly appropriate.

As another example, consider the following program which asks how many students are in
the class, reads in their test marks and calculates the class average.

c1

c1 : for st from 1 to numStudents

input number
in class

input mark add to total

process each *
student's mark

calc class
average

Display
results

Calculate average
test mark

The method that uses a for loop to process each student in turn is shown below:

static double ProcessStudentMarks(int numSt)
//-------------------------------
// For each student, inputs a mark and adds it to the total.
// After all marks entered, calculates the average
{
 double mark; // a student's mark
 double total = 0; // the running total
 double av; // the average mark

 for (int st=1;st<=numSt;st++)
 {
 System.out.print(" Enter the mark for student "+st+" > ");
 mark = Keyboard.getDouble();
 total += mark; // add mark to total
 } // end of loop

 av = total/numSt;
 return av;
}

part of ClassAverage.java

The variable mark is used to input each students mark in turn. Once it has been added to the
running total there is no further need to store an individual student's mark so it is used again
for the next mark. Only one variable is needed to input as many marks as are required.
Notice the use of the loop variable st to annotate the request for input.

Repetition page 8.5

The output from this program is

Calculation of average test mark for a class
--

How many students wrote the test? 5

 Enter the mark for student 1 > 34
 Enter the mark for student 2 > 100
 Enter the mark for student 3 > 66
 Enter the mark for student 4 > 50
 Enter the mark for student 5 > 45

The class average for the 5 students is 59.0

Some other examples using if statements:

1. Consider the problem of finding the smallest (or largest) of a sequence of numbers that

are input one by one.

The way to solve this is to remember the smallest number so far, and as each number
is input to compare it to the smallest-so-far and if it is smaller we can replace the
smallest-so-far with the number just input. How do we start the whole process? There
are 2 possible ways:

• the first number input is obviously the smallest-so-far (it is the only number so far!)

so we store the first number as the smallest-so-far, and then process all the other
numbers in a loop. (FindSmall1.java)

c1

c2 : if number<smallest

c2

c1 : from 2 to numValues

input number
of values

input first number,
store in smallest

 store number i
in smallest

 input, check *
each number

output
smallest

find smallest number

page 8.6 Intro Java

• if we know the range of the numbers (eg. they are all positive, or are between -100
and +100) so that we can identify an upper limit, we can pre-load that as the
smallest-so-far, because we know that the first value input has to be smaller than it
so will replace it. Then all the numbers can be processed in a loop.

 (FindSmall2.java)

c1

c2 : if number<smallest

c2

c1 : from 1 to numValues

input number
of values

store upper limit
in smallest

 store number i
in smallest

 input, check *
each number

output
smallest

find smallest number

As an example of using an update value other than a simple increment, consider a variation
on the compound interest program used in Chapter 4:
 Write a program to calculate the result of investing a sum of money (Amt) at a given

interest rate (r%) for a number of years (P), where P varies in 5 year intervals between 5
and 25 years.

c1

c1 : for year from 5 to 25 step 5

Display heading Input amount
and rate

calc final amount display result

 calc final amount *
for 5-25 years in 5s

Calculate compound interest

The loop required is

 System.out.println(" years final amount");
 System.out.println(" ----- ------------");

// loop to calculate the final amount for different periods
 for (int years=5;years<=25;years+=5)
 {
 finalAmt = amount * Math.pow((100+rate)/100,years);
 System.out.println(Formatter.format(years,9)
 + Formatter.format(finalAmt,16,2));
 }

part of CompInterest3.java

The loop variable years steps through 5 to 25 in intervals of 5, and for each value the final
amount is calculated and displayed. In order for the output to appear neatly, a heading for

Repetition page 8.7

the columns of output should be displayed before executing the loop - you only want the
heading displayed once, not each time a new value is calculated.
The output obtained from the full program is

Enter initial amount > R1000
Enter interest rate (%) > 15

 years final amount
 ----- ------------
 5 2011.36
 10 4045.56
 15 8137.60
 20 16366.54
 25 32918.95

As a final example of a simple loop, this one counting backwards, consider a program to
output the words of the well-known song
 There were 10 in the bed and the little one said "Roll over, roll over"
 So they all rolled over and the one fell out.
 There were 9 in the bed …… etc

c1

c1 : for verse from 10 down to 2

display heading

output first line
with count

output next line

 output verses *
10 down to 2

output final
verse

Output song

Because the last verse is different to the others, the loop must output the lines of verses
10,9,…,2 and the last verse must be output after the loop.

// loop to output the verses
 for (int verse=10;verse>1;verse--)
 {
 System.out.println("There were "+ verse +" in the bed and "
 + "the little one said\n \"Roll over, roll over\"");
 System.out.println("So they all rolled over and "
 + "the one fell out.\n");
 }

// output final lines
 System.out.println("There was 1 in the bed and "
 + "the little one said\n \"Goodnight, sleep tight!\"");
 System.out.println();

part of TenInBed.java

Notice the use of the escape character (\) to output the quotation marks in the text.

page 8.8 Intro Java

The last portion of the output of this program is

There were 3 in the bed and the little one said
 "Roll over, roll over"
So they all rolled over and the one fell out.

There were 2 in the bed and the little one said
 "Roll over, roll over"
So they all rolled over and the one fell out.

There was 1 in the bed and the little one said
 "Goodnight, sleep tight!"

In these for loops the loop control variable has been declared in the for loop
 for (int num=0; num<10; num++)

As a result its scope is limited to the for loop block and it can not be used outside this block.
If you need to be able to access the loop variable after the for loop then it must be declared
with the other variables at the beginning of the method and not in the for loop itself. Then its
scope will be the entire method, not just the loop body.

For example,

 for (int years=5; years<=25; years+=5)
 { statements };
 System.out.println("The last period used was " + years);

will result in the compilation error
 Undefined variable: years

while the code

 int years;
 for (years=5; years<=25; years+=5)
 { statements };
 System.out.println("The last period used was " + years);

will compile and execute correctly.

Repetition page 8.9

8.2 Nested loops
Assume we want to write program to display a triangle of stars such as

 *
 **

where the size of the triangle is input.

If the size was fixed -eg 4 - we could write program consisting merely of println
statements such as

 System.out.println("*");
 System.out.println("**");
 System.out.println("***");
 System.out.println("****");

This won't work for an arbitrary size of triangle.
If we consider this more closely we notice that in line 1 we need to output 1 star, in line 2 we
need to output 2 stars, in line 3 we need to output 3 … etc. Can we somehow use this
relationship to produce the triangle?

If we use a for loop to output the lines we could have something like

c1

c1 : for lineno from 1 to size

input size display a *
line of stars

Display triangle

This could be written as

 System.out.println("What size triangle do you want? ");
 size = Keyboard.getInt();
 for (int lineno=1;lineno<=size;lineno++)
 {
 display lineno stars on 1 line;
 }

Now we need to decide how to display exactly lineno stars on each line.

The easiest way is to use another for loop, that will repeat lineno times and displays 1 star
each time.

page 8.10 Intro Java

c1

c1 : for lineno from 1 to size

c2 : for count from 1 to lineno

c2

input size

output a star * go to next line

 display a *
line of stars

Display triangle

This gives us the final program to input the size and draw a triangle of stars of that size:

public static void main(String[] args)
{
 int size; // the size triangle to draw

 System.out.println("What size triangle do you want? ");
 size = Keyboard.getInt();
 System.out.println();

 // loop through the lines
 for (int lineno=1;lineno<=size;lineno++)
 {
 for (int count=1;count<=lineno;count++)
 System.out.print('*'); // output a star lineno times
 System.out.println(); // go to next line
 }
}

Triangle.java

This system of a loop within a loop is called a nested loop. For each iteration of the outer
loop the nested (inner) loop is executed. Notice that a print statement (not a println) is used
to output each star so they appear on the same line, and that an explicit println is used after
the inner for loop to move to the next line before the end of the outer loop is reached, thus
ensuring that each line of stars appears on a separate line.

The output displayed by this program for a size of 4 is

What size triangle do you want? 4

*
**

Repetition page 8.11

To illustrate the point that each statement in the inner loop is executed for each iteration of
the inner loop, and the inner loop is executed for each iteration of the outer loop, consider the
following code fragment:

int count = 0;
for (int outer=1;outer<=10;outer++)
{
 for (int inner=1;inner<=6;inner++)
 count++
}
System.out.println(count);

What value of count will be output?
Make sure you understand why you get the answer (60).

Nested loops aren't limited to just one level - they can be nested as deep as is necessary.
The same principles apply - the outer loop is executed for the specified number of iterations,
and any loop contained within the outer loop is executed the specified number of times for
each repetition of the outer loop, and any loop contained within the inner loop is executed the
specified number of times for each iteration of the inner loop (which is executed each
iteration of the outer loop) …… etc.

So if we extend the previous example what value of count will now be output?

int count = 0;
for (int outer=1;outer<=10;outer++)
{
 for (int inner=1;inner<=6;inner++)
 {
 for (int innest= 1;innest<=4;innest++)
 count++
 }
}
System.out.println(count);

Make sure you understand why you get the answer (240).

Consider a program to generate a multiplication table that can be used to look up the product
of any two integers between 1 and 9. The type of output required is:

 1 2 3 .. 9

 1: 1 2 3 9
 2: 2 4 6 18
 3: 3 6 9 27
 :
 9: 9 18 27 81

Notice that as well as the 9x9 table of products, you also need to display labels for the
columns and rows.

page 8.12 Intro Java

c1

c2 : for row from 1 to 9
c3 : for col from 1 to 9

c3

c2

c1 : for col from 1 to 9

 output *
col number

output column
headings

output row
number

 output *
product

go to next
line

output row *
of table

Display multiplication
table

So in the program itself the first thing to do is to output the column headings which involves a
loop to display each column number. Then we can write the row loop which displays the row
number as a label, then loops through all the columns in the row and displays the product,
then goes to the next line. Formatting must be used so that the columns line up nicely and
the whole effect is pleasing.

 System.out.println("Multiplication Table");
 System.out.println("--------------------");
 System.out.println();

 // output column headings
 System.out.print(" "); // space for row labels
 for (int col=1;col<=9;col++) // output column labels
 {
 System.out.print(Formatter.format(col,5));
 }
 System.out.println(); // go to next line
 System.out.println(); // leave a line

 // loop through the rows
 for (int row=1;row<=9;row++) // for each row
 { // output row label
 System.out.print(Formatter.format(row,5)+":");
 for (int col=1;col<=9;col++) // output product
 {
 System.out.print(Formatter.format(row*col,5));
 }
 System.out.println(); // go to next line
 } // end of row loop

MultiplyTable.java

Repetition page 8.13

The output displayed by this program is

Multiplication Table

 1 2 3 4 5 6 7 8 9

 1: 1 2 3 4 5 6 7 8 9
 2: 2 4 6 8 10 12 14 16 18
 3: 3 6 9 12 15 18 21 24 27
 4: 4 8 12 16 20 24 28 32 36
 5: 5 10 15 20 25 30 35 40 45
 6: 6 12 18 24 30 36 42 48 54
 7: 7 14 21 28 35 42 49 56 63
 8: 8 16 24 32 40 48 56 64 72
 9: 9 18 27 36 45 54 63 72 81

8.3 Loops using other datatypes
All the loops we've used so far have been written with integer loop variables. In fact you can
write loops using any appropriate simple data type. In particular, real number loops and
character loops can be useful at times.

A loop that will display the letters in the alphabet is

 for (char letter='A';letter<='Z';letter++)
 System.out.print(letter+" ");

and a loop that will display all characters whose codes are between 'A' and 'z'
(AlphaLoop.java) is

 for (char ch='A';ch<='z';ch++)
 System.out.print(ch);

A loop that will sum all the numbers between 1.4 and 2.5 in steps of 0.1
(RealLoop.java) is

 for (double num=1.4;num<=2.5;num+=0.1)
 {
 System.out.println(num);
 sum = sum+num;
 }
 System.out.println(sum);

However the output from this is somewhat surprising for 2 reasons: firstly the extra decimals
that are output, and secondly, the fact that the loop stops at 2.4 instead of continuing to 2.5.

page 8.14 Intro Java

 1.4
 1.5
 1.6
 1.7000000000000002
 1.8000000000000003
 1.9000000000000004
 2.0000000000000004
 2.1000000000000005
 2.2000000000000006
 2.3000000000000007
 2.400000000000001

 20.900000000000002

The reasons are that not all decimal fractions can be represented exactly in a finite number
of bits, 0.1 being one of these values. So when 0.1 is added to num each iteration it is
actually a value slightly larger than 0.1 that is being used which starts to have an effect after
a few iterations. We can do away with the extra decimal places by using formatting to display
only 1 decimal place, but that will not solve the second problem. The loop terminates early as
a result of the additional value being added each iteration. The terminating condition is
 num<=2.5;
but when we expect num to be 2.4 it is in fact slightly larger than 2.4, so incrementing by 0.1
will make num larger than 2.5, the check will return false and execution will cease one
iteration too soon.

This illustrates that extreme care must be taken when dealing with decimal fractions and the
programmer should always be aware of the potential for rounding errors. However, if the loop
variable is a real number that is incremented by an integer amount then there is generally no
problem.

 for (double real=1.5;real<100;real++)

One thing you must never do with a for loop is change the value of the loop control variable
yourself. The whole point to using a for loop is that you want to iterate a certain number of
times, and that is what any other reader of your program expects. The for loop itself will
update the value of the loop control variable and control the number of iterations. An
example of what I mean is

 // count in twos
 for (int count=1;count<20;count++)
 {

 count = count+1;
 System.out.println(count);
 }

In this loop count is initialised to 1, and the loop body is executed which increments count to
2 and this is output. The for loop now increments count to 3, the loop body is executed and
count is incremented to 4 … etc. The overall effect is to execute the loop 10 times and output
the numbers 2, 4, .. 20. However, without studying the loop body closely the impression the
reader gains is that this loop will run from 1 to 19 in increments of 1.

It does work, but it is extremely poor programming.

Repetition page 8.15

Exercises

7.1 Write a program to calculate and display the sum of the series

1
2

1
3

1
4

1
N...+ + + +

where the value N is input. Display your answer to 4 decimal places.

7.2 You have been told that the sum of a series of numbers 1+2+3+4+5+…+n can be

calculated as n(n+1)/2. You want to check if this is in fact so. Write a program to read
in some number N and to display the sum 1+2+3+…+N, and also the result of
N(N+1)/2.

7.3 Write a program to read in N followed by N values, and to output each number, the

running total, and the average value to date.

7.4 Write a program to input 2 real numbers and to output the squares and square roots of

the numbers in the range from the first value in increments of 1. Make sure your output
is neatly tabulated with suitable headings.

7.5 Write a program to input an integer number N, and to output all the bonds of N. For

example, if N=5, your program should output
Bonds of 5
0 + 5 = 5
1 + 4 = 5
2 + 3 = 5
3 + 2 = 5
4 + 1 = 5
5 + 0 = 5

7.6 Write a program to display all the integers between 10 and 59 by generating the tens

and units values separately. Your output should display the numbers 10..19 on the first
line, 20..29 on the next, … etc.

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
:
50 51 52 53 54 55 56 57 58 59

7.7 Write a program to input a size and to display an upside-down triangle of that size

Eg. for size = 4

**
*

7.8 Write a program to input a size and to display a triangle of that size with a straight right

edge as shown below (size =4)

*
**

page 8.16 Intro Java

7.9 Write a program to draw a number of triangles N of a given size (N and size both input)
across the page as shown (N=3, size=4)

* * *
** ** **
*** *** ***
**** **** ****

Hint: This program involves 3 levels of loops - to draw a row of a single triangle - repeated N

times across the page - for size rows

7.10 A useful rule of thumb is the "rule of 72" : if the annual interest rate is R% then a fixed

sum of money will double in value in a period of 72/R years. (For example, if the
interest rate is 12% it will take roughly 6 years for an investment to double).

Write a program to test the accuracy of this rule by tabulating, for each value of R from 1 to

36 the values of R, 72/R, and the actual time using the formula

years = 2

(100 +R
100

ln)

Your results should be neatly tabulated with suitable headings, and all fractions should be
rounded to 1 decimal place.

7.11 Write a program to output the words of the song

1 men went to mow, went to mow a meadow,
1 man and his dog, went to mow a meadow.

2 men went to mow, went to mow a meadow,
2 men,
1 man and his dog, went to mow a meadow.

3 men went to mow, went to mow a meadow,
3 men,
2 men,
1 man and his dog, went to mow a meadow

… etc
for up to 9 men, using 2 nested loops in your solution.

7.12 Write a program to output a table (to 1 decimal place) showing the fuel required for a

journey of 100 to 1000 km (in 100 km steps) at speeds of 60, 70, 80, 90 or 100kph.
Your output should be neatly tabulated with appropriate headings.

Fuel consumption (in km/litre) is given by

consumption = 12

1+ speed - 80
speed

⎛
⎝⎜

⎞
⎠⎟

2

7.13 If an amount of money Amt earns R% interest over a period of P years, then at the end

of that period the resulting amount will be

 total = Amt 100 +R
100

P

× ⎛
⎝⎜

⎞
⎠⎟

 Write a program to calculate and display a table showing the resultant amount if a sum
of R1000.00 is invested at 10%, 12%, 14%, 16%, 18%, 20% for periods of 1 through
20 years. Your results should be neatly tabulated with suitable headings.

max, min, 2 max etc

Repetition page 8.17

7.1 In an ice skating competition, a mark between 0 and 10 is awarded by each of N

judges (N>2). The mark awarded to a competitor is obtained by discarding the highest
and lowest of the N marks and averaging the remainder. Write a program which inputs
N followed by the N marks and outputs the mark obtained.

Extend your program by doing simple input validation. If N is 2 or less, don't input any marks.

If a mark is negative use 0 instead, and if a mark is over 10 use 10 instead.

7.2 Write a program that will input a positive number and display all its factors. Try and

make your program as efficient as possible.

9. Conditional Loops

Repetition or looping was introduced in chapter 7 - there we dealt with for loops that repeat a
sequence of actions a pre-determined number of times. The other type of loops are those
where you don't know in advance how many iterations are needed - they are determined by
the state of events during the execution of the loop. Such conditional loops are
characterised by having a condition that is tested, either at the beginning or the end of the
loop, that determines whether or not to repeat the sequence of actions. The two forms of
conditional loops are while loops, where the condition is stated and tested before the
sequence of actions is executed, and do-while loops where the condition is stated and
tested after the sequence of actions has been executed.

9.1 while Loops
Assume we need to read in and average a number of test marks but we don't know exactly
how many students wrote the test. It is possible to count all the scripts, and write a program
that reads in the number of tests and then uses a for-do loop to input and add up the marks,
but this is tedious and prone to error. Another solution is to signal that the last test mark has
been input by adding an extra dummy mark at the end that has an impossible value - say -
999, and write a program that watches for that value and recognises that the end has been
reached when that mark is input. Such a program using a while loop is:

c1

c1 : while mark not -999

input first
mark

increment count add mark to total input next mark

process mark, *
get next one

calc class
average

display
results

Calculate average
test mark

// Enter first mark
 System.out.print(" Enter mark for student 1 ");
 mark = Keyboard.getDouble();

 while (mark!=-999)
 {
 countSt++; // increment count of students who wrote
 total += mark; // add mark to total
 // get the next mark
 System.out.print(" Enter mark for student "+(countSt+1));
 mark = Keyboard.getDouble();
 } // end of while loop

 classAv = total/countSt;

AvMarkWhile.java

page 9.2 Intro Java

The program asks for the first mark to be input, and then commences the while loop which
first tests that the mark is not -999 (ie. it is a valid mark) and then increments the count of
students (needed to compute the average), adds the mark to the running total and asks for
the next mark to be entered. The output from this program is

Calculation of average test mark for a class
--
 (use -999 to signal the end of the marks)

 Enter the mark for student 1 > 50
 Enter the mark for student 2 > 60
 Enter the mark for student 3 > 70
 Enter the mark for student 4 > 80
 Enter the mark for student 5 > -999

The class average for the 4 students is 65.0

WHILE LOOP
while (boolean expression)
{
 body
}

This is interpreted as

“while the condition holds true execute the statements in the loop body”.

The crucial point here is that the boolean expression is evaluated first and if it holds true the
statements in the loop body are executed, then the condition is evaluated again and if it is
true the body is executed again, and so on until the condition is false when execution
continues with the next statement after the loop body. A while loop is a "test-at-the-
beginning" loop, and the possibility exists that if the condition is initially false the loop will not
be executed at all.

There are a number of requirements when using a while loop:

• the variables used in the boolean expression must be initialised so that a valid check

can be done initially, otherwise the loop may be working on incorrect or undefined
information.

 For example, in the AvMarkWhile.java, if the first mark is not input outside the loop
then the test may fail initially because mark is undefined.

 And initialising mark to 0 when it is declared won't help either, because then an invalid
value is used for the first mark. (AvMarkWhileX1.java)

• the values of variables used in the expression must be changed inside the loop body -

if they are not changed the condition can never become false and the loop will never
terminate. If the getDouble is omitted in AvMarkWhile.java then a new mark will
never be input and the condition will be tested with the first mark each time, and
because it is not -999 the loop will never end. (AvMarkWhileX2.java) When running
this program use the "stop run" icon at the right of the Kawa toolbar to stop the infinite loop.

Conditional Loops page 9.3

• the values of the variables are usually changed as the last statements in the loop body
so that the new values are tested in the boolean expression before they are used to
ensure that the loop conditions still hold. Asking for a new mark at the beginning of the
loop before the statement to add the mark to the running total will mean that -999 will
be included in that total. (AvMarkWhileX3.java)

• it must be possible for the loop to terminate eventually. If -999 is never entered then the

program will continue to ask for marks indefinitely. Its often a good idea to output the
condition for termination to assist the user.

Another common use of a while loop is for ensuring that only valid data is entered. To extend
the previous example, assume that the mark entered must be a valid percentage in the range
0-100%, unless of course it is the sentinel value.

c1

c1 : while mark not -999 && (mark<0 || mark>100)

input a mark

output error message input new mark

check valid *

Input valid mark

When planning a conditional loop, you should always check that the requirements have been
satisfied:
• condition variables are initialised: yes - a mark is entered before the loop
• condition variables are changed inside the loop: yes - a new mark is input
• condition variables are changed after any other processing in the loop: yes - the last

statement is the input statement
• the loop will eventually terminate: hopefully the user will enter a valid mark

The Java code is

// input mark
 System.out.print(" Enter % mark for student "+num+" > ");
 mark = Keyboard.getDouble();

// check it is valid and keep asking to re-enter till it is
 while (mark!=-999 && (mark<0 || mark>100))
 { // only gets here if it is invalid
 System.out.print(" invalid mark - please re-enter > ");
 mark = Keyboard.getDouble();
 }

part of ValidMarkWhile.java

The while loop tests the condition at the beginning and only enters the loop if the condition
holds true, so the condition in this while statement tests for an invalid mark, and if it returns
false (ie. the mark is valid) then the loop body is not executed, but if it returns true the loop
body is entered and the user is prompted to re-enter the mark.

Running this program gives

page 9.4 Intro Java

Calculation of average test mark for a class
--
 (use -999 to signal the end of the marks)

 Enter % mark for student 1 > 60
 Enter % mark for student 2 > -10
 invalid mark - please re-enter > 70
 Enter % mark for student 3 > 110
 invalid mark - please re-enter > -1
 invalid mark - please re-enter > 80
 Enter % mark for student 4 > -998
 invalid mark - please re-enter > 999
 invalid mark - please re-enter > -999

The class average for the 3 students is 70.0

he first mark input is 60 which is valid so the test is false and the loop body is not executed.

 common mistake is to use an if statement instead of a while (ValidMarkWhileX.java):

if (mark!=-999 && (mark<0 || mark>100))
id

e re-enter > ");

hi allows a single invalid mark to be entered each time, and will accept the second

 Enter % mark for student 1 > -10

T
The next mark is -10 which is out of range so the test returns true and the loop body is
entered to display the error and allow the mark to be re-entered. This time a valid mark is
input so execution continues with the next statements. The third mark entered is 110 which is
out of range so the user is prompted to re-enter, again an invalid mark (-1) is input so the
user is prompted to re-enter, and only once a valid mark is input does the program continue.
Finally two more invalid marks are entered and rejected before the program accepts the
sentinel value and the program ends.

A

 { // only gets here if it is inval

y e . S st m out.print(" invalid mark - pleas
 mark = Keyboard.getDouble();
 }

T s only
mark entered without checking whether or not it is OK.

 invalid mark - please re-enter > 60
 Enter % mark for student 2 > -1
 invalid mark - please re-enter > 110
 Enter % mark for student 3 > -999

 The class average for the 2 students is 85.0

 this example, the invalid mark of 110 is accepted because no checking is done on the In

second value entered.

Conditional Loops page 9.5

As another example of using a while loop, consider the problem of inputting any (positive)
integer value and calculating the sum of its digits.

Eg. if 1234 is entered the program must calculate the sum 1+2+3+4 = 10

We cannot use a for-loop because we don't know how many digits there are in the number.
The easiest way to solve this is to split off the low-order digit (eg. giving 123 and 4) and add it
to a running total, and to keep doing this until all the digits have been split off in which case
the number is left as 0.

Considering the number 1234, we will have

 number digit sum
 initially: 1234 0
 123 4 4
 12 3 7
 1 2 9
 0 1 10

So the condition for our loop to keep going must be while the number is >0 , and in the loop
we split off the low-order digit (remainder after integer division by 10), add it to the total, and
replace the number with what is left (integer division by 10).

c1

c1 : while number > 0

input number,
ensure positive

split off digit
digit = num%10

add digit to sum
sum += digit

replace number
num = num/10

split off and *
add digits

output sum

Calculate
sum of digits

Check that the requirements have been satisfied:

• condition variables are initialised: yes - a number is entered before the loop
• condition variables are changed at the end of the loop: yes - number is replaced with

num/10 as the last statement
• the loop will eventually terminate: yes - number is positive and is decreasing by a factor

of 10 each iteration so will eventually reach 0

page 9.6 Intro Java

// Enter number
 System.out.print("Enter an integer value > ");
 num = Keyboard.getInt();
 num = Math.abs(num); // work with positive value

// loop to split off and add digits
 while (num>0)
 {
 digit = num % 10; // split off low-order digit
 sum += digit; // add it to sum
 num = num/10; // replace num with remaining value
 }
 System.out.println("The sum of its digits is " + sum);

AddDigitsWhile.java

Depending on the requirements of the situation, a positive value can be ensured by using a
while loop to enforce the input of a positive number (similar to the previous example), or
merely using the absolute value of the number entered as is done here.

The output from this program is

Calculation of sum of digits

Enter an integer value > 520174
The sum of its digits is 19

9.2 do-while Loops
The conditional loop that tests the condition after the loop body has been executed is the do-
while loop. It has the property that the loop body is executed before the condition is checked,
and hence this loop is always executed at least once. This means that the condition variables
do not need to be initialised before the loop, but because the condition is only checked at the
end, care must be taken not to process unwanted values.

Consider the program we had initially to average a sequence of numbers terminating with a
sentinel value:

Conditional Loops page 9.7

c1

c1 : do-while mark not -999

c2

c2 : if mark not -999

input mark

increment count add mark to total

process mark *

input and *
process mark

calc class
average

display
results

Calculate average
test mark

The mark is input at the beginning of the do-while loop, but since it might be the sentinel
value its processing must be guarded with an if statement to ensure that the sentinel value is
not included in the total.

// Loop to process marks
 do
 { System.out.print(" Enter mark for student "+(countSt+1));
 mark = Keyboard.getDouble();

 if (mark!=-999) // if not sentinel value
 {
 countSt++; // increment count of students who wrote
 total += mark; // add mark to total
 }
 } while (mark!=-999); // check condition and end if false

 classAv = total/countSt;

part of MarkAvDo.java

The output from this program is:

Calculation of average test mark for a class
--
 (use -999 to signal the end of the marks)

 Enter the mark for student 1 > 80
 Enter the mark for student 2 > 50
 Enter the mark for student 3 > 50
 Enter the mark for student 4 > -999

The class average for the 3 students is 60.0

page 9.8 Intro Java

Alternatively, the program could be structured similarly to that used with the while loop, with
initialisation outside the loop and the next mark input at the end of the loop body, but in this
case you must be certain that at least 2 marks are input, one valid mark and the sentinel
value, since the loop will always be executed at least once (MarkAvDo2.java). It seems far
safer just to use a while loop.

The format of a do-while loop is

DO-WHILE LOOP
do
{
 body
} while (boolean expression)

Note that the curly brackets { and } are required even if the body consist of just one
statement.

The requirements when using a do-while loop are similar to those for a while loop:

• the values of variables used in the expression must be changed inside the loop body - if

they are not changed the condition can never become false and the loop will never
terminate.

• it must be possible for the loop to terminate eventually.

• care must be taken to ensure that the loop can validly execute at least once, and that

terminating values of condition variables are not inadvertently processed.

Considering the second while loop example - ensuring valid marks are input - it does not
make sense to use a do-while loop because if valid data is entered you do not want to
execute the loop body even once to ask for the data to be re-entered. A while loop is far
better suited here.

The third while loop example - adding the digits of a number - can be successfully rewritten
as a do-while loop, since in most cases a non-zero value is entered so we need to execute
the loop body at least once, and even if zero is entered the digit split off is zero so the correct
answer (0) is still obtained:

c1

c1 : do-while number > 0

input number,
ensure positive

split off digit
digit = num%10

add digit to sum
sum += digit

replace number
num = num/10

split off and *
add digits

output sum

Calculate
sum of digits

Conditional Loops page 9.9

// loop to split off and add digits
 do
 {
 digit = num % 10; // split off low-order digit
 sum += digit; // add it to sum
 num = num/10; // replace num with remaining value }
while (num>0);

part of AddDigitsDo.java

Exercises

9.1 Write a program that inputs a number of single digits and combines them into an

integer value. The end of the digits is signalled with a negative value.
 For example, inputting

 2
 3
 4
 -1

 would result in the value 234 being output.

9.2 Write a program to determine how many terms of the series

 1 + + + + ...1
2

1
3

1
4

 are needed before the total first exceeds 5.

9.3 Modify your solution to exercise 8.10 (ice skating scores) to ensure that the number of

judges N is input as >2, and that all the scores are input as numbers between 0 and
10.

9.4 A common test for divisibility by 3 is to add the digits of a number, then the digits of the

sum, then the digits of this sum, … and so on till a single digit sum is obtained. If this
value is 3, 6, or 9 then the original number is divisible by 3. Write a method that uses
this test to determine whether the integer value passed as parameter is divisible by 3.
Then use this method in a program that inputs a number and determines whether it is
divisible by 3 or 6 (even and divisible by 3).

9.5 An iterative formula for estimating the square root of a positive number value is

 guess = 1
2

(guess + value
guessn+1 n

n
)

 Write a program that reads in value and uses this iterative method to find the square
root. The iteration should continue until the difference between successive
approximations is <10-3. Your program must ensure that value is positive. Use
value/2 as your initial guess.

9.6 Write a method IsaPrime that determines whether or not the integer number passed

as parameter is a prime number (has no factors other than 1 and itself). Use this
method in a program to display all prime numbers between 1 and 100.

page 9.10 Intro Java

9.7 Using your IsaPrime method, find the first value of n for which n2-n+41 is not a
prime. (n= 0,1,2,…)

9.8 The highest common factor (HCF) of two positive integers is defined as

 HCF(A,B) = A if A=B
 = HCF(A-B,B) if A>B
 = HCF(B,A) if A<B

 So to find the HCF iteratively, repeated subtract the smaller number from the larger

number until the two become equal.

Write a program that inputs 2 positive numbers (ensure they are positive) and
calculates their HCF as described above.

10. Classes and Objects

Object oriented programming focuses on a program as a group of inter-relating objects or
"things". With the procedural, top-down approach, we focused on what needs to be done and
how to do it. While this still has a role to play in defining the functionality of objects, the main
emphasis in object oriented programming is what are the objects, what are their properties or
attributes, what behaviour or capabilities do they have, and how do they inter-relate and
interact with other objects.

10.1 An introduction to objects, classes, members and constructors
To start with, what is an object? Objects are all around us. Things such as people, cars,
pencils, clocks, books … are all objects. Each of these has certain properties or attributes,
each has the ability to perform certain actions and these actions may have an effect on other
objects in the world. Object oriented programming is a style of programming that views a
system as consisting of a number of objects that interact with each other. The role of the
programmer is to define the objects in a system, identify their attributes and the actions they
can perform and how they interact with each other. Object-oriented programming is about
designing objects that all work together to accomplish a particular task.

In procedural (top-down) programming the approach is to tackle a problem by breaking it
down into its component subproblems, and then to write a procedure or method to deal with
each of these. Its intuitive and orderly and effective for solving complex problems. The focus
is on “what needs to be done”, and then “how do we do it”.

In object oriented programming the system is viewed as consisting as a number of
interacting objects and the primary focus in on the definition of the entities or objects in the
system. We need to consider what they are like and what they can do. Each object is an
instance of self-contained entity (class) with its own properties and behaviours. We then write
an application program that uses these objects to achieve some result or effect. The
application program creates (instantiates) the objects and specifies how they must interact.

When designing objects we more correctly are designing classes. A class is a blueprint or
template which defines the general characteristics of a class of objects. On the other hand,
an object is a concrete realisation of a particular instance of a class.

For example, consider a Car class.
The properties (attributes) of a car may include
• its make and model,
• its colour,
• its engine capacity,
• its maximum speed,
• the capacity of its fuel tank
• its odometer reading,
• its mass ……etc

The behaviours or functionality it may have include the ability
• to calculate its fuel consumption,
• to calculate the time it will take to travel a certain distance,
• to update its odometer reading,
• to determine how far it can travel before it runs out of petrol …… etc.

page 10.2 Intro Java

These would be the attributes and methods defined for a general Car class. Each instance of
a car will have its own particular values for each of these attributes.

Assume we need to have three cars in a program. We would then create (instantiate) three
car objects using our general Car class as a template, and supply them each with their
individual attribute values.

Car myCar = new Car(“Renault Megane”,silver,1600,195,...);
 Car hisCar = new Car(“Toyota Hilux”,red,3000,180,...);
 Car mikesCar = new Car(“Ferrari F2002”,red,3000,500,...);

The three objects all have exactly the same kinds of attributes each with their own unique
values, and have exactly the same kinds of functionality although the results will vary
depending on the individual attribute values (for example, fuel consumption is dependant on
engine capacity, distance before it runs out of petrol is dependant on fuel consumption and
petrol tank capacity.)

When designing classes of objects you don’t need to include all possible attributes of the
object – only those that a relevant to the task at hand or may be useful if the object is to be
extended. There should always be some form of identification attribute, even if it doesn’t
appear to be immediately required. For example, considering the car Class above, other
possible attributes are purchase price, number of gears, boot capacity, but the last two are
unlikely to be relevant in a fleet management system where the user is concerned with the
costs of owning vehicles, but may be relevant in a car dealer system where information about
the physical characteristics of each car is needed. You have to make a value judgement
about what is relevant and what is not for each class you are designing.

There are a number of important characteristics of object oriented programming:

• Encapsulation: objects are self-contained modules containing the information and the

means to perform given tasks. Each object knows the values of its own attributes and
how to perform its own functions.

• Interface: each object must know exactly what its interface is and how it interacts with
the outside world. It knows what information it can receive from outside (and what to do
with it), and it knows what information it can make available to the outside world and
how to do so.

• Information hiding: details of internal data and variables and exactly how it
accomplishes its task are hidden from the user. All object design should be on the
principle of “need to know”. This enables objects to be written in the most efficient
manner (which is not necessarily the most user-friendly, hence a good interface is
essential), and for this internal representation to be changed should circumstances
warrant it without requiring every program that uses the object to be rewritten.

• Generality: objects should be designed to be as general as possible so they can be
used in a number of different situations. In other words, objects should be designed not
for a particular task but for a particular kind of task.

• Extensibility: Objects can be extended or refined to handle related or more
specialised tasks (inheritance).

Classes and Objects page 10.3

Object oriented programming isn’t just applicable to large complex systems consisting of a
number of interacting objects. The principles of object orientation can be applied to simple
problems of the kind dealt with in introductory programming classes.

Recall an example to find the roots of a quadratic equation, ax2 + bx + c = 0 using

 − ± −b b 4ac
2a

2

The earlier approach focused on the processes that were necessary - input the coefficients,
calculate the roots, display the result. In contrast, an object oriented approach focuses on the
objects, their attributes and behaviours.

What is an object in this case? A quadratic equation, of course.
What are its properties or attributes? Its coefficients.
What behaviour or capabilities should it have? The ability to display itself; the ability to
determine whether it has real roots; the ability to calculate and display these roots.

(There are obviously many possibilities and permutations - for example the roots may be
considered an attribute, we may wish the object (quadratic equation) to be able to make its
various attributes available for something else to use or display.)

The quadratic equation class must describe the properties and capabilities of the objects the
program has to deal with and serves as a "blueprint" or description of all quadratic equations
- that there are three coefficients, that the way to check for roots is to examine the
discriminant, and that roots are calculated using this expression. Then for each specific
quadratic equation we have a quadratic equation object, which is a concrete realisation of the
class, and has actual values of the coefficients. We can have many quadratic equation
objects, all instances of the quadratic equation class.

In our quadratic equation class we need to provide space for attributes that will store the
values of the coefficients, and we need to write methods to carry out the functions required of
the class. This class is an independent, stand-alone entity, that defines an "object-type" that
can be used in other programs (classes). Other classes that use this quadratic equation
class will create instances of quadratic-equation objects that have the full functionality of the
class - in other words, each instance of a quadratic equation that is created can store its
coefficients, display itself, determine how many real roots it has, and calculate them.

The quadratic equation class is shown on the next page:

page 10.4 Intro Java

class QuadEq
/* The quadratic equation class
 * ----------------------------
 * that will display itself, determine the number of roots,
 * and calculate the roots if not imaginary
 */
{
// attributes
//-----------
 private double a,b,c; // coefficients of the equation

 QuadEq (double aa, double bb, double cc)
//------
// constructor - stores coefficient values in the attributes
 { a = aa;
 b = bb;
 c = cc;
 }

 void Display()
//--------------
// Displays the equation
 {
 System.out.print(a+ "x^2 + " +b+ "x + " +c+ " = 0");
 }

 int NumRoots()
//-------------
// determines number of real roots
 {
 double disc = b*b-4*a*c;
 if (disc < 0) return 0;
 else if (disc == 0) return 1;
 else return 2;
 }

 double GetRoot1()
//-----------------
// calculates one root of the equation.
 {
 if (NumRoots()>=0)
 return ((-b + Math.sqrt(b*b - 4*a*c))/(2*a));
 else
 return 0;
 }

 double GetRoot2()
//---------------- calculates the second root of the equation
 {
 if (NumRoots()>=0)
 return ((-b - Math.sqrt(b*b - 4*a*c))/(2*a));
 else
 return 0;
 }
}

class QuadEq in SolveQuadEg.java
The class SolveQuadEq performs the task of inputting the values of the coefficients for a
particular equation, creating an instance of a quadratic equation with those coefficients,
displaying this equation, checking whether it has real roots and if so, displaying them.

Classes and Objects page 10.5

class SolveQuadEq
//---------------
/* The driver class that inputs the values of the coefficients,
 * creates a quadratic equation object with these coefficients,
 * displays it, checks for real roots, and displays them.
 */
{
 public static void main(String[] args)
 {
 double aa,bb,cc; // the 3 numbers to be input

// input three values
 System.out.print(" Enter coefficient of x^2 (a) > ");
 aa = Keyboard.getDouble();
 System.out.print(" Enter coefficient of x (b) > ");
 bb = Keyboard.getDouble();
 System.out.print(" Enter constant (c) > ");
 cc = Keyboard.getDouble();
 System.out.println();

// instantiate and use QuadEq class

 // create object called myEq
 QuadEq myEq = new QuadEq(aa,bb,cc);

 System.out.print("The quadratic equation ");
 lass's Display method to display myEq // invoke the c
 myEq.Display();

 // invoke the class's Numroots method to determine
 // how many roots myEq has
 switch (myEq.NumRoots())
 {
 // no roots - display a message
 case 0 : System.out.println("\nhas no real roots");
 break;

 // one root - invoke GetRoot1 method to calculate it
 case 1 : System.out.println("\nhas one real root, " +
 myEq.GetRoot1());
 break;

 // two roots - invoke GetRoot1 and GetRoot2 methods
 case 2 : System.out.println("\nhas two real roots, " +
 myEq.GetRoot1() + " and " + myEq.GetRoot2());
 break;
 }

 System.out.println();
 }
}

SolveQuadEq.java

page 10.6 Intro Java

An instance of a quadratic equation object is created in the statement
QuadEq myEq = new QuadEq(aa,bb,cc);

The first QuadEq indicates that the object is of class QuadEq (in the same way as we declare
an integer variable using int num;). The identifier chosen for this instance of the class is
myEq, and the = new is the signal to create a new instance of the class type QuadEq, and
to provide 3 values to that instantiation process, in this case the values of the coefficients. In
most cases the class used for declaring the object is the same as the one for creating the
instance, although there are times when it need not be so.

In this example we only need a single quadratic equation so only one object, myEq, is
instantiated. If it was necessary to have a number of equations they would be instantiated
and given unique identifiers
 QuadEq myEq = new QuadEq(1,-5,6);
 QuadEq yourEq = new QuadEq(2,-6,5);
 QuadEq herEq = new QuadEq(1,1,-6);

Each object instantiated has all the attributes and capabilities of its parent class. The
attributes are known as fields, and can be variables or other objects; the capabilities are
known as methods. Both the fields and methods of a class are called it members.

Methods of a class can reference and manipulate the fields of that class, and can also
declare their own fields which are then local to that method and are not accessible to other
methods, even in the same class. For example, NumRoots has a local field, a double
variable called disc. Methods may have their own inner classes, declared for their own
specific purpose, but may not have their own local methods.

As another example of a simple class, consider a Time class. This class has fields, hour
and min, defined using the 24 hour clock, and methods to set the time, to display the time in
either 12 or 24 hour format, and to update a time by a number of minutes.

class Time
/* The time class
 * --------------
 * can be set to a specific value, will display itself in
 * 12 or 24 hour format, and update itself by a number of mins
 */
{
// attributes
//-----------
 private int hour,min; // the hour and minute values

 void SetTime(int h, int m)
//-------------
// sets the current time to h hours and m mins.
// Ensures they are always valid values
 {
 hour = h;
 min = m;
 MakeValid();
 }

Classes and Objects page 10.7

 void Update(int m)
//------------
// Updates the time by m minutes
 {
 min = min+m;
 MakeValid();
 }

 void Show12()
//-------------
// Displays the time in 12 hour format
 {
 char amORpm;

 if (hour<12) amORpm = 'a';
 else amORpm = 'p';

 if (hour>0 && hour<=12)
 System.out.print(hour + ":");
 else if (hour>12)
 System.out.print(hour-12 + ":");
 else // hour==0
 System.out.print("12:");
 if (min<10) System.out.print("0");
 System.out.print(min + " " + amORpm + "m");
 }

 void Show24()
//-------------
// Displays the time in 24 hour format
 {
 if (hour<10) System.out.print("0");
 System.out.print(hour + "h");
 if (min<10) System.out.print("0");
 System.out.print(min);
 }

 private void MakeValid()
// private method that checks that the hour is between 0-23
// and the mins between 0-59 and adjusts if necessary
 {
 while (min>59)
 { min = min-60;
 hour = hour+1;
 }
 while (min<0)
 { min = min+60;
 hour = hour-1;
 }
 while (hour>23)
 hour = hour-24;
 while (hour<0)
 hour = hour+24;
 }
}

class Time in TimeDemo.java

page 10.8 Intro Java

The driver program that uses this class is very straightforward, and merely instantiates two
time objects, lecture and lunch, displays them when are created, then sets them to
specific values, displays them, updates them and displays them again.

class TimeDemo
//---------------
/* The driver class to demonstrate using the Time class.
 * It creates two time objects, sets them to different times,
 * displays one in 12 hour and the other in 24 hour format,
 * updates them by different amounts and displays them again
 */
{
 public static void main(String[] args)
 {

// display a heading
 System.out.println();
 System.out.println("Playing with time");
 System.out.println("-----------------");
 System.out.println();

// create time objects
 Time lecture = new Time();
 Time lunch = new Time();

// invoke the show methods to display the initial contents
 System.out.print("Times as created: " + "\n lecture is ");
 lecture.Show24();
 System.out.print(" and lunch is ");
 lunch.Show24();
 System.out.println("\n");

// set lecture time to time of first lecture
 lecture.SetTime(7,45);
 First lecture starts at "); System.out.print("
 lecture.Show12();
 nd ends at "); System.out.print(" a
 lecture.Update(45);
 lecture.Show24();
 System.out.println();

// set lunch time to time of lunch break
 lunch.SetTime(12,10);
 ("Lunch break is at "); System.out.print
 lunch.Show12();
 System.out.print(" and ends at ");
 lunch.Update(55);
 lunch.Show24();
 System.out.println();
 }
}

TimeDemo.java

Classes and Objects page 10.9

The methods of a class define its capabilities, and are available for every object created from
that class. We need to be able to specify which object we want a method to apply to - for
example, which time to display. This is done by prefixing the method with the name of the
object whose field we want to access.

Hence we have
 lecture.SetTime(7,45);
 lunch.UpdateTime(55); etc.

In the first case the SetTime method will store the values of its parameters in the variables
hour and min of the lecture object, which are quite distinct and separate from the hour and
min variables of the lunch object. And even though we only used one quadratic equation
object in the previous example, we still need to specify precisely which object we are using
and prefix the method with the object name
 myEq.NumRoots();

When a program is executed and the declaration of an object is reached, that object is
created. At this point a special method called a constructor is called automatically by Java.
If no constructor has been defined then all that happens is space is reserved for the objects
data values (class Time had no constructor). If a constructor has been defined then its
statements are executed. A constructor has the same name as the class, for example, in
class QuadEq a constructor,

QuadEq (double aa, double bb, double cc)
was defined.
When the object myEq was created,
 QuadEq myEq = new QuadEq(aa,bb,cc);
the values supplied were used by the constructor to initialise the data variables.

A class may have more than one constructor, all with the same name as the class but with
different numbers and/or types of parameters. Then when the object is declared, the
constructor whose parameter list matches the arguments supplied, is used. For example,
class Time could have had the following constructors defined:

 Time()
//------
// constructor - initialise to default value - midnight
 {
 hour = 0;
 min = 0;
 }

 Time (int time24)
//----------------
// constructor - initialise time using the 24 hour format
 {
 int hh,mm;

 hh = time24/100; // separate out hours and minutes
 mm = time24 % 100;
 SetTime(hh,mm); // use this method as it stores the
 } // values and checks they are valid

page 10.10 Intro Java

 Time (int hh, int mm)
//---------------------
// constructor - provide initial values for hour and min
 {
 SetTime(hh,mm); // use this method as it stores the
 } // values and checks they are valid

and the statements to create the time objects could be

 Time lecture = new Time(2035);
 Time lunch = new Time(06,75);

The first statement to declare lecture supplies a single integer value so would use the
second constructor, while the declaration of lunch uses the third constructor and supplies
two integer values.

The following diagram which clearly illustrates the terminology for the parts of a program is
from the book Java Gently, by Judy Bishop:

 A program

 consists of

 classes

 consist of

 members

 are

 fields methods

 are are

 variables objects void typed

 declared with consist of

 types classes
 constructors parameters fields statements inner
 classes
 are are are

 special typed fields invocation
 methods assignment
 repetition
 selection
 exception

Classes and Objects page 10.11

10.2 Java packages, classes and objects

Java itself is a relatively simple language, but in addition to the built in data types, keywords
and controls (the base language) it also provides a large number of ready-built classes which
can be used by any program. When writing a program, rather than having to write every
class you might need from scratch, many can be taken from class libraries or packages. This
saves considerable time and effort, and also gives you well designed and thoroughly tested
classes and objects.

The Java programming language and its packages are intimately connected - the language
cannot be used without the packages and some classes are directly recognised and used by
the Java language. For example, the lang package contains the classes Math (with
methods Math.sqrt; Math.pow and many others) and System (with field System.out
which is an object of class type PrintStream which has method println).
(Hence the statement

System.out.println();
actually means

"execute the println method with the out object (the standard output device)
of the System class".)

Because the lang package is fundamental to the Java language it is always accessible, but
other packages (including those you or someone else may have written) need to be
specifically made available to your program.

PACKAGE ACCESS
import java.package.*;
import java.package.class;
import mypackage.*;

To use one of the Java class libraries we use one of the first two forms. The asterisk
indicates that all classes in the package should be accessible, or we can be more selective
and choose just one by specifying the class name.
Eg.
 import java.util.*;
or
 import java.util.Random;

Similarly for packages written yourself, or by another user
Eg.
 import Utilities.*;
or
 import Utilities.Keyboard;
 import Utilities.Formatter;
(Utilities is a package written by Prof Sartori-Angus to provide for simple keyboard input and
formatting of output.)

Java only imports the parts of the package that are actually used and there is no
performance degradation in importing the whole package using *.

To become a competent Java programmer, you will need to become familiar with the
packages and classes available. The presence of so many classes is intended to, and does,

page 10.12 Intro Java

encourage reusability. There is no point in re-inventing a class that already exists or that can
be extended (more later). The supposed down-side is that programmers have to spend time
learning the classes, but the packages are an integral part of the language and Java is not
just the base language. The documentation on all the Java packages is provided as online
and fully cross-linked and indexed HTML documents. For example, the Date class in the
util package is designed to represent dates and times. An extract from the HTML
documentation is shown below:

public class Date

The class Date represents a specific instant in time, with millisecond precision.

CONSTRUCTORS
• Date()
Allocates a Date object and initializes it so that it represents the time at which it was allocated

measured to the nearest millisecond.
• Date(long)
Allocates a Date object and initializes it to represent the specified number of milliseconds since

January 1, 1970, 00:00:00 GMT.

METHODS
• after(Date)
 Tests if this date is after the specified date.
• before(Date)
 Tests if this date is before the specified date.
• compareTo(Date)
 Compares two dates for ordering.
• compareTo(Object)
 Compares this date to another Object.
• equals(Object)
 Compares two dates for equality.
• getTime()
Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this

date.
• setTime(long)
Sets this date to represent the specified number of milliseconds since January 1, 1970 00:00:00

GMT.
• toString()
 Creates a canonical string representation of the date.

As well as listing the fields and methods, further detail of their declaration and function is
given, eg

setTime

public void setTime(long time)

Sets this date to represent the specified number of milliseconds since January 1, 1970 00:00:00

GMT.

 Parameters:
 time - the number of milliseconds.

A simple program that uses this class is shown here.

Classes and Objects page 10.13

/*
* Demonstration of Java's Date class
* ---
*/
import java.util.*;

public class DateDemo
{
 public static void main(String[] args)
 {
 // create a new Date object
 Date now = new Date();

 // output current time
 System.out.println("\nCurrent time is " + now);

 // update by a billion milliseconds
 long newTime = now.getTime() + 1000000000;
 now.setTime(newTime);

 // output updated time
 System.out.println("Updated time is " + now);

 System.out.println();
 }
}

DateDemo.java

The import statement specifies that the util package must be available so that its Date
class can be used. An instance of a Date object is created (now), and displayed. Println
automatically calls the toString method to convert now to a string which it can output.
Then the getTime method is called to get the time value stored for now, a value is added to
it and setTime is called to store this new value for now. Finally now is displayed again.

The output from this program is

Current time is Thu Nov 19 08:58:48 GMT+00:00 1998
Updated time is Mon Nov 30 22:45:28 GMT+00:00 1998

Originally the Date class was more complex and had methods for getting and setting hours,
months etc individually. These functions have now been taken over by the Calendar class
which we will look at in more detail later.

page 10.14 Intro Java

10.3 Designing classes
Methods are a means of grouping statements, while classes are a means of grouping
methods. In particular, we group together methods that serve a common purpose or are
concerned with providing the same type of function. For example, the Math class in Java
provides mathematical methods, the Date class provides methods for representing dates
and times, and the QuadEq class written earlier in this chapter serves the purpose of solving
quadratic equations.

The design of a class in terms of the methods and data it provides is the cornerstone of
object-oriented programming, and central to the way Java is intended to be used. When
designing classes, there are some very important considerations to be borne in mind:

• Cohesion. A class should be concerned with a single physical entity or set of similar

operations. For example, the Calendar class manipulates dates and times.

• Separation of concerns. Even for a single entity you can have several related classes

rather than one class, for example, Date merely caters for storing and comparing dates,
Calendar focuses on their representation and manipulation of the component parts, and
formatting and output of dates is handled in another class, DateFormat in the text
package.

• Information hiding. A class should reveal to its user only that which it needs to reveal

and no more. In this way the data can be protected from misuse, and the class can
operate on a secure basis. Methods can also be hidden from the user if they are for use
only within the class itself. In my example class Time, the hour and minute fields
(hour,min) are declared as private to prevent unauthorised access by a user of this
class, and the method MakeValid is also private as it is not needed by users of the
class but provides a function within the class in ensuring that only valid data is stored in
the hour and min fields.

• Data access via methods. This follows on from the previous point, in that if a data field

is hidden from the user to prevent inappropriate changes, there must be some means
provided so that the user can access it if necessary. Most classes provide get and set
methods for retrieving and storing values in its data fields. This forces the user to access
the fields using the provided methods only, and preserves the security and integrity of the
data fields. Examples are the SetTime method in my example Time class (notice the
call to private method MakeValid to ensure that the values stored are in range), and
Date's getTime and setTime methods.

• Object initialisation. When an object is created, it is efficient to set up initial values so

these can be used later. These can either be default values, or values supplied as
parameters by the user. These values are then always available with the object and do
not have to be supplied repeatedly as parameters. For example, when an instance of a
Date is created it is initialised with the current date and time. If you allow an object to be
created without initial values and rely on the user to set the values the possibility exists
that the object may be used before values have been stored.

Classes and Objects page 10.15

• Data Integrity. It is a basic premise when dealing with objects that they should hold valid
data. This is something that you as designer of a class must ensure so that the users
(and the methods you write for the class) do not have to keep checking the data values
before they are used - the mere fact that they are stored in the class fields should imply
they are valid. For example, a date such as 31 Feb should not be stored. Such attempts
to store invalid data should be rejected - possibly by returning error codes or setting error
flags - and default values stored so that if the user does not check his errors at least the
programs will not crash because of illegal values. This is not always relevant - for
example, all values for the coefficients in QuadEq are possible.

• Program defensively. Defensive programming involves anticipating errors and catering

for them. ("If anything can go wrong, it will".) You need cover all situations to ensure that
every part of the program behaves sensibly, even in the face of unexpected
circumstances. One of the ways to achieve this is to work on a principle of minimal
access - just allow the user access to what they need, don't create unnecessary
variables, control the access to class attributes and make available only those methods
the user needs to use.

Bearing these points in mind, how do you go about writing a program using classes?

1. Determine the User Requirements
This involves finding out exactly what the program is supposed to do. There is a strong
temptation to jump straight in and start writing code - resist it or you could end up with a
program that doesn't do what it is supposed to and then have to try and modify it which often
ends up as a complete mess.

You need to think carefully about the program, how it is likely to be used, what output is
expected and what inputs will be needed to produce this output, what extensions might be
required, what generalisations are possible

2. Analysis
This is about building a model of the system using classes and class relationships. This
involves identifying the classes that will be needed by the program. How do we go about
identifying classes? By a process of brain-storming, applying common sense, and searching
the requirements. For large scale systems some more formal analysis approach may also be
used, but these are usually adequate for small-scale problems.

The classes we want are those that represent the key abstractions in the program - the
things, entities, roles, strategies and data structures. For each class, a list of attributes and
public methods need to be identified. The relationships between classes must also be
considered.

A class diagram which gives a pictorial view of the classes and their relationships is a useful
output from this phase.

page 10.16 Intro Java

3. Design and Coding
Design is about refining the results of analysis to the point where code can be written, while
coding is the act of actually writing the code. In large-scale systems these are treated as
completely distinct steps, but with small programs these are often rolled into one step. In
effect, the design is documented by writing and commenting Java source code.

The design process involves writing a Java class for each design class, deciding on a type
for each attribute, declaring each method including parameters and the return type, and then
writing each method body to achieve its specified purpose. As code is written, design
decisions and implementation choices and decisions should be commented in the code
where needed. Before putting effort into writing a class it is worth checking whether there is
an existing class, either from a library or from a previous program, that can be used.

4. Testing
Classes need to be tested to ensure they behave as expected. This can often be
conveniently done by giving each class a static main method specifically for testing the
behaviour of the class. Testing should try to initialise new objects and check they have a
valid state, and call each method with appropriate arguments and check the results.

5. Review and iterate
These steps all take place in the framework of iterative development. When you design
classes, you may discover an error or oversight in the analysis stage; when you code you
may realise that something is wrong with the design; and naturally, testing may expose flaws
in analysis, design and coding. When correcting errors it is important to consider the impact
of the correction on the full program - too often fixing one error will cause another. In some
cases, a full redesign and rewrite may be needed; in others the problem may be more
localised.

A useful approach is to start the coding and testing phases simply - develop a minimal
program, maybe just initialisation and output (set and get), and make sure that works
correctly, then add functionality bit by bit until the entire system is developed.

Even when the program appears complete it is important to pause and review it in
conjunction with the user requirements - does it actually achieve what is required? Often the
full implications of the requirements and design do not become apparent until an attempt at a
solution has been made.

Classes and Objects page 10.17

1.4 Examples
As an example of an object oriented design, consider another program we had before (Intro
to Java) to calculate the yield of grain from a field:

A farmer has a rectangular field that is L metres long and W metres wide. He grows
maize in this field, and his costs (seed, fertilizer, labour) are Rand C per square metre.
He gets a yield of Y kg of maize per square metre. If maize is currently selling for Rand M
per tonne (1000 kg), what profit does he get from this field?

 Write a program that reads in values for L, W, Y, C and M and determines his profit.

The requirements are clearly specified here, so the first step is to identify the classes, their
attributes and behaviour.

We can use a class to represent the field.
What are its attributes? - its length and width are obvious choices.
And methods? - to calculate and return the area in square metres.
What about setAttribute and getAttribute methods? - the field size is not
going to change so the values need only be set at initialisation, and
there appears to be no need in this application to access the field dimensions.

Field
| length |
| width |
getArea()

Another class in this example is maize - or more generally, the crop. Crop

| costs |
| yield |
| sellPrice |
getProfit()

Attributes? - costs, yield, selling price
Methods? - to calculate and return the profit per square metre
setAttribute and getAttribute methods? - for this simple application not
needed, although one can see a case for them in a larger application.

The coordinating class (our program), has then to create a field object
(myField), create a crop object (mealies), and use them to determine
the profit from growing that crop in the field.

Farming
myField : Field
mealies : Crop
main

The class diagram gives a pictorial view of the classes and their relationships, and is very
helpful in seeing the overall picture.

Farming
myField : Field
mealies : Crop
main

Field
| length |
| width |
getArea()

Crop
| costs |
| yield |
| sellPrice |
getProfit()

The notation used here for depicting classes is a modification of the UML notation. It uses
rectangles to denote classes, with connecting lines and annotations to denote class
relationships. Within a class rectangle, the first section gives the class name, the next
section lists the attributes and the last section lists the methods. Private fields and methods
are enclosed in vertical lines (eg | costs |), and objects are underlined and their classes are
given.

page 10.18 Intro Java

The complete program thus consists of 3 classes - the crop class, the field class and the co-
ordinating class which contains the main method.

For the field class, we need to decide what data types our attributes need to be, write a
constructor that will store the values supplied when the object is instantiated in the object's
attributes, and design and write a method that will use the attributes to determine the area of
the field. In this case this is trivial - multiply length by width.

class Field
/* The field class
 * ---------------
 * that stores the field dimensions, and will
 * calculate and return the area
 */
{
// attributes
//-----------------------------
 private double length,width; // dimensions in metres
//-----------------------------

 Field (double len, double wid)
 // constructor - stores the dimension attributes
 { length = len;
 width = wid;
 }

 double getArea()
 // calculates the area of the field in square metres
 {
 return length*width;
 }
}

class Field in Farming.java

For the crop class, we need to decide what data types our attributes need to be, write a
constructor that will store the values supplied when the object is instantiated in the object's
attributes, and design and write a method that will use the attributes to determine crop's profit
per square metre. We do this by calculating the income per square metre by multiplying yield
by price per sq metre, and then subtracting the costs. Note this method uses a local variable,
income.

Classes and Objects page 10.19

class Crop
/* The class representing a crop
 * -----------------------------
 * that stores the costs, yield and selling price of the crop
 * and will calculate and return the profit per sq metre
 */
{
// attributes
//-------------------------
 private double costs, // cost per sq m
 yield, // yield in kg per sq m
 sellPrice; // selling price in R per tonne
//-------------------------

 Crop (double c, double y, double p)
 // constructor - stores values in the crop attributes
 { costs = c;
 yield = y;
 sellPrice = p;
 }

 double getProfit()
 // calculates the profit in R per sq metre
 {
 double income = yield * sellPrice/1000; // income per sq m
 return income - costs;
 }
}

 class Crop in Farming.java

The co-ordinating class instantiates the objects it needs and uses them to calculate the total
profit. Its design is

Input field
size and

crop values

Create field
object and
calc area

Create mealie
object and calc
profit per sq.m

Calc total
profit

Display
results

Determine profit

Note that this co-ordinating class must have a main method, and may have other methods if
necessary (as may any class). It is good style to declare all the data fields (variables and
objects) that are required together at the beginning of the method.

page 10.20 Intro Java

class Farming
/*
* The co-ordinating class, containing the main method which
* instantiates a field and a crop, and determines the field
* area, the crop profit and hence the overall profit.
{
 public static void main(String[] args)
 {
// data fields for this class
//---------------------
 double L,W,C,Y,M; // the values to be input
 Crop mealies; // the crop object to be created
 Field myField; // the field object to be created
 double area; // field area in sq m
 double profit; // crop profit per sq m
 double totalProfit; // overall profit from this field
//----------------------

// display a heading < not shown >

// input the required values
 System.out.print(" Enter field length (m) > ");
 L = Keyboard.getDouble();
 System.out.print(" and width (m) > ");
 W = Keyboard.getDouble();
 System.out.print(" Enter crop costs (R/sq m) > ");
 C = Keyboard.getDouble();
 System.out.print(" Enter crop yield (kg/sq m) > ");
 Y = Keyboard.getDouble();
 System.out.print(" Enter selling price (R/tonne) > ");
 M = Keyboard.getDouble();
 System.out.println();

// create a Field object
 myField = new Field(L,W);
// determine the area
 area = myField.getArea();

// create a Crop object
 mealies = new Crop(C,Y,M);
// determine the profit
 profit = mealies.getProfit();

// calculate total profit
 totalProfit = area * profit;

// Display results
 System.out.println("The field of " + area +
 " sq m earns a profit of R" +
 Formatter.format(profit,1,2) + " per sq m ");
 System.out.println("Overall profit is R" +
 Formatter.format(totalProfit,1,2));
 }
}

class Farming in Farming.java
One can immediately see possible extensions - for example, instantiate a number of objects
for different crops and compare them to see which is most profitable.

Classes and Objects page 10.21

To modify this program to cater for two crops is simple. Classes Field and Crop are
unchanged, just Farming is altered to instantiate a second crop object (wheat) which is
used in the same manner as mealies.

Input field
size

Create field
object and
calc area

Input
mealie
values

Create mealie
object and calc
profit per sq.m

Calc total
profit and

display results

Process
mealies

Input
wheat
values

Create wheat
object and calc
profit per sq.m

Calc total
profit and

display results

Process
wheat

Determine profit

It would probably have been better to use a method to input the crop values and do the
calculations and call that method twice from main, but I wanted to illustrate using more than
one instance of the same class in a method.

// Instantiate and use a crop object

 // input values for mealies
 : <code omitted>
 // create a Crop object
 mealies = new Crop(C,Y,M);
 // determine the profit
 profit = mealies.getProfit();
 totalProfit = area * profit;
 // Display results for mealies
 : < code omitted>

// Instantiate and use another crop object

 // input values for wheat
 : <code omitted>
 // create the other Crop object
 wheat = new Crop(C,Y,M);
 // determine the profit
 profit = wheat.getProfit();
 totalProfit = area * profit;
 // Display results for wheat
 : < code omitted>

part of Farming2.java

page 10.22 Intro Java

As another example of designing a complete program using classes and objects, consider
another of the Intro to Java exercises:

Write a program that you could use to test a child's arithmetic, by generating a number of
sums involving integers between 0 and 10, and for each sum, display it and ask the user
to input the answer, then check whether the answer is correct. Keep score, and finally
display the result of the test.

As always, the first step is to identify the classes, their attributes and behaviour.

We can have a class for a question. Question

| value1 |
| value2 |
| answer |
displayQues()
checkAns()
getAns()

What are its attributes? - the two values to add (and possibly the answer).
What methods do we require? - one to display the question, another to
check if a given answer is right, and one to return the right answer.
Based on the problem requirements, we will generate the values and
calculate the answer when the question is created, so we do not need a
setAttribute type of method
Other possible attributes if we extend this class are
− what operation to perform instead of merely using addition
− the marks for this question if different marks are possible
− the number of tries permitted (will also need to keep count of the tries)

Another class could be a test. Test

| numQues |
| numRight |
| bigValue |
runTest()
getScore()

What are its attributes? - the number of questions, a count of right answers,
perhaps the largest values to use (not just assume 0-10, but allow any
range to be chosen, eg 0-20, 0-1000 etc)
What methods do we require? - one to ask the questions and update the
score (which will use our question class), another to return the result of the
test.

The coordinating class will merely request a test (or more) and supply the number of
questions and the largest value to use.

Testing
simple : Test
harder : Test
main

Question
| value1 |
| value2 |
| answer |
displayQues
checkAns
getAns

Test
| numQues |
| numRight |
| bigValue |
runTest()
getScore()

The question class has 3 attributes, the two values and the answer. The answer does not
have to be stored, it could be calculated from the values, but since it is used at least twice
(checking the answer and returning the value) it makes sense to calculate it once and store it
so that we are certain that the answer used in checking is the same as that made available
outside the class. Also, a possible extension is to allow more than one guess.

The constructor for this class must accept a parameter which specifies the upper limit for the
values.

Classes and Objects page 10.23

class Question
/* The class representing a question
 * ---------------------------------
 * generates a question and calculates its answer, and will
 * display the question and check if the answer given is right
 */
{
// attributes
//-------------------------
 private int value1,value2, // the operands
 answer; // the result
//-------------------------

 Question(int max)
 // constructor - generates a question with given max value
 {
 value1 = (int)Math.round(max*Math.random());
 value2 = (int)Math.round(max*Math.random());
 answer = value1 + value2;
 }

 void displayQues()
 // outputs the question
 {
 System.out.print(value1 + " + " + value2 + " = ");
 }

 boolean checkAns(int guess)
 // checks whether the guess matches the answer
 {
 if (guess==answer)
 return true;
 else
 return false;
 }

 int getAns()
 // returns the correct answer
 {
 return answer;
 }
}

class Question in Testing.java

The test class has 3 attributes, the number of questions in the test, the score and the upper
limit for a value in a question. There are 2 constructors, the default one that has no
parameters and assumes 10 questions with values between 0-10, and one in which the
number of questions and the upper limit for the values must be specified.

The method runTest() uses a loop to ask the questions. Inside the loop a question object
is created with values in the given range and its display method is called to display the
question. The user's answer is input and the questions checkAnswer method is called to
determine whether the answer is right or wrong. If right, the score is incremented; if wrong,
the right answer is displayed. Note that the count of right answers (numRight) is set to 0
each time the test is run.

page 10.24 Intro Java

class Test
/* The class representing a test
 * -----------------------------
 * that administers a test of a specified number of questions
 */
{
// attributes
//---------------------
 private int numQues, // number of questions to ask
 numRight; // count of right answers
 private int bigValue; // largest value to use in the test
//---------------------

 Test()
 // constructor - assumes default values
 { numQues = 10;
 bigValue = 10;
 }

 Test(int num, int max)
 // constructor - gives number of question and biggest value
 { numQues = num;
 bigValue = max;
 }

 void runTest()
// runs the test - creates a question, displays it,
// inputs the answer, checks it and updates the scores
 {
 Question aQues; // the question object
 int ans; // the answer entered

 numRight = 0; // in case test is run more than once
 for (int count=1;count<=numQues;count++)
 {
 aQues = new Question(bigValue); // create a question
 System.out.print(count + ". ");
 aQues.displayQues();

 ans = Keyboard.getInt(); // input users answer

 if (aQues.checkAns(ans)) // compare to right answer
 { numRight++;
 System.out.println("Right.");
 }
 else
 System.out.println("Wrong. Ans is " + aQues.getAns());
 }
 }

 int getScore()
// returns the result of the test
 { return numRight;
 }
}

class Test in Testing.java
The coordinating program is straightforward - creates two tests, a simpler one of 10
questions with values in the range 0-10 which uses the default constructor, and a harder one

Classes and Objects page 10.25

of 5 questions with values in the range 0-100 which passes the values 5 and 100 to the
constructor. Each right answer in the harder test is worth 2 marks.

class Testing
/*
 * Creates and administers 2 tests
 * - a "default" one with 10 questions between 0-10
 * - another one with 5 questions between 0-100
 */
{
 public static void main(String[] args)
 {
 //------------
 Test simple; // the default test object to be created
 Test harder; // the more difficult test object
 //------------

// display a heading < not shown >

// create the first test
 simple = new Test();
 System.out.println("\nFirst test (10 quests, vals 0-10)");
 System.out.println("----------");
 simple.runTest();

// create the next test
 harder = new Test(5,100);
 System.out.println("\nNext test (5 quests, vals 0-100)");
 System.out.println("---------");
 harder.runTest();

// Display results
 System.out.println("\nFirst test: " + simple.getScore()
 + "/10");
 System.out.println("Next test: " + harder.getScore()*2
 + "/10");
 System.out.println();
 }
}

class Testing in Testing.java

A portion of the output from this program is

Next test (5 questions, values up to 100)

1. 72 + 5 = 77
 Right.
2. 44 + 79 = 113
 Wrong. The answer is 123

page 10.26 Intro Java

As well as generating random numbers using the random method in the Math class, Java
also provides a class in the util package called Random.

public class Random

An instance of this class is used to generate a stream of pseudorandom numbers. The class
uses a 48-bit seed, and if two instances of Random are created with the same seed, and the
same sequence of method calls is made for each, they will generate and return identical
sequences of numbers.

Many applications will find the random method in class Math simpler to use.

CONSTRUCTORS
• Random()
 Creates a new random number generator.
• Random(long)
 Creates a new random number generator using a single long seed.

METHODS
• next(int)
 Generates the next pseudorandom number.
• nextDouble()
Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0 from

this random number generator's sequence.
• nextFloat()
Returns the next pseudorandom, uniformly distributed float value between 0.0 and 1.0 from this

random number generator's sequence.
• nextInt()
Returns the next pseudorandom, uniformly distributed int value from this random number

generator's sequence.
• nextLong()
Returns the next pseudorandom, uniformly distributed long value from this random number

generator's sequence.
• setSeed(long)
 Sets the seed of this random number generator using a single long seed.

Once a random object has been created (with or without a seed), the methods nextInt,
nextDouble etc can be called to return the next random number. For double and float
values it is probably simpler to use Math.random, but for integer and long values a random
value in the full range of integers (-2*109 to 2*109) or longs (-1018 to 1018) is returned.

So in the previous example, in class Question, we could use

private static Random number = new Random();

Question(int max)
// constructor - generates a question with specified max value
{
 value1 = Math.abs(number.nextInt()) % (max+1);
 value2 = Math.abs(number.nextInt()) % (max+1);
 answer = value1 + value2;
}

part of class Question in Testing2.java

Classes and Objects page 10.27

We create an instance of a Random object called number without using a specific seed. It is
declared as private as it is an internal variable, and static as we want all instances of
Question class to share the same object.

Then we construct a value by calling the nextInt method (which generates an integer in
the range - to + 2 billion), ensure it is positive by calling Math's abs method, and constrain it
to the range 0-max by finding the remainder after dividing by max+1.

Exercises

1.1 Using Java's Date and Random classes, write a program to randomly generate 2

dates, compare them, and display them with the later date second. To generate a date,
generate a long random number representing a number of milliseconds and construct
a date with this value.

1.2 Modify the Farming program to compare two fields planted with either mealies or

wheat. The farmer wants to know which gives the best profit - mealies in Field 1 and
wheat in Field 2, or wheat in Field 1 and mealies in Field 2. Field 1 is 400x500m and
has costs of R1.35 per m2 for mealies, or R1.25 per m2 for wheat, and gets a yield of
45 kg mealies per m2, or 35 kg wheat per m2. Field 2 is 300x400m and has costs of
R1.80 per m2 for mealies, or R1.65 per m2 for wheat, and gets a yield of 50 kg mealies
per m2, or 45 kg wheat per m2. Mealies sell for R60.00 per tonne, and wheat for R70.00
per tonne.

1.3 Modify the Test and Question classes to cater for addition and subtraction. When

each question is created it should be passed a randomly determined argument (0/1,
true/false etc) to indicate whether it is to add or subtract the values. This argument must
be used in generating the question and answer, and in the display method.

1.4 Design object oriented solutions for all the exercises in the Intro to Java lecture notes.

1.5 Write a LineSegment class that will represent a line segment by the co-ordinates of

its endpoints, and provide methods to
• get and set the co-ordinates
• calculate and return the gradient of the line,
• calculate and return the length of the line,
• calculate and display the equation of the line
• test whether a given point lies on the line
Write a program to test your class.

1.6 Write a Number class with methods that will determine various characteristics of an
integer number. Include methods to
• get and set the number
• check whether it is a prime number
• display its factors
• check whether it is perfect, deficient or abundant

 (a number is perfect if the sum of its factors including 1 but excluding the number itself
equals the number; it is abundant if the sum of factors is larger than the number; it is
deficient if the sum of factors is less than the number.)
Test your class.

11. Streams, Files and Exceptions

11.1 Input and Output Streams
All input and output in Java is accomplished with streams, which is simply a communication
path between the program and a source of information or its destination. The advantage of
using streams is that all streams are treated the same, and it doesn't matter whether the
source of an input stream is the standard input device, a disk file, or even the Internet.

The standard output stream is the screen. System.out is the standard output stream
object, and is a member of the PrintStream class. The PrintStream class has methods
print and println which display their arguments on the screen.

The standard input stream is the keyboard, and the Java equivalent of System.out is
System.in, which is the standard input stream object and is a member of class
InputStream. It is not very useful as is however, as it merely provides a method, read,
which reads a single byte from the input stream. Of far more use is to create a usable object
by supplying System.in as construction parameter to another class called
InputStreamReader which handles character streams rather than byte streams. Bear in
mind that the data supplied by InputStream is merely a sequence of binary codes which
need to be converted to characters, integers etc, so the conversion of this raw data to
characters is an improvement. Then this object should be passed to another class,
BufferedReader, which reads text from a character-input stream, buffering characters so
as to provide for the efficient reading of characters and lines.

The implications of all this are that in order to declare the keyboard for input we need the
statements

KEYBOARD DECLARATIONS
import java.io.*;
BufferedReader stream = new BufferedReader
 (new InputStreamReader(System.in));

where stream is an identifier you choose to denote the stream connected to the keyboard.
This then declares a new stream, connected to the standard input device System.in, with
all the facilities of the BufferedReader class. Note that the java.io package in which the
three classes are defined must be imported before the class statement in which this stream
is declared.

One side effect of reading is that something could go wrong, for example, the data might be
in the wrong format or might end unexpectedly. Such events are called exceptions and will
be dealt with more fully later in this chapter. Suffice to say that Java requires that when we
use methods that may cause exceptions (such as BufferedReader's methods) we indicate
this by adding the phrase
 throws IOException
to the method header.

page 11.2 Intro Java

For example, many childrens game programs start off by asking for the users name and then
welcoming them. A simple Java program to do this uses input streams and
BufferedReader's readLine method that will read a line of text from the keyboard. Note
that a line of text is defined as all the characters up to the control characters generated when
the Enter key is pressed (or the end of the data stream is reached).

/*
* Simple greeting program - demonstrates Java input
* ---
*/
import java.io.*;

public class Hello
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader in = new BufferedReader
 (new InputStreamReader(System.in));

 System.out.print("What is your name? ");
 String name = in.readLine();

 System.out.println();
 System.out.println(" *****************");
 System.out.println("** Hello " + name + "! **");
 System.out.println(" *****************");
 }
}

Hello.java

The output from this program is

What is your name? Andrew

** Hello Andrew! **

The class BufferedReader provides methods to read a single character and a line of text, as
above. Unfortunately if we want to read numeric values things are not as simple - the line of
text need to be read and then numeric values of the correct type must be extracted from it.
For example, to read an integer value would require

 int myInt = Integer.valueOf(in.readLine().trim()).intValue();

What this does is the following:
• in.readLine() reads a line of text from the standard input device
• trim() removes any spaces from both ends of the string
• this string provides the argument to the Integer class's valueOf method, which

returns the Integer object that this string represents
• and finally Integer's intValue() method converts this Integer object to an int

value

Streams, Files, Exceptions page 11.3

To simplify matters, methods to cater for reading numeric values of all types from the
keyboard have been grouped together in the Keyboard class, which forms part of the
Utilities package. This class also deals with any exceptions, so the phrase

throws IOException
is not required in methods that use Keyboard's methods to handle input.

For interest, a portion of the Keyboard class (edited to show just the input handling) is
shown here.

import java.io.*;
public class Keyboard
{
 private static BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));

 public static long getLong()
//----------------------------
 {
 localLong = Long.valueOf(br.readLine().trim()).longValue();
 return localLong;
 }

 public static int getInt()
//--------------------------
 {
 localInt =
 Integer.valueOf(br.readLine().trim()).intValue();
 return localInt;
 }

 public static float getFloat()
//------------------------------
 {
 localFloat =
 Float.valueOf(br.readLine().trim()).floatValue();
 return localFloat;
 }

 public static double getDouble()
//--------------------------------
 {
 localDouble =
 Double.valueOf(br.readLine().trim()).doubleValue();
 return localDouble;
 }

 public static char getChar()
//----------------------------
 {
 localChar = br.readLine().trim().charAt(0);
 // first char in the string
 return localChar;
 }
 public static String readString()
//---------------------------------
 {
 StringBuffer localStringBuffer = new StringBuffer();
 localStringBuffer.append(br.readLine());
 return localStringBuffer.toString();

page 11.4 Intro Java

 }

 public static void pressEnter()
//-------------------------------
 {
 br.readLine(); // pauses till ENTER is pressed
 }
}

edited extract from Keyboard.java

In recent versions of Java it is simpler to convert strings to integer, double and float by
using:

• Integer.parseInt(String) which returns an int
• Double.parseDouble(String) which returns a double
• Float.parseFloat(String) which returns a float

11.2 File Input and Output
Up till now, all data needed by a program has been input interactively via the keyboard, and
all data has been output to the default output device, the screen. However, for large amounts
of data, interactive input can rapidly become tedious, and it is preferable to keep the input
data required in a file and then read it from there. Likewise, it is useful to be able to send any
output to a file so that the results can be kept and printed if necessary.

If a file is to be used it must first be "opened" for input or output, by associating it with a
stream. The standard input and output streams, System.in and System.out are
automatically opened and associated with the standard devices by Java - you need to
explicitly perform this function for other files that are to be used as input or output streams.

FILE DECLARATIONS
BufferedReader stream = new BufferedReader
 (new FileReader("filename"));
PrintWriter stream = new PrintWriter
 (new FileWriter("filename"));

The first declaration is used to open a file for input (ie. to read from it). Instead of supplying
System.in as the parameter to the InputStreamReader constructor, we create a new
object of the FileReader class by supplying the actual filename (as a string). This has the
effect of connecting an input stream to that file and opening it so that it can be read from. For
example, to read from a data file called "testdata.dat", we define

BufferedReader fin = new BufferedReader
 (new FileReader("testdata.dat"));

Similarly, to open file for output (ie. to be able to write to it), we use the second declaration.
PrintWriter implements all the print methods of PrintStream (notably print() and
println()), so in order to be able to use them on a file we create a PrintWriter object,
which we initialise with a FileWriter object created with the name of the file we want to
create.

Streams, Files, Exceptions page 11.5

For example, to send output to a file called "myResults.txt", we define

PrintWriter fout = new PrintWriter
(new FileWriter("myResults.txt"));

Then to output data to the file we use statements such as
 fout.println("This is going to a text file");

When using files, you must ensure that they are closed before the program ends. This is
good programming but not essential for input files, but is crucial for output files otherwise the
output sent to them is lost. Both FileReader and FileWriter have a close method that
should be used to close any files, as in
 fin.close();
or fout.close();

To simplify input from a file a set of equivalent input methods to those provided in the
Keyboard class are available, but instead of assuming that the data is coming from the
standard input stream, the user must specify the stream object when calling the method.

This class, FileIO, is also contained in the Utilities package, and provides methods to
open an input stream (either by specifying a file or the standard input stream), create a file
for output, and various read methods to input data from a specified input stream.

The methods available in FileIO are:

CLASS FileIO METHODS
br = FileIO.open(System.in); connects a buffered reader object

to the standard input stream
br = FileIO.open("filename"); connects a buffered reader object

to a file for input
pw = FileIO.create("filename"); connects a print writer object to a

file for output
intVar = FileIO.getInt(br); inputs an int value from br
longVar = FileIO.getLong(br); inputs a long value from br
floatVar = FileIO.getFloat(br); inputs a float value from br
doubleVar = FileIO.getDouble(br); inputs a double value from br
charVar = FileIO.getChar(br); inputs a single char from br
stringVar = FileIO.readString(br); inputs a String from br

Note that any methods that use open or create and supply a file name must add the
phrase
 throws IOException
to the method header, in case the file does not exist (open) or could not be created for some
reason (close). The file is assumed to be in the same directory as the Java program unless
a path is specified as part of the file name. Remember that to use a buffered reader or print
writer the class java.io.* must also be imported.

The following program demonstrates use of class FileIO by reading a file name from the
keyboard and then reading a name (String), a student number (long) and 3 marks (int,
float and double) from the file and calculates the average mark. All output is to a results
file.

page 11.6 Intro Java

/*
* Demonstration of FileIO class
* -----------------------------
*/
import java.io.*;
import Utilities.FileIO;
import Utilities.Formatter;

public class FileIOdemo
{
 public static void main(String[] args) throws IOException
// Asks for a file to open, then opens it and inputs a students
// name, number, and 3 marks which are averaged.
// All output is to a results file.
 {
 String filename; // file to input values from
 String stName;
 long stNum;
 int mark1;
 float mark2;
 double mark3;
 double av;

// get name of file to read from
 BufferedReader in = FileIO.open(System.in);
 System.out.print("\nWhat file to use for marks input? ");
 filename = FileIO.readString(in);

// open files for input and output
 BufferedReader fin = FileIO.open(filename);
 PrintWriter fout = FileIO.create("output.txt");

// display a heading to the results file
 fout.println("This program tests FileIO");
 fout.println("-------------------------");
 fout.println();

// input the values from the input file
 stName = FileIO.readString(fin);
 stNum = FileIO.getLong(fin);
 mark1 = FileIO.getInt(fin);
 mark2 = FileIO.getFloat(fin);
 mark3 = FileIO.getDouble(fin);

// output the results
 av = (mark1 + mark2 + mark3)/3.0;
 fout.println("Results for " +stName+ " student# " +stNum);
 fout.println(" mark1" + Formatter.format(mark1,10));
 fout.println(" mark2" + Formatter.format(mark2,12,1));
 fout.println(" mark3" + Formatter.format(mark3,12,1));
 fout.println("Average" + Formatter.format(av,13,2));
 fout.println();

 fin.close(); // close the files
 fout.close();
 }
}

FileIOdemo.dat

Streams, Files, Exceptions page 11.7

An input file, FileIOdemo.dat was set up to contain the following data. Note that the name
does not have to be the same - I just do it so I know which data belongs to which program.
To set up a file containing input data all you need to do is to use any text editor (Notepad,
Kawa etc) and type the data values you want to use much as you would type them when
inputting interactively fron the keyboard. Then the file is saved to the same directory as the
program and its name is passes to the open method.

John Smith
987654321
83
73.9
62

FileIOdemo.dat

When the program is run, the following appears on the screen,

C:\java1.2\bin\java.exe FileIOdemo

What file to use for marks input? FileIOdemo.dat
Process Exit...

but the contents of the newly created file output.txt are

This program tests FileIO

Results for John Smith student# 987654321
 mark1 83
 mark2 73.9
 mark3 62.0
Average 72.97

output.txt

If an error was made in entering the name of the file to use for input, the effect would be:

C:\java1.2\bin\java.exe FileIOdemo

What file to use for marks input? FileIO.dat

File FileIO.dat does not exist.

java.io.FileNotFoundException
 at Utilities.FileIO.open(FileIO.java:35)
 at FileIOdemo.main(FileIOdemo.java:30)
Process Exit...

page 11.8 Intro Java

11.3 Exceptions
Exceptions are unexpected events that cause a program to fail. In the previous section,
dealing with input and output, the sorts of exceptions we may encounter are caused by errors
such as "file not found", "illegal format for numeric data" (eg, a decimal point in an int value,
or an alphabetic character where a number is expected). Other common examples are
arithmetic exceptions (integer divide by zero) and array index exceptions.

Java provides an exception handling mechanism to deal with exceptions when they occur.
They are intended to be detected and dealt with so that the program can continue if at all
possible. The idea is to identify some statements that may cause an exception when
executed, and to write your program to explicitly deal with exceptions. This allows more
robust and reliable programs to be created. If an exception is not dealt with in the method we
are in, the method is terminated and the exception is passed up to the method that called it.
This process may be repeated until eventually an unhandled exception is passed to the Java
virtual machine which terminates the program.

In Java, exceptions are thrown, so we try to execute a statement and should an error occur,
some code is provided to catch any exceptions that are thrown.

 try
 {
 some statements;
 }
 catch (anException e)
 {
 statements to deal with the exception
 }

The try block is executed as part of the usual sequence of exception, and if an exception
occurs then the execution of the try block is interrupted and control is transferred to the catch
block to deal with the exception. There are various kinds of exception and you need to
specify which kind you are catching, and there may be more than one catch block to deal
with different types of exception. After dealing with the exception the program continues
executing the statements following the catch block.

Although in many cases exceptions are used to deal with errors, they can also be used
"positively". Consider the previous example where we read marks from a file. We knew there
were 3 marks and explicitly programmed for it. But what of the case where we want to (for
example) read in marks from a file for an unknown number of students and calculate a class
average. As things stand at present, I can think of 2 ways to handle it:
• count the number of marks and include that number at the beginning of the file, so the

number of marks is read and a for-do loop is then used to process each mark;
• include a special "sentinel" value at the end of the file to indicate that the last actual mark

has been read, and use a while-not-sentinel loop to process each mark.
Both these require modification of the file.

Using exceptions, such variable length data can be easily dealt with, because when the end
of a data file is reached, Java throws an EOFexception (end-of-file exception) which can
be detected. The program is structured so the try block handles the input, and when the
end-of-file exception is thrown control passes to the catch block which does the averaging
and output of the final result.

Streams, Files, Exceptions page 11.9

c1

c1 : loop forever
q1 : EOF exception

q1

input mark increment count add mark
to total

input and *
process mark

calc class
average

display
results

 all marks !
input

Calculate
av mark

The program is

/*
* Calculates the average test mark for a class of students
* using an exception to detect the end of the file
* ------------------------------------
*/
import java.io.*;
import Utilities.*;

public class MarkAvExcept
{
 public static void main(String[] args) throws IOException
 {
 int countSt = 0; // count of the number of students
 double mark; // a student's mark
 double total = 0; // the running total
 double classAv; // the average test mark

 // Open input file
 BufferedReader in = FileIO.open("MarkAv.dat");

 // Display heading
 ... <code omitted>

 // Indefinite loop to process marks
 try
 {
 while (true)
 {
 mark = FileIO.getDouble(in);
 System.out.println(" " + mark);
 countSt++; // increment count of
 total += mark; // add mark to total
 }
 }

page 11.10 Intro Java

catch (EOFException e)
 {
 classAv = total/countSt;
 System.out.println();
 System.out.println("The class average for the " + countSt
 + " students is " + Formatter.format(classAv,1,2));
 System.out.println();
 }
 in.close();
 }
}

Exceptions are used in the Keyboard and FileIO classes to detect and report certain data
errors. For example, in getInt(), some of the code is

public static int getInt(BufferedReader br) throws IOException
//--
{
 int localInt = 0;
 try
 {
 localInt = Integer.valueOf(br.readLine().trim()).intValue();
 }
 catch (NumberFormatException e)
 {
 System.err.println();
 System.err.println("Error entering int: " + e.getMessage());
 System.err.println();
 }
 return localInt;
}

A NumberFormatException is thrown to indicate that an attempt has been made to
convert a string to one of the numeric types, but that the string does not have the appropriate
format. So for example, if there were invalid characters entered that cannot form part of an
integer - decimal point, embedded + or space, alphabetic char etc - this exception will be
thrown. The method catches it and outputs a message "Error entering int" together
with any details supplied by the exception using the Java supplied method, getMessage.

Streams, Files, Exceptions page 11.11

Exercises

These programs should all get their input from data files.

1. Write a program that reads in a student's data from a file - name, student number, and

5 test marks - and determine the student's average class mark by discarding the lowest
mark and averaging the remainder.

2. Write a program to input an integer from the keyboard, and then generate 1000 random

numbers between 0 and this number and output them to an output file, 10 per line.

3. Write a program to generate a random integer N between 50 and 100, and then create

an output file consisting of N random numbers between 0 and 100, one per line. Then
a write a second program to read these values (till the end of the file is reached) and
calculate their average, which should be displayed to 2 decimal places.

12. Arrays

In the programs written so far, each variable was associated with a single memory cell.
There are many cases where it is convenient to store a related set of values without having
to create a separate variable for each value - for example, the marks of all the students in a
class.

12.1 Simple arrays
An array is a data structure which stores a collection of data items all of the same type. Using
an array, we can associate a single name with a set of data items, and reference the
individual items by a number representing their position in the array. This means we can use
integer variables - for example, the loop control variable of a for loop - to access each
element in an array in turn. If all the data values were stored using individual variable names
this would not be possible as variable names have to be directly specified and cannot be
generated by the program.

An array is bounded - it has a fixed size which is specified when the array is created, and the
individual elements of an array are indexed by a number in the range 0 to this upper limit. In
contrast to some other languages (eg Pascal), all arrays are indexed by numeric values
starting at 0.

ARRAY DECLARATION
type [] arrayname;
type [] arrayname = new type [size];
type [] arrayname = {list of values};

The first form merely declares an array variable to be of a certain array type; the next two
create the array variable and initialise it. The first form would be require the array to be
initialised at a later stage - perhaps when its size is known.

Some examples:
 int [] marks = new int [30]; // assuming 30 students in the class

or double [] examMarks;

 int numStudents;
 :
 System.out.print("How many students wrote? ");
 numStudents = Keyboard.getInt();
 examMarks = new double [numStudents];

or char [] vowels = {'A','E','I','O','U'};

This creates an array of 5 elements - the size is deduced from the number of values
given.

Note that it is also possible to write the array declaration as
 type arrayname [];
eg int marks [] = new int [30];
but this splits the array type which is actually int [].
The declaration is read as "an integer array called marks …."

The marks array declared above will have 30 integer elements numbered from 0 to 29.

page 12.2 Intro Java

The number of elements in the examMarks array depends on the value read for
numStudents, and its elements will be indexed 0 to numStudents-1.
The vowels array has 5 character elements (deduced from the number of values specified)
indexed 0 to 4.

To reference a specific item in an array we use the array name and a numeric subscript
which identifies a particular element. For example,
 System.out.println(marks[0]);
will output the first element in the marks array, while
 System.out.println(marks[10]);
will output the 11th element.
The subscript must be in the range 0..arraysize or an exception will be thrown
 (ArrayIndexOutOfBoundsException).

A for loop is frequently used to process all elements in an array. For example, to read in 30
marks and store them in the marks array:

 for (int count=0;count<30;count++)
 {
 System.out.println("Enter mark "+(count+1)+">");
 marks[count] = Keyboard.getInt();
 }

Similarly, we could output all the marks in the array:

 for (int count=0;count<30;count++)
 {
 System.out.println(marks[count]);
 }

Or add them up and calculate the average:

 int total = 0;
 double average;
 for (int count=0;count<30;count++)
 total += marks[count];
 average = total/30;

Or find the top mark and which student got it:

 int maxMark = marks[0];
 int topSt = 0;
 for (int count=1;count<30;count++)
 {
 if (marks[count]>maxMark)
 {
 maxMark = marks[count];
 topSt = count;
 }
 }
 System.out.println("Top mark of " + maxMark +
 "was obtained by student " + topSt);

Arrays page 3.3

Some points to note about arrays:

• Arrays can be of any element type or class, for example arrays of Reals, arrays of

characters, arrays of Strings, arrays of Dates, and even arrays of arrays. These are
called 2-dimensional arrays and will be considered in more detail later.

• An array can be any size (subject to the constraints of memory), but the size is fixed

when the array is created and cannot be changed.
 double [] rainfall;
 rainfall = new double [31];

When the second statement is executed the size of rainfall is fixed at 31 elements.
They do not all have to be used, but the storage for 31 double values is reserved.

• Each array has a special property associated with it, its length. This is the size of the

array as specified in its declaration, and can be accessed. For example,
 System.out.println(rainfall.length);
 would output 31.
 Note that length is a property, not a method, and does not have brackets after it.

• Java is strict about index checking. Only array elements that actually exist can be

referenced. Each time an array is accessed, the subscript supplied is checked against
the array size given in the declaration. If the subscript used is below 0 or greater than
or equal to the size declared, an ArrayIndexOurOfBoundsException is thrown.
The exception can be caught and handled, or else the program stops.

• A simple variable such as an integer stores the actual numeric value in its memory

location. An array variable does not actually store all the array values, or even the first
value, in its memory location. Instead it stores a reference to the place in memory
where the array is stored. When the array is declared the reference is set up, and when
its size is specified the storage will be created and its location stored in the array
variable. This is an important concept and its relevance and use will be further
explained in later sections.

 int num = 123; int [] marks = new int [5];

• The arithmetic and logical operators do not apply to arrays, only to simple variables.

Statements such as
 double [] rainJan,rainFeb,rainYr;
 rainJan = new double [31];
 rainFeb = new double [31];
 :
 rainYr = rainJan + rainFeb;

 are illegal and will cause errors.
 Similarly, one cannot write
 if (rainJan < rainFeb)

The only operator that applies to a whole array is assignment,

page 12.4 Intro Java

thatArr = thisArr;
However, this does not copy the entire array, but merely copies the reference so that
both arrays will refer to the same storage. Any changes made to one array will affect
the other.

 In order to copy an entire array a for loop should be used:

 for (count=0;count<max;count++)
 thatArr[count] = thisArr[count];

 Similarly, in order to add two arrays a for loop is used:
 for (day=0;day<31;day++)
 rainYr[day] = rainJan[day]+rainFeb[yr];

Note that all the arrays used must have been declared and initialised.

• Arrays can be passed as parameters to methods. In the method header it is sufficient

to use square brackets to indicate that the parameter is an array, its size does not have
to be specified. This means we can, for example, write a general IsEqual method that
accepts 2 integer arrays and returns true only if all corresponding elements are equal.
The same method can then be passed arrays of 10 elements or 100 elements.

 boolean IsEqual(int [] arr1, int [] arr2)
 {
 boolean same = true;
 int count = 0;

 if (arr1.length != arr2.length) // unequal sized arrays
 same = false; // cannot be equal

 while (same && (count<arr1.length))
 {
 if (arr1[count]==arr2[count])
 count++;
 else
 same = false;
 }

 return same;
 }

Arrays page 3.5

It is worth spending a minute to examine this method. A boolean variable same is
initialised to true. Then the lengths of the 2 arrays are checked, and if they are unequal
the arrays cannot possibly be equal so same is set false. We then come to the loop to
compare corresponding elements and this loop is controlled by 2 conditions, the
boolean value same (which means that this loop won't even be entered if the lengths
are unequal, and also that as soon as an unequal pair is found the loop will cease) and
the array size (so that we don't go out of array bounds). If the loop completes all its
iterations and terminates because the array bound is reached, then same will still have
its initial value of true and the two arrays are equal; otherwise same will have been set
false, the loop will terminate and a value of false is returned indicating the two arrays
are not equal.

 Contrast this method with another, seemingly similar method:

 boolean IsEqual(int [] arr1, int [] arr2)
 {
 boolean same;

 if (arr1.length == arr2.length) // unequal sized arrays
 same = true; // cannot be equal
 else
 same = false;

 for int count=0;count<arr1.length;count++)
 {
 if (arr1[count]==arr2[count])
 same = true;
 else
 same = false;
 }

 return same;
 }

 Will this method work correctly?

 To illustrate, consider 2 3-element arrays, where A1 contains the integers 1 3 5

and A2 contains the integers 3 4 5.
same

A1.length == A2.length -> true
count=0: A1[0]=1, A2[0]=3 -> false

 count=1: A1[1]=3, A2[1]=4 -> false
 count=2: A1[2]=5, A2[2]=5 -> true

 returns: true !

The problem is that same is set and reset each iteration, and so effectively the answer
returned is the result of comparing the last pair of values only. The correct way to
handle a problem like this is to set same to true, and thereafter only to set it false when
an unequal pair is found.

page 12.6 Intro Java

The following code is not as efficient as the first because all the values are checked
even when it is already known that the arrays contain unequal values, but at least it
gives the right result.

 boolean IsEqual(int [] arr1, int [] arr2)
 {
 boolean same;

 if (arr1.length == arr2.length) // unequal sized arrays
 same = true; // cannot be equal
 else
 same = false;

 for int count=0;count<arr1.length;count++)
 {
 if (arr1[count]!=arr2[count])
 same = false;
 }

 return same;
 }

Classes and arrays can interact in a number of ways.

A class may contain methods that operate on array parameters, as in the example above
(IsEqual).

A class may contain an array and the methods that operate on it. In this case the array will
(usually) be private and all access is via the defined methods. For example, a class
representing a class of students may use an array to store the students marks, and methods
to store the marks, display the average, and grade the marks as Good, Fair or Poor.

class MyClass
/* The class representing the class of students
 * --
 * stores the number of students, their marks and the average
 */
{
// attributes
//-------------------------
 private int maxSt; // the maximum class size
 private int numSt; // the actual number of students
 private double [] marks; // array marks for the students
 private double average; // the class average
//-------------------------

Arrays page 3.7

MyClass(int max)
//----------------
// constructor - creates the array to hold marks for the maximum
// number of students, and initialises all other attributes.
 {
 marks = new double [max];
 maxSt = max;
 numSt = 0;
 average = 0.0;
 }

 void getMarks(String filename) throws IOException
//-------------------------
// Read in the array of marks from the specified file,
// keeping count of the actual number of students
 { … }

 int getNumSt()
//--------------
// Returns the number of marks stored
 { … }

 double getAv()
//--------------
// Returns the average mark
 { … }

 void gradeMarks()
//------------------
// Output the marks, assigning a comment to each:
// average +- 10% : "fair"
// over average +10% : "good"
// below average -10% : "poor"
 {
 double upav = average*1.1, // upper split, av +10%
 lowav = average*0.9; // lower split, av -10%

 System.out.println();
 System.out.println("Graded class marks");
 System.out.println("------------------");

 for (int count=0;count<numSt;count++)
 {
 System.out.print(Formatter.format(marks[count],10,1));
 if (marks[count]>upav)
 System.out.println(" Good");
 else if (marks[count]<lowav)
 System.out.println(" Poor");
 else
 System.out.println(" Fair");
 }

 System.out.println();
 }

}

part of class MyClass in GradeClassMark.java
Thirdly, you can have an array of a class of objects, as in this array that stores the dates of
all the public holidays.

page 12.8 Intro Java

 Dates [] publicHolidays = new Dates [12];

 publicHolidays[0].set(1999,0,1); // New Years Day
 publicHolidays[1].set(1999,2,21); // Human Rights Day
 …
 publicHolidays[11].set(1999,11,26); // Day of Goodwill

(months are stored as 0-11, not 1-12)

12.2 Sorting
When working with sequences of numbers, a common requirement is to be able to sort the
numbers into ascending or descending order. For example, you may wish to sort an array of
student marks so that the highest marks is first and the lowest mark is last. There is a wide
range of sorting algorithms ranging from simple sorts which perform in time proportional to n2
(where n is the number of items to be sorted) to more efficient and more complex sorts such
as Quicksort or Heap Sort which are O(n.log(n)). We will consider 2 of the simple sorts,
Bubble Sort and Selection sort, which have the advantage of being easy to understand and
are adequate for our pruposes.

Bubble Sort
Bubble Sort compares pairs of adjacent elements and if they are out of order, exchanges
them. In this way the smaller (or larger) elements "bubble" their way to the top of the
sequence, while the larger (or smaller) elements move to the bottom.

Assume we wish to sort the n elements of array A into ascending order. The basic method is:
• Compare A[0] and A[1] ; swap if necessary so that the larger value is in A[1]
• Compare A[1] and A[2] ; swap if necessary so that the larger value is in A[2]

:
• Compare A[n-2] and A[n-1] ; swap if necessary so that the larger value is in A[n-1]
This is called a pass.

Repeat this pass as many times as are necessary until no values are swapped during a
pass. This means that the values are all in the right order, so the array A is then sorted.

Arrays page 3.9

For example, consider the sequence A = < 5,3,1,7,4,6 >

 5 3 1 7 4 6

 5 ? 3
 swap

 3 5 ? 1
 swap

 1 5 ? 7 ? 4
 OK swap

 4 7 ? 6
 swap

 3 1 5 4 6 7 End of pass 1

Notice that after 1 pass the largest value is in the last position. This means that in pass 2, we
do not have to compare the last pair since we know that the last value is bigger than the
second last, so we need only compare the n-2 pairs up to A[n-3] and A[n-2].

 3 1 5 4 6 7

 3 ? 1
 swap

 1 3 ? 5 ? 4
 OK swap

 4 5 ? 6
 OK

 1 3 4 5 6 7 End of pass 2

After pass 2 the second largest value is in the second last position, so in the third pass we
need compare only the n-3 pairs up to A[n-4] and A[n-3].

 1 3 4 5 6 7

 1 ? 3 ? 4 ? 5
 OK OK OK

 1 3 4 5 6 7 End of pass 3 - no swaps

This means that the sequence is now sorted.

The processing required to program the bubble sort is thus:

c1

c1 : do-while values not sorted

c2

c2 : from 0 to <(n-pass)
c3 : if A[i]>A[i+1]

elsec3

initialise
pass count

increment
pass count

swap i
elements

i
do nothing

compare pairs of *
 adjacent values

make pass *
through data

Bubble Sort
n items in array A

page 12.10 Intro Java

The method to perform a simple Bubble Sort to sort an array of integers into ascending order
is shown below. It forms part of class mySort which contains a number of sorting
algorithms.

public static void Bubble (int [] A, int n)
//---
// implements a Bubble sort to sort n elements in A into
// ascending order
{
 int pass = 0; // counts the number of passes
 boolean swapped;

 do
 {
 pass++;
 swapped = false; // no swaps made

 for (int i=0;i<(n-pass);i++)
 {
 if (A[i]>A[i+1])
 {
 int temp = A[i]; // exchange values
 A[i] = A[i+1];
 A[i+1] = temp;
 swapped = true;
 }
 }
 } while (swapped); // repeat while not sorted
}

method Bubble in mySort.java

One point to note is that, because arrays are passed by reference, any changes made to an
array during the sort (ie. repositioning of elements) will be effective and visible outside the
sort method.

Arrays page 3.11

A part of a program which generates an array of random integers and sorts them using the
bubble sort is shown below, together with some output.

/*
* Program to test sorting routines.
* An array of random integers is generated, displayed,
* sorted and then displayed again.
* ------------------------------------
*/
import java.util.*;
import SortAndSearch.*;
import Utilities.*;

class TestSort
{
 public static void main(String[] args)
 {
 int [] Numbers = new int [50];
 int count = 0;

 count = Generate(Numbers);
 System.out.println();
 System.out.println(count + " Numbers as generated");
 Display(Numbers,count);
 mySort.Bubble(Numbers,count);
 System.out.println(count + " Numbers when sorted");
 Display(Numbers,count);
 System.out.println();
 }

part of TestSort.java

C:\java1.2\bin\java.exe TestSort

16 Numbers as generated
=======================

 570 -149 -650 854 -70 416 -532 327 122 669
 810 -898 557 -653 -721 -4

16 Numbers when sorted
======================

 -898 -721 -653 -650 -532 -149 -70 -4 122 327
 416 557 570 669 810 854

Process Exit...

page 12.12 Intro Java

When creating a package of "useful" classes and methods, there are a few points to note:
• each file containing a package class must contain a package statement at the

beginning;

/* MySort.java
 * Class implementing various sorting routines
 *------------------------------------
 */

package SortAndSearch;

public class mySort
{

 public static void Bubble (int [] A, int n)
//---
// implements a Bubble sort
 {
 …
 }

 public static void Select (int [] A, int n)
//---
// implements a Selection sort
 {
 …
 }
}

• the package name must be a folder, and the various classes comprising that package

are located in that folder

• the folder must be in the same folder as the classes that import it; or it must be at a

level above all the folders that contain classes that use it and its parent directory must
be included in your classpath.

• all classes and methods that can be used in a package must be declared as public.

Selection Sort
Selection sort considers each position in the array in turn, and selects the correct value to be
in that position. An ascending selection sort will look for the smallest value in the array and
store that at index 0, then look for the next smallest value and store that at index 1, and so
on.

Once again, assume we wish to sort the n elements of array A into ascending order. The
basic method is:
• Find the smallest of the n elements A[0] … A[n-1] and swap it with the first element A[0]

so that the smallest value is in the first position.
• Then find the smallest of the n-1 elements A[1] … A[n-1] and swap it with the second

element A[1] so that the next smallest value is in the second position.
• Continue like this until there is only 1 element A[n-1] to be considered. The array is

then sorted.
For example, consider the sequence A = < 5,1,4,6,7,3 >

Arrays page 3.13

• Consider the 6 elements A[0] … A[5]
 Smallest is A[1]=1, swap A[1] and A[0]: A = < 1,5,4,6,7,3 >

• Consider the 5 elements A[1] … A[5]
 Smallest is A[5]=3, swap A[5] and A[1]: A = < 1,3,4,6,7,5 >

• Consider the 4 elements A[2] … A[5]
 Smallest is A[2]=4, in correct position: A = < 1,3,4,6,7,5 >

• Consider the 3 elements A[3] … A[5]
 Smallest is A[5]=5, swap A[5] and A[3]: A = < 1,3,4,5,7,6 >

• Consider the 2 elements A[4] … A[5]
 Smallest is A[5]=6, swap A[5] and A[4]: A = < 1,3,4,5,6,7 >

• Consider 1 element -> array is sorted.

The processing required to program the selection sort is:

c1

c1 : while >1 element in sublist

c2

c2 : from start index to <n
c3 : if A[start]!=A[min]

elsec3

initialise start
index to 0

find index of *
 min value in sublist

swap start i
and min elements

do nothing i
(min value at start)

increment
start index

process *
each sublist

Selection Sort
n items in array A

page 12.14 Intro Java

The method to perform a simple Selection Sort to sort an array of integers into ascending
order is shown below. It also forms part of class mySort.

public static void Select (int [] A, int n)
//---
// implements a Selection sort to sort n elements in A into
// ascending order
{
 int startIndex = 0; // the start of the sublist
 int minIndex; // index of min value in sublist

 while (startIndex<n) // if >1 element, process sublist
 {
 minIndex = startIndex; // assume first value is smallest

 for (int i=startIndex+1;i<n;i++)
 { // scan sublist for smaller value
 if (A[i]<A[minIndex])
 minIndex = i;
 }

 if (A[startIndex]!=A[minIndex])
 { // check min value not at start
 int temp = A[startIndex]; // and exchange values
 A[startIndex] = A[minIndex];
 A[minIndex] = temp;
 }

 startIndex++; // start sublist at next element
 }
}

method Select in mySort.java

Lets consider the efficiency of both Sorts. Taking a worst case scenario we would have a list
of n elements in completely reverse order.

Bubble sort:
pass 1: n-1 comparisons, n-1 exchanges
pass 2: n-2 comparisons, n-2 exchanges
 :
pass n-1: 1 comparison, 1 exchange
in total, ∑ k = n(n-1)/2 ≈ n2 or O(n2) comparisons and exchanges

In contrast, for the best case scenario when the list is already sorted, only 1 pass would be
made, no exchanges are necessary and the sort would terminate.
In total, n-1 comparisons and 0 exchanges

Arrays page 3.15

Considering selection sort, in the worst case:
start index 0: n-1 comparisons (to find min), 1 exchange
start index 1: n-2 comparisons, 1 exchange
 :
start index n-2: 1 comparison, 1 exchange
in total, O(n2) comparisons, n-1 exchanges

However, in the best case, we still require all the comparisons to find the min value each
scan, but no exchanges are made.
In total, O(n2) comparisons and 0 exchanges.

Many students choose to use a "brute force" sort that is something like

 for (int i=0;i<n-1;i++)
 {
 for (int j=i+1,j<n;j++)
 {
 if (A[i]>A[j])
 <swap elements>;
 }
 }

This will always require O(n2) comparisons and in the worst case, O(n2) exchanges.

Worse however, is this variation of a "brute force" search:

for (int i=0;i<n;i++)
 {
 for (int j=0;j<n;j++)
 {
 if (A[i]>A[j])
 <swap elements>;
 }
 }

because is doesn't work correctly! (why?)

page 12.16 Intro Java

12.3 Tables
Because array elements can be of any type, it is possible to have elements that are
themselves arrays and build up arrays of multiple dimensions. 2-dimensional arrays are
known as tables or matrices, and are the most common type of multi-dimensional array.
 int [][] matrix = new int [3][5]

Rows are always given first, so this table would have 3 rows each with 5 columns.

A specific element in a table can be referenced using double subscripts
 matrix[1][3]
or an entire row at a time can be referenced using just the first (row) subscript.
 matrix[2]

 0 1 2 3 4

0
1
2

For example, consider the use of a 2-dimensional array to store a conversion table to convert
from feet and inches to metres. We can define a class, ConvertToM, with a constructor that
generates the conversion table for a specified range of feet, a Display method to display
the table with suitable headings, and a toMetres method that accepts either 2 integer
parameters representing feet and inches, or 1 double parameter representing feet and
fractions of a foot, or 1 integer parameter representing inches only, and for each returns the
equivalent length in metres.

c1

c1 : for ft from 0 to maxFt

c2

c2 : for inch from 0 to 11

input max no. of feet

m = (ft*12+in)*2.54/100 store in array[ft][in]

process each inch *
(in the foot)

process each foot *

Construct
conversion table

Arrays page 3.17

class Conversion
/* The class for a conversion table from feet, inches to metres
 * ---
 * that stores the table and will perform conversions
 */
{
// attributes
 private int maxFt; // size of table
 private double [][] ftToM; // size given when created

 Conversion (int numFt)
// constructor - sets up the table and generates the values
 {
 ftToM = new double [numFt+1][12];
 // rows for 0-numFt feet, cols for 0-11 inches
 maxFt = numFt;

 for (int ft=0;ft<=numFt;ft++)
 {
 for (int in=0;in<12;in++)
 {
 ftToM[ft][in] = (ft*12+in)*2.54/100;
 }
 }
 }

 double toMetres(int ft, int in)
 // returns the metre equivalent of the supplied parameters
 // after checking the parameters are within range
 {
 if (ft<0 || ft>maxFt || in<0 || in>11)
 return 0.0;
 else
 return ftToM[ft][in];
 }

 void Display()
 // displays the conversion table with suitable headings
 {
 : <code not shown>
 }

}

part of class Conversion in ConvertEg.java

When dealing with 1-dimensional arrays, we considered how to test whether 2 arrays were
equal.

This can be extended to 2-dimensions on the same basis - assume all elements are equal,
and when the first unequal pair is found stop checking and return false. If the entire array is
scanned without any unequal pair found, then the arrays are equal:

page 12.18 Intro Java

 boolean IsEqual(int [][] arr1, int [][] arr2)
 {
 boolean same = true;
 int row = -1;
 int col;
 // if unequal lengths
 if ((arr1.length != arr2.length) // of rows
 || (arr1[0].length != arr2[0].length)) // or columns
 same = false; // they cant be equal

 // check row by row
 while (same && (row<arr1.length))
 {
 row++;
 col = 0; // check each col in row
 while (same && (col<arr1[0].length))
 {
 if (arr1[row][col]==arr2[row][col])
 col++;
 else
 same = false;
 }
 }

 return same;
 }

Note that the number of elements declared for a column of a 2-dimensional array can be
determined by ascertaining the length property for a row of the table
 matrix[0].length

As another example, consider a simple relief map, where the data is stored in a 2-
dimensional array as real numbers representing heights above (+) or below (-) sea level. One
can envisage a situation where the map is an object, and there are methods to input the
map, to retrieve or change specific values, to ascertain whether a given point is above or
below sea level, to identify the highest point, etc, etc. Such a map can also be visually
represented as an equivalent array of characters, where sea is represented by a space, land
by a dot '.', plateaux above 1000m by a plus '+', and the highest point by a star '*'.

Clearly we can use a class to represent the map. Map

| altitude|
| nRows |
| nCols |
getMap(filename)
getHeight(row,col)
setHeight(ht,row,col)
isLand(row,col)
getHighest()
showChart()
|makeChart(chart)|

What are its attributes?
- a table (altitude) containing heights above sea level.
- The map dimensions (number of rows and cols)
And methods?
- to input the map from a file;
- to retrieve the height at a specified location;
- to set the height at a specified location;
- to check whether a given location is above sea level;
- to return the location of the highest point;
- to display the chart (character) array with a border;
- to generate the chart array - private, used by showChart;
One consideration is whether or not the highest point should form an attribute. The
arguments for and against are

Arrays page 3.19

• if it is an attribute, then we have to check and possibly update it each time method
setHeight is called, in case the new height is the highest, or else we run the risk of
our data being inconsistent.

• if it is not an attribute, the entire array has to be scanned to determine the maximum
value each time getHighest is called.

The best approach will depend on the expected use of the system. For this exercise we will
not store the highest point as an attribute, but have method getHighest calculate it when
called.

The full program can be viewed in Mapping.java (contains the Map class and the driver
class, Mapping) but some points of interest from the perspective of 2-dimensional
processing of arrays are:
• method getHighest that scans all rows and columns in the array to find the max

value:

 int getHighest()
//----------------
// determines and returns the location of the highest point
// as a single 4-digit integer rrcc (row*100+col)
 {
 int maxR=0; // the row and
 int maxC=0; // col coordinates of highest point
 int location; // highest point as rrcc

 // scan array to find max value
 for (int r=0;r<nRows;r++)
 {
 for (int c=0;c<nCols;c++)
 {
 if (altitude[r][c]>altitude[maxR][maxC])
 {
 maxR = r;
 maxC = c;
 }
 }
 }

 location = maxR*100+maxC;
 return location;
 }

method getHighest from Mapping.java

The process is the same as for finding the maximum of a simple list, but the entire table is
scanned row by row, and for each row all the columns are scanned, and the location of the
"biggest-value-so-far" is updated when a larger value is found.

page 12.20 Intro Java

• method makeChart that constructs the visual display of the chart, by scanning every
array element, testing whether the height at that position is below sea level, above
sea level, or over 1000m above sea level, and storing the appropriate symbol in the
corresponding element of a character array:

private void makeChart(char [][] chart)
//---------------------------------------
// constructs a visual representation of the altitude map where
// space = sea
// . = land<=1000m
// + = land>1000m
// * = highest point
{
 double height; // the altitude at a specific point
 int location; // location of highest point
 int row,col; // coordinates of highest point

 for (int r=0;r<nRows;r++) // for each row
 {
 for (int c=0;c<nCols;c++) // and col position
 {
 height = getHeight(r,c);
 if (height<0) // get the height and store
 chart[r][c] = ' '; // the appropriate char
 else if (height<=1000)
 chart[r][c] = '.';
 else // height>1000
 chart[r][c] = '+';
 }
 }

 location = getHighest(); // determine the highest point
 row = location / 100;
 col = location % 100;
 chart[row][col] = '*'; // and store * in chart location
}

Notice that method getHighest is called to return the co-ordinates of the highest point - this
re-use of an existing method is desirable because it saves rewriting code to do the same
thing twice, the existing method is thoroughly tested, and it ensures consistency.

In both these methods the characteristic use of nested for-loops to visit every element in a 2-
dimensional table is clearly demonstrated.

The driver class instantiates a map object of a specific size, inputs data into the object from a
given file, and displays the map.

 Map anArea = new Map(30,20); // instantiate a 30x20 map
 anArea.getMap("MapA.dat"); // input the heights
 anArea.showChart(); // display the chart

Thereafter the highest point is located (getHighest) and it co-ordinates are displayed, and
the user is asked to enter a new height and the height at that location is changed

Arrays page 3.21

(setHeight) and the new highest point is found (getHighest again). Finally the user is
asked to enter co-ordinates of a point and isLand is invoked to determine whether it is
above or below sea level.

Sample output from the driver program is:

| |
| |
| ++|
|++.|
|....+*+...|
|...++.. .|
|....... ..|
++........

The highest point of 1510.0m is at position (4,5).

Enter a new height for this location > 1000

| |
| |
| ++|
|+*.|
|....+.+...|
|...++.. .|
|....... ..|
++........

The highest point of 1500.0m is now at position (3,8).

Enter coordinates of a point:
 row > 5
 col > 8
This point is -1.0m and
is below sea level

page 12.22 Intro Java

12.4 Searching
We often need to be able to search an array in order to locate a particular value, called the
key. If the key value is found in the list, a search should return the index of the array element
with the key value, but if it is not in the list this also needs to be indicated somehow. If it were
possible to return 2 values for a method we could return a boolean value to indicate whether
or not the key value was found, and then its (int) index position, but this is not possible. The
simplest solution is to return only an integer value and use an out-of-range value such as –1
to indicate “not found”, and the index position if the key was found. Since array indices start
at 0 there is no possibility of confusion, and the method requesting the search must check for
–1 indicating “not found”, or know it was found at the given index position.

The type of approach used to search may vary depending on whether the array to be
searched is unordered or in sequential order (ascending or descending).

With an unordered array the data is in random order, so we need to check every element in
the array to see whether or not it is the one we are looking for, and we also need to be able
to tell if the value we’re looking for does not appear in the array. The processing required is:

search array A
for key value

intialise array
index (pos) and

found flag

check for key
value

return index
of key value

return –1 for
"not found"

set found flag
to true

increment
index

*

c1 c3 else

c2 else

c1 : while key not found and while not at end of array
c2 : if A[pos] == key
c3 : if key found

Arrays page 3.23

The method to perform a search of an unordered array is shown below. It forms part of class
mySearch which contains a number of searching algorithms.

public static int Unordered (int key, int [] A, int n)
//--
// Implements a full search for the key value in the n-element,
// unordered array, A. All elements in the array are checked
// until the key is found or the end of the array is reached.
// If key is found its position is returned, if not an
// out-of-range value (-1) is returned.

{
 int pos = 0; // the position being checked in A
 boolean found=false; // whether or not key has been found

 while (!found && pos<n) // check each position until found
 {
 if (A[pos] == key)
 found = true;
 else
 pos++;
 }

 if (found) // return either
 return pos; // the array index for key
 else // or
 return -1; // -1 for "not found"

}

method Unordered in mySearch.java

If we know the array has been sorted (for example, into ascending order), we only need to
check through the array until we find the key value, or until a value smaller than the key is
found. This latter means that the key value is not contained in the array, since it would have
been found by now because the elements are in order and it should have been before the
smaller value we’re now checking. This means that the search can terminate sooner, and not
all elements have to be checked to be sure that the key is not in the list.

page 12.24 Intro Java

public static int Linear (int key, int [] A, int n)
//---
// Implements a linear search for the key val in the n-element,
// ascending array, A. The array is checked from the beginning
// until the key is found or a value larger than the key is
// reached. If key is found its position is returned, if not an
// out-of-range value (-1) is returned.
{
 int pos = 0; // the position being checked in A
 boolean found=false; // whether or not key has been found

 while (!found && pos<n && A[pos]<=key)
 { // check values in range until found
 if (A[pos] == key)
 found = true;
 else
 pos++;
 }

 if (found) // return either
 return pos; // the array index for key
 else // or
 return -1; // -1 for "not found"
 }

method Linear in mySearch.java

With a linear search, if there are n elements in the array then on average n/2 elements need
to be examined to either locate the key value or to ascertain that it is not in the array – ie. the
work done is O(n/2). With the unordered search, if the key is in the array the work done is
O(n/2), but is O(n) if the key is not in the array. In both cases, the execution time increases
linearly with the number of elements in the array, which is a problem for large n.

A more efficient searching technique is the binary search, which is only applicable to sorted
arrays. It takes advantage of the fact the array is ordered to eliminate half the elements
under consideration each pass. Its approach is similar to the way we find a word in a
dictionary, for example. We open the dictionary and see if the word we are looking for is
before or after page we are at. If before we only consider the first part of the dictionary and
try again, if after we only consider the last part of the dictionary and try again. In other words,
we reduce the search space each iteration.

Arrays page 3.25

For example, assume we are searching the following sequence of values for the key 61:
 11 21 24 35 36 41 49 53 57 60 61 68 69 72 81
We check the middle element (53) to see whether 61 is in the first or last half of the list.
Its greater than 53 so we split the list in two and consider only the sublist
 57 60 61 68 69 72 81
Again we check the middle element (68), and 61 is less than 68 so we split the list again and
consider only the lower half:
 57 60 61
Again we check the middle element (60), and 61 is greater than 60 so we split the list again
and consider only the last half:
 61
which is the key value we are searching for.

This search took just 4 probes to find the value, compared with the 10 tries needed with a
linear search. In fact, the average work required is O(log2 n).

If the key value is not in the list the search results in an empty list. Consider searching for the
key 62. The search proceeds as before up to the 4th probe when we have the single element
list
 61
This is also the middle (only) element, and 62 is greater than 61 so we split the list again,
considering only the upper half, and end up with an empty list.

The actual process involved is:
• initialise first to 0 and last to n (or A.length)
• calculate the middle position as middle = (first+last)/2
• if the key is equal to the value of the middle element then the key has been found;

if the key is greater than the middle element, we need to search the upper half:
 set first to middle+1
if the key is less than the middle element, we need to search the lower half:
 set last to middle-1

• recalculate the middle position as middle = (first+last)/2
and repeat these last two steps until …..
• either the key is equal to the value of the middle element and the search is over,
• or the list to be considered is empty (first>last) and the key is not in the list.

page 12.26 Intro Java

intialise
first to 0
last to n-1

found to false

check for
key value

 return index
of key value

return –1 for
“not found”

set found flag
to true

redefine list
as lower half

set last to mid-1

*
c1 c4 else

c2 else

calc mid as index
of middle element

in sub-list

else c3

redefine list
as lower half

set last to mid-1

Binary search of
array A for
key value

 c1 : while key not found and at least 1 element in sub-

list
c2 : if A[mid] == key
c3 : if A[mid] > key
c4 : if key found

The method to perform a binary search is shown below. It also forms part of class
mySearch.

public static int Binary (int key, int [] A, int n)
//---
// Implements a binary search for the key val in the n-element,
// ascending array, A. The array is repeatedly split in two,
// with only the half containing the key value being considered
// each iteration. If key is found its position is returned, if
// not an out-of-range value (-1) is returned.
{
 int first,last,mid=0; // indexes of the current sublist
 boolean found = false; // whether key has been found

 first = 0;
 last = n-1;

 while (!found && first<=last)
 { // with sublist of >1 element
 mid = (first+last)/2;
 if (A[mid] == key) // key is at mid position
 found = true;
 else if (A[mid] > key) // key is in lower half
 last = mid-1;
 else //A[mid] < key // key is in upper half
 first = mid+1;
 }

 if (found) // return either
 return mid; // the array index for key
 else // or
 return -1; // -1 for "not found"
 }

method Binary in mySearch.java

Arrays page 3.27

Exercises

12.1 Write a class, NumArray, with data member an array of integers, and write methods to

input the array; to calculate the average of it elements; to find the maximum and
minimum elements; to check whether all values are positive; to multiply it by a scalar
value; and to add to it another instance of the NumArray class.

12.2 Write a program that reads in a student number (6digits) and a % mark for each of N

students (input N first; or use a sentinel value; or read from a file), and outputs the
student numbers of those students who obtained above the average mark. Do not use
a sort in your solution.

12.3 Write a program that, as above, reads in a student number (6digits) and a % mark for

each of N students (input N first; or use a sentinel value; or read from a file), and
determines what the highest pass mark should be that will allow at least 75% of the
students to pass – ie, at least 75% of the students should obtain that mark or greater.
Do not use a sort.

12.4 A certain instructor awards letter grades to student papers having numeric scores in

the following manner:
• the papers with the highest and lowest marks are found, thus determining the

range
• papers with marks in the top 25% of the range are awarded an A, papers with

marks in the lowest 30% of the range get a C, and the rest get a B.
Write a program that reads in student number (6digits) and % marks for each of N
students (input N first; or use a sentinel value; or read from a file), and outputs the
student together with the letter grade obtained. Do not use a sort in your solution – the
student numbers output must be in the original order.

12.5 Write a class, Marks, which has as data member an array of student numbers and of

marks (%) and write methods to input the arrays; output only those that are above
average (3.2); determine the pass mark for a 75% pass rate (3.3), and assign letter
grade to the marks (3.4)

12.6 Write a method that will sort the student number array into ascending numeric order,

and order the mark array in the same way (so that the first student number
corresponds to the first mark etc)

12.7 Write a method that will determine the median mark and output the median mark and

the student who achieved it. The median mark is the mark obtained by the middle
student – ie, if there are 31 students, the mark obtained by the student who came 16th.

12.8 Write a program that will read N integer values into an array and then delete duplicate

copies of any numbers that appear more than once and move the unique values
towards the beginning, preserving their order. (ie, no sort at this stage). Finally sort the
list of numbers into descending numeric order. Your program should use only one array
to hold the numbers, and the array should be displayed after each stage of the
program.

12.9 Write a class, BinaryNum that has as data member an array that represents a 16-bit

binary value using 2’s complement notation. Write methods that will input an integer

page 12.28 Intro Java

value and store it as a binary number, or that converts the binary number to a decimal
integer.

12.10 Write a matrix class that will input a nxn matrix, and with methods to check whether it is

diagonal (aij=0 for i≠j); upper triangular (aij=0 for i>j); lower triangular (aij=0 for i<j);

12.11 Write a program to do matrix multiplication

12.12 Write a program to generate and output Pascals triangle, where the size of the triangle

N is input (N<10). For N=6, Pascal’s triangle is
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

12.13 Write a method that extends 3.6 by reading a student number, and if the student

number exists in the array, ask for a new mark and change the mark stored for that
student.

12.14 Using the same data as in 3.13, and without re-sorting it into mark order, output the

student number of a student who obtained 90%

13. Strings

We have already encountered string literals or constants which are lists of characters
enclosed in double quotes, such as "Hello there!" In Java, String is a class, so
strings are objects and not variables. There are in fact 2 classes for manipulating strings:
class String for which the contents, once assigned, may not be changed, and class
StringBuffer which enables changes to the contents of strings. Java distinguishes
constant strings and modifiable strings for optimisation purposes – in particular, Java can
perform certain optimisations involving String objects because it knows these objects will
not change.

13.1 Strings
There is a special notation for creating strings with known contents – unlike other objects the
new operator is not needed. A string is created by assigning it another string, or a character
array, or a StringBuffer. For example, if the following variables are all declared as
String,
 aString = "Hello";
 bString = "";
 cString = Keyboard.readString();
are all valid assignments.

A string variable can be assigned different string values at different times - it is not a constant
- but once assigned, the characters comprising the string may not be changed. The entire
string must be reassigned as an entity.

As with all objects, a string instance must be declared before it is used, and may be
initialised at the same time.
 String bString = "";
 String dString;

There is a difference between an empty (but initialised) string, and a null (ie. not initialised)
string. In the example above, dString is uninitialised and will have a special value called
null until it is given some other string value in an assignment statement. Such a string is not
valid for string manipulation methods, and if an attempt is made to access it, a
NullPointerException will be thrown by the system. On the other hand, bString is
initialised and can be used in string manipulation – it just has no contents.

Like arrays, strings know their own size, and a method length() will give the length of the
string. Note that with arrays, length is an instance variable and is accessed as
myArray.length. With strings, length() is a method call, and brackets are required:
 int size = myString.length();

A string is made up of a sequence of characters, and although it cannot be indexed directly
(eg myString[7]), the character at any index position can be obtained using the method
charAt(int).
 String myName = "Percival";
 char initial = myName.charAt(0);
If an attempt is made to access a character outside string bounds (i.e. <0 or ≥length), a
StringIndexOutOfBoundsException is obtained.

page 13.2 Intro Java

Methods toLowerCase() and toUpperCase() return a new string composed of all lower
case or upper case characters respectively. Special characters are unaffected, and the
original string is unchanged, unless it is reassigned to the new string.

For example,
 String original,upper,lower;
 original = "Computer Science 1B";
 upper = original.toUpperCase();
 lower = original.toLowerCase();
 System.out.println("original string: " + original
 + "\n in upper case: " + upper
 + "\n in lower case: " + lower);

will output
 original string: Computer Science 1B
 in upper case: COMPUTER SCIENCE 1B
 in lower case: computer science 1b

Another useful method is trim(), which returns a new string without any of the whitespace
characters (blanks, newlines or tabs) that may appear at the beginning or end of the original
string. Internal whitespace is untouched.

For example
 String original,trimmed;
 original = " Computer Science 1B ";
 trimmed = original.trim();
 System.out.println("original string: *" + original + "*"
 + "\nafter trimming : *" + trimmed + "*");

will output
 original string: * Computer Science 1B *
 after trimming : *Computer Science 1B*

Strings page 13.3

Strings may be compared in two ways. The boolean methods equals(String) and
equalsIgnoreCase(String) will return true or false depending on whether the string
supplied as argument is equal to the string instance invoking the method, or not.

For example

 aString = "CS1A";
 bString = "CS1B";
 cString = "cs1a";

 if (aString.equals(bString))
 System.out.println(aString+" equals "+bString);
 else
 System.out.println(aString+" does not equal "+bString);

 if (aString.equals(cString))
 System.out.println(aString+" equals "+cString);
 else
 System.out.println(aString+" does not equal "+cString);

 if (aString.equalsIgnoreCase(cString))
 System.out.println(aString+" equals (no case) "+cString);
 else
 System.out.println(aString+" does not equal "+cString);

part of CompareStrings.java

will output
 CS1A does not equal CS1B
 CS1A does not equal cs1a
 CS1A equals (no case) cs1a

Note that the equals operator (= or <, > for that matter) should not be used with objects, only
with variables. The reason will be explained more fully in a later section, but is to do with the
fact that objects are stored as references to data values, while variables store the values
themselves. Using = to compare two objects will compare the references of the two objects
– do they refer to the same storage?, not are the values equal?

On the other hand the compareTo(String) method compares the 2 strings on their
respective UNICODE codes, and returns an integer result, where 0 means the two strings
are equal, a negative number means the string that invoked compareTo is less than the
string passed as argument, and a positive number means the string that invoked compareTo
is greater than the string passed as argument (the actual number is the code difference
between the first pair of unequal characters). The method works by comparing pairs of
characters from the left, and the first unequal pair determines the result.

page 13.4 Intro Java

For example,

 aString = "hello";
 bString = "Hello";
 cString = "goodbye";
 dString = "good";

 System.out.println("Comparing "+aString+" and "+bString+": "
 + aString.compareTo(bString));
 System.out.println("Comparing "+bString+" and "+cString+": "
 + bString.compareTo(cString));
 System.out.println("Comparing "+cString+" and "+dString+": "
 + cString.compareTo(dString));
 System.out.println("Comparing "+dString+" and "+dString+": "
 + dString.compareTo(dString));

part of CompareStrings.java
will output
 Comparing hello and Hello : 32

Comparing Hello and goodbye : -31
Comparing goodbye and good : 3
Comparing good and good : 0

For the first, the code for 'h' is 104, while that for 'H' is 72, hence "hello" is greater than
"Hello". In the next, the code for 'H' is 72, while that for 'g' is 103, hence "Hello" is
smaller than "goodbye". In the third, the first 4 chars match, but "goodbye" is longer so is
considered greater than "good", while the last pair register as equal.

Other useful methods are
 indexOf(string) and indexOf(string,pos)
both of which return the index of the start of the substring specified as argument, or –1 if the
substring is not found. The second version specifies the position at which to start the search.

For example,
 aName = "I love computing and computers";
 System.out.print("put is at index " + aName.indexOf("put"));

would display
 put is at index 10

while
 System.out.print("put is at index " + aName.indexOf("put",15));

would display
 put is at index 21

Strings page 13.5

If you know the start location of a substring, it can be copied into another string using the
method substring(startindex) or substring(startindex,endindex), where
startindex is the index position of the start of the substring, and endindex is the index
position after the last position to be copied. If the endindex is not specified, the remainder of
the string is copied. For example, we could use a combination of indexOf and substring
to split string containing a name into the firstname and surname:

String aName,firstname,lastname;
int pos;

System.out.println();
System.out.print("Enter a name as firstname space surname : ");
aName = Keyboard.readString();

pos = aName.indexOf(" ");
if (pos<0)
 System.out.println("no space entered");
else
{
 firstname = aName.substring(0,pos);
 lastname = aName.substring(pos+1);
 System.out.println("First name is " + firstname
 + " and surname is " + lastname);
}

SplitString.java

This displays

Enter a name as firstname space surname : Nelson Mandela
First name is Nelson and surname is Mandela

Two strings can be joined together or concatenated using the concat(string2) method,
which returns a new string consisting of the argument string (string2) joined to the end of
the invoking string.

For example,
 aString = "abcd";
 bString = "xyz";
 cString = aString.concat(bString);
will store "abcdxyz" in cString, while
 cString = bString.concat(aString);
will store "xyzabcd" in cString.

Note that the operators + and += have been overloaded for strings to perform
concatenation, and hence one can use statements such as
 cString = aString + bString; // "abcdxyz"
 cString += aString; // "abcdxyzabcd"

page 13.6 Intro Java

To summarise, the string methods discussed above are tabulated below. There are a
number of other methods, as well as variations on these methods (different arguments etc),
but the ones shown here are the more common and useful methods.

STRING METHODS
length() returns the (int) length of the string
charAt(int) returns the char at the given index
toUppercase() returns the string as upper case
toLowerCase() returns the string as lower case
trim() returns the string with leading and trailing

whitespace removed
equals(String) returns true if the string argument equals the

invoking string, and false otherwise
equalsIgnoreCase(String) returns true if the string argument equals the

invoking string, ignoring case, and false otherwise
compareTo(String) returns a negative, zero or positive int to indicate

the invoking string is less than, equal to, or greater
than the argument string

indexOf(String{,int}) returns the index position of the argument string in
the invoking string

substring(int{,int}) returns the substring starting at the given index in
the invoking string

concat(String) returns a new string consisting of the invoking
string with the argument string joined at the end.

Example
Read in a list of names and sort them into alphabetical order.

If we have an array of strings, the standard sorting algorithms can be adapted to compare
strings and sort the array into alphabetical order.

while (startIndex<n) // if >1 element, process sublist
{
 minIndex = startIndex; // assume first value is smallest
 // scan sublist for smaller value
 for (int i=startIndex+1;i<n;i++)
 {
 comp = names[i].compareTo(names[minIndex]);
 if (comp<0)
 minIndex = i;
 }
 // check min value not at start of sublist
 if (startIndex!= minIndex)
 {
 String temp = names[startIndex]; // exchange values
 names[startIndex] = names[minIndex];
 names[minIndex] = temp;
 }

 startIndex++; // start sublist at next element
}

 part of SortStrings.java

Strings page 13.7

13.2 String buffers
As has been mentioned before, the contents of a string cannot be modified. If we need to
change the contents or length of a string, we need to break it up, rejoin it and assign it to a
new string, or to use the alternative StringBuffer class. This provides methods to let you
change the length of a string of characters, modify individual characters, insert characters
etc. However similar it appears, a StringBuffer is not the same as a String - it is
created differently, and the String methods may not be used with StringBuffers.

Every StringBuffer has a capacity and a length. The capacity defines the number of
characters that can be stored in the StringBuffer, while the length records how many
characters are currently stored. If the capacity is exceeded, it is automatically expanded to
accommodate the additional characters.

To instantiate a StringBuffer object, the new operator must be used.
Eg
 aBuffer = new StringBuffer(); no contents, initial capacity is 16 (default)
 bBuffer = new StringBuffer(10); no contents, initial capacity as given
 cBuffer = new StringBuffer("Hello there!");

initial capacity is length of contents + 16

Methods length() and capacity() return the number of characters currently stored in a
StringBuffer, and the number of characters that can be stored in a StringBuffer without
increasing its size. For example (StrBuffDemo.java),
 aBuffer.length() returns 0, aBuffer.capacity() returns 16
 bBuffer.length() returns 0, bBuffer.capacity() returns 10
 cBuffer.length() returns 12, cBuffer.capacity() returns 28

As with strings, the character at any index position can be obtained using the method
charAt(int). However a method, setCharAt(int,char) is provided for StringBuffers to
replace the character in the specified index position with the character given.
Eg.
 StringBuffer myName = new StringBuffer("Sally");
 myName.setCharAt(1,'i');
 System.out.println("My name is " + myName);
will display
 My name is Silly

If an attempt is made to access a character outside the StringBuffer bounds (ie. <0 or
≥length), a StringIndexOutOfBoundsException is obtained. For example, if the
statement above was
 myName.setCharAt(11,'i');
the following occurs
 java.lang.StringIndexOutOfBoundsException:

String index out of range: 11

page 13.8 Intro Java

The append methods allow new characters to be added at the end of a StringBuffer. Any
type of data can be appended, and the append method converts it to a string and adds it to
the end of the invoking string.
E.g.
 StringBuffer myBuffer = new StringBuffer("Hello");
 myBuffer.append(" there. "); // a string
 myBuffer.append(12345); // an int
 myBuffer.append(' '); // a char
 myBuffer.append(999.99); // a double

Displaying the buffer, the length and capacity after each append (StrBuffDemo2.java)
gives
 "Hello" length: 5 capacity: 21

"Hello there. " length: 13 capacity: 21
"Hello there. 12345" length: 18 capacity: 21
"Hello there. 12345 " length: 19 capacity: 21
"Hello there. 12345 999.99" length: 25 capacity: 44

When an increase in capacity is needed, the new allocation is 2xcapacity + 2.

StringBuffer provides insert methods to allow various data type values to be inserted in any
position in a StringBuffer.
 insert (index,value);
inserts the data value (converted to a string) starting at the index specified (which must be ≥0
and ≤ the length of the StringBuffer.
E.g.
 StringBuffer myBuff = new StringBuffer("Jo Brown");
 myBuff.insert(2,"nathon"); // a string
 myBuff.insert(0,12345); // an int
 myBuff.insert(5,'-'); // a char
 myBuff.insert(myBuffer.length(),'-'); // another char at end
 myBuff.insert(myBuffer.length(),99.99); // a double

Displaying the buffer, the length and capacity after each append (StrBuffDemo3.java)
gives

"Jo Brown" length: 8 capacity: 24
"Jonathon Brown" length: 14 capacity: 24
"12345Jonathon Brown" length: 19 capacity: 24
"12345-Jonathon Brown" length: 20 capacity: 24
"12345-Jonathon Brown-" length: 21 capacity: 24
"12345-Jonathon Brown-99.99" length: 26 capacity: 50

Strings page 13.9

13.3 Tokenizers
When you read a sentence, your mind breaks it up into its component words, or tokens, each
of which convey meaning to you. On the other hand, a sentence stored in a Java string is just
a sequence of characters, with no inherent meaning ascribed to portions of the string. Java
strings do not differentiate between alphabetic characters, digits, spaces, control characters
– they are all merely individual characters in a string. However, Java does supply a
StringTokenizer class (in java.util) that breaks a string into its component portions
(tokens), demarcated by whitespace. (Whitespace refers to the delimeters space,tab,newline
and carriage return.)

So, for example, given a string such as
 myString = "Happy birthday to you";
we can extract the tokens as the individual strings

"Happy", "birthday", "to", "you"

To do this we first declare a tokenizer on the string
 StringTokenizer myTokens = new StringTokenizer(myString);
Then we can look through the tokens, checking for the end, and store each token in separate
elements of an array of strings (or output them, or process them, etc) as demonstrated in
TokenDemo.java:

 nWords = 0;
 while (myTokens.hasMoreTokens())
 {
 words[nWords] = myTokens.nextoken();
 nWords++;
 }

Some output from this demo program is

Enter a sentence of at most 20 words:
I have a dog, her name is Meg.

I
have
a
dog,
her
name
is
Meg.

Notice the punctuation included as part of each token. The tokenizer constructor also allows
you to specify a string containing your delimiters (the default one is " \n\t\r"), as in

myTokens = new StringTokenizer(myString," .,\n\t\r");

which defines the delimiters as comma and full stop as well as the defaults.

page 13.10 Intro Java

Using this constructor would give the output as

I
have
a
dog
her
name
is
Meg

13.4 classes Keyboard and GenIO
Up till now, all input from the keyboard has been using a class, Utilities.Keyboard,
which was written to simplify input. We now have the tools to examine the methods of this
class and see how they are written and also to extend it to cater for more than one data
value to be entered on a line.

For example, consider getInt():

private static BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));

public static int getInt()
//--------------------------
 {
 int localInt = 0;
 try
 {
 localInt =
 Integer.valueOf(br.readLine().trim()).intValue();
 }
 catch (IOException e)
 {
 System.out.println();
 System.out.println("IO exception: " + e.getMessage());
 System.out.println();
 }
 catch (RuntimeException e)
 {
 System.out.println();
 System.out.println("Error entering int: " +
 e.getMessage());
 System.out.println();
 }
 return localInt;
 }

getInt() from Keyboard.java

Strings page 13.11

The first statement instantiates an object br of type BufferedReader. Recall from chapter
2 (Streams and Exceptions), that this declares a new stream, connected to the standard
input device System.in, with all the facilities of the BufferedReader class, in particular
readLine() which returns a string of data from the default input device, System.in, up to
the first newline or carriage return code.

Analysing the actual read statement:

localInt = Integer.valueOf(br.readLine().trim()).intValue();

readline() returns a string from the keyboard,

then the string method trim is invoked for this string object
trim() removes any whitespace from either end of the string,

the resultant string is passed as argument to the Integer class method
valueOf which converts the string to an Integer object

and finally the Integer method intValue is invoked for this Integer object
 intValue() returns the corresponding int value.

This is probably an appropriate place to point out that each numeric datatype has a
corresponding class for use when an object as opposed to a variable of the type is required.
One of the strict rules in Java is that variables and objects cannot be mixed. Usually this is
no problem, but there are times when a standard package requires an object and we wish to
send it a variable, say of type int. In order to do so, it is first placed in an envelope class,
making it into an object. The envelope class provides access to the value and also has
various conversion methods available.

These envelope classes are Boolean, Byte, Short, Integer, Long, Character, Float
and Double, and are in Java's lang package. They provide class-level versions of the
respective primitive data types.

Many methods are available - the important ones are (equivalents available for the other
classes):
Constructors:
 Integer (int value);
 Integer (String s);
 Double (double value);

Double (String s);
Class methods
 static Integer valueOf(String s); // returns s as given class
 static Double valueOf(String s);

static String toString(int x); // returns x as a String
static String toString(double x);

Some newer class methods:
static int parseInt(String s) // returns s as an int
static double parseDouble(String s) // returns s as a double

Instance methods

page 13.12 Intro Java

 int intValue(); // returns required value of instantiating class
 double doubleValue();

In order to enter more than one value on a line, an entire line must be read into a string and
the individual tokens extracted and dealt with.

 S = br.readLine();
 if (S==null) // no more data in file
 {
 System.err.println("End of file detected");
 throw new EOFException();
 }
 T = new StringTokenizer(S);

The basic input class Keyboard and the file input class FileIO have been extended and
enhanced to provide general input functionality including the ability to handle more than one
value per line. For example, the processing in GenIO’s method getDouble() is

double myDouble = 0.0;
String item;

if (T==null) getNewLine(br);
while (true)
{
 try
 {
 item = T.nextToken();
 myDouble = Double.valueOf(item.trim()).doubleValue();
 return myDouble;
 }
 catch (NoSuchElementException e)
 {
 getNewLine(br);
 }
 catch (NumberFormatException e)
 { … }
}

If there is no stringTokenizer (ie. no data has yet been read), get the first line. Then extract a
token from the line and convert it to a double value and return it. However, if there are no
available tokens, (NoSuchElementException) get a new line, and if the value is not a
legal double, (NumberFormatException) take appropriate action.

Strings page 13.13

The class GenIO also contains a number of other useful input and output methods. The full
specification is:

 public static BufferedReader open (InputStream in)
 creates a buffered reader object for the standard input stream

 public static BufferedReader open (String filename)
 throws FileNotFoundException
 creates a buffered reader object for the specified file input stream

 public static PrintWriter create (String filename)
 throws IOException
 creates a print writer object for the specified file output stream

 public static long getLong(BufferedReader br) throws IOException
 inputs a long value

 public static int getInt(BufferedReader br) throws IOException
 inputs an int value

 public static float getFloat(BufferedReader br)
 throws IOException
 inputs a float value

 public static double getDouble(BufferedReader br)
 throws IOException
 inputs a double value

 public static char getChar(BufferedReader br) throws IOException
 intended to read in a single char at a time (ie. individual tokens), otherwise read in a

string and extract the chars

 public static String readString(BufferedReader br)
 throws IOException
 intended to read an entire line, including spaces

 public static String readStrToEol(BufferedReader br)
 throws IOException
 intended to read the rest of the line, including spaces

 public static String readStrWord(BufferedReader br)
 throws IOException
 intended to read the next string token

 public static void getNewLine(BufferedReader br)
 throws IOException
 inputs the next data line for processing

 public static String format(long l,int toWidth)
 outputs a long in toWidth places

page 13.14 Intro Java

 public static String format(int i,int toWidth)
 outputs an int in toWidth places

 public static String format(double d,int toWidth,int decWidth)
 outputs a double in toWidth places, with decWidth decimal places.
 If decWidth is 0, outputs as a long.

 public static String format(float f,int toWidth,int decWidth)
 outputs a float in toWidth places, with decWidth decimal places
 If decWidth is 0, outputs as an int.

 public static String alignL(String S,int toWidth)
 outputs a string left aligned in toWidth places

 public static String alignR(String S,int toWidth)
 outputs a string right aligned in toWidth places

13.5 toString methods
In order for Java's print and println methods to output variables of different data types
and classes, the format and required representation of these variables must be known. Java
"knows" how to display the standard data types. For the non-standard types, one option is to
write an explicit display method to output values together with any formatting, heading info
etc. A more general option is to write a toString method, which returns the data values
expressed as a string.

For example, consider the statement
 System.out.println("The answer is " + x);

How this is dealt with depends on what x is.
• If x is a standard type (e.g. int or double) then its value will be displayed

• If x is a variable of one of Java's standard classes, the class specification includes a

toString method which expresses this data value as a string, so its value will
automatically be displayed
eg

 Date x = new Date();

 // output current time
 System.out.println("\nCurrent time is " + x);

would display

Current time is Fri Jul 13 12:16:15 GMT+02:00 2001

In this case the Date class's toString method represents the value stored in variable
x (actually the number of milliseconds since Jan 1 1970) as day of week, date and time
as shown.

• If x is a variable of a user-defined class, any attempt to display will result in output such

as
The answer is ClassName@607474cd

Strings page 13.15

which is not much use.

The print methods output a string. If a class variable is included to be output then Java
attempts to convert it to a string, and looks for an instance method called toString. This
method is by convention included in all Java library classes to enable the data to be easily
output. If you are writing your own class you should write a toString method for the class,
so that data values can be converted to a string representation and easily displayed or sent
to file or whatever.

Recall the Quadratic equation class discussed earlier. This had an explicit display method
consisting of a print statement to display the quadratic equation object.

 void Display()
 // Displays the equation
 {
 System.out.print(a+ "x^2 + " +b+ "x + " +c+ " = 0");
 }

This method was then invoked to display the equation

// create object called myEq
 QuadEq myEq = new QuadEq(aa,bb,cc);

 System.out.println("The quadratic equation ");
 // invoke the class's Display method to display myEq
 myEq.Display();

Using the approach of writing a general toString method:

public String toString()
 // Represent the equation as a string
 {
 String myString = "" +a+ "x^2 + " +b+ "x + " +c+ " = 0";
 return myString;
 }

Then the object is merely included in the output statement:

 // create object called myEq
 QuadEq myEq = new QuadEq(aa,bb,cc);

 // display myEq (automatically invokes toString)
 System.out.print("The quadratic equation "+myEq);

It is useful to note that the format method in classes Formatter, FileIO and GenIO
returns a String, so can be used within a toString method in building up a representation
of a data value in the correct format.

page 13.16 Intro Java

Exercises

13.1 Write a program that reads in a string and checks whether it is a palindrome – reads

the same forwards and backwards. You should consider only alphabetic characters – ie
ignore spaces and punctuation. For example, "Madam, I'm Adam" is a palindrome, as is
"A man, a plan, a canal, Panama!"

13.2 Write a program to read in a piece of text (over several lines), terminated with ***, and

to determine the number of words it contains and the average word length. You may
assume the text consists only of alphabetic characters, commas and full stops, and
that the words are separated by at least 1 space.

13.3 Write a program that reads in a sentence and displays only the unique words

(irrespective of case) that it contains. Exclude all common punctuation such as .,!?-
():';". For example, if the sentence

Consider the Dog, the Cat and the Mouse. The cat is black,
the mouse is brown, and the dog is brown and black!

 were entered, the output should be
 Consider
 the
 Dog
 Cat
 and
 Mouse
 is
 black
 brown

 Extension – display your output in alphabetical order.

13.4 Write a program which reads in a piece of text (over several lines) and makes it

feminine by replacing all occurrences of he and his with she and her respectively.

13.5 Write a program which reads in a piece of text (over several lines), ending with followed

by a line with 2 words only on it, and exchanges all occurrences of the 2 words in the
text. You will need a sentinel to indicate the end of the text and hence the 2 words.
For example,
input: Jack and Jill went up the hill
 to fetch a pail of water,
 Jack fell down and broke the crown
 and Jill came tumbling after.
 *** Jack Jill
output: Jill and Jack went up the hill
 to fetch a pail of water,
 Jill fell down and broke the crown

 and Jack came tumbling after.

Strings page 13.17

13.6 Write a program which reads in two strings (from 2 data lines) and finds the largest

common subsequence, and its starting position in both strings.
eg. input abcdefefdcbabcd
 xyzababaxy
 output largest common subsequence is "bab"
 found at 10 in line 1, and 4 in line 2.

13.7 Write a program to read in arithmetic expressions, one to a line, as strings, and

evaluate them. The expressions consist of only 2 operands with the operators +,-,*,/.
a) assume the operands and operator are separated by spaces

eg. 123 + 456
b) assume there are no spaces in the expression

eg. 79/24
Report any errors.

14. Recursion

Recursion is the ability of a method to call itself. This can be a powerful programming
technique as in many instances using recursion enables us to specify a natural, simple
solution to a problem that would otherwise be difficult to solve. Recursion can often be used
as an alternative to iteration, but a recursive solution is generally less efficient than an
iterative solution because of the overhead of the extra method calls.

Problem solving using recursion has a common approach. A recursive method is called to
solve the problem. This method actually only knows how to solve the simplest case, called
the base case, and if it is called with the base case, it returns a result. If however it is called
with a more complex problem it can’t solve immediately, but expresses it in terms of a part
that it can do and the part that it cannot. To make recursion feasible, the part it cannot do
must resemble the original problem but a slightly simpler or smaller version of this problem.
Because this new problem looks like the original problem, the method launches a fresh copy
of itself to go to work on the smaller problem – this is the recursive call. Of course this
process repeats – if it is not the base case it is broken into two parts and another recursive
call is made … etc.
Because each recursive step is made with the slightly simpler version of the original problem,
at some point the stage will be reached where the solution is known (the base case), and this
answer must be returned to the preceding call which combines it with the bit it knows, and
returns to the preceding call … etc. until the starting point is reached and the final solution is
known. So each recursive step must contain a return, to send back its solution to the
previous level.

The recursion step executes while the original call to the method is still open – i.e. it has not
finished executing. The recursion step can result in many more recursive calls as the method
divides each new subproblem into 2 conceptual pieces and launches another recursive call.

page 14.2 Intro Java

Problems that lend themselves to recursive solutions have the following characteristics:
• One or more simple cases of the problem (base or stopping cases) have a simple

solution that is known.
• The other cases can be expressed in terms of a combination of a known part and a

simpler case of the original problem that is “closer” to the stopping case.
• Eventually the problem can be reduced to the base case(s), which can be solved –

i.e., the simplifications of the original problem converge to a base case.

The usual form of a recursive method is

if (this is the base case)
{

return solution;
}
else
{

determine known part;
recursive call to get solution to simpler case;
return known part combined with recursive result;

}

Consider the problem of finding the factorial of a number, N, (N ≥ 0).
A factorial (!) can be defined as:
 1! = 1
 N! = N × (N-1)!
This recurrence relation defines a base case (N=1) with a simple solution, and expresses all
other cases as a combination of a known part (N×) and a simpler case of the original problem
((N-1)!).

Writing a recursive method to calculate a factorial:

long factorial(int N)
 {
 if (N==1) // the base case
 {
 return 1;
 }
 else // recursive step
 {
 long ans = factorial(N-1); usually written as

return N*ans; return N*factorial(N-1)
 }
 }

Recursion page 14.3

If we call this method in a program that inputs a value for N and calls factorial(N) to calculate
its factorial, execution will proceed as follows : (additional output statements were included at the
beginning and end of the recursion method to trace the execution)

Calculating factorials

Enter number for which to calculate factorial : 5

 Entering with N=5
 Entering with N=4
 Entering with N=3
 Entering with N=2
 Entering with N=1
 Returning from N=1 with ans=1
 Returning from N=2 with ans=2
 Returning from N=3 with ans=6
 Returning from N=4 with ans=24
 Returning from N=5 with ans=120

5! = 120

Notice that the factorial method is initially called with N=5, and before it completes it calls
factorial again with N=4, which calls factorial again with N=3 … and so on, until the
factorial is called with the base case (N=1). This instance of the method completes its
execution (does not call factorial again) and returns a value (1), which is passed back to the
previous instance (N=2) of the method which can now complete and return a value (2) to its
previous instance (N=3) ... and so on until the original method call (N=5) completes and
returns a result (120) to the main method which displays the result.

As another example, consider the problem of calculating Fibonacci numbers. These are also
defined by a recurrence relation:

fib1 = 1
fib2 = 1
fibN = fibN-1 + fibN-2 for N>2

This recurrence relation defines 2 base cases (N=1,2) with a simple solution, and expresses
all other cases as a combination of 2 simpler cases of the original problem.

A recursive method to calculate the Nth fibonacci number is:

 long fibonacci(int N)
 {
 if (N==1 || N==2) // the base cases
 {
 return 1;
 }
 else // recursive step
 {
 return fibonacci(N-1)+fibonacci(N-2);
 }
 }

page 14.4 Intro Java

If we call this method in a program that inputs a value for N and calls fibonacci(N) to
calculate the Nth number, execution will proceed as follows: (additional output statements were
included at the beginning and end of the recursion method to trace the execution)

Calculating Fibonacci Numbers

Enter fibonacci number required : 5

 Entering with N=5
 Entering with N=4
 Entering with N=3
 Entering with N=2
 Returning from N=2 with ans=1
 Entering with N=1
 Returning from N=1 with ans=1
 Returning from N=3 with ans=2
 Entering with N=2
 Returning from N=2 with ans=1
 Returning from N=4 with ans=3
 Entering with N=3
 Entering with N=2
 Returning from N=2 with ans=1
 Entering with N=1
 Returning from N=1 with ans=1
 Returning from N=3 with ans=2
 Returning from N=5 with ans=5

5th Fibonacci number is 5

The fibonacci method is called with N=5, and before it completes it calls fibonacci
again with N=4, … and so on until a base case (N=2) and this instance of the method
completes it execution and returns a value (1), which is passed back to the previous instance
of the method (N=3), which still needs fibo1 to complete so it calls fibonacci again with N=1, a
base case and returns a result to the previous instance (N=3) which can now complete and
return a result to the previous call (N=4) which still needs fibo2 so calls the method again …
and so on until finally all the method calls are complete and a result is returned to the main
method which displays the result.

Notice that in calculating this 5th Fibonacci number a total of 9 recursive calls were made.
This recursive solution is especially inefficient because 2 recursive method calls are required
for each Fibonacci number in each recursive step. In fact, calculating the 10th Fibonacci
number (55) requires over 100 calls, the 15th (610) requires over 1200 calls, and the 20th
(6765) requires over 13500 calls!

In fact, many recursive problems can be expressed iteratively. Iteration uses a repetition
structure (for/while) and recursion uses a selection structure (if). However, they both involve
repetition – iteration explicitly, recursion through repeated method calls. Both use a
termination test – iteration when the loop continuation condition fails, recursion when a base
case is recognised. Both can occur infinitely – iteration if the loop-continuation test never
becomes false, recursion if the problem is not reduced each step in a manner that converges
on the base case.

Recursion page 14.5

The reason recursion is so inefficient is because it repeatedly invokes the mechanism and
hence the overhead of the method calls. This can be expensive both in terms of processor
time and memory space. Each recursive call causes a copy of the method variables to be
created. Iteration normally occurs within a method so there is no overhead of repeated
method calls and extra memory assignment.

So why choose recursion?
A recursive approach is generally chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem, and results in a program that is
easier to understand and debug. Another reason is that the iterative solution may not be
apparent.

As an example of a case where recursion is required because an non-recursive algorithm is
extremely complex, consider the Towers of Hanoi problem.

Legend has it that in a temple in the Far East (Hanoi?), is a gold rod with 64 golden
discs stacked on it, arranged in order of size so that each disc rests on a larger disc.
Monks are attempting to move all the discs from this rod to another one (using a third in
the process), by only moving 1 disc at a time and ensuring that each disc always rests
on a larger disc. When they complete their task, the world would end!

 1 2 3

Consider the problem for N discs.

When N=1, the solution is trivial: simply move the 1 disc to the other rod.

When N=2, the solution is manageable:

Move the smaller disc out of the way and onto the third rod,
Move the larger one to its destination
And replace the smaller on top of it.

When N=3, things start getting more complex: (calling the rods 1,2,3 and assuming we wish
to move the stack of discs from rod 1 to rod 2)

Move the smallest disc onto rod 2,
Move the middle disc into rod 3,
And replace the smaller one on top of it,
Move the largest disc onto rod 2,
Move the smallest disc from rod 3 out of the way onto rod 1,
Move the middle disc on top of the largest one on rod 2,
Place the smallest disc on top of the stack on rod 2.

To devise an algorithm in this manner for the larger cases is extremely difficult. However, if
we consider a recursive approach, the solution is almost trivial.

page 14.6 Intro Java

We have shown we can move 1 disc to a specified destination (the base case). To move N
discs to a specified rod, we simply move N-1 discs out of the way to the spare rod, then 1
disc (the largest) to the specified rod, and then move the N-1 discs from the spare rod onto
the specified rod.

Following this approach (by hand) to move 3 discs from rod 1 to rod 2:

move 3-1=2 discs from rod 1 to rod 3;
move 2-1=1 disc from rod 1 to rod 2;
move 1 disc from rod 1 to rod 3;
move 2-1=1 disc from rod 2 to rod 3;

move 1 disc from rod 1 to rod 2;
move 3-1=2 discs from rod 3 to rod 2;

move 2-1=1 disc from rod 3 to rod 1;
move 1 disc from rod 3 to rod 2;
move 2-1=1 disc from rod 1 to rod 2;

which is the same as the algorithm devised above.

The program is as simple and involves outputting a set of instructions. No value is returned
by the method – the recursive calls are merely to output the steps in the correct order. We
number the rods 1,2 and 3 as above, which has the nice feature that if you know the
numbers of the origin and destination rods, the spare rod can be found by 6-
(origin+destination).

recursive method from TowersHanoi.java

Hanoi(int N,int from,int to)
// ---------------------------------------
// recursive method to move disks
{
 int spare = 6-(from+to);
 if (N==1) // the base case
 {
 System.out.println(" move disc from "+from+" to "+to);
 }
 else // recursive step
 {
 Hanoi(N-1,from,spare);
 Hanoi(1,from,to);
 // or more simply saving 1 call
 //System.out.println(" move disc from "+from+" to "+to);

Hanoi(N-1,spare,to);
 }
}

For N discs, 10N –1 moves are needed. This means that for 64 discs, if the monks move 1
disc a minute, it will take over 3.5 × 1013 (35 million million) years for the world to end – even
if we give them the solution!.

Exercises

Recursion page 14.7

For each of these exercises, write programs that test your recursive methods

1. Write a recursive method

double Power(double x, double y)
That calculates xy

2. Write a recursive method

void Backward(int[] A)
To display the contents of an integer array A in reverse order.

3. Write a recursive method

boolean isAPalindrome(String myPhrase)
that returns true if myPhrase reads the same forwards and backwards, and returns
false otherwise

4. Write a recursive Binary Search method

int Binary (int key, int[] A, int first, int last)
 that returns the array index of the key in the array A, or –1 if it is not found. The
parameters first and last define the beginning and end index of the sublist under
consideration.

5. The highest common factor (HCF) of two positive integers is defined as

 HCF(M,N) = HCF(N,M) if M<N

= M if N=0
 = HCF(N,M mod N) otherwise

 where M mod N means the remainder after dividing M by N (i.e. M % N in Java)

Write a recursive method
int HCF(int M, int N)

to calculate the highest common factor of the two positive integers M and N.

Variation:
The iterative algorithm is: repeatedly subtract the smaller from the larger number until
they become equal – this value is the HCF. Write an iterative HCF method as well.

15. Useful Data Structures

We've so far considered two structured data types – arrays, which are used for storing
sequences of data items all of the same type, and strings, used for storing sequences of
characters. The problems we need to solve don't always fit into these simplistic constraints,
and it is useful to consider a number of variations on these basic structures which may be
suitable under different circumstances.

15.1 Inner classes
Arrays are used to store data items all of the same type, for example, all elements of
 int[][] myArr = new int[4][5];
are integers.
This is limiting as at times we wish to store some information about a particular entity (eg a
person, or a book, or a can of paint), and the information is not all of the same type. Typical
attributes might be
 person: name (String), ID number (long), date of birth (date object, or 3 integers),

annual salary (double) ….
 book: title (String), author (String), ISBN number (long), year published (int) ….
 paint: product code (int or String), colour code (int or String), description (String),

volume in litres (int), selling price (double), number of cans in stock (int) ….

If we are designing a class to deal with a single instance of such an object we would define
attributes of different types and write a constructor, Get… and Set… methods and any other
methods required to provide the object with functionality.

However, consider the case where we do not require the individual objects to have
functionality, but rather merely wish to use them to store data, and in particular wish to deal
with many such objects, for example, all the persons employed by a company, or all the
books in a library, or all the cans of paint in a shop. In that case the class we're designing
would be an Employer class, or a Library class, or a Paintshop class and an attribute of such
a class would be an array of persons or books or paint.

In order to define an array of such objects we need to define a class from which to instantiate
the objects to form the elements of the array. Such a class only needs to have context and
meaning within its parent class – for example, a book within the Library, or a can of paint
within the Paintshop – and so is not defined as a general purpose, stand-alone class with full
object functionality, but rather as an inner class.

An inner class is a class defined within another class (called its outer class), and which has
meaning and scope only within that enclosing class. It's purpose is to support the work of the
containing outer class. In this context an inner class can be thought of as a "user-defined
data type" in that we are defining our own structure with component elements (fields) of any
type which together represent some entity. The outer class can access the attributes of its
inner class directly.

For example, consider a class representing a university course which needs to store
information about the students registered for that course such as student name and number,
class mark, exam mark and final mark. An inner class can be defined to represent a student
with suitable attributes, and the course class can have an array of such student objects as
attribute.

page 15.2 Intro Java

// A course class consisting of a number of student objects
// Illustrates using an inner class
//--
import java.io.*;
import Utilities.*;

public class Course
/*******************/
// The Course class
{
 private class Student
 //====================
 // inner class to represent a student
 {
 private long stNum; // student number
 private String stName; // student name
 private double examMark=0; // stored
 private double classMark=0; // stored
 private double finalMark=0; // calc from class&exam

 } // end of Student class
 //========================

// attributes of class Course
//--
 private String courseName; // module name
 private int nSt; // num students registered
 private Student [] students; // array of Student objects
 private int nPass; // num students who passed
//--

 Course(String name, int numSt, String fname) throws IOException
//--
// constructor - creates a course object with name,
// number of students and array of registered Students,
{
 courseName = name;
 nSt = numSt;
 students = new Student[nSt];

 BufferedReader fin = GenIO.open(filename);

 for (int i=0;i<nSt;i++) // sets up the array of students
 {
 // instantiate each student object
 students[i] = new Student();
 // read attrib values from file and calc final amark
 students[I].stNum = GenIO.getLong(fin);
 students[I].examMark = GenIO.getDouble(fin);
 students[I].classMark = GenIO.getDouble(fin);
 students[I].stName = GenIO.readStrToEol(fin);
 students[I].finalMark =
 (students[I].examMark*2 + students[I].classMark)/3.0;
 }
 }

Data Structures page 15.3

public void SortStudents()
//--------------------------
// sort Student array into ascending order on student number
 {
 int pass = 0;
 boolean swapped;

 do
 {
 pass++;
 swapped = false;
 for (int st=0;st<(nSt-pass);st++)
 {
 if (students[st].stNum>students[st+1].stNum)
 {
 // exchange references. – no need to copy data values
 Student temp = students[st];
 students[st] = students[st+1];
 students[st+1] = temp;
 swapped = true;
 }
 }
 } while (swapped); // if no swops made => sorted
 }

 public void Display()
//---------------------
// Displays the student data
 {
 System.out.println(courseName + "\n---------");

 for (int st=0;st<nSt;st++)
 {
 System.out.println(GenIO.format(students[st].stNum,9)+" "
 + GenIO.alignL(students[st].stName,20)
 + GenIO.format(students[st].examMark,6,1)
 + GenIO.format(students[st].classMark,6,1)
 + GenIO.format(students[st].finalMark,6,1));
 }
 }

 Course.java

Note that the attributes of class Student can be accessed in class Course even though
they are declared private since Student is defined inside Course and is hence within its
scope. The individual attributes are referenced using the particular object name (eg
students[i] for that particular object in the array) together with the attribute required as in

 students[i].finalMark =
(students[i].examMark*2 + students[i].classMark)/3.0;

In other words, since this is an internal class it is not necessary to provide Get.. and Set..
methods to access the attribute values from the methods of outer class.

page 15.4 Intro Java

When creating an array of objects there are 3 steps to follow to instantiate the array correctly:
1. declare an array of the appropriate object type

private Student [] students;
2. instantiate this array to hold the required number of elements (objects)

students = new Student[nSt];
 or 1 and 2 can be combined as in
 private Student [] students = new Student[nSt];

3. instantiate each object in the array
 for (int i=0;i<nSt;i++)
 {
 students[i] = new Student();
 ...
 }

Recall the process that occurs when an array (or any object) is declared.

• declare: int [] marks;
• instantiate: marks = new int[5];

or
• declare: Time lecture;
• instantiate: lecture = new Time(); (assuming no constructor)

 declare instantiate

The declaration defines the object name and allocates a variable to hold the address of the
object; the instantiation reserves the memory needed to hold the array elements or object
attributes and stores the address of the start of this memory block in the object variable.

In the 3 step declaration of an array of objects,
1. the first declaration defines the name of the array of objects and allocates a variable to

hold its address;
2. the instantiation of this array serves as the declaration of the n objects in the array and

reserves the n units of storage needed to hold the memory address of each object;
3. the instantiation of each of the n objects in the array reserves space for that object's

attributes and puts their start address in the array element for that object.

Data Structures page 15.5

The inner class discussed above provides a means of grouping items of dissimilar data types
into a single object, but no methods are provided to give functionality to the class – it merely
represents a data structure.

Another approach is to include some limited functionality to augment the basic data
representation of the inner class. This does not normally consist of a full range of methods of
different types providing a variety of behaviours – such functionality is usually reserved for
independent classes (discussed below) – but typically the class is provided with one or more
constructors to allow the object to be instantiated with specific values and not just defaults,
and a toString method to allow for default display of the object's attributes values.

The inner class Student of the Course class discussed above has been modified to
illustrate this approach of incorporating some limited functionality into the inner class.

 private class Student
 //====================
 // inner class to represent a student
 {
 private long stNum; // student number
 private String stName; // student name
 private double examMark=0; // stored
 private double classMark=0; // stored
 private double finalMark=0; // calc from class&exam
 //--

 Student(long num,String name)
//-----------------------------
// constructor - creates a student object with number and name
 {
 stNum = num;
 stName = name;
 }

 public String toString()
//---
// returns a String containing all the details for this student.
// GenIO's formatting methods all return strings, and are used
// here to convert the numeric data to strings.
 {
 String outString = "";

 outString = GenIO.format(stNum,9) + " "
 + GenIO.alignL(stName,20)
 + GenIO.format(examMark,6,1)
 + GenIO.format(classMark,6,1)
 + GenIO.format(finalMark,6,1);

 return outString;
 }
} // end of Student class
//========================

 inner class Student in Course1.java

page 15.6 Intro Java

15.2 Arrays of independent objects
In some cases the object being modelled is an independent entity in its own right, and is
more correctly represented as a public class with attributes and methods. Certainly a case
can be made for designing a fully independent Student class to model a student, instead of
merely the data values and perhaps limited functionality of the inner classes used above.

Such a Student class may have a number of attributes, for example, student number,
name, marks for tests and assignments, class mark, exam mark and final mark and grade,
and would require methods to initialise it with a name and student number, to enter marks, to
calculate the class mark and the final mark and grade, and to make each of these values
available to other users. Obviously, the complexity and level of detail depends on the use
we're going to make of the Student class. And analogous to the inner classes above, in a
class Course we may chose to have as attribute an array of Student objects, each with its
own attributes and defined functionality.

Apart from the increased functionality, the other significant difference between this fully
independent, public Student class and an inner class with limited functionality is that the
public class is defined in its own file and so does not fall within the scope of the Course
class. This means that Student's attribute values cannot be accessed directly (as can the
attributes of an inner class) but that explicit methods (Gets and Sets) must be provided for
the Student class to make its attribute values available to Course and to other classes that
may wish to use Student.

To illustrate this, let us consider a specific example:
All modules offered by the Computer Science Department have a maximum of 5
assignments and 3 tests. These all contribute to the class mark, with the assignments
counting equally towards 50% of the class mark, and the tests counting equally towards the
other 50% of the class mark. The class mark counts 30% of the final exam, and in order to
pass a student must get 40% or more for each of the class mark and the exam mark, and
have a final mark of over 50%. Letter grades are awarded as
 A : ≥ 80% D : 50-59%
 B : 70-79% S : 40-49%, or failed sub-minimum
 C : 60-69% F : <40%

A student data system is required that will
• store student number, name and marks for all students in each module
• allow a mark to be entered for all students for a particular assignment/test or the exam
• calculate their class and final marks, and letter grades
• determine average marks for the class
• determine the pass rate
• output class lists (with all the marks) in alphabetic order, student number order, and

descending order of final mark
• look up and display a specific mark for a given student (using student number)
• modify any of the test/assignment marks for a given student
• store and retrieve the data from file

Data Structures page 15.7

Considering the objects required:

We need an class to represent a student. As a minimum it needs attributes to store student
number and name, an array of assignment marks, an array of test marks, and the exam
mark. Do we need attributes to store classmark and final mark and grade? It depends largely
on the use which is made of the class. If we're only going to use it to calculate and display
the final result, then we don't need to store them as part of the class; on the other hand if it is
going to be used to record the calculated marks and access them in order to output them in
different ways and display them and possibly modify them, then they must be stored as
attributes and form part of the students record.

The methods required are methods to calculate the class mark; to calculate the final mark
and grade; to store a mark; and to retrieve a mark. We can use individual methods to store
each of the marks, eg storeAss1(mark), storeAss2(mark), storeTest1(mark)…
etc; or we could write methods to store each type of mark, eg storeAss(n,mark),
storeTest(n,mark), storeExam(mark); or we could write a generic method to specify
which mark to store by a reference number, say 1-5 for assignments, 11-13 for tests, and 21
for the exam (or something similar), as in storeMark(which,mark).The first approach is
unnecessary duplication, the second is probably makes the most logical sense, but is
essentially a replication of the same method, while the third approach requires remembering
a code to reference which mark to store but only writing one method. I'll use this third
approach, mainly because I'd prefer to write 1 method rather than 3, even though the
combined method requires testing to determine exactly which mark is needed. Similar
arguments apply to retrieving a mark with the added requirement for retrieving the class and
final marks (codes 22 and 23?). Another method is needed to return the letter grade. In
addition, methods are needed to return the student number and name – eg for display
purposes.

Student
| stNum |
| stName |
| assigns [5] |
| tests[3] |
| examMark |
| classMark |
| final Mark |
| grade | - char
calcClMark()
calcResult()
storeMark(which,mark)
getMark(which)
getGrade()
getStnum()
getName()
toString()

 What about the constructor? – we'll assume it merely creates
the object and stores the student number and name, and all
marks are stored using the storeMark method. This is logical
because it is unlikely that all the data is known when the object
is created, but marks will need to be entered when the
test/assignment has been marked.

A toString method is also useful. This method will return the
object as a string and can then be used in writing the object to a
file, or displaying it to the System.out device, or whatever.

page 15.8 Intro Java

The module is also represented as a class. It needs attributes to store up to 100 student
objects (an array of objects), the number of students registered for the module, the number
of assignments and tests given, various average marks, and the number of passes. Apart
from a constructor to define the module parameters, we need a method to set up the
students registered for the module which we'll get from a specified file. Methods are also
needed to display the student records in a particular order, to enter marks for all students for
a particular test, assignment or exam, to update a particular mark for a student and to return
a given student's record as a String.

 In addition, a method is needed to calculate the averages
and the pass rate. One approach is to call this method
automatically whenever a mark is changed, because the
averages may now be out of date. This could be
extremely wasteful if a number of changes are being
made, because the entire array will be scanned and the
averages recalculated after each individual change.
Alternatively, the responsibility could be placed on the
user to recalculate the averages after a batch of changes
– more efficient but places the onus on the user.

Module
| modName |
| nSt |
| students[] | - Students
| nTests |
| nAss |
| avExam |
| avClass |
| avFinal |
| nPass |
setupModule(filename)
enterMarks(which)
change1Mark(st,which,mark)
calcAvs()
displayAvs(to)
getNumPass();
displayAlpha(to)
displayNumeric(to)
displayMarkOrder(to)
getStudent(st) – returns String

Because the module object and its data will need to be
used over a period of time, a method could also be written
to write the module object to a data file, and an alternate
constructor provided that will restore a previously created
module from file. The filename will be the parameter for
the constructor instead of the module setup data, and all
the attributes will be retrieved from the file. (Left as
exercise for the reader)

A number of points need to be considered:

• should we hold the student objects in the array in any specific order – ie one of the

output orders such as student number, alphabetic, or mark order? or just in random
order?

If they are in random order we will need to do a linear, unordered search of the entire array
each time a student record needs to be accessed – inefficient.
It is very difficult to hold them in mark order because it may change dynamically, and is even
unknown at early stages – rather sort when required.
Alphabetic order is OK, but if we are using student number to locate a student eg to update a
mark, then alphabetic order will once again require an unordered search. If a key is being
used to look up data, it should be ordered on that key. In this case the specified key is
student number (guaranteed to be unique, which name might not be), so the correct ordering
is student number order.

Data Structures page 15.9

• what do we do if we want to update a students mark, or want info on a particular
student, and the student doesn't exist?

Some sort of error or signal must be given if a record cannot be found, and the class / user
program must check for it after each access and react to it. Any method that needs to locate
a particular student should use a single private method findSt that will return the array
index for that particular student or –1 if the student is not found. Then the method to change
marks or display the student number or whatever can watch for the –1 and react to it.

• how do we ensure that the data is consistent – for example, that the class marks and

averages are always up to date, even if particular students marks are changed?
By ensuring that any method that changes a mark always invokes the relevant methods to
update averages etc – anything that can be affected by a changed mark – before exiting. In
general the marks will be entered as a batch, so the enterMarks modules must recalculate
that student's average and the module averages. So instead of a single method we'll have 2
private methods, one to calculate the module averages that can be used when a single
student's mark and hence the average has been changed (calcModAv), and one to
calculate class and final marks for all students which also calls the calcModAvs method
(calcAvs).

• are there any special considerations for sorting an array of objects rather than an array

of (eg) numbers?
No – apart from the obvious one of ensuring that an appropriate form of comparison of
objects is used. In this case that does not apply, because we are sorting on student name
(String) for which appropriate comparison methods are supplied, or student number (long) or
marks (double) both of which are simple logical comparisons. However, one consideration
when sorting a large array of objects with many data items, is whether we should physically
exchange the data items during a sort, or instead just sort a reference to each item to avoid
the overhead of copying all the data items many times – particularly when we're just sorting
in order to display the data and do not wish to make permanent changes. More about this
later.

The classes are all saved in the ArrayObjDemo folder, and should be carefully studied to
ensure you understand what the different methods do, how they do it, and how they
interrelate. Only extracts are shown here, together with some discussion.

Consider first the Student class.

Its attributes are as discussed, and the constructor merely stores the student number and
name in the relevant attributes. All entry of marks is done by specific methods.

Method storeMark is straightforward – it checks which mark has to be stored and replace
that mark in the students attributes by the parameter value. If an illegal mark code is used
and error message is sent to the System error device, but as this method should only be
used by the Module class which only invokes it with valid values this is not really requires. It
is included because it is a natural consequence of checking for which mark to store, and in
case this method is ever invoked by another user.

page 15.10 Intro Java

public class Student
/*******************/
// The Student class
{
// attributes
//--
 private long stNum; // student number
 private String stName; // student name
 private double [] assigns = new double[5];
 // max 5 assignments
 private double [] tests = new double[3];
 // max 3 tests
 private double examMark=0; // stored
 private double classMark=0; // calculated from assigns+tests
 private double finalMark=0; // calculated from class+exam
 private char grade=' '; // letter grade - calculated
//--

 Student(long num,String name)
//-----------------------------
// constructor - creates a student object with number and name
 {
 stNum = num;
 stName = name;
 }

Method calcClMark is also routine – averages the assignment and test marks and
combines them in equal proportions. The number of tests and assignments is specified as a
prameter so that as long as the overall departmental guidelines on how to calculate the class
mark are met, individual module differences in the numbers of assignments and tests can be
accommodated.

Likewise calcResult will combine the class and exam marks according to prescribed ratios
(30% : 70%), as long as both values are non-zero. This is to guard against calculating final
marks before the components are available, and also caters for a student who may be
absent for the exam. A sub-minimum is in effect – if either of the marks are <40 a maximum
final mark of 48% can be attained, and the method checks for this. Then the letter grade is
determined using a cascading if to award the appropriate grade for the mark group.

Four "get" methods are present – to return the student number, the student name, the grade,
and any of the marks. The getMarks method is the only interesting one in that the mark
code must be specified in order to indicate which mark to return, and this is checked.

The toString method returns a string consisting of all the attribute values for a student
neatly formatted. GenIO's methods all return strings and are used to build up the string. The
advantage of a toString method instead of a display method is that the string can be used
in any appropriate context – eg. sent to file, or manipulated programmatically – instead of
merely being sent to the standard output device.

Data Structures page 15.11

The Module class is more complex. The constructor merely sets up the module's
parameters – name, number of students, tests and assignments - and creates the array to
hold all the student marks. This is an array of Student objects, and each student is
represented as an element of the array, ie. a Student object.

public class Module
/*******************/
// The Module class
{
// attributes
//--
 private String modName; // module name
 private int nSt; // number of students registered
 private Student [] students; // array of Student objects
 private int nAss,nTests; // number of assignments and tests
 private double avExam,avClass,avFinal;
 // average marks for this module
 private int nPass; // number of students who passed
//--

 Module(String name, int numSt, int numA, int numT)
//--
// Constructor
// Creates a module object with name, array of registered Students,
// and numbers of tests and assignments in this module
 {
 modName = name;
 nSt = numSt;
 students = new Student[nSt];
 nTests = numT;
 nAss = numA;
 }

Each Student object in the array has to be instantiated, and this is done in the method
setupStudents, which sets up all the names and student numbers for each student in the
module from a specified file, and then sorts the attribute array into ascending order of student
number. Because each array element is (a reference to) an object, the sort needs merely to
exchange the references and not actually copy the values. A bubble sort is used.

There are two alternate modules to enter a set of marks for all students for a specified
assignment, test or the exam. One accepts data values from the keyboard, and the other
inputs them from a file. (ie. method enterMarks is overloaded). Both methods return a
boolean value to indicate whether or not the mark entry completed successfully, or whether
errors were detected.

page 15.12 Intro Java

 public boolean enterMarks(int which)
//------------------------------------
// allows a particular set of marks denoted by which to be
// entered from the keyboard for all students in the class.
// The method returns false if an error occurs.
__

 public boolean enterMarks(String filename, int which)
 throws IOException
//---
// alternate enterMarks method to allows a particular set of
// marks denoted by which to be entered from the specified file.
// The file must contain the student number and the mark in the
// correct student num order so that the numbers can be matched.
// The method returns false if an error occurs.

In both methods the mark code is checked to ensure a valid assignment or test or the exam
has been specified, and if not the method terminates returning false. The keyboard entry
version displays each students number and name in turn and inputs that students mark,
while the file entry version inputs marks one by one from a file, and for each checks that the
student number for the mark matches the next student in the array. If the file of marks and
the array are not in exactly the same order the method returns false.

The method to calculate the student and module averages is a private method as it is
automatically invoked each time a mark is entered or changed, and so the averages are
always correct and there is never a need to specifically invoke the method to calculate the
averages, they can merely be retrieved or displayed using the appropriate methods.

 private void calcAvs()
//----------------------
// Calculates the class mark and final mark and letter grade for
// each student, and call calcModAvs to calculate the modules
// averages and number of passes.
 {
 // do calcs for each student in this module
 for (int st=0;st<nSt;st++)
 {
 students[st].calcClMark(nAss,nTests);
 students[st].calcResult();
 }
 calcModAvs();
 }

The processing is done in 2 sections: calcAvs loops through all students and invokes each
student’s calcClMark method to calculate the class and final marks for that student, and
then invokes calcModAvs to calculate the module averages for the class, exam and final
marks. The reason these were separated is that when an individual student’s mark is
changed (change1Mark) we only need to call that student’s calcClMark method and then
recalculate the module averages, so calcModAvs is invoked in both cases.

Data Structures page 15.13

 private void calcModAvs()
//-------------------------
// Calculates the average exam, class and final marks, and
// the number who passed.
 {
 double totExam = 0,
 totClass = 0,
 totFinal = 0;
 double finMark;
 int count = 0;

 // loop through each student in this module
 for (int st=0;st<nSt;st++)
 { // total these values for the averages
 totExam += students[st].getMark(21);
 totClass += students[st].getMark(22);
 finMark = students[st].getMark(23);
 totFinal += finMark;

 if (finMark>=50) // count the number of passes
 count++;
 }

 avExam = totExam/nSt; // calculate class averages
 avClass = totClass/nSt;
 avFinal = totFinal/nSt;
 nPass = count;
 }

A number of the module methods require that a student number be specified so that a
particular mark for that student can be retrieved or changed, or the student’s results can be
displayed. All these methods use a private method, findStudent to locate the array
element in which the student’s data is stored using the student number as the key, and to
return the array index or –1 if the student is not found in the array. It uses a linear search
since the data is arranged in student number order (the key field).

Methods get1Mark and change1Mark are similar in that they both accept a student
number (which is used by findStudent to locate the student in the array), and a mark code
to indicate which mark is to be returned/changed, and change1Mark also accepts a new
value for the mark. However get1Mark returns a double value, either the requested mark or
-1 if an error occurs, while change1Mark returns a boolean value to indicate either a
successful operation or an error.

page 15.14 Intro Java

 public double get1Mark(long stnum, int which)
//--
// locates the given student, and returns the specified mark if
// is the operation is successful, and -1 if an error occurs
// which can be because the student is not in the array, or an
// invalid mark code was specified.
 {
 int st = 0; // array index for this student

 // check mark code - only return marks if valid code given
 if (!((which>=1&&which<=nAss)
 || (which>=11&&which<=10+nTests)
 || (which>=21&&which<=23)))
 {
 System.err.println("Error - invalid mark code " + which);
 return -1;
 }

 st = findStudent(stnum);
 if (st<0)
 { // student not found
 System.err.println("Error - no such student " + stnum);
 return -1;
 }
 else
 return students[st].getMark(which);
 }

Notice the calls to findStudent to determine the array index, the use of class Student’s
getMark and storeMark methods to access the student’s attribute values, and the error
checking on the which code which differs for the 2 methods – codes of 22 and 23 (class and
final marks) are valid if the marks are being returned for information, but are not valid if
changes are to be made as these marks are calculated.

Data Structures page 15.15

 public boolean change1Mark(long stnum, int which, double mark)
//--
// locates the given student, and sets the specified mark to the
// value given. returns true is the operation is successful, and
// false if an error occurs which can be because the student is
// not in the array, or an invalid mark code was specified.
 {
 int st = 0; // array index for this student

 // check mark code - only enter marks if valid code given
 if (!((which>=1&&which<=nAss)
 || (which>=11&&which<=10+nTests)
 || which==21))
 {
 System.err.println("Error - invalid mark code " + which);
 return false;
 }

 st = findStudent(stnum);
 if (st<0)
 { // student not found
 System.err.println("Error - no such student " + stnum);
 return false;
 }

 // store mark in the correct field
 students[st].storeMark(which,mark);
 // assignment or test mark changed, recalculate class mark
 if (which<20)
 students[st].calcClMark(nAss,nTests);
 // in any case recalculate final marks and module avs
 students[st].calcResult();
 calcModAvs();

 return true; // mark change successful
 }

Because this method changes a student’s mark, that students final marks are recalculated as
are the module averages.

There a number of output/display methods. Both methods getStudent and displayAvs
return a String which can then be sent to any output stream, whereas methods
displayNumeric, displayAlpha and displayMarkOrder require a PrintWriter stream
to be specified as a parameter to which the data is sent.

page 15.16 Intro Java

Method getStudent specifies the student number for the student required, and
findStudent is invoked to return the array index. If the student is not in the array and –1 is
returned then an error string is generated, otherwise class Student’s toString method is
used to return the required string.

 public String getStudent(long stnum)
//------------------------------------
// returns a string containing the students marks, or a message
// if the student is not in the array
 {
 int st = 0; // array index for this student

 st = findStudent(stnum);
 if (st<0) // student not found
 {
 return("Student " + stnum + " not taking this module");
 }
 else
 {
 return students[st].toString();
 }
 }

Method displayAvs is straightforward and uses GenIO to construct a string consisting of
the module averages (ie attribute values) for the exam, class and final marks, and also the
module pass rate.

And since the attribute array of students is maintained in student number order, the
displayNumeric method merely loops through all the students in the array and uses their
toString method to display each student’s details.

The methods to display the table of student details in alphabetic name order, or descending
mark order appear more complex because the attribute array is not maintained in those
orders so a sort is required before the data can be displayed. However the attribute array
itself must not be sorted, so there are two possible approaches: copy the entire array of
students plus all their details to another array, sort that into the required order and display it;
or set a new array with each student’s entry consisting of his array index in the original array
and the required sort field. This simpler array is then sorted into the required order, and then
each element in turn is accessed and the index field used to access the array element in the
original array to retrieve its data, which is displayed. This approach to sorting arrays of
objects is examined in more detail in the next section.

Data Structures page 15.17

15.3 Sorting arrays of objects
This section examines various alternates in sorting arrays of objects, where the objects
themselves (the array elements) may be quite large, complex structures. In such cases a
large overhead may be encountered in copying and exchanging the data values and a more
efficient approach is required. It is also a useful technique for when we do not wish to disturb
the order of the original array but merely to (for example) display it in sorted order.

What is required is to create an inner class to use as a temporary class within the current
class or even an individual method (such as the sort method), and supply it with a
constructor that will instantiate it with a subset of the original array’s data (usually the field(s)
on which to sort) as well as the index of this element in the original array. Then this sub-
class is sorted, and the (now ordered) array index values are used to access the original
array to display (or whatever) the full object.

Eg.
attribute array in number order: sort array (as set up): sort array (sorted):

 st. num name other fields… index name index name

0 12345 Jane …… 0 Jane 1 Anne
1 23456 Anne …… 1 Anne 0 Jane
2 34567 Susan …… 2 Susan n Mary
: : : : : : : :
N 98765 Mary …… n Mary 2 Susan

When displaying the original array the sort array index field would be used to display “the
original array element whose index is in position x in the sort array, where x=0..n”

 2 23456 Anne ……
 1 12345 Jane ……
 n 98765 Mary ……

 : : :
 3 34567 Susan ……

Declaring an inner class follows the same process as declaring any class – define the
attributes and write a constructor that will store the required values in the attributes. Then
instantiate objects of this class to create the sort array.

page 15.18 Intro Java

The class sortdata used in displaying the student array in alphabetical order (class
Module) is shown here:

 public void displayAlpha(PrintWriter to)
//--
// Displays the student data in alphabetic order to the device
// specified. A "sort array" is set up with an index number
// and key field (student name) and this is sorted, and then
// the index number is used to retrieve the correct element
// from the student array.
 {
 class sortdata
 //--------------
 // inner class used to store the required 2 data fields –
 // index and student name
 {
 int index;
 String name;

 sortdata (int i, String n)
 //--------------------------
 // constructor for class sortdata
 // stores the index and makes its own copy of the string
 {
 index = i;
 name = n.substring(0);
 }
 }
 //---------------------------------- end of sortdata class

 // create sort-array with index and name for all students
 sortdata sortArr [] = new sortdata[nSt];
 for (int st=0;st<nSt;st++)
 {
 sortArr[st] = new sortdata(st,students[st].getName());
 }

Then once the sort array has been sorted into the correct order (a selection sort is used in
this example to minimise the number of exchanges), the index is used to access the array
attribute to display its elements in the appropriate order:

 // loop through the sorted sort-array, and use the index to
// reference the student array to display the values

 for (int i=0;i<nSt;i++)
 {
 int st = sortArr[i].index;
 to.println(students[st].toString());
 }

Data Structures page 15.19

15.4 Merging data sets
Consider the scenario where we have two sets of data stored in two files or two arrays or a
file and an array, and we wish to combine then into a single data set, or process them
together to form a combined result. Examples of when this may be required are
• combining 2 lists (my friends, your friends) into a single list (our friends) in alphabetical

order
• for a shop, merging the list of items in stock (and quantities) with the list of new items

delivered to form an updated stock list.
• processing purchases on account against the list of account holders before sending out

monthly statements.

These examples share the feature that some items may appear in one or other list only while
some may appear in the both lists. An essential requirement of the data sets to be merged is
that they are both arranged in order on the same key (both in alphabetical order, or
ascending numeric order of account number …etc).

As an example consider the running club and the cycling club in the town of Nottoohilly that
decide to merge to form the Nottoohilly Athletic Club. There is a list of runners and a list of
cyclists that need to be combined to form a list of athletes. Although some members only run
or only cycle, there are others who do both and so will appear on both the original lists.

Runners:
 Anne, Bill, Colin, David, Eric, Paul, Percy, Simon
Cyclists:

Alec, Barry, Betty, Bill, Carol, Charles, Colin, David, Eric, Fred

In order to process the names one by one in sequence to create the new list, you first need
to access the first member of each list. Then an iterative phase is entered wherein the names
are compared and the “first” one (ie, alphabetically or on whatever key is being used to order
the items) is processed (copied to the new list) and the next item is accessed from that data
set to replace the one that has been processed. If both names are the same then it is
processed and the next item is accessed from both lists to replace the ones that have been
processed. At any stage there must be one item from each data set under consideration.
This phase continues until all the items in one or other list have been dealt with. The
remaining items (all from one data set) are in the correct order so can just be processed
sequentially.

Using the names in the example above, we’d first consider
 runner: Anne
 cyclist: Alec
Anne is before Alec so would be transferred to the new list and the next runner considered:
 runner: Bill athletes: Anne
 cyclist: Alec
Alec is before Bill so would be transferred to the new list and the next cyclist considered:
 runner: Bill athletes: Anne, Alec
 cyclist: Barry
Barry is before Bill so would be transferred to the new list and the next cyclist considered:
 runner: Bill athletes: Anne, Alec, Barry
 cyclist: Betty
Betty is before Bill so would be transferred to the new list and the next cyclist considered:
 runner: Bill athletes: Anne, Alec, Barry, Betty
 cyclist: Bill

page 15.20 Intro Java

Bill is on both lists so would be transferred to the new list and the next runner and the next
cyclist would now be considered:
 runner: Colin athletes: Anne, Alec, Barry, Betty, Bill
 cyclist: Carol
and so on until the stage
 runner: Eric athletes: Anne, Alec, Barry, Betty, Bill, Carol, Charles,
 cyclist: Eric Colin, David
was reached. Eric is on both lists so would be transferred to the new list and the next runner
and the next cyclist would now be considered:
 runner: Paul athletes: Anne, Alec, Barry, Betty, Bill, Carol, Charles,
 cyclist: Fred Colin, David, Eric
Fred is before Paul so would be transferred to the new list but the end of the cyclist list has
now been reached so there is no cyclist to compare with runners.
 runner: Paul athletes: Anne, Alec, Barry, Betty, Bill, Carol, Charles,
 cyclist: Colin, David, Eric, Fred

At this stage all remaining runners could be transferred one after the other to the athlete list.
 athletes: Anne, Alec, Barry, Betty, Bill, Carol, Charles,
 Colin, David, Eric, Fred, Paul, Percy, Simon

The diagram below illustrates the processing required:

c1

c1 : while still runner

c4

c2 : if more runners

elsec3

c3 : if runner before cyclist

c2

else

c4 : if cyclist before runner

else

 and cyclist data

get first runner,
get first cyclist

copy runner,
get next runner

 process i
a runner

copy cyclist,
get next cyclist

 process i
a cyclist

copy runner,
get next runner

copy cyclist,
get next cyclist

 combine i
runner+cyclist

 deal with runners *
and cyclists

 copy i
remaining runners

copy i
remaining cyclists

merge runner
and cyclist data

Aspects that need to be considered when writing a program to deal with a specific case are:
• how to access the next item in a data set. For an array it means updating the index, for

a file you need to read the next record.
• how to determine when the end of a data set has been reached
• the processing required for each item
• how matching items are to be combined
• whether the items in each list are unique, or whether there could be more than one

entry for a particular item (eg, 2 deliveries of the same product to a shop)

The file MergeFiles.java contains an example program to merge a file of runners and a
file of cyclists to produce a file of athletes.

16. Simple Graphics
(based on Savitch: An Introduction to Computer Science and Programming)

16.1 Intro to AWT and Swing

This is a brief introduction to using Swing to create simple windows. Swing is a standard
library that allows programmers to develop Graphical User Interfaces (GUIs). Swing is based
on an older library of classes (before Java 1.2) called the Abstract Windows Toolkit or AWT.

A window is a portion of the user's screen that serves as a smaller screen within the screen.
It has a border defining its outside edges and a title, usually within the top border. There are
many things that can be put inside a window when designing a GUI interface. We will cover
how to include text and simple graphic shapes, how to use colour, and how to close the
window. Then we'll consider how to include and use clickable buttons.

When using AWT, the size of an object on the screen is measured in pixels (picture
elements). The actual size will depend on the screen resolution. In other words, a graphics
screen is made up of a grid of tiny rectangles (pixels), each of which can have a colour. The
more pixels on your screen, the greater the resolution. For example, a screen resolution of
800 x 600 means there are 800 pixels across the screen and 600 down the screen. The
screen coordinate system has its origin in the top left corner of the screen, and the x-
coordinate is measured from the left across the screen and the y-coordinate is measured
from the top down the screen.

 (0,0) (800,0)

 increasing x

 increasing

 y

(0,600) (800,600)

The easiest way to get going with graphics is to take a simple program and adapt it. Consider
the following program that produces this window:

page 16.2 Intro Java

import java.awt.*;
import javax.swing.*;

class Rings extends JFrame
//-----------------------
// draws Olympic rings
{
 public static void main (String[] args)
 //-----------------------
 // create a graphics frame of a given size, amd show
 // the drawing outlined in the paint method
 {
 Rings myWindow = new Rings();
 myWindow.setVisible(true);
 }

 public Rings()
 //------------
 // constructor - sets the window size & title
 {
 setTitle("1st graphics program: Rings");
 setSize (400,300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void paint (Graphics g)
 //----------------------------
 // draw 5 interlocking rings of different colours
 {
 g.setColor (Color.red);
 g.drawOval(20,100,80,80);
 g.setColor (Color.blue);
 g.drawOval(90,100,80,80);
 g.setColor (Color.green);
 g.drawOval(160,100,80,80);
 g.setColor (Color.yellow);
 g.drawOval(230,100,80,80);
 g.setColor (Color.black);
 g.drawOval(300,100,80,80);

 // label the drawing
 g.drawString("Olympic Rings",160,220);
 }
}

Rings.java

The first 2 statements says that the program uses the AWT library for drawing graphics and
the newer Swing library for drawing windows. These should appear in any program using the
AWT/Swing libraries.
The first line of the class definition says that this window is a JFrame (i.e. a derived class
with base class JFrame). A JFrame is Swing’s representation of a basic window, with a
border, a place for a title and a close button.

Simple Graphics page 16.3

This class has 3 methods:
• a constructor (Rings) which is called when a new Rings object (a JFrame) is

constructed. In the constructor we specified some properties for this window i.e.the
size and title of the window, and what should happen when we click on the close icon
(for this window just exit the application);

• a main method, which creates a Rings object and ensures it is seen (the default is
not to display the window);

• a paint method, which is called automatically by AWT and allows us to specify any
graphical objects that must be displayed within the window.

The constructor normally includes statements that specify values for properties of the window
(JFrame). In this example there are statements to specify the title to appear in the window's
border and the size of the window (400 pixels across x 300 pixels down). The last statement
sets the default action to take when the user clicks the close box. In this case the action is
EXIT_ON_CLOSE. Some other options are DO_NOTHING_ON_CLOSE and HIDE_ON_CLOSE.

The paint method is called automatically and has a single parameter, a Graphics object,
that allows the methods of the Graphics class to be used to display shapes, text and
colours inside the window. Some useful Graphics methods are:
• drawstring (String str, int x, int y)
 Displays the string str starting at coordinate (x,y)
• drawLine (int x1, int y1, int x2, int y2)

Draws a line from point (x1,y1) to (x2,y2)
• drawRect (int x, int y, int w, int h)

Draws a rectangle with upper left corner at (x,y) and dimensions w x h
• drawOval (int x, int y, int w, int h)

Draws an oval that fits within the rectangle that has its upper left corner at (x,y) and
dimensions w x ht. To draw a circle, specify the same values for w and h.

• fillRect / fillOval (int x, int y, int w, int h)
Draws the specified shape as above but fills it with the current colour

• setColor (Color c)
Sets the current colour (for drawing) to c. This colour is used until a new default colour
is set. Color constants are red, yellow, blue, orange, pink, cyan, magenta, black,
white, gray, lightGray, darkGray. Or a user can "mix" a new colour scheme by
constructing a new Color object and specifying the components. (see Rings3)

• setFont (Font f)
Sets the current font (for text) to f. User must construct a font f by specifying the
typeface, style and pointsize. (see Rings2)

page 16.4 Intro Java

Another example is

import java.awt.*;
import javax.swing.*;

class Rings2 extends JFrame
//-----------------------
// draws Olympic rings
{
 public static void main (String[] args)
 //-----------------------
 // create a graphics frame of a given size, amd show
 // the drawing outlined in the paint method
 {
 Rings2 myWindow = new Rings2();
 myWindow.setVisible(true);

 }

 public Rings2()
 //------------
 // constructor - sets the window title
 {
 setTitle("Graphics demos: solid rings");
 setSize (400,300);
 setBackground(Color.black);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void paint (Graphics g)
 //----------------------------
 // draw 5 interlocking rings of different colours
 {
 g.setColor (Color.magenta);
 g.fillOval(20,100,80,80);
 g.setColor (Color.cyan);
 g.fillOval(90,100,80,80);
 g.setColor (Color.pink);
 g.fillOval(160,100,80,80);
 g.setColor (Color.green);
 g.fillOval(230,100,80,80);
 g.setColor (Color.orange);
 g.fillOval(300,100,80,80);

 // label the drawing
 Font myFont = new Font ("Arial",Font.BOLD,18);
 g.setFont (myFont);
 g.setColor (Color.white);
 g.drawString("Solid Rings",160,220);
 }

}

Rings2.java

Simple Graphics page 16.5

This produces the output:

and shows how to set the window background colour, and how to set the font.

As a final example of a simple window, consider Rings3.java which creates a Color
object with random red, green and blue values, and displays circles of different sizes
calculated within a for loop. The output produced is

page 16.6 Intro Java

import java.awt.*;
import javax.swing.*;

class Rings3 extends JFrame
//-----------------------
// draws Olympic rings
{
 public static void main (String[] args)
 //-----------------------
 // create a graphics frame of a given size, amd show
 // the drawing outlined in the paint method
 {
 Rings3 myWindow = new Rings3();
 myWindow.setVisible(true);

 }

 public Rings3()
 //------------
 // constructor - sets the window title
 {
 setTitle("Graphics demos: expanding rings");
 setSize (400,400);
 setBackground(Color.lightGray);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void paint (Graphics g)
 //----------------------------
 // draw 5 expanding rings of different colours
 {
 int x=50,y=50,width=50,height=50;
 int red,green,blue;

 Color tint;

 for (int i=1;i<=10;i++)
 {
 red = (int) (Math.random()*256);
 green = (int) (Math.random()*256);
 blue = (int) (Math.random()*256);
 tint = new Color(red,green,blue);
 g.setColor (tint);
 g.drawOval(x,y,height,width);
 width = (int) (width*1.2);
 height = (int) (height*1.2);
 }

 // label the drawing
 Font myFont = new Font ("Arial",Font.ITALIC,18);
 g.setFont (myFont);
 g.setColor (Color.black);
 g.drawString("Expanding Rings",220,370);
 }

}

Rings3.java

Simple Graphics page 16.7

16.2 Event-driven programming

Swing/AWT programs and virtually all other graphical user interfaces (GUI’s) use events and
event handlers. An event is an object that represents some action (e.g. clicking a mouse,
pressing a key, choosing a menu option). When an object generates an event the event is
fired. Every object that can fire events (e.g. a button that may be clicked on) can have one
or more listener objects attached to it. These listener objects specify what will happen when
events of various kinds are sent to the listeners. When an event is sent to a listener object
the listener object invokes one of its methods. This method is called the event handler. As a
programmer, you can define one or more listener objects for a graphical object and write
event handlers to define what you want to happen when the object fires events.

Event driven programs are not executed by executing all the statements sequentially as
defined in the main method. Instead the program sits in an infinite loop waiting for an event to
be fired and then responds to it. Instead of writing a sequence of statements that call
methods in a predetermined order, you create objects that can fire events and you create
listener objects to react to those events.

When an event is fired it is automatically sent to the appropriate listener object for the object
that fired the event. The listener object then calls the appropriate event-handling method to
handle the event. You, as a programmer, do not explicitly invoke the event handling (and
other) methods you write, it is done automatically by the Swing system.

In these programs we are defining classes that are derived classes of some basic predefined
classes in the AWT/Swing library. All these classes inherit methods from their parent class.
Some of these default methods work fine and some need to be customised to do whatever it
is you need. For example, the paint method is called automatically to draw objects in your
window. But the default paint method does not have any objects to draw. You need to write
your own paint method to specify what it is you want to see on the screen.

In Rings4.java we create a listener object of type WindowDestroyer for the Window
(JFrame). When the user clicks on the window's close box, a close window event is fired.
This event is sent to all listener objects registered with this object, in this case just the
WindowDestroyer object. Since it is a "windowClosing" event, the WindowDestroyer
object invokes its windowClosing method, which is the event handler for the window
closing event.

import java.awt.*;
import java.awt.event.*;

public class WindowDestroyer extends WindowAdapter
//--
// An object of this class will close a window if the
// close-window button is clicked. The object must be
// registered as a listener to any object of class Frame.
{
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
}

WindowDestroyer.java

page 16.8 Intro Java

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

class Rings extends JFrame
//-----------------------
// draws Olympic rings
{
 public static void main (String[] args)
 //-----------------------
 // create a graphics frame of a given size, amd show
 // the drawing outlined in the paint method
 {
 Rings myWindow = new Rings();
 myWindow.setVisible(true);
 }

 public Rings()
 //------------
 // constructor - sets the window size & title
 {
 setTitle("1st graphics program: Rings");
 setSize (400,300);
 addWindowListener(new WindowDestroyer());
 }

 public void paint (Graphics g)
 //----------------------------
 // draw 5 interlocking rings of different colours
 {
 g.setColor (Color.red);
 g.drawOval(20,100,80,80);
 g.setColor (Color.blue);
 g.drawOval(90,100,80,80);
 g.setColor (Color.green);
 g.drawOval(160,100,80,80);
 g.setColor (Color.yellow);
 g.drawOval(230,100,80,80);
 g.setColor (Color.black);
 g.drawOval(300,100,80,80);

 // label the drawing
 g.drawString("Olympic Rings",160,220);
 }
}

Rings4.java

In order to use the event model we have to import the AWT event library in line 3. The last
statement in the constructor creates and registers a listener that watches out for a mouse
click on the close-window button. It creates a WindowDestroyer object from the class
WindowDestroyer that must be included as a private inner class or defined externally as a
public class (as in this example program). When the close window event is fired, the
windowClosing method is invoked and the application terminates. We could have put
additional processing or cleanup in the windowClosing method.

Simple Graphics page 16.9

16.3 Components, containers and layout managers

Many of Swing/AWT’s classes can be used as a container into which you place various other
objects (such as other sub-windows, buttons, menus, ...). AWT has a predefined class called
Container, and any descendant of Container (such as JFrame) can have objects added
to it. That means that windows like those of the previous examples can have other objects
added to them.

There are three kinds of objects you deal with when using Container classes:
• the container class itself (usually some sort of window). Every container class has a

method called add which you use to add components to the class.
• the components you add to the container (eg buttons, menus, text fields)
• a layout manager, which is an object that positions components inside the container.

The hierarchy of objects is shown in this diagram. A line linking two objects means the lower
class is derived from the higher class.

 Object

Component

Container

Window

JPanel

e

JComp

e

Fram
AbstractBu

JLabel

JTextCompon

JMenuBar

JBu

JMe

J

J

onent
JFram
tton

ent

tton

JMenu

nuItem

TextArea

TextField

page 16.10 Intro Java

16.4 Buttons

The JButton class is descended from the JComponent class. An object of the JButton
class is displayed as a clickable button with a label which is specified as a string when
you construct a JButton object.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class JButtonDemo extends JFrame implements ActionListener
{
 private String theMessage = " Watch this space!";

 public static void main (String[] args)
 //-----------------------
 // create a graphics frame of a given size and show its contents
 {
 JButtonDemo myWindow = new JButtonDemo();
 myWindow.setVisible(true);
 }

 public JButtonDemo()
 //----------------
 // constructor - sets the window size & title
 {
 setTitle("Button Demonstration");
 setSize (400,300);
 addWindowListener(new WindowDestroyer());

 // get the content pane from the window
 Container contentPane = getContentPane();

 contentPane.setBackground(Color.lightGray);
 // layout manager to arrange components
 contentPane.setLayout(new FlowLayout());

 Button redButton = new Button("Red");
 redButton.addActionListener(this);
 contentPane.add(redButton);

 Button greenButton = new Button("Green");
 greenButton.addActionListener(this);
 contentPane.add(greenButton);

 Button blueButton = new Button("Blue");
 blueButton.addActionListener(this);
 contentPane.add(blueButton);
 }

 public void paint (Graphics g)
 //----------------------------
 {
 super.paint(g);
 Font myFont = new Font ("Arial",Font.BOLD,18);
 g.setFont (myFont);
 g.setColor (Color.black);
 g.drawString(theMessage,120,220);
 }
 more

part of JButtonDemo.java

Simple Graphics page 16.11

The program JButtonDemo.java contains, a class JButtonDemo which is derived from
JFrame, a constructor that sets the window size, title and background colour (and defines
some buttons), and a paint method that displays some text using drawString. The string
to be displayed is an instance variable theMessage. When a button is clicked, the
actionPerformed method is invoked and the value of this variable is changed and
repaint is automatically called to redraw the window. The method repaint takes care of
some overheads and calls the method paint which we has been defined in this example. If
you wish to force a refresh of a window you can call repaint (even though you haven’t
defined it), which in turn calls paint Note that you should never call paint directly rather
call repaint.

A JFrame has a container called a ContentPane. All graphical objects, such as buttons to
be displayed within the window, must be added to the ContentPane. To get the
contentPane for this window:

Container contentPane = getContentPane();

To add buttons to the contentPane you must first create a button with a label that will be
displayed on the button:
 JButton redButton = new JButton("Red");

You then add an ActionListener to the button to register a listener to receive events from
the button (e.g. to do something when the button is clicked)
 redButton.addActionListener(this);

Finally you add the button to the container class by calling the add method.
 contentPane.add(redButton);

The method add simply throws buttons into the window. A layout manager controls the
position in which the buttons or other graphical components are added. When you are adding
components to a container you must create a layout manager object which arranges the
components you add to a class.
The three basic layout managers are:
• FlowLayout – displays components left to right along the top row, then the second

row… You can define whether they are centred (default) or left or right justified.
• BorderLayout – displays in 5 areas – north, south, east, west or center. The 2nd

argument of add specifies which area the component goes into.
• GridLayout – displays them in a grid with each component stretched to fill the grid.

The 2 arguments of the constructor define the number of rows and columns in the grid

In our example we create a new layout object in this case FlowLayout, and set this object to
be the layout manager
 contentPane.setLayout(new FlowLayout());

page 16.12 Intro Java

Thus the buttons are added along the top row from left to right (centred) in order.

A button fires events known as action events, and these are handled by listeners called
action listeners. ActionListener is not a class, it is a property that can be given to any
class by:
• Adding the phrase implements ActionListener to the class definition
• Defining a method called ActionPerformed.

The statement
 class JButtonDemo extends Frame implements ActionListener
makes the window class JButtonDemo into the ActionListener that handles button
events.

Recall that to register a listener for each button in the window we used the statement
 RedButton.addActionListener(this);
This statement is inside the constructor for the window so it adds the action listener to
“this” i.e. the actionlistener is the current object (itself).
This means the window will listen for actions on any of its buttons, and the action it takes will
affect the window itself. You could have implemented the actionlistener as a separate class,
but since we are changing the background colour and text in the this window, it makes more
sense to make the JButtonDemo class the listener as well.

When an action listener receives an action event, the event is automatically passed to its
ActionPerformed method. This method determines what type of action event was fired
and branches accordingly to execute the required statements.

Simple Graphics page 16.13

 public void actionPerformed(ActionEvent e)
 //--
 // determine which button was clicked and take appropriate action
 {
 Container contentPane = getContentPane();
 if (e.getActionCommand().equals("Red"))
 {
 contentPane.setBackground(Color.red);
 theMessage =" Danger! STOP!";
 }
 else if (e.getActionCommand().equals("Green"))
 {
 contentPane.setBackground(Color.green);
 theMessage = " Green means GO";
 }
 else if (e.getActionCommand().equals("Blue"))
 {
 contentPane.setBackground(Color.blue);
 theMessage = "my favourite colour";
 }
 else
 theMessage = "Error in button interface";
 }

The method getActionCommand returns the label on the button that was clicked to fire the
event. This is used to determine which button was clicked and change the background and
the content of the text variable (theMessage). The paint method is automatically called
for the window to be redrawn to display the new background and message. Note that the call
to the super class super.paint(g) makes sure that other graphical objects are also
updated in the window.

page 16.14 Intro Java

16.5 Panels

A panel is a container and a component, so you add panels to your window to subdivide it
into different areas that you can add components to and deal with independently. For
example, we can put buttons into a panel and locate that panel in a particular area of our
window, and display any data in another area of the window.

Consider the constructor for the class JPanelDemo in JPanelDemo.java given on the
next page. Here we define a frame as before, and then create a panel within the frame and
add it to the window according to the border layout manager which is defined for the window.

// define a panel within the frame
 JPanel buttonPanel = new JPanel();
 buttonPanel.setBackground(Color.white);
 :
 :
// define layout for the full frame
 contentPane.setLayout(new BorderLayout());
// add panel at the bottom
 contentPane.add(buttonPanel,"South");

We can define a different layout manager for the panel (the default is generally FlowLayout):
 buttonPanel.setLayout(new FlowLayout());

create and add action listeners to the buttons:
 redButton.addActionListener(this);

and add the buttons explicitly to the panel:
 buttonPanel.add(redButton);

Because the action listeners alter the background of the content pane i.e. the window
(referring to this inside the window constructor implies the window itself), only the window's
background is changed. The panel background is unchanged.

To summarize, a JFrame represents a window that has a ContentPane. We can add
graphical objects or components such as buttons, labels etc.. or even panels to the window
via the JFrame’s ContentPane. The ContentPane forms the main container for the
window (JFrame). If we add a panel to the ContentPane, it represents a sub-container
within the main container. Now we can add graphical components to the main container (
the contentPane) or the sub-container (the panel).

Simple Graphics page 16.15

 public JPanelDemo()
 //----------------
 // constructor - sets the window size & title
 {
 …

 // get the content pane from the window
 Container contentPane = getContentPane();

 contentPane.setBackground(Color.lightGray);
 // layout manager to arrange components

 contentPane.setLayout(new BorderLayout());

 // define a panel within the frame
 JPanel buttonPanel = new JPanel();
 buttonPanel.setBackground(Color.white);

 // layout manager to arrange components in panel
 buttonPanel.setLayout(new FlowLayout());

 // add buttons to panel
 redButton.addActionListener(this);
 buttonPanel.add(redButton);

 greenButton.addActionListener(this);
 buttonPanel.add(greenButton);

 blueButton.addActionListener(this);
 buttonPanel.add(blueButton);

 // add panel at the bottom
 contentPane.add(buttonPanel,"South");
 }
}

part of JPanelDemo.java

page 16.16 Intro Java

16.6 Text Areas, Text Fields and Labels

To allow the user to enter data into a window we need to define a text area or a text field into
which the user can enter text data. The difference between the two is that JTextArea allows
for multiple lines of data, whereas JTextField caters for a single line only.

This program defines 2 panels, one containing a label and two text fields and the other
containing some buttons.

 public JTextDemo()
 //----------------
 // constructor - sets the window size & title
 {
 setTitle("Enter Password");
 setSize (400,300);
 addWindowListener(new WindowDestroyer());
 // get the content pane from the window
 Container contentPane = getContentPane();

 contentPane.setBackground(Color.lightGray);
 // layout manager to arrange components
 contentPane.setLayout(new BorderLayout());
 // define a panel to hold the text field and label
 JPanel textPanel = new JPanel();
 textPanel.setBackground(Color.pink);
 textPanel.setLayout(new FlowLayout());

 JLabel pwLabel = new JLabel("Enter your password:");
 textPanel.add(pwLabel);
 password = new JPasswordField(30);
 textPanel.add(password);
 status = new JTextField(30);
 status.setEditable(false);
 textPanel.add(status);

 // add text panel to frame
 contentPane.add(textPanel,"Center");

 // define another panel to hold the buttons
 JPanel buttonPanel = new JPanel();
 buttonPanel.setBackground(Color.white);
 buttonPanel.setLayout(new FlowLayout());

 // add buttons to panel
 JButton b = new JButton("Submit");
 b.addActionListener(this);
 buttonPanel.add(b);

 b = new JButton("Clear");
 b.addActionListener(this);
 buttonPanel.add(b);

 // add button panel to frame
 contentPane.add(buttonPanel,"South");
 }

part of JTextDemo.java

Simple Graphics page 16.17

The constructor first defines the basic window requirements, including the layout manager to
be used when adding components to the window. It then creates a panel (textPanel) and
defines its background colour and layout manager. Next various components are defined and
added to this panel: first a label (pwLabel) is constructed with some text and then a
specialised text field JPasswordField of a given size (30) is constructed. The
JPasswordField does not display the actual characters entered by the user. The password
variable is an instance variable and is declared outside the constructor. This is because it
needs to be referenced in the actionPerformed method and this could not be done if it
were local to the constructor. Another general text field JTextField, called status, is
constructed and set to not editable (textfields are editable by default). Note that status is an
instance variable as well, and is also modified in the actionPerformed method. The
textPanel is added to the window and another panel (buttonPanel) is defined to hold
some buttons in a manner similar to before.

As before, the method actionPerformed defines the actions to take place when a button
is clicked

 public void actionPerformed(ActionEvent e)
 //--
 // determine which button was clicked and take appropriate action
 {
 if (e.getActionCommand().equals("Submit"))
 {
 String pword = new String(password.getPassword());
 status.setText("password \""+pword+"\" submitted");
 }
 else if (e.getActionCommand().equals("Clear"))
 {
 password.setText("");
 status.setText("password cleared");
 }
 else
 status.setText("Error in button interface");

 }

Both text areas and text fields have getText and setText methods that return the text
entered as a string, or display a string in the text area/field. If the submit button is clicked the
contents of the text field are obtained and a confirmation message is sent to the status text
field. If the clear button is clicked an empty string is stored in the password text field.

page 16.18 Intro Java

If you want to enter numbers in a text field/area they must be converted from a string to a
numeric value. Similarly a number must be converted to a string to display it in a text
field/area.

Appendix A : Errors and Testing

A.1 Coding for testing
Studies of the programming process have shown that design and initial coding of a program
account for 20% of the total program development cycle; testing and debugging over 80%.

These results are applicable to large software projects. Generally the time spent in testing
and debugging is not nearly so large in smaller application program development efforts.
However the development of good habits in small projects will be well worth the effort when a
large project is tackled. To increase our ability to debug programs quickly there are four
techniques:

• work modularly.
• code and test incrementally
• trace parameter values on procedure entry and exit
• where available, use debugging aids and tools

We must assume that the programs we write have bugs. This is a normal human
characteristic. Our programming techniques must provide the support to reduce bugs
originally, known as anti-bugging, and to more easily detect and correct them when they
occur, known as debugging.

We can think of software errors as having three conceptual sources.

• internal procedure errors
• inter-procedure communication errors
• environmental errors

Short of catastrophic failures to the physical environment, the goal of all programs during
execution must be that they work reasonably and well regardless of whether they are being
abused by the user, by the operating system, or by the run-time collection of functions and
routines themselves. We consider:

• input validation
• arithmetic problems: over/underflow; roundoff errors

Input Validation – Range/Validity Checking

It is the normal expectation of programmers when they first begin designing a program that
data values will be within the range they expect. Unfortunately this might not be the case for
a number of reasons:

• users may not understand or know the allowable data range.
• there may be a simple typing error.
• the hardware may make some unexpected transformations to the data.

Consequently, all data that a program expects must be treated as suspect. The techniques
for validating input are straightforward but they contain a number of hidden assumptions and
have the typical side effect of greatly increasing the size of the code. As a result , the code
can be less clear and its meaning and intent and its structure can become more obscure.

page A2 Intro Java

The problem is often not in writing code to verify that values are within range. Rather, the
problem comes in deciding what to do when an erroneous out-of-range value is found.
There are a number of choices:

• stop
• ignore
• fix up: don’t tell the user
• fix up: tell the user
• fix up: ask if ok
• force program into a loop until ok
• flag an exception; replace with default values and continue

Programs designed with consideration for user errors are likely to be much more
complex in structure, and much more lengthy, than programs that assume all input is
correct in number and format.

Run-Time Arithmetic Errors

Overflow is the result of an arithmetic operation that yields a result that is too large to be
represented in the normal machine representation.

In most languages, overflow occurs in integer arithmetic when an operation produces a result
large than maxint. For example:
 TooBig = 2 * maxint / N;
produces run-time arithmetic overflow even if N is larger than two.

One might think that we can guard against overflow by conversion to doubles. Suppose that
EvenBigger has been declared as a double variable. Then we could replace the following
assignment by:
 EvenBigger = 2.0 * maxint / N;
Then this delays overflow but it will still occur at some stage.

A more subtle and potentially more troublesome set of errors relates to finite representation
and the associated problem of roundoff errors. This occurs because not all values can be
represented exactly in a finite number of bits.
For example, 0.110 ≅ 0.000110011001100110011…2 and does not have an exact binary
representation.

Consider the following Java statements

 double total = 0.0;
 while (total != 1.0)
 {
 total = total + 0.1;
 System.out.println(total);
 }

Errors and Testing page A3

When this is executed the results obtained are
0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999
1.0999999999999999
1.2
1.3
1.4000000000000001
1.5000000000000002
1.6000000000000003
...... (infinite loop)

The problem occurs because of the inexact representation of 0.1. Each time the
approximation to 0.1 is added to total, total becomes less and less accurate. After 10
iterations when we think it should be equal to 1.0 it is not exactly equal to 1.0 and so the loop
doesn't terminate.

Because of roundoff errors you should avoid comparing floating point numbers for equality or
inequality in your programs. There are 3 possible ways to handle this:
• use integers instead – since a computer can represent an integer exactly there are no

roundoff errors. However the use of integers is not always practical
• use <= or >= instead of ==, or use < or > instead of !=. It often doesn't matter if a

number is exactly equal to another, we just need to check if it is at least as large as (or
as small as) the other number

• check whether the two numbers are very close instead of exactly equal by checking
that the difference between them is very small. For example, change the condition in
the while loop above to

while (Math.abs(total-1.0)>0.00001)
 With this condition the loop will continue while the absolute difference between the two

values is above some threshold. The threshold value can be chosen as small as is
appropriate given the program requirements.

Another problem with roundoff error occurs when working with numbers of different sizes.
For example, suppose we wish to add 1x1010 and 4.0. These numbers must be converted to
the same exponent before being added:
 1.0000000 x 1010

 + 0.0000000004 x 1010

Assuming that the computer can store only 8 significant digits, the last 3 digits of the sum
 1.0000000(004) x 1010
will be lost resulting in an answer of 10000000000, the original value.
And even if we were to add 4 to 10000000000 a total of a million times (when we would
expect the answer to be 10004000000, the result will still appear as 10000000000 because
each time 4 is added to 10000000000 the loss of significance causes the value to be lost.

A.2. Debugging

page A4 Intro Java

Programs that are modular, clear and well-documented are certainly easier to debug than
those that are not. Fail-safe techniques that guard against certain errors and report them
when they are encountered are also a great aid in debugging.

Many students seem totally baffled by bugs in their programs and have no idea on how to
proceed – they simply have learned how to track down a bug systematically. Without a
systematic approach, finding a small bug in a large program can indeed be a difficult task.
The difficulty that many people have in debugging a program is perhaps in part due to a
desire to cling to the belief that their program is really doing what it’s supposed to do.

The trick to debugging is simply to use a program’s output to tell us what’s going on. This
may sound mundane, but the real trick is to use the program’s output in an effective manner.
After all, you don’t simply put output statements at random points of the program and have
them report random information.

We want to use the output to zero in on the points in the program that are causing the
problem. A program’s logic implies that certain conditions should be true at various points in
the program (these conditions are called invariants). A bug means that a condition, which we
think ought to be true isn’t. By inserting output statements at strategic locations of a program
we can systematically zero in on the bug. The placement and content of each output
statement should be such that it informs us of whether things start going wrong before or
after a given point in the program.

Thus, after we run the program with an initial set of diagnostic output statements, we should
be able to find two points between which a bug occurs. We continue this process of placing
diagnostic output statements until the search is limited to just a few statements. The ability to
place diagnostic output statements and to have them report appropriate information comes in
part from thinking logically and in part from experience.

Here are a few guidelines:

What an output statement should report
An output statement should be used to report both the values of key variables and the
location in the program at which the variables have those values.

 System.out.println ("At point A in method Compute:");
 System.out.println ("x = "+x+" y = "+y+" z = "+z);

Output statements in methods
Two key locations to place output statements are at the beginning and end of a method:

 void P (…)
 {
 System.out.println ("Values on entering method P : "+ ...);
 :
 System.out.println ("Values on leaving method P : "+ ...);

}

Errors and Testing page A5

Output statements in if-statements
Output statements should be placed before the test statement and should be used to report
the branch taken as a result of the test. The values of the variables involved in the test
should be reported.

 System.out.print ("IF test based on X = "+X+" and Y = "+Y);
 if (X>Y)
 {

 System.out.println (" TRUE branch taken");
 :

 }
 else
 {

 System.out.println (" FALSE branch taken");
 :

 }

Output statements in loops
Output statements should be placed at the beginning and end of loops. The values of the
control variables should be reported. The statements should occur both inside and outside
the loop.

 System.out.println ("Entering WHILE loop, x = "+x);
 while (x>0)
 {
 System.out.println ("Inside WHILE loop, x = "+x);
 :
 }
 System.out.println ("Exiting WHILE loop, x = "+x);

A.3. Testing

“Program testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence.”

EW Dijkstra

What is testing?
A process of inferring certain behavioural properties of a product based, in part, on the result
of executing the product in a known environment with selected inputs.
• testing is an inferential process – tester takes the program, runs it with known data,

examines the output and from this tries to infer what, if anything, is wrong.
• the environment is not always “known” or controlled. There may be an intermittent

hardware fault, or a run-time routine may be incorrect. The results you are seeing may
be the result of a correct product running in a faulty environment.

• the “selected inputs” must be carefully chosen to be representative. Problems in a
real-time environment – how do you test a system effectively that must respond to
digitised data from sensors, whether temperature gauges in a factory or flight
information in a rocket system.

What is meant by a correct program?

page A6 Intro Java

• Utility – the extent to which a user’s needs are met when a correct program is used
under circumstances for which it was designed/written.

• Reliability – a measure of the frequency and criticality of product failure.
 • mean time between failures – how often it fails
 • mean time to repair – how long it takes to repair it
 • mean time to repair the results of failure – is occasional failure with catastrophic

results better than more frequent failures with minimal effect?
• Robustness – how well it deals with invalid input/incorrect usage etc.
• Performance – whether it meets constraints of response time or space requirements
• Correctness – if input satisfying the input specifications is provided, and the program is

given all the resources it needs, then it is correct if the output satisfies the output
specifications.

Black box testing (testing to specification)

Program is treated as a closed box with no knowledge of internal structure. Testing consists
of feeding input and noting what output is produced. Must ensure that every type of input is
used and that the output matches the expected output – potentially billions of test cases.
Must attempt to set up a small, manageable set of test cases so as to maximise the chances
of detecting a fault while minimising the number of tests run.

• Define equivalence classes – ie sets of test cases such that any one member of the

class is as good as any other Eg. If program should be able to handle values between
1 and 1000 there are 3 equivalence classes:

1. less than 1
2. between 1 and 1000
3. over 1000

• analyse boundary values – errors are more likely to occur with a test case that is either
on or just to one side of the boundary of an equivalence class; ie with the above
example 7 test cases are indicated:

1. 0 : equivalence class 1 and adjacent to boundary
2. 1 : boundary value
3. 2 : adjacent to boundary
4. 423 : equivalence class 2
5. 999 : adjacent to boundary
6. 1000 : boundary value
7. 1001 : equivalence class 3 and adjacent to boundary

Another consideration is the output specifications – for example in a tax program after
various deductions, rebates exemptions, surcharges and levies, the minimum deduction may
be R0.00 and the maximum R4555.00. Then test cases should be constructed that result in
deductions of exactly R0.00 and R4555.00 as well as <R0.00 and >R4555.00.

In general, for each range (R1..R2) listed in the input and output specifications 5 test cases
should be set up: < R1; =R1; >R1 and <R2; =R2; >R2

Where it is specified that an item has to be a member of a given set (eg the input must be a
digit char) there are 2 equivalence classes – a member of the set and a non-member, and
where a precise value is given there are also 2 classes – the exact value and anything else.

Errors and Testing page A7

Glass box testing (structural testing)

Test cases are selected on examination of the code, rather than the specifications.
• statement coverage – ensure that each statement is executed
• branch coverage – ensure that all branches are tested at least once
• path coverage – tests all paths through the program

Consider

1. do
2. { flag = false;
3. if (x>y)
4. flag = true;
5. x++;
6. Calculate(x,flag,answer);
7. if (answer>0)
8. DisplayResult(answer);
9. } while (answer<=0);

To ensure statement testing we need to choose a value of x larger than y so that statements
 1 2 3 4 5 6 7 8 9
will be executed.

For branch testing we need 2 cases that will test sequences
 1 2 3 4 5 6 7 8 9
and 1 2 3 5 6 7 9 2

And for path testing 4 cases are needed (2 decision points with 2 possibilities at each
branch).
 1 2 3 4 5 6 7 8 9
 1 2 3 4 5 6 7 9 2
 1 2 3 5 6 7 8 9
 1 2 3 5 6 7 9 2

Combined black box / glass box testing

Black box testing suffers from uncertainty about whether the test cases selected will uncover
a particular error, while glass box testing allows the danger of paying too much attention to
the code’s internal processing – may end up testing what the program does rather than what
it should do.

To combine both, first use the external specifications to generate initial test cases including
representatives from each equivalence class and boundary values (including invalid data).
Next by viewing the internal structure of the program add data to test all decision points and
as many paths through the program as possible. Consider the implementation of algorithms
– if an algorithm is used that does not behave well at a particular point include cases that test
the extremities of the algorithm.

