

SeleniumWebDriver Recipes in Java
The problem solving guide to Selenium WebDriver in Java

Zhimin Zhan

This book is for sale at http://leanpub.com/selenium-recipes-in-java

This version was published on 2017-06-15

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2013 - 2017 Zhimin Zhan

http://leanpub.com/selenium-recipes-in-java
http://leanpub.com/
http://leanpub.com/manifesto

Also By Zhimin Zhan
Practical Web Test Automation

Watir Recipes

Selenium WebDriver Recipes in Ruby

Learn Ruby Programming by Examples

Learn Swift Programming by Examples

Selenium WebDriver Recipes in Python

API Testing Recipes in Ruby

Selenium WebDriver Recipes in Node.js

http://leanpub.com/u/zhiminzhan
http://leanpub.com/practical-web-test-automation
http://leanpub.com/watir-recipes
http://leanpub.com/selenium-recipes-in-ruby
http://leanpub.com/learn-ruby-programming-by-examples-en
http://leanpub.com/learn-swift-programming-by-examples
http://leanpub.com/selenium-recipes-in-python
http://leanpub.com/api-testing-recipes-in-ruby
http://leanpub.com/selenium-webdriver-recipes-in-nodejs

To Dominic and Courtney!

Contents

Preface . i
Who should read this book . ii
How to read this book . ii
Recipe test scripts . ii
Send me feedback . iii

1. Introduction . 1
Selenium . 1
Selenium language bindings . 1
Set up Development Environment . 4
Cross browser testing . 7
JUnit . 10
Run recipe scripts . 13

2. Locating web elements . 18
Start browser . 18
Find element by ID . 19
Find element by Name . 19
Find element by Link Text . 20
Find element by Partial Link Text . 20
Find element by XPath . 20
Find element by Tag Name . 21
Find element by Class . 22
Find element by CSS Selector . 22
Chain findElement to find child elements . 23
Find multiple elements . 23

3. Hyperlink . 24
Click a link by text . 24

CONTENTS

Click a link by ID . 24
Click a link by partial text . 25
Click a link by XPath . 25
Click Nth link with exact same label . 26
Click Nth link by CSS Selector . 26
Verify a link present or not? . 27
Getting link data attributes . 27
Test links open a new browser window . 27

Resources . 29
Books . 29
Web Sites . 30
Tools . 30

Preface
After observing many failed test automation attempts by using expensive commercial test
automation tools, I am delighted to see that the value of open-source testing frameworks has
finally been recognized. I still remember the day (a rainy day at a Gold Coast hotel in 2011)
when I found out that the Selenium WebDriver was the most wanted testing skill in terms
of the number of job ads on the Australia’s top job-seeking site.

Now Selenium WebDriver is big in the testing world. We all know software giants such as
Facebook and LinkedIn use it, immensely-comprehensive automated UI testing enables them
pushing out releases several times a day1. However, from my observation, many software
projects, while using SeleniumWebDriver, are not getting much value from test automation,
and certainly nowhere near its potential. A clear sign of this is that the regression testing is
not conducted on a daily basis (if test automation is done well, it will happen naturally).

Among the factors contributing to test automation failures, a key one is that automation
testers lack sufficient knowledge in the test framework. It is quite common to see some testers
or developers get excited when they first create a few simple test cases and see them run in a
browser. However, it doesn’t take long for them to encounter some obstacles: such as being
unable to automate certain operations. If one step cannot be automated, the whole test case
does not work, which is the nature of test automation. Searching solutions online is not
always successful, and posting questions on forums and waiting can be frustrating (usually,
very few people seek professional help from test automation coaches). Not surprisingly, many
projects eventually gave up test automation or just used it for testing a handful of scenarios.

The motivation of this book is to help motivated testers work better with Selenium. The
book contains over 150 recipes for web application tests with Selenium WebDriver. If you
have read one of my other books: Practical Web Test Automation2, you probably know my
style: practical. I will let the test scripts do most of the talking. These recipe test scripts are
‘live’, as I have created the target test site and included offline test web pages. With both,
you can:

1. Identify your issue
2. Find the recipe
1http://www.wired.com/business/2013/04/linkedin-software-revolution/
2https://leanpub.com/practical-web-test-automation

http://www.wired.com/business/2013/04/linkedin-software-revolution/
https://leanpub.com/practical-web-test-automation
http://www.wired.com/business/2013/04/linkedin-software-revolution/
https://leanpub.com/practical-web-test-automation

Preface ii

3. Run the test case
4. See test execution in your browser

Who should read this book

This book is for testers or programmers who are writing (or want to learn) automated tests
with SeleniumWebDriver. In order to get the most of this book, basic (very basic) Java coding
skills is required.

How to read this book

Usually, a ‘recipe’ book is a reference book. Readers can go directly to the part that interests
them. For example, if you are testing a multiple select list and don’t know how, you can look
up in the Table of Contents, then go to the chapter. This book supports this style of reading.
Since the recipes are arranged according to their levels of complexity, readers will also be able
to work through the book from the front to back if they are looking to learn test automation
with Selenium.

Recipe test scripts

To help readers to learn more effectively, this book has a dedicated site3 that contains the
recipe test scripts and related resources.

As an old saying goes, “There’s more than one way to skin a cat.” You can achieve the same
testing outcome with test scripts implemented in different ways. The recipe test scripts in
this book are written for simplicity, there is always room for improvement. But for many, to
understand the solution quickly and get the job done are probably more important.

If you have a better and simpler way, please let me know.

All recipe test scripts are Selenium 2 (aka SeleniumWebDriver) compliant, and can be run on
Firefox, Chrome and Internet Explorer on multiple platforms. I plan to keep the test scripts
updated with the latest stable Selenium version.

3http://zhimin.com/books/selenium-recipes-java

http://zhimin.com/books/selenium-recipes-java
http://zhimin.com/books/selenium-recipes-java

Preface iii

Send me feedback

I would appreciate your comments, suggestions, reports on errors in the book and the recipe
test scripts. You may submit your feedback on the book site.

Zhimin Zhan

Brisbane, Australia

1. Introduction
Selenium is a free and open source library for automated testing web applications. I assume
that you have had some knowledge of Selenium, based on the fact that you picked up this
book (or opened it in your eBook reader).

Selenium

Selenium was originally created in 2004 by Jason Huggins, who was later joined by his other
ThoughtWorks colleagues. Selenium supports all major browsers and tests can be written in
many programming languages and run on Windows, Linux and Macintosh platforms.

Selenium 2 is merged with another test frameworkWebDriver (that’s why you see ‘selenium-
webdriver’) led by Simon Stewart at Google (update: Simon now works at FaceBook),
Selenium 2.0 was released in July 2011 and Selenium 3.0 in October 2016.

Selenium language bindings

Selenium tests can bewritten inmultiple programming languages such as Java, C#, JavaScript,
Python and Ruby (the core ones). All examples in this book are written in Seleniumwith Java
binding. As you will see the examples below, the use of Selenium in different bindings are
very similar. Once you master one, you can apply it to others quite easily. Take a look at a
simple Selenium test script in four different language bindings: Java, C#, JavaScript, Python
and Ruby.

Java:

Introduction 2

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.firefox.FirefoxDriver;

public class GoogleSearch {

public static void main(String[] args) {

// Create a new instance of the html unit driver

// Notice that the remainder of the code relies on the interface,

// not the implementation.

WebDriver driver = new FirefoxDriver();

// And now use this to visit Google

driver.get("http://www.google.com");

// Find the text input element by its name

WebElement element = driver.findElement(By.name("q"));

// Enter something to search for

element.sendKeys("Hello Selenium WebDriver!");

// Submit the form based on an element in the form

element.submit();

// Check the title of the page

System.out.println("Page title is: " + driver.getTitle());

}

}

C#:

Introduction 3

using System;

using OpenQA.Selenium;

using OpenQA.Selenium.Firefox;

using OpenQA.Selenium.Support.UI;

class GoogleSearch

{

static void Main()

{

IWebDriver driver = new FirefoxDriver();

driver.Navigate().GoToUrl("http://www.google.com");

IWebElement query = driver.FindElement(By.Name("q"));

query.SendKeys("Hello Selenium WebDriver!");

query.Submit();

Console.WriteLine(driver.Title);

}

}

JavaScript:

var webdriver = require('selenium-webdriver');

var driver = new webdriver.Builder()

.forBrowser('chrome')

.build();

driver.get('http://www.google.com/ncr');

driver.findElement(webdriver.By.name('q')).sendKeys('webdriver');

driver.findElement(webdriver.By.name('btnG')).click();

driver.wait(webdriver.until.titleIs('webdriver - Google Search'), 1000);

console.log(driver.title);

Python:

Introduction 4

from selenium import webdriver

driver = webdriver.Firefox()

driver.get("http://www.google.com")

elem = driver.find_element_by_name("q")

elem.send_keys("Hello WebDriver!")

elem.submit()

print(driver.title)

Ruby:

require "selenium-webdriver"

driver = Selenium::WebDriver.for :firefox

driver.navigate.to "http://www.google.com"

element = driver.find_element(:name, 'q')

element.send_keys "Hello Selenium WebDriver!"

element.submit

puts driver.title

Set up Development Environment

Most of Java programmers develop Java code in an IDE (integrated development environ-
ment), such as Eclipse and NetBeans. I will use NetBeans as the Java IDE of choice for this
book, as all IDE related functions mentioned in the book are very generic, readers can easily
apply in their favourite IDEs.

Prerequisite:

• Download and install JDK (jdk8 is the version used in recipes).
• Download and install NetBeans IDE.
• Download Selenium Java binding, eg. selenium-java-2.44.0.zip, about 24MB in size.
• Download and install Apache Ant, for running tests or test suites from command line.
• Your target browser is installed, such as Chrome or Firefox.

Introduction 5

Set up NetBeans project

1. Create a new project in NetBeans

2. Unzip selenium-java-VERSION.zip to copy all jar files (including ones under libs) to
project’s lib folder.

Here is what look like in NetBeans after all jar files added

Introduction 6

Create a test and run it

1. Add a new Java class (a test)
Essentially a Selenium test in Java is a Java Class. Right click ‘Test Packages’ (not
‘Source Packages’, we are writing tests) to add a new Java class.

Enter a name in Camel Case (such as SayHelloWorld)

In the example, we paste the Google Search test scripts in the editor.

Introduction 7

2. Right click the editor and select ‘Run File’

You shall see a Firefox browser is opening and do a ‘google search’ in it, as we our
instruction (in the GoogleSearch.java).

The NetBeans console output will show the output generated from your Java class.

Cross browser testing

The biggest advantage of Selenium over other web test frameworks, in my opinion, is that it
supports all major web browsers: Firefox, Chrome and Internet Explorer. The browser market
nowadays is more diversified (based on the StatsCounter1, the usage share in April 2017 for
Chrome, IE/Edge and Firefox are 63.36%, 12.94% and 14.17% respectively). It is logical that all

1http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

Introduction 8

external facing web sites require serious cross-browser testing. Selenium is a natural choice
for this purpose, as it far exceeds other commercial tools and open-source test frameworks.

Firefox

Firefox (up to v462) comes with WebDriver support. geckodriver3 is required for Firefox 47+.

import org.openqa.selenium.firefox.FirefoxDriver;

// ...

WebDriver driver = new FirefoxDriver();

Chrome

To run Selenium tests in Google Chrome, besides the Chrome browser itself, ChromeDriver
needs to be installed.

Installing ChromeDriver is easy: go to http://chromedriver.storage.googleapis.com/index.html4

download the one for your target platform, unzip it and put chromedriver executable in
your PATH. To verify the installation, open a command window (terminal for Unix/Mac),
execute command chromedriver, You shall see:

2https://download-installer.cdn.mozilla.net/pub/firefox/releases/46.0.1/
3https://github.com/mozilla/geckodriver/releases/
4http://chromedriver.storage.googleapis.com/index.html

https://download-installer.cdn.mozilla.net/pub/firefox/releases/46.0.1/
https://github.com/mozilla/geckodriver/releases/
http://chromedriver.storage.googleapis.com/index.html
https://download-installer.cdn.mozilla.net/pub/firefox/releases/46.0.1/
https://github.com/mozilla/geckodriver/releases/
http://chromedriver.storage.googleapis.com/index.html

Introduction 9

The test script below opens a site in a new Chrome browser window and closes it one second
later.

import org.openqa.selenium.chrome.ChromeDriver;

//...

WebDriver driver = new ChromeDriver();

Internet Explorer

Selenium requires IEDriverServer to drive IE browser. Its installation process is very similar
to ChromeDriver. IEDriverServer is available at http://www.seleniumhq.org/download/5.
Choose the right one based on your windows version (32 or 64 bit).

When a tests starts to execute in IE, before navigating the target test site, you will see this
first:

Depending on the version of IE, configurations may be required. Please see IE and IEDri-
verServer Runtime Configuration6 for details.

import org.openqa.selenium.ie.InternetExplorerDriver;

//...

WebDriver driver = new InternetExplorerDriver();

5http://www.seleniumhq.org/download/
6https://code.google.com/p/selenium/wiki/InternetExplorerDriver#Required_Configuration

http://www.seleniumhq.org/download/
https://code.google.com/p/selenium/wiki/InternetExplorerDriver#Required_Configuration
https://code.google.com/p/selenium/wiki/InternetExplorerDriver#Required_Configuration
http://www.seleniumhq.org/download/
https://code.google.com/p/selenium/wiki/InternetExplorerDriver#Required_Configuration

Introduction 10

Edge

Edge is Microsoft’s new and default web browser on Windows 10. To drive Edge with
WebDriver, you need downloadMicrosoftWebDriver server7. After installation, you will find
the executable (MicrosoftWebDriver.exe) under Program Files folder, add it to your PATH.

However, I couldn’t get it working after installing a new version of Microsoft WebDriver.
One workaround is to specify the driver path in test scripts specifically:

import org.openqa.selenium.edge.EdgeDriver;

//...

String edgeDriverPath = "C:\\agileway\\testing\\MicrosoftWebDriver.exe";

System.setProperty("webdriver.edge.driver", edgeDriverPath);

WebDriver driver = new EdgeDriver();

JUnit

The examples above drive browsers, strictly speaking, they are not tests. Tomake the effective
use of Selenium scripts for testing, we need to put them in a test framework that defines
test structures and provides assertions (performing checks in test scripts). The de facto test
framework for Java is JUnit, and here is an example using JUnit 4.

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.openqa.selenium.By;

import org.openqa.selenium.support.pagefactory.*;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.ie.InternetExplorerDriver;

/**

* Start 4 difference browsers by Selenium

*/

7https://www.microsoft.com/en-us/download/details.aspx?id=48212

https://www.microsoft.com/en-us/download/details.aspx?id=48212
https://www.microsoft.com/en-us/download/details.aspx?id=48212

Introduction 11

public class GoogleSearchDifferentBrowsersTest {

@Test

public void testInIE() throws Exception {

WebDriver driver = new InternetExplorerDriver();

driver.get("http://testwisely.com/demo");

Thread.sleep(1000);

driver.quit();

}

@Test

public void testInFirefox() throws Exception {

WebDriver driver = new FirefoxDriver();

driver.get("http://testwisely.com/demo");

Thread.sleep(1000);

driver.quit();

}

@Test

public void testInChrome() throws Exception {

WebDriver driver = new ChromeDriver();

driver.get("http://testwisely.com/demo");

Thread.sleep(1000);

driver.quit();

}

@Test

public void testInEdge() throws Exception {

WebDriver driver = new EdgeDriver();

driver.get("http://testwisely.com/demo");

Thread.sleep(1000);

driver.quit();

}

}

@Test annotates a test case below, in a format of testCamelCase(). You will find more about

Introduction 12

JUnit from its home page8. However, I honestly don’t think it is necessary. The part used for
test scripts is not much and quite intuitive. After studying and trying out some examples,
you will be quite comfortable with JUnit.

JUnit fixtures

If you worked with xUnit before, you must know setUp() and tearDown() fixtures, used run
before or after every test. In JUnit 4, by using annotations (@BeforeClass, @Before, @After,
@AfterClass), you can choose the name for fixtures. Here are mine:

@BeforeClass

public static void beforeAll() throws Exception {

// run before all test cases

}

@Before

public void before() throws Exception {

// run before each test case

}

@Test

public void testCase1() throws Exception {

// one test case

}

@Test

public void testCase2() throws Exception {

// another test case

}

@After

public void after() throws Exception {

// run after each test case

}

8http://junit.org/

http://junit.org/
http://junit.org/

Introduction 13

@AfterClass

public static void afterAll() throws Exception {

// run after all test cases

}

Run recipe scripts

Test scripts for all recipes can be downloaded from the book site. They are all in ready-to-run
state. I include the target web pages/sites as well as Selenium test scripts. There are two kinds
of target web pages: local HTML files and web pages on a live site. To run tests written for a
live site requires Internet connection.

Run tests in NetBeans IDE

The most convenient way to run one test case or a test suite is to do it in an IDE. (When you
have a large number of test cases, then the most effective way to run all tests is done by a
Continuous Integration process)

Find the test case

You can locate the recipe either by following the chapter or searching by name. There are
over 100 test cases in one test project. Here is the quickest way to find the one you want in
NetBeans.

Select menu ‘Navigation’→ ‘Go to Symbol …’.

A pop up window lists all test cases in the project for your selection. The finding starts as
soon as you type.

Introduction 14

Run individual test case

Move caret to a line within a test case (between public void testXXX() throws Exception

{ and }). Right mouse click and select “Run Focused Test Method” to run this case.

The below is a screenshot of execution panel when one test case failed,

Run all test cases in a test script file

You can also run all test cases in the currently opened test script file by right mouse clicking
anywhere in the editor and selecting ‘Test File’. (Ctrl+F6)

The below is a screenshot of the execution panel when all test cases in a test script file passed,

Introduction 15

Run all tests

You can also run all test cases in a NetBeans project. Firstly, set the main project by selecting
menu ‘Run’→ ‘Set Main Project’→ ‘Your Project Name’ (once off).

Then select ‘Run’→ ‘Test Project’ to trigger a run of all test cases in this project.

The below is a screenshot of the test results panel after running over 100 tests across dozens
of test files.

Introduction 16

Run tests from command line

One key advantage of open-source test frameworks, such as Selenium, is FREEDOM. You
can edit the test scripts in any text editors and run them from a command line.

To run a Java class, you needs to compile it first (Within IDE, IDEs do it for you automat-
ically). Running code in compiled language (such as Java) with many libraries dependency
from command line is not easy as dynamic ones (such as Ruby). Build tools such as Ant can
help on this.

I included an Ant build.xml (with recipe source) to simplify the test execution from command
line. To run test cases in a test script file (named ch09_assertion.AssertionTest.java), enter
command

> ant runTest -DTestName=ch09_assertion.AssertionTest

Example Output

compile:

[mkdir] Created dir: /Users/zhimin/books/SeleniumRecipes-Java/recipes/bu\

ild/classes

[javac] Compiling 22 source files to /Users/zhimin/books/SeleniumRecipes\

-Java/recipes/build/classes

runTest:

[junit] Running ch09_assertion.AssertionTest

[junit] Tests run: 11, Failures: 0, Errors: 0, Time elapsed: 0.659 sec

BUILD SUCCESSFUL

Total time: 9 seconds

Also, to run all recipe tests (within the test folder)

> ant runAll

which generate JUnit style test report like this

Introduction 17

The command syntax is identical for Windows, Mac OS X and Linux platforms.

2. Locating web elements
As you might have already figured out, to drive an element in a page, we need to find it first.
Selenium uses what is called locators to find and match the elements on web page. There are
8 locators in Selenium:

Locator Example

ID findElement(By.id("user"))

Name findElement(By.name("username"))

Link Text findElement(By.linkText("Login"))

Partial Link Text findElement(By.partialLinkText("Next"))

XPath findElement(By.xpath("//div[@id="login"]/input"))

Tag Name findElement(By.tagName("body"))

Class Name findElement(By.className("table"))

CSS findElement(By.cssSelector, "#login > input[type="text"]"))

You may use any one of them to narrow down the element you are looking for.

Start browser

Testing web sites starts with a browser. The test script below launches a Firefox browser
window and navigate to a site.

static WebDriver driver = new FirefoxDriver();

driver.get("http://testwisely.com/demo")

Use ChromeDriver and IEDriver for testing in Chrome and IE respectively.

Test Pages
I prepared the test pages for the recipes, you can download them (in a zip file) at the book’s
sitea. Unzip to a local directory and refer to test pages like this:

// in TestHelper

http://zhimin.com/books/selenium-recipes-java
http://zhimin.com/books/selenium-recipes-java

Locating web elements 19

public static String siteUrl() {

if (isWindows()) {

return "file:///C:/agileway/books/SeleniumRecipes-Java/site/";

} else if (isMac()) {

return "file:///Users/zhimin/work/books/SeleniumRecipes-Java/site/";

} else {

throw new RuntimeException("Your OS is not support!!");

}

}

// in test script

driver.get(TestHelper.siteUrl() + "locators.html");

ahttp://zhimin.com/books/selenium-recipes-java

I recommend, for beginners, closing the browser window at the end of a test case.

driver.quit();

Find element by ID

Using IDs is the easiest and the safest way to locate an element in HTML. If the page is W3C
HTML conformed1, the IDs should be unique and identified in web controls. In comparison
to texts, test scripts that use IDs are less prone to application changes (e.g. developers may
decide to change the label, but are less likely to change the ID).

driver.findElement(By.id("submit_btn")).click();

driver.findElement(By.id("cancel_link")).click(); // Link

driver.findElement(By.id("username")).sendKeys("agileway"); // Textfield

driver.findElement(By.id("alert_div")).getText(); // HTML Div element

Find element by Name

The name attributes are used in form controls such as text fields and radio buttons. The
values of the name attributes are passed to the server when a form is submitted. In terms of

1http://www.w3.org/TR/WCAG20-TECHS/H93.html

http://zhimin.com/books/selenium-recipes-java
http://www.w3.org/TR/WCAG20-TECHS/H93.html
http://www.w3.org/TR/WCAG20-TECHS/H93.html
http://www.w3.org/TR/WCAG20-TECHS/H93.html

Locating web elements 20

least likelihood of a change, the name attribute is probably only second to ID.

driver.findElement(By.name("comment")).sendKeys("Selenium Cool");

Find element by Link Text

For Hyperlinks only. Using a link’s text is probably the most direct way to click a link, as it
is what we see on the page.

driver.findElement(By.linkText("Cancel")).click();

Find element by Partial Link Text

Selenium allows you to identify a hyperlink control with a partial text. This can be quite
useful when the text is dynamically generated. In other words, the text on one web page
might be different on your next visit. We might be able to use the common text shared by
these dynamically generated link texts to identify them.

// will click the "Cancel" link

driver.findElement(By.partialLinkText("ance")).click();

Find element by XPath

XPath, the XML Path Language, is a query language for selecting nodes from an XML
document. When a browser renders a web page, it parses it into a DOM tree or similar.
XPath can be used to refer a certain node in the DOM tree. If this sounds a little too much
technical for you, don’t worry, just remember XPath is the most powerful way to find a
specific web control.

// clicking the checkbox under 'div2' container

driver.findElement(By.xpath("//*[@id='div2']/input[@type='checkbox']")).clic\

k();

Locating web elements 21

Some testers feel intimidated by the complexity of XPath. However, in practice, there is only
limited scope of XPath to master for testers.

Avoid using copied XPath from Browser’s Developer
Tool
Browser’s Developer Tool (right click to select ‘Inspect element’ to show) is very
useful for identifying a web element in web page. You may get the XPath of a
web element there, as shown below (in Chrome):

The copied XPath for the second “Click here” link in the example:

//*[@id="container"]/div[3]/div[2]/a

It works. However, I do not recommend this approach as the test script is
fragile. If developer adds another div under <div id='container'>, the copied
XPath is no longer correct for the element while //div[contains(text(),

"Second")]/a[text()="Click here"] still works.

In summary, XPath is a very powerful way to locating web elements when id,
name or linkText are not applicable. Try to use a XPath expression that is less
vulnerable to structure changes around the web element.

Find element by Tag Name

There are a limited set of tag names in HTML. In other words, many elements share the same
tag names on a web page. We normally don’t use the tag_name locator by itself to locate an
element. We often use it with others in a chained locators (see the section below). However,
there is an exception.

driver.findElement(By.tagName("body")).getText();

The above test statement returns the text view of a web page, this is a very useful one as
Selenium WebDriver does not have built-in method return the text of a web page.

Locating web elements 22

Find element by Class

The class attribute of a HTML element is used for styling. It can also be used for identifying
elements. Commonly, a HTML element’s class attribute has multiple values, like below.

Cancel

<input type="submit" class="btn btn-deault btn-primary">Submit</input>

You may use any one of them.

driver.findElement(By.className("btn-primary")).click(); // Submit button

driver.findElement(By.className("btn")).click(); // Cancel link

// the below will return error "Compound class names not permitted"

// driver.findElement((By.className("btn btn-deault btn-primary")).click();

The className locator is convenient for testing JavaScript/CSS libraries (such as TinyMCE)
which typically use a set of defined class names.

// inline editing

driver.findElement(By.id("client_notes")).click();

Thread.sleep(500);

driver.findElement(By.className("editable-textarea")).sendKeys("inline notes\

");

Thread.sleep(500);

driver.findElement(By.className("editable-submit")).click();

Find element by CSS Selector

You may also use CSS Path to locate a web element.

driver.findElement(By.cssSelector("#div2 > input[type='checkbox']")).click();

However, the use of CSS selector is generally more prone to structure changes of a web page.

Locating web elements 23

Chain findElement to find child elements

For a page containing more than one elements with the same attributes, like the one below,
we could use XPath locator.

<div id="div1">

<input type="checkbox" name="same" value="on"> Same checkbox in Div 1

</div>

<div id="div2">

<input type="checkbox" name="same" value="on"> Same checkbox in Div 2

</div>

There is another way: chain findElement to find a child element.

driver.findElement(By.id("div2")).findElement(By.name("same")).click();

Find multiple elements

As its name suggests, findElements return a list of matched elements back. Its syntax is
exactly the same as findElement, i.e. can use any of 8 locators.

The test statements will find two checkboxes under div#container and click the second one.

List<WebElement> checkbox_elems = driver.findElements(By.xpath("//div[@id='c\

ontainer']//input[@type='checkbox']"));

System.out.println(checkbox_elems); // => 2

checkbox_elems.get(1).click();

Sometimes findElement fails due to multiple matching elements on a page, which you were
not aware of. findElements will come in handy to find them out.

3. Hyperlink
Hyperlinks (or links) are fundamental elements of web pages. As a matter of fact, it is
hyperlinks that makes the World Wide Web possible. A sample link is provided below, along
with the HTML source.

HTML Source

<a href="index.html" id="recommend_selenium_link" class="nav" data-id="123" \

style="font-size: 14px;">Recommend Selenium

Click a link by text

Using text is probably the most direct way to click a link in Selenium, as it is what we see on
the page.

driver.get(TestHelper.siteUrl() + "link.html");

driver.findElement(By.linkText("Recommend Selenium")).click();

Click a link by ID

driver.findElement(By.id("recommend_selenium_link")).click();

Furthermore, if you are testing a web site with multiple languages, using IDs is probably the
only feasible option. You do not want to write test scripts like below:

Hyperlink 25

if (is_italian()) {

driver.findElement(By.linkText("Accedi")).click();

} else if (is_chinese()) { // a helper function determines the locale

driver.findElement(By.linkText, "��").click();

} else {

driver.findElement(By.linkText("Sign in")).click();

}

Click a link by partial text

driver.findElement(By.partialLinkText("Recommend Seleni")).click();

Click a link by XPath

The example below is finding a link with text ‘Recommend Selenium’ under a <p> tag.

driver.findElement(By.xpath("//p/a[text()='Recommend Selenium']")).click();

Your might say the example before (find by linkText) is simpler and more intuitive, that’s
correct. but let’s examine another example:

On this page, there are two ‘Click here’ links.

HTML Source

Hyperlink 26

<div>

First div

Click here

</div>

<div>

Second div

Click here

</div>

If test case requires you to click the second ‘Click here’ link, the simple findElement(By.linkText("Click
here")) won’t work (as it clicks the first one). Here is a way to accomplish using XPath:

driver.findElement(By.xpath("//div[contains(text(), \"Second\")]/a[text()=\"\

Click here\"]")).click();

Click Nth link with exact same label

It is not uncommon that there are more than one link with exactly the same text. By default,
Selenium will choose the first one. What if you want to click the second or Nth one?

The web page below contains three ‘Show Answer” links,

To click the second one,

assert driver.findElements(By.linkText("Show Answer")).size() == 2;

driver.findElements(By.linkText("Show Answer")).get(1).click(); // 2nd link

findElements return a list (also called array) of web controls matching the criteria in
appearing order. Selenium (in fact Java) uses 0-based indexing, i.e., the first one is 0.

Click Nth link by CSS Selector

You may also use CSS selector to locate a web element.

Hyperlink 27

driver.findElement(By.cssSelector("p > a:nth-child(3)")).click(); // 3rd link

However, generally speaking, the stylesheet are more prone to changes.

Verify a link present or not?

assert driver.findElement(By.linkText("Recommend Selenium")).isDisplayed();

assert driver.findElement(By.id("recommend_selenium_link")).isDisplayed();

Getting link data attributes

Once a web control is identified, we can get its other attributes of the element. This is
generally applicable to most of the controls.

WebElement seleniumLink = driver.findElement(By.linkText("Recommend Selenium\

"));

assert seleniumLink.getAttribute("href").equals(TestHelper.siteUrl() + "inde\

x.html");

assert "recommend_selenium_link".equals(seleniumLink.getAttribute("id"));

assert "Recommend Selenium".equals(seleniumLink.getText());

assert "a".equals(seleniumLink.getTagName());

Also you can get the value of custom attributes of this element and its inline CSS style.

assert "font-size: 14px;".equals(driver.findElement(By.id("recommend_seleniu\

m_link")).getAttribute("style"));

// Please note using attribute_value("style") won't work

assert "123".equals(driver.findElement(By.id("recommend_selenium_link")).get\

Attribute("data-id"));

Test links open a new browser window

Clicking the link below will open the linked URL in a new browser window or tab.

Hyperlink 28

Open new window

While we could use switchTo()method (see chapter 10) to find the new browser window, it
will be easier to perform all testing within one browser window. Here is how:

String currentUrl = driver.getCurrentUrl();

String newWindowUrl = driver.findElement(By.linkText("Open new window")).get\

Attribute("href");

driver.navigate().to(newWindowUrl);

driver.findElement(By.name("name")).sendKeys("sometext");

driver.navigate().to(currentUrl); // back

In this test script, we use a local variable ‘currentUrl’ to store the current URL.

Resources

Books

• Practical Web Test Automation1 by Zhimin Zhan

Solving individual selenium challenges (what this book is for) is far from achieving
test automation success. Practical Web Test Automation is the book to guide you to the
test automation success, topics include:

– Developing easy to read and maintain Watir/Selenium tests using next-genera-
tion functional testing tool

– Page object model
– Functional Testing Refactorings
– Cross-browser testing against IE, Firefox and Chrome
– Setting up continuous testing server to manage execution of a large number of
automated UI tests

– Requirement traceability matrix
– Strategies on team collaboration and test automation adoption in projects and
organizations

• Selenium WebDriver Recipes in C#, 2nd Edition2 by Zhimin Zhan

Selenium WebDriver recipe tests in C#, another popular language that is quite similar
to Java.

• Selenium WebDriver Recipes in Ruby3 by Zhimin Zhan

Selenium WebDriver tests can also be written in Ruby, a beautiful dynamic language
very suitable for scripting tests. Master Selenium WebDriver in Ruby quickly by
leveraging this book.

• Selenium WebDriver Recipes in Python4 by Zhimin Zhan

Selenium WebDriver recipes in Python, a popular script language that is similar to
Ruby.

• Selenium WebDriver Recipes in Node.js5 by Zhimin Zhan
1https://leanpub.com/practical-web-test-automation
2http://www.apress.com/9781484217412
3https://leanpub.com/selenium-recipes-in-ruby
4https://leanpub.com/selenium-recipes-in-python
5https://leanpub.com/selenium-webdriver-recipes-in-nodejs

https://leanpub.com/practical-web-test-automation
http://www.apress.com/9781484217412
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/selenium-recipes-in-python
https://leanpub.com/selenium-webdriver-recipes-in-nodejs
https://leanpub.com/practical-web-test-automation
http://www.apress.com/9781484217412
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/selenium-recipes-in-python
https://leanpub.com/selenium-webdriver-recipes-in-nodejs

Resources 30

SeleniumWebDriver recipe tests in Node.js, a very fast implementation of WebDriver
in JavaScript.

• API Testing Recipes in Ruby6 by Zhimin Zhan

The problem solving guide to testing APIs such as SOAP and REST web services in
Ruby language.

Web Sites

• Selenium Java API https://seleniumhq.github.io/selenium/docs/api/java/7

• Selenium Home (http://seleniumhq.org8)

Tools

• NetBeans IDE (https://netbeans.org/downloads9)

Free Java IDE from Sun (now Oracle).
• BuildWise (http://testwisely.com/buildwise10)

AgileWay’s free and open-source continuous testing server, purposely designed for
running automated UI tests with quick feedback.

6https://leanpub.com/api-testing-recipes-in-ruby
7https://seleniumhq.github.io/selenium/docs/api/java
8http://seleniumhq.org
9https://netbeans.org/downloads
10http://testwisely.com/buildwise

https://leanpub.com/api-testing-recipes-in-ruby
https://seleniumhq.github.io/selenium/docs/api/java
http://seleniumhq.org/
https://netbeans.org/downloads
http://testwisely.com/buildwise
https://leanpub.com/api-testing-recipes-in-ruby
https://seleniumhq.github.io/selenium/docs/api/java
http://seleniumhq.org/
https://netbeans.org/downloads
http://testwisely.com/buildwise

	Table of Contents
	Preface
	Who should read this book
	How to read this book
	Recipe test scripts
	Send me feedback

	Introduction
	Selenium
	Selenium language bindings
	Set up Development Environment
	Cross browser testing
	JUnit
	Run recipe scripts

	Locating web elements
	Start browser
	Find element by ID
	Find element by Name
	Find element by Link Text
	Find element by Partial Link Text
	Find element by XPath
	Find element by Tag Name
	Find element by Class
	Find element by CSS Selector
	Chain findElement to find child elements
	Find multiple elements

	Hyperlink
	Click a link by text
	Click a link by ID
	Click a link by partial text
	Click a link by XPath
	Click Nth link with exact same label
	Click Nth link by CSS Selector
	Verify a link present or not?
	Getting link data attributes
	Test links open a new browser window

	Resources
	Books
	Web Sites
	Tools

