various form of Equation of a line 1 vaibline

Nori sonfal

Q find cq^{n} - 11 ro (agen pareos prough $(-2,3)$

$$
\begin{align*}
& \dot{y}=m n+c \tag{1}\\
& y=3-y_{0}=m\left(n-n_{0}\right)+C \cdot x=0 \\
& x=-2
\end{align*}
$$

$\theta y-y_{0}=m\left(n-x_{0}\right) \rightarrow$ porn g lop
$p_{0}\left(x_{0} y\right)-(1)$
let $p(x, y)$ point on the lime

$$
\begin{aligned}
& x, y) \text { point on the line } \\
& m=\frac{y-y_{0}}{n-x_{0}} \Rightarrow y-y_{0}=m\left(n-x_{0}\right)
\end{aligned}
$$

Two - point

Twopprint
collinear

stope of line

$$
m_{2}=\frac{y_{2}-x_{y}}{x_{2}-x}
$$

\qquad
(ii) $m_{3} \Rightarrow \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m_{1}=m_{3}$

- $(1)($ collinear $)$

$$
\frac{y-y_{1}}{n-n_{1}}=\left(\frac{y_{2}-y_{1}}{n_{2}-x_{1}}=\right.
$$

$$
\begin{aligned}
& y-y=m\left(n-n_{1}\right) \\
& \text { Toopony } x_{1}-y_{1}=\frac{\eta_{2}-y_{1}}{n_{2}-n_{1}}\left(n-n_{1}\right) \\
& \text { Q witeqn } P_{1}(1,-1) \text { \& } P_{2}(3, r) \\
& y-3 x+4=0
\end{aligned}
$$

- slope - intercept form

Con (1)

$$
\text { (2) } x_{y-y_{0}}=m\left(n-n_{0}\right)
$$

Two point mon m
(1) $-\left(y-y_{1}=\frac{y_{2}-y_{1}^{\prime}}{x_{2}-x_{1}}\left(n-x_{1}\right)\right.$

Core(i1) x-aximpercupt ' $\frac{d}{d}$

$$
\begin{gathered}
\text { why }-y-(y)^{0}=m\left(n-\left(x_{0}\right) \longleftarrow\right. \\
y-0=m(n-d) \\
\underline{y=m(n-d)}
\end{gathered}
$$

$$
\begin{equation*}
\min x=\frac{1}{2} \tag{1}
\end{equation*}
$$

Q isincuination
(i) y-intecupt $=(-3 / 2)$
(iii) $x \rightarrow 4$

fance $=\frac{1}{2} \frac{\sin \cos \theta \frac{1}{2} \frac{\sqrt{3}}{2}}{\cos x-1} \frac{\sqrt{3}}{2} \frac{1}{2} 0$
sig

$$
\begin{aligned}
& \text { Rainf } y \cdot y_{1}=m\left(n\left(n_{1}\right)\right. \\
& a=\operatorname{man}^{-1}(\underline{1}) \\
& 1.107 \mathrm{rad} \\
& 0 y+\frac{3}{2}=n(n-0) \\
& \frac{y=\frac{1}{2} x-\frac{3}{2}}{1} \\
& 1.107 \times 120
\end{aligned}
$$

$$
\begin{aligned}
& y=2 \\
& 2 y=n-3
\end{aligned}
$$

(70)
(ii) $2 y=n-4$
car) 8.89
intercept form

$$
\begin{gathered}
\text { this quire for - }=\frac{y_{2}-n}{x_{2}-x_{1}}\left(n-n_{1}\right)= \\
\theta^{y-0}=\frac{b-0}{0-a}(x-a) \\
y=\frac{(b)}{\theta^{4}}(n-a)
\end{gathered}
$$

$$
\frac{b x}{-a}-\frac{\frac{y}{b}=\frac{-x}{a}+1}{\frac{x}{x}=1}
$$

$$
\frac{n}{b}+\frac{n}{a}=1
$$

$$
\frac{\frac{y}{b}+\frac{n}{a}=1}{\qquad \frac{n}{b}+\frac{n}{a}-1=0}
$$

Normal form

(ii) leaper of 1 (normal) Nom origin totmeline
(ill) Angle, which normal males with the pontine direction of α-a, ${ }^{\text {an }}$.

1)

in each case

$$
\begin{aligned}
& O M=P \cos \omega \\
& M A=\frac{P \sin \operatorname{Los}}{\sim} \\
& \left(\because m_{1} m_{L}=-1\right) \\
& \text { slope of An line } 2=-\frac{1}{- \text { Scope ot }} \\
& \text { slop of } L=\frac{-1}{\tan \omega-}=-\frac{\cos \omega}{\sin \omega} \\
& y-p \sin \omega=-\frac{\cos \omega}{\sin \omega}(x-p \cos \omega) \\
& y \sin \omega-p \sin ^{2} \omega=-n \cos \omega+p \cos ^{2} \omega \\
& y \sin \omega+n \cos \omega=P\left(\frac{\left.\cos ^{2} \omega+\sin ^{2} \omega\right)}{\downarrow}\right.
\end{aligned}
$$

前

$$
k=m k+c
$$

en. of line whose normal dir (P) kimorigin $4 \rightarrow \omega$ is unit $\operatorname{and}(1 \rightarrow \rightarrow \underbrace{15^{\circ}}_{\text {axis anis }}$

 to line is 15^{\prime} with toe α-axis

$$
y \frac{\sin 1 r}{\sqrt{2}-1}+x \operatorname{cosik}=4
$$

$$
y=\sqrt{2}+n \frac{\sqrt{3+1}}{2 \sqrt{2}}=4 \rightarrow
$$

Normal form

Geneal equation of lime
intecont for m
slope
cither aces

$$
q_{n}+(b y)^{y-i}+\left(\frac{1}{2}\right)^{2 N}=\downarrow
$$

take

$$
y=-\frac{A}{B} x-\frac{C}{B}
$$

$$
\begin{gathered}
\frac{x}{y}=-\frac{A}{B} x^{0}-\frac{c}{B} \\
c \neq 0 \\
0=- \\
x \rightarrow-\frac{A}{B}
\end{gathered}
$$

$$
\begin{align*}
& \text { y=mn+c } \\
& =\frac{A_{n}+B y+c}{2}=0 \quad y=(m n+(c) \\
& B y^{(C)}=A x-C \\
& y=-\frac{A}{B} x- \\
& \text { slope form } \\
& y=r m A^{c} \quad y=-\frac{A}{B} n-\frac{C}{B} \tag{i}\\
& -\frac{A}{B}=m,-\frac{C}{B} \rightarrow \cos t
\end{align*}
$$

\downarrow
G

a

$$
\frac{x}{a}+\frac{y}{b}=1
$$

$$
\begin{aligned}
& A x+B y+C=0 \\
& \frac{A}{\cos \omega}=\frac{B}{\sin \omega}=-\frac{c}{p}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{x \rightarrow v}{y}=-\frac{A}{B} / n-\frac{c}{B} \\
& y=-\frac{c}{B}
\end{aligned}
$$

x - inta upt $y \rightarrow 0$
$0=-\frac{A}{B} n\left(-\frac{C}{B}\right)$

$$
\frac{C}{A}=-\frac{A}{B} n
$$

$$
x=-\frac{e}{A}
$$

(1) $3 n-4 y+10=0$
(i), (rope (ii) α - and y inteceph uning slope

$$
\begin{aligned}
& \frac{d y}{d x}=3 x-4 y+10=y=\frac{3}{4} x+\frac{5}{2}- \\
& \frac{3 x+10}{}=4 y \\
& \frac{3}{4}=m=4\left(\frac{d y}{4}\right)^{m}
\end{aligned}
$$

Norernist of a point form a line $\left(1^{r}\right.$ general equation

$$
1=A x+A y+C=0
$$

$$
\begin{aligned}
& Q\left(-\frac{c}{A}, 0\right), \quad R \rightarrow\left(0,-\frac{c}{B}\right) \\
& P(n, y)
\end{aligned}
$$

$$
\begin{align*}
& \text { are of } \triangle P Q R=\frac{1}{2} \alpha P M \alpha Q R \\
& \Rightarrow P P_{1}=\frac{2 \text { are of } \triangle P Q R}{Q R} \tag{1}\\
& \text { araderop } \bar{K}{ }^{\frac{1}{1}} \frac{1}{2}\left(x_{1}\left(0+\frac{c}{B}\right)+\left(-\frac{c}{B}\right)\left(-\frac{c}{B}-y_{1}\right)+0\left(y_{1}-0\right)\right] \\
& \Rightarrow \frac{1}{\varepsilon} \left\lvert\, x_{1} \frac{c}{B}+y_{1} \frac{c}{B}+\frac{c^{2}}{A B}\right.
\end{align*}
$$

$P M=$ (2)

$$
\begin{aligned}
& 2 \text { cred poor }=\left|\frac{C}{A B}\right| \cdot\left|A n_{1}+B y_{1}+C\right| \\
& Q R=\sqrt{\left(0+\frac{C}{A}\right)^{2}+\left(\frac{C}{B}-0\right)^{2}}=\left|\frac{C}{A B}\right| \cdot \sqrt{A^{2}+B^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& P M=\frac{\left\lvert\, \frac{\overline{A n_{1}+B y_{1}}+C \mid}{\sqrt{A^{2} P^{2}}}-p\left(n_{1} y_{1}\right)\right.}{2} \\
& \text { (3) } x+(4) y+7=0 \\
& p(3), 4) \\
& -d=\frac{3 \times(3)+4(4)+7)}{\sqrt{3^{2}+4^{2}}} \\
& \Rightarrow \frac{9+16+7}{\sqrt{9+16}} \Rightarrow 32
\end{aligned}
$$

diff hiv two lis limes

$$
\begin{gather*}
y=m x+c_{1} \tag{1}\\
y=m n+c_{2} \tag{11}
\end{gather*}
$$

from 1^{r} diff formula

$$
\begin{gathered}
d=\left|\frac{(+m)\left(-\frac{c_{1}}{m^{\prime}}\right)+\left(-c_{2}\right)}{\sqrt{1+m^{2}}}\right| \\
\underline{d}=\left|\frac{c_{1}-c_{2}}{\sqrt{1+m^{2}}}\right|
\end{gathered}
$$

01 find dit of the point $(3,-5)$ from line $3 x-4 y-4=0$
On find dist thaw ll" lines $3 x-4 y+7=0$

$$
\begin{aligned}
& 4 \frac{2 / r}{7-r} \\
& \frac{3 x}{\sqrt{3^{2}+4^{2}}}=\left(\frac{2}{r}\right)
\end{aligned}
$$

- perpendicular intersection

$$
m_{1} m_{2}=-1
$$

prove coral is equation of the lime that is 1' to $4 n-\sqrt{n}=6$ plough $(4,6)$

$$
m_{1} m_{2}=-1
$$

Circle locus \rightarrow
\rightarrow qeamely condrin the pups wace out try a point in the plane is lows

$$
x+y=4
$$

any random point lying (n) and (y)

94 your tale any other not on the lune add in - 4

Ex \rightarrow find the cows of print moving on aplame which is at fired dirt 5 unit
from α-axis.

every point on which wan or curve
has G- $(5$, or every poo tut her n g at dint or r unit form a rial

Coma
Lions

rAdom point
Cows of the tets of all points that are at fined dirt from a fined point
circle \rightarrow kissed point Center
$=$ fined diff \rightarrow radius
(1) find the cons of a point that is at a distance of 4 manet from a poo cup $(-3,2)$ in $\alpha 7$ plane
$-y^{3,21}$

$$
x^{2}+y^{2}+6 x-4 y-3=0
$$

$$
x^{2}+y^{2}+6 x-4 y-3=0
$$

find the coun of point wovile is af tized di't Mumit from orign

