1. The electric dipole moment for the following charge configuration is

2. The electric dipole moment for the following charge configuration is

- 3. A sample of HCl gas is placed in a uniform electric field of magnitude 3×10^4 NC⁻¹. The dipole moment of each HCl molecule is 4×10^{-30} Cm. The maximum torque experienced by each HCl molecule is
 - a) 10^{26} b) 24×10^{-26} c) 12×10^{-26} d) 36×10^{-26}
- 4. An electric dipole with dipole moment 4×10^{-9} C m is aligned at 30° with the direction of a uniform electric field of magnitude 5×10^4 N C⁻¹. The magnitude of the torque acting on the dipole is

a) 10^{-1} Nm b) 10^{-5} Nm c) 10^{-2} Nm d) 10^{-4} Nm

a) 1

5. Figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?

- 6. The expression for electric dipole moment is
 - a) q x 2a b) q x a c) q x 3a d) q x 4a
- 7. Consider a uniform electric field $E = 3 \times 10^3$ î N/C. What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?
 - a) $10 \text{ N m}^2/\text{C}$ b) $20 \text{ N m}^2/\text{C}$ c) $40 \text{ N m}^2/\text{C}$ d) $30 \text{ N m}^2/\text{C}$
- 8. A point charge $+10 \ \mu\text{C}$ is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. The magnitude of the electric flux through the square is (Hint: Think of the square as one face of a cube with edge 10 cm.)

a) 10^5 N m² C⁻¹ b) 3×10^5 N m² C⁻¹ c) 2.88×10^5 N m² C⁻¹ d) 1.88×10^5 N m² C⁻¹

- 9. A point charge of 2.0 μ C is at the centre of a cubic Gaussian surface 9.0 cm on edge. The net electric flux through the surface is
- a) 1.26×10^5 N m² C⁻¹ b) 2.26×10^5 N m² C⁻¹ c) 3.26×10^5 N m² C⁻¹ d) 4.26×10^5 N m² C⁻¹
- 10. A point charge causes an electric flux of -2.0×10^3 Nm²/C to pass through a spherical Gaussian surface of 10.0 cm radius cantered on the charge. If the radius of the Gaussian surface were doubled, then flux passing through the surface is

a) $-2.0 \times 10^3 \text{ Nm}^2/\text{C}$ b) $-4.0 \times 10^3 \text{ Nm}^2/\text{C}$ c) $-6.0 \times 10^3 \text{ Nm}^2/\text{C}$ d) $-1.0 \times 10^3 \text{ Nm}^2/\text{C}$

- A uniformly charged conducting sphere of 2 m diameter has a surface charge density of 10 c/m². The charge on the sphere is
 - a) 30.6 coulomb b) 150.6 coulomb c) 50.6 coulomb d) 125.6 coulomb
- 12. An infinite line charge produces a field of 9 \times 10⁴ N/C at a distance of 1m. The linear charge density is

```
a) 1 \,\mu\text{C/m} b) 0.1 \,\mu\text{C/m} c) 5 \,\mu\text{C/m} d) 2 \,\mu\text{C/m}
```

13. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 15.0×10^{-22} C/m². The electric field E in the outer region of the first plate is a)5 N/C b) 10 N/C c) 8 N/C d) zero 14. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} \text{ C/m}^2$. The electric field (E) between the plates is

a) $1.92 \times 10^{-10} \,\text{N/C}$ b) $2.92 \times 10^{-10} \,\text{N/C}$ c) $3.92 \times 10^{-10} \,\text{N/C}$ d) $4.92 \times 10^{-10} \,\text{N/C}$

15. Which among the curves shown in figures possibly represent electrostatic field lines?

a)
$$-\frac{3p}{4\pi\varepsilon_0 r^3}$$
 b) $\frac{2p}{4\pi\varepsilon_0 r^3}$ c) $-\frac{4p}{4\pi\varepsilon_0 r^3}$ d) $-\frac{p}{4\pi\varepsilon_0 r^3}$

KEY					
1. a	2. c	3. c	4. d	5. c	6. a
7. d	8. d	9. b	10. a	11. d	12. c
13.d	14. a	15.c	16. a	17. a	18. a
19. a	20 d				