1. The electric dipole moment for the following charge configuration is

a) zero
b) +qa
c) -qa
d) +2 qa
2. The electric dipole moment for the following charge configuration is

a) $P=2 q a \hat{\imath}$
b) $P=-q a \hat{\imath}$
c) $P=q a \hat{\imath}$
d) $P=4 q a \hat{\imath}$
3. A sample of HCl gas is placed in a uniform electric field of magnitude $3 \times 10^{4} \mathrm{NC}^{-1}$. The dipole moment of each HCl molecule is $4 \times 10^{-30} \mathrm{Cm}$. The maximum torque experienced by each HCl molecule is
a) 10^{26}
b) 24×10^{-26}
c) 12×10^{-26}
d) 36×10^{-26}
4. An electric dipole with dipole moment $4 \times 10^{-9} \mathrm{C} \mathrm{m}$ is aligned at 30° with the direction of a uniform electric field of magnitude $5 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}$. The magnitude of the torque acting on the dipole is
a) $10^{-1} \mathrm{Nm}$
b) $10^{-5} \mathrm{Nm}$
c) $10^{-2} \mathrm{Nm}$
d) $10^{-4} \mathrm{Nm}$
5. Figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?

a) 1
b) 2
c) 3
d) data insufficient
6. The expression for electric dipole moment is
a) $q \times 2 a$
b) qxa
c) $q \times 3 a$
d) $q x 4 a$
7. Consider a uniform electric field $\mathrm{E}=3 \times 10^{3} \hat{1} \mathrm{~N} / \mathrm{C}$. What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?
a) $10 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$
b) $20 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$
c) $40 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$
d) $30 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$
8. A point charge $+10 \mu \mathrm{C}$ is a distance 5 cm directly above the centre of a square of side 10 cm , as shown in Fig. The magnitude of the electric flux through the square is (Hint: Think of the square as one face of a cube with edge 10 cm .)

a) $10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
b) $3 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
c) $2.88 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
d) $1.88 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
9. A point charge of $2.0 \mu \mathrm{C}$ is at the centre of a cubic Gaussian surface 9.0 cm on edge. The net electric flux through the surface is
a) $1.26 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
b) $2.26 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
c) $3.26 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
d) $4.26 \times 10^{5} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-1}$
10. A point charge causes an electric flux of $-2.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$ to pass through a spherical Gaussian surface of 10.0 cm radius cantered on the charge. If the radius of the Gaussian surface were doubled, then flux passing through the surface is
a) $-2.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
b) $-4.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
c) $-6.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
d) $-1.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
11. A uniformly charged conducting sphere of 2 m diameter has a surface charge density of 10 $\mathrm{c} / \mathrm{m}^{2}$. The charge on the sphere is
a) 30.6 coulomb
b) 150.6 coulomb
c) 50.6 coulomb
d) 125.6 coulomb
12. An infinite line charge produces a field of $9 \times 10^{4} \mathrm{~N} / \mathrm{C}$ at a distance of 1 m . The linear charge density is
a) $1 \mu \mathrm{C} / \mathrm{m}$
b) $0.1 \mu \mathrm{C} / \mathrm{m}$
c) $5 \mu \mathrm{C} / \mathrm{m}$
d) $2 \mu \mathrm{C} / \mathrm{m}$
13. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $15.0 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. The electric field E in the outer region of the first plate is
a) $5 \mathrm{~N} / \mathrm{C}$
b) $10 \mathrm{~N} / \mathrm{C}$
c) $8 \mathrm{~N} / \mathrm{C}$
d) zero
14. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. The electric field (E) between the plates is
a) $1.92 \times 10^{-10} \mathrm{~N} / \mathrm{C}$
b) $2.92 \times 10^{-10} \mathrm{~N} / \mathrm{C}$
c) $3.92 \times 10^{-10} \mathrm{~N} / \mathrm{C}$
d) $4.92 \times 10^{-10} \mathrm{~N} / \mathrm{C}$
15. Which among the curves shown in figures possibly represent electrostatic field lines?

1

2

3

4
a) 1
b) 2
c) 3
d) 4
16. The electric flux through an area element ΔS is defined as
a) E. ΔS
b) Ex ΔS
c) B. ΔS
d) $\mathrm{E}+\Delta S$
17. The expression for torque in terms of $\mathrm{P}, \mathrm{E}, \Theta$ is
a) $\mathrm{PE} \sin (\theta)$
b) $\mathrm{PE} \cos (\theta)$
c) PE Tan (θ)
d) $P E \cot (\theta)$
18. Example for polar molecule is
a) $\mathrm{H}_{2} \mathrm{O}$
b) CH_{4}
c) N_{2}
d) CO_{2}
19. Polar molecules having
a) Permanent dipole moment
b) weak dipole moment
c) zero dipole moment
d) none of the above
20. The expression for electric field at a point on the equatorial plane (for $r \gg$ a) is
a) $-\frac{3 p}{4 \pi \varepsilon_{o} r^{3}}$
b) $\frac{2 p}{4 \pi \varepsilon_{o} r^{3}}$
c) $-\frac{4 p}{4 \pi \varepsilon_{o} r^{3}}$
d) $-\frac{p}{4 \pi \varepsilon_{o} r^{3}}$

KEY

1. a	2. c	3. c	4. d	5. c	
7. d	8. d	9. b	10. a	11. d	12. c
13.d	14.a	$15 . \mathrm{c}$	16. a	17. a	18. a
19. a	20 d				

