QUADRATIC EQUATIONS-1

1. If the equations $2 x^{2}+k x-5=0$ and $x^{2}-3 x-4=0$ have a common root finds the value of k.
2. If α, β are the roots of the equation $2 x^{2}+6 x+b=0$, then the maximum value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.
3. the value of a so that the sum of the roots of the equation $x^{2}-(a-2) x-a-1=0$
4. The value of ' a ' that the quadratic equation $2 x^{2}-\left(a^{3}+8 a-1\right) x+a^{2}-4 a=0$ possess the roots of opposite sign. Ans: $0<a<4$
5. Let α, β be the roots of the equation $a x^{2}+b x+c=0$ and γ, δ are the roots of the equation $p x^{2}+q x+r=0 . D_{1}, D_{2}$ are the discriminants of the two equations and $\alpha, \beta, \gamma, \delta$ are in A.P then find $D_{1}: D_{2}$
6. Let α, β be the roots of the equation $a x^{2}+b x+c=0$ and $\alpha+h, \beta+h$ are the roots of the equation $p x^{2}+q x+r=0 . D_{1}, D_{2}$ are the discriminants of the two equations and then find $D_{1}: D_{2}$
7. The ratio of the roots of the equation $a x^{2}+b x+c=0$ is same as the ratio of the roots of the equation $p x^{2}+q x+r=0 . D_{1}, D_{2}$ are the discriminants of the two equations and then find $D_{1}: D_{2}$
8. If $\alpha, \beta \in R$ are roots of the equation $a x^{2}+b x+c=0$. Find the condition that k lies between the roots of the equation.
Solution: af(k)<0
9. If every pair from among the equations
$x^{2}+p x+q r=0=0, x^{2}+q x+p r=0, x^{2}+r x+p q=0$ have a common root then find the sum of the common roots.
10. Find the least integral value of a so that equation $x^{2}-2(a-1) x+(2 a+1)=0$ has both roots positive. Ans: 4
11. Find the set of values of a so that both roots of the equation $x^{2}-4 a x+2 a^{2}-3 a+5=0$ are greater than $2 . \quad$ (Ans: a > 9/2)
12. The value of a for which the roots of the equation $\left(1-a^{2}\right) x^{2}+2 a x-1=0$ has roots belonging to the interval (0,1). Ans: $a>\frac{\sqrt{5}+1}{2}$
13. α, β are the roots of the equation $x^{2}-x+p=0$ and $\gamma, \delta x^{2}-4 x+q=0$. If $\alpha, \beta, \gamma, \delta$ are in geometric progression then find the integral values of p and q . Ans: $-2,-32$
14. Find the total number of integral values of a so that the equation $x^{2}+a x+a+1=0$. Ans: 2
15. Find the number of possible integral values of a so that the equation $x^{2}+a x+16=0$ has integral roots. ANS: 6 VALUES Hint: the discriminant should be a perfect square. i.e $a^{2}-64=\lambda^{2}$ Therefore $64=2 \times 32=4 \times 16=8 \times 8$
