Assumption: Let us assume $\sqrt{3}$ is rational number
$\Rightarrow \sqrt{3}=\frac{a}{b}$,
Fact: where a and b are co - prime integers (common factor is only 1)
Cross multiply
$\sqrt{3} b=a$
Squaring on both sides
$3 b^{2=} a^{2}--1$ eq
$b^{2}=\frac{a^{2}}{3}$
As per theorem" Let p be a prime number. If p divides a^{2}, then p divides a " As 3 divides a^{2}, then 3 divides a
$\Rightarrow 3$ is a factor of a
$\Rightarrow 3 \mathrm{c}=\mathrm{a}--\mathrm{-} 2 \mathrm{eq}$
substitute 2 eq in 1 eq
$3 b^{2}=(3 \mathrm{c})^{2}$
$3 b^{2}=9 c^{2}$
$\mathrm{b}^{2}=3 \mathrm{c}^{2}$
$c^{2}=\frac{b^{2}}{3}$
As per theorem" Let p be a prime number. If p divides a^{2}, then p divides a "
As 3 divides b^{2}, then 3 divides b
$\Rightarrow 3$ is a factor of b
Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational.
So, we conclude that $\sqrt{ } 3$ is irrational

Show that $5-\sqrt{ } 3$ is irrational.
Assumption: Let us assume that $5-\sqrt{3}$ is rational.
Fact: $\sqrt{ } 3$ is irrational number
$5-\sqrt{3}=a / b$, where a and b are co-prime integers
$5-(a / b)=\sqrt{ } 3$
$\frac{5 b-a}{b}=\sqrt{3}$
Since a and b are integers, we get $\frac{5 b-a}{b}$ is rational, and so $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{ } 3$ is irrational.
This contradiction has arisen because of our incorrect assumption that $5-\sqrt{3}$ is rational.
So, we conclude that $5-\sqrt{ } 3-$ is irrational.

